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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

DETERMINAÇÃO DO COEFICIENTE DE DISPERSÃO TRANSVERSAL EM

REDE DE POROS UTILIZANDO ANÁLISE DE SUB-VOLUMES

Matheus Rocha Marques de Almeida

Fevereiro/2024

Orientadores: Paulo Laranjeira da Cunha Lage

Paulo Couto

Programa: Engenharia Química

O presente trabalho tem o objetivo de desenvolver uma metodologia para de-

terminação do coeficiente de dispersão transversal de resultados de simulação do

transporte de massa de rede de poros de diferentes tipos, onde o software OpenPNM-

v2.6.0® foi utilizado. Para isto, dados de concentração e seus desvios-padrões são

extraídos das simulações e comparadas com a solução analítica desenvolvida para

determinação da razão entre o coeficiente de dispersão longitudinal e o de dispersão

transversal. Uma vez conhecido o primeiro e seu erro a 95% de confiança, pode-se

determinar segundo com o seu respectivo erro. As dimensões e o número de realiza-

ções da rede de poros, bem como o seu número Péclet microscópico foram fatores

avaliados. Dessa forma, mostrou-se que o valor do coeficiente de dispersão transver-

sal é praticamente igual para o mesmo tipo de rede e para o mesmo valor de número

de Péclet microscópico, não dependendo do comprimento da rede, desde que o com-

pleto desenvolvimento da camada limite de concentração seja alcançado. Mudanças

na largura do domínio não diminuíram significativamente o erro de determinação

da razão dos coeficientes de dispersão. Entretanto, mostrou-se que o coeficiente de
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dispersão transversal é sensível à largura da rede de poros. Além disso, o uso de

diferentes realizações da rede de poros tem pouca influência no valor determinado

para tal coeficiente.
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Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

DETERMINATION OF THE TRANSVERSE DISPERSION COEFFICIENT IN

PORE NETWORKS USING THE SUB-VOLUME ANALYSIS

Matheus Rocha Marques de Almeida

February/2024

Advisors: Paulo Laranjeira da Cunha Lage

Paulo Couto

Department: Chemical Engineering

The present work aims to develop a methodology to determine the transverse

dispersion coefficient from performed simulation of mass transport in different types

of pore networks, where the software OpenPNM-v2.6.0® was used. Concentration

data and their standard deviations are extracted from these simulations and com-

pared with the developed analytical solution to determine the ratio between the

longitudinal and transverse dispersion coefficients. Once the former and its 95%

confidence error are known, the latter and its error can be determined. The di-

mensions and the number of realisations of the pore networks and the microscopic

Péclet number were evaluated. In this way, it is shown that the transverse disper-

sion coefficient value is almost equal for the same type of network and the value

of the microscopic Péclet number once the complete development of the concentra-

tion boundary layer is achieved. Changes in the domain width did not significantly

reduce the error of the ratio between both coefficients. However, it is shown that

the transverse dispersion coefficient is sensitive to the width of the pore network.

Moreover, using different realisations of the pore networks has little influence on the

determination of such coefficient.
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Chapter 1

Introduction

In several natural processes and industrial applications, the understanding of so-

lute transport in porous media is crucial, as in contaminant hydrogeology (BEAR,

1988), brain microcirculation (BERG et al., 2020), geological carbon dioxide stor-

age (MEHMANI and XU, 2022b), among others (MEHMANI and XU, 2022a; VAN

GORP et al., 2023). It was only in the 1950s that this subject became systematically

studied by geophysicists, petroleum and chemical engineers and others. BERG et al.

(2020) stated that dispersion occurs in the presence of pressure and concentration

gradients originating a velocity field in pore scales. This phenomenon can be under-

stood as a contribution of molecular diffusion, advection and mechanical dispersion.

Molecular diffusion is due to the random thermal motion of solute molecules or

particles, while mechanical dispersion arises from the variability in the flow field.

Conversely, advection is related to the transport of molecules or particles by the

bulk flow.

Since the first works of SLICHTER (1905), TAYLOR (1953) and ARIS (1956,

1959), many others works attempted to correctly describe the principles of solute dis-

persion in packed bed of inert particles (BEAR, 1988; DORWEILER and FAHIEN,

1959). BRENNER (1980) formulated a comprehensive theory for determining how

particles move through regularly patterned porous materials subjected to fluid flow,

indicating that dispersion models remain accurate over extended regions in spatially

periodic porous media. CARBONELL and WHITAKER (1983) corroborated this
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assertion, asserting its applicability to all porous mediums. GRAY (1975), BEAR

(1988) and WHITAKER (1967) elucidated the correct formulation of the transport

equation governing the average solute concentration within the porous medium.

They accomplished this by employing the volume or spatial averaging method, in-

troduced by SLATTERY (1972).

GRAY (1975), BEAR (1988) and WHITAKER (1967) introduced the volume-

average methodology to determine the dispersion coefficient, conducting detailed

computational studies for two-dimensional spatially periodic porous media. EID-

SATH et al. (1983) subsequently applied these spatially periodic models to compute

longitudinal and transversal dispersion coefficients in packed beds, comparing their

findings with experimental data. However, their longitudinal dispersion coefficient

exhibited a stronger dependence on the Péclet number, while the transverse dis-

persion did not. Soils or underground reservoirs have significant nonuniformities at

large scales resulting in dispersion coefficient values that diverge considerably from

those observed in packed beds. For these cases, spatially periodic models are inade-

quate without adjustment to provide accurate results. Alternative approaches have

been explored to correlate and forecast dispersion coefficients, adopting a probabilis-

tic framework where the porous medium is geometrically approximated by a pore

network composed of cylindrical capillaries characterised by probability distribution

functions.

Numerous researchers employing diverse experimental methodologies have ex-

tensively investigated dispersion in porous media (BARON, 1952; COELHO and

DE CARVALHO, 1988; ROBBINS, 1989). Nevertheless, according to SCHEIDEG-

GER (1957), longitudinal and transversal dispersion measurements are typically

conducted separately, with the consensus that experiments on transversal disper-

sion are notably more challenging than those focusing on longitudinal dispersion.

When a fluid transverses a bed of inert particles, dispersion occurs due to the com-

bined influences of molecular diffusion and advection within the interstitial spaces.

Typically, the longitudinal dispersion coefficient is greater than the transversal one
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by a factor of 5 for Reynolds numbers exceeding 10. At low Reynolds numbers (Re <

1), both dispersion coefficients approximate each other and align with the molecular

diffusion coefficient.

The intricate structures of porous media exhibit significant irregularities, whose

statistical properties are only partially known. Attaining an exact solution to char-

acterise fluid flow within such structures proves practically unfeasible. Nevertheless,

employing the method of volume averaging developed by WHITAKER (1967), the

derivation of the transport equation for the average solute concentration in a porous

media is formulated.

The quantitative dispersion analysis relies on the generalised Fick’s law, incor-

porating specific dispersion coefficients in the macroscopic scale. Cross-stream dis-

persion correlates with the transverse dispersion coefficient, DT , while streamwise

dispersion is associated with the longitudinal dispersion coefficient, DL. Running ex-

periments is time-consuming, especially when different conditions have to be tested.

So, numerical experiments take place to supply this necessity to verify other be-

haviours for distinct scenarios.

Pore-scale modelling is a powerful tool to understand how solute transport occurs

in porous media capturing the pore-scale physics. Mainly, two modelling strategies

are used: Direct Numerical Simulation (DNS) and Pore Network Modelling (PNM)

(BLUNT et al., 2013; GOLPARVAR et al., 2018; YANG et al., 2016). DNS is the

methodology where governing equations of flow and transport are solved directly

using mathematical methods such as the Finite Volume Method (FVM) (FERRARI

and LUNATI, 2014; KOU et al., 2023), Smoothed Particle Hydrodynamics (TAR-

TAKOVSKY et al., 2007) and Lattice Boltzmann Methods (LBM) (XIE et al.,

2021). Although DNS yields the highest accuracy and fidelity to the actual behaviour

within dispersion in porous media, it is computationally expensive. On the other

hand, PNM reduces the complexity of pore structures to network elements, calcu-

lating the transport properties of network elements analytically or semi-analytically,

allowing for lessening the computational cost, and also giving insight into the over-
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all behaviour of solute transport in porous media (LIU et al., 2022; WEISHAUPT

et al., 2019).

MACHADO et al. (2023) recently proposed a new method called sub-volume

analysis (SVA), which uses data from pore network simulations to estimate the

longitudinal dispersion coefficient and its associated error. However, this technique

has not yet been extended to determine the transverse dispersion coefficient.

1.1 Objectives

The main objective of this work was to employ a sub-volume analysis (SVA) to

determine the transverse dispersion coefficient in different types of pore networks

at different values for the Péclet number. The simulations were performed using

OpenPNM v2.6.0 - an open-source software written in Python. This work also aimed

to verify the effect of different network realisations on the value of the transverse

dispersion coefficient.

1.2 Document Structure

A literature review is given in Chapter 2, outlining some of the most historically rel-

evant experimental observations to determine transverse and longitudinal dispersion

coefficient and their hardship. The methodology is presented in Chapter 3, giving

a detailed description of the models used in this work and a conceptual description

of the studied cases. The numerical procedure is presented in Chapter 4, with the

implementation details, boundary conditions, algorithms and their tolerances used

for simulating the flow with solute transport. Results and conclusions are given in

Chapters 5 and 6, respectively.
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Chapter 2

Literature review

2.1 Longitudinal dispersion

Over the last decades, longitudinal dispersion for flows in porous media has been

extensively studied and correlated for both liquid and gaseous systems. A slice of

the tremendous amount of published papers on this subject can be found in scien-

tific journals and publications, like the works of CHAO and HOELSCHER (1966),

EDWARDS and RICHARDSON (1968), GUNN (1969); LEVENSPIEL and SMITH

(1957). The first experimental study aiming at to understanding the longitudinal

dispersion dates back to the 1950 (DANCKWERTS, 1953). This study focused on

predicting the residence time distribution in continuous contacting packed columns,

such as chemical reactors. He provided a new methodology to measure the axial

dispersion rates in columns packed with Rasching rings.

Building upon the previous work, KRAMERS and ALBERDA (1953) conducted

a theoretical and experimental where they suggested representing packed beds as

a sequence of well-mixed regions rather than a sequence of stirred tanks (mixing-

cell model) and proposed a Ped(= Da/ūdτ ) value close to 1 for Reynolds number

(Red = ūdτ/ν) between 100 and 200. On the other hand, MCHENRY JR. and

WILHELM (1957) further explored the same concept, assuming the axial distance

between mixing cells in a packing bed to be equal to the particle diameter, leading

to a Ped value of about 2 Red approximately equals to 35. The disparity between
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these findings may be attributed to experimental conditions, particularly the aspect

ratio of the bed. BRENNER (1995) provided a solution to a mathematical model for

dispersion in a finite-length beds. His work concluded that the solutions derived by

DANCKWERTS (1953) for an input step in solute concentration and LEVENSPIEL

and SMITH (1957) for a pulse in solute concentration in a infinite bed are correct

for Pe(= ūL/4DL) ≥ 10.

Some researchers proposed correlations to cover ranges of Reynolds numbers.

That is the case of HIBY (1962), who presented an improved empirical correlation

to encompass Reynolds number (Re = dpU0/ν) up to 100, supported by experimen-

tal results. SINCLAIR and POTTER (1965) used a frequency-response technique

to study the flow of air through beds of glass spheres within a Reynolds number

(= dU/ν) range from 0.1 up to 20. EVANS and KENNEY (1966) extended this

investigation into the intermediate Reynolds number region (53 < Re = dU/ν <

1587) using a pulse response technique in beds of glass spheres and Raschig rings.

For almost all studies, the boundary conditions correspond to the semi-infinite

bed, which mathematically means that the ratio between the length and diameter of

the experimental column must be higher than 20, L/D > 20. The empirical studies

showed that the longitudinal dispersion coefficient has a functional dependence on

many parameters, such as column length and diameter, the inflow velocity, particle

diameter, molecular diffusion coefficient of the solute, and density and viscosity of

the liquid.

2.2 Transverse dispersion

2.2.1 Experimental studies

Typically, most investigators measure the transverse dispersion coefficients in non-

reactive conditions because the mass transfer rate correlates to the transverse dis-

persion in porous media and packed beds. The prevailing method for assessing

transverse dispersion involves introducing a continuous tracer stream from a local
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source within the bed, typically positioned along the axis, and gauging the radial

fluctuation in tracer concentration at one or more downstream sites.

TOWLE and SHERWOOD (1939) were the first investigators to explore the ra-

dial dispersion in a gaseous system. Their findings were pivotal for understanding

packed-bed dispersion as they revealed that tracer molar mass did not influence

dispersion. In liquid systems, BERNARD and WILHELM (1950) conducted experi-

ments to measure the transverse coefficient in packed beds using the Fickian model.

Their experiments, factoring in the wall effect condition, indicated that at high Re

numbers, the value of the transverse dispersion coefficient is constant. On the other

side, BARON (1952) proposed a novel model of radial dispersion wherein a tracer

particle undergoes a simple random walk displacement whose length is the radius

of the packed bed particles, yielding a transversal Péclet number, (Pet = ūdp/Dt),

between 5 and 13 once Re(= Udp/ν) → ∞. This prediction stems from the random-

walk theory, employing a statistical approach that disregards radial variations in

velocity in void space. Later, LATINEN (1951) expanded the random-walk concept

to three dimensions, projecting a Pet = 11.3 when Reynolds numbers approximate

to infinity value.

KLINKENBERG A. (1953) addressed anisotropic dispersion through the so-

lution of the solute transport equation, albeit within the framework of an infi-

nite medium. Their study also encompassed cases of isotropic dispersion, where

the longitudinal and transverse coefficients have the same value. On the other

hand, DORWEILER and FAHIEN (1959) used the solution in terms of Bessel func-

tions formulated by FAHIEN and SMITH (1955) for macroscopic models to mea-

sure the mass transfer in both laminar (Redp(= udp/ν) < 200) and transient flow

(200 < Redp(= udp/ν) < 1200 regimes in packed column. Their finding showed

a linear correlation between the fluid velocity and the transverse Péclet number

(= DUs/E) for Redp(= udp/ν) < 200. However, when Redp > 200, this Péclet

number seemed constant at room temperature. These authors also showed that the

transverse Péclet(= udp/Dt) achieved a constant value from the axis about 80% if
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the packed-column radius and then changed while the wall region was approximated.

SAFFMAN (1959) considered the packed bed as a network of capillary tubes that

are randomly orientated concerning the main flow. For infinitely long times and high

Reynolds number (= Ul/ν), he showed that with the assumption of stagnated fluid

at the capillary walls, the time needed for a tracer particle to leave the capillary

would be infinite as its distance from the walls goes to zero. Moreover, ROEMER

et al. (1962) studied radial mass transfer considering low flow rates, hence Re(=

dpG/µ) < 100. The authors concluded that if longitudinal dispersion is neglected in

calculating the transverse dispersion coefficient, for typical values of Re between 10

and 20, DT can be in error up to 10% of error.

One of the primary methods for calculating the transverse dispersion coefficient

involves plotting the 10% or 90% composition of the initial tracer concentration

(specifically C10 and C90) against the distance until to achieve 50% of the initial com-

position. Additionally, the continuous point source and instantaneous finite source

techniques are commonly used for experimentally measuring the transverse disper-

sion coefficient. However, a novel experimental technique created by COELHO and

DE CARVALHO (1988) enables the measurement of the dissolution rate of planar

or cylindrical surfaces with inert particles where the fresh fluid flows in axial direc-

tion. This innovative approach allows predicting the transverse dispersion coefficient

value based on mass transfer measurement.

2.2.2 Instantaneous finite source method

Several authors, including DORWEILER and FAHIEN (1959), FAHIEN and SMITH

(1955), employed an experimental technique that involves introducing a tracer into

the column’s axis. The analytical model for an instantaneous finite source in one

dimension was initially introduced by CRANK (1979), which was later expanded by

BAETSLE (1969) to encompass three-dimensional dispersion. HUNT (1978) SUN

and SUN (2014) provided three-dimensional solutions to the advection-dispersion

equation using distinct mathematical analyses. Furthermore, VAN GENUCHTEN
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(1982) contributed with numerous analytical solutions to the one-dimensional

convective-dispersive solute transport equations. The instantaneous finite-source

technique requires careful attention to some details to ensure accurate results, as

tracer concentration must remain sufficiently low to mitigate density-induced flow

effects. Additionally, the tracer must be conserved throughout the experiment, and

the outlet’s flow rate distribution should mirror that of the feed to prevent compli-

cations in the flow field, such as recirculation and flow stagnation.

2.2.3 Continuous point source method

This technique measures mass transfer between two coaxial segments of a packed

bed. Liquid flows parallel to the axis, with the central portion fed with a small

flow rate with sodium chloride and the outer segment receiving pure water. Pre-

vious studies, such as those by KLINKENBERG et al. (1953), neglected the effect

of injector radius when formulating the steady-state solution for the solute trans-

port equation. Other researchers, such as PLAUTZ and JOHNSTONE (1955),

SINCLAIR and POTTER (1965), developed analytical solutions for mass diffusion

from a point source with no boundaries. Many investigators have explored different

boundary conditions, each proposing analytical solutions.

2.2.4 Mass transfer from a flat surface aligned with the flow

In a more recent study, COELHO and DE CARVALHO (1988) introduced a novel

approach for determining the transverse dispersion coefficient. Their methodology

involves measuring the dissolution rates of certain species, assuming that the liquid

flow is steady with a uniform average interstitial velocity and that the column walls

are saturated with this solute. Their analytical solution demonstrated a direct cor-

relation between the measurement of the solid’s dissolution rate and the transverse

dispersion coefficient in the bed. Their research results are striking compared to

those of HIGBIE (1935).
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2.2.5 Numerical simulations

Several studies (BABAEI and JOEKAR-NIASAR, 2016; BIJELJIC and BLUNT,

2007; BIJELJIC et al., 2004; BRUDERER and BERNABÉ, 2001; KOHNE et al.,

2011; MEHMANI et al., 2014) have investigated solute transport using Pore Net-

work Models (PNM) mainly under the laminar Darcy flow regime. PNM offers a

significant advantage in computational efficiency over other methods, such as LBM

or DNS. This efficiency allows dispersion simulations across larger domains (2D or

3D) to achieve an asymptotic state.

For instance, when analysing their pore-network models, KOHNE et al. (2011)

and BABAEI and JOEKAR-NIASAR (2016) implemented the mixed cell method

(MCM). Meanwhile, BRUDERER and BERNABÉ (2001) utilised PNM to obtain

longitudinal and transverse dispersion coefficients for 2D pore networks that ex-

hibit varying levels of heterogeneity. Their approach involved using a discrete ran-

dom walk method to model molecular diffusion and applying the spatial moment’s

analysis to determine both dispersion coefficients for each simulation. Their results

showed a power law relationship between DL and the Péclet number. However, their

findings for transverse dispersion did not align with existing literature, revealing a

weak correlation between DT and the velocity or Péclet number.

BIJELJIC et al. (2004) and BIJELJIC and BLUNT (2007) investigated the prop-

erties of asymptotic longitudinal and transverse dispersion coefficients in 2D pore

networks with a diamond lattice of pore throats connected by volumeless pores.

They introduced heterogeneity to the lattice by varying the pore throat radii, mim-

icking Berea sandstone’s size distribution. Their findings indicated that when the

Péclet number (= ūL/Dm) was more significant than 1, a power law pattern was

observed in the relationship between the ratio of the transverse dispersion and molec-

ular diffusion coefficients and Pe = v̄L/Dm.

When examining dispersion in porous media, monitoring the time or length

required to reach the asymptotic regime is crucial. As solute enters a porous medium,

the dispersion coefficient gradually changes until it stabilises at a constant value.
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According to BIJELJIC and BLUNT (2007), an asymptotic dispersion occurs when

the solute fully interacts with the velocity field within the medium. It is worth

noting that the length required to achieve the asymptotic regime for transverse

dispersion is significantly shorter than that for longitudinal dispersion. Furthermore,

the asymptotic length increases with the Péclet number. In the 2D pore networks

studied by BIJELJIC and BLUNT (2007), fewer transversed pores were required

to reach asymptotic Dvt = DT/Dm values compared to Dv = DL/Dm, where Dvt

and Dv are the dimensionless transverse and longitudinal dispersion coefficients,

respectively. For DL, the asymptotic length varied from one pore length in the

diffusion-dominated regime (0 < Pe < 1) to 100 or 1000 pores at higher Pe, while

for DT , it ranged from one pore length in the diffusion-dominated regime to 10 or

20 pores at higher Pe, where Pe = v̄L/Dm.

ACHARYA et al. (2007) studied the transverse dispersion in a 2D porous media

by LBM simulations. They found that asymptotic DT values were attained after

travelling distances ranging from 10 to 80 grain diameters. Similarly, MAIER et al.

(2000) explored longitudinal and transverse dispersion in 3D regular and random

sphere packings using LBM simulations and Nuclear Magnetic Resonance (NMR)

experiments. Their results indicated that asymptotic DL values were achieved after

travelling an asymptotic length of 3 sphere diameters, while asymptotic DT values

were observed after a length of 1.34 sphere diameters for all Péclet values.

In a recent study, MACHADO et al. (2023) introduced a new technique called

sub-volume analysis (SVA) to extract macroscopic model parameters and their un-

certainties from pore-scale simulations using the PNM approach. The researchers

employed SVA to compute the longitudinal dispersion coefficient of the advection-

dispersion model (ADM) from continuous tracer injection problems. The findings

showed the minimum network length required to reach an asymptotic dispersion

regime where the ADM can be applied. Furthermore, the methodology was tested

on various statistically constructed networks and on those built from microtomo-

graphies of a Berea sandstone sample. The results demonstrated a remarkable level
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of agreement within the error margins for the asymptotic longitudinal dispersion

coefficient for pore networks of the same type in different realisations and also when

compared with other methods, such as breakthrough curve and moments method.

This promising technique has sparked further exploration into the potential of SVA

to determine not only the longitudinal dispersion coefficient but also the transverse

dispersion coefficient.
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Chapter 3

Methodology

This section aims to present the developed methodology used in the current work,

which describes the dispersion phenomena, the macroscopic dispersion model in

porous media and its analytical solutions, the pore-network dispersion model and

the sub-volume analysis (SVA) used to analyse its results determining the DL (or

Dv) and, lastly, the DT (or Dvt) by a estimation process.

3.1 Dispersion in porous media

The most popular method of defining a macroscopic dispersion model, according to

BATTIATO et al. (2019), is scaling up the conservation’s law from the pore scale.

The advection-dispersion equation arises as derived by WHITAKER (1999), after

selecting a Representative Elementary Volume (REV) and applying the Volume

Averaging Method (VAM) to the REV for the passive solute transport in a single

uncompressible phase through a saturated porous media. The advection-dispersion

model is given by

∂C

∂t
+ v · ∇C = ∇ · [D · ∇C] (3.1)

where C, v e D are the mean concentration per unit of fluid volume, the mean

intrinsic velocity vector and the dispersion tensor, respectively.
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For an isotropic domain, it can be shown that the dispersion tensor becomes a

diagonal matrix (SALLES et al., 1993) when D is expressed in Cartesian coordinates

with its first coordinate aligned with the v direction, as given by:

D =


DL 0 0

0 DT 0

0 0 DT

 (3.2)

where DL and DT are the longitudinal and transverse dispersion coefficients. The

experimental determination of DL is usually performed through the transient bulk

concentration at the outlet, known as the breakthrough curve. There are other

experimental methods like the works of DE CARVALHO and DELGADO (2000)

and ROBBINS (1989) to determine DT .

3.2 Dispersion in macroscopic models

Let us consider a porous media with porosity ε, length L, height 2B, with fresh

fluid injected by the left side with superficial velocity u = uêx = ϵv = ϵvêx, with

solute concentration equals to Cin at the injection boundary and to Cw at the top

and bottom walls as shown in Figure 3.1.

Figure 3.1: 2D domain sketch.

For the steady state in a 2D domain, Eq. 3.1 can be reduce to the macroscopic
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advection-diffusion equation given by:

u
∂C

∂x
− ϵDT

∂2C

∂y2
− ϵDL

∂2C

∂x2
= 0 (3.3)

.

Equation 3.3 can be made dimensionless by using

η =
y

B
, ζ =

x

B
, ϕ =

C − Cw

Cin − Cw

, P eL =
uL

ϵDL

=
vL

DL

, A =
L

B
, R =

DL

DT

(3.4)

where η, ζ, ϕ, PeL, A and R are the dimensionless transversal and longitudinal coor-

dinates to the flow, the dimensionless concentration, the Péclet number related to

the longitudinal dispersion coefficient, the ratio between the length of the domain

and its half height, and the ratio between the longitudinal and transverse dispersion

coefficients, respectively, and being ε its porosity. Using this variables, Equation 3.3

is written as:

PeB
∂ϕ

∂ζ
−R

∂2ϕ

∂ζ2
=

∂2ϕ

∂η2
(3.5)

where PeB = uL/εDT = vL/DT and the Equation 3.5 must satisfy the following

boundary conditions:

ζ = 0, ϕ = 1

η = 1, ϕ = 0

η = 0,
∂ϕ

∂η
= 0

and another one for the ζ direction, which can be stated as

ζ → ∞, ϕ = 0, (3.6)
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or

ζ = A,
∂ϕ

∂ζ
= 0 (3.7)

to infinite and finite domains, respectively. The mean dimensionless concentration

in the cross-section area is given by:

ϕ̄(ζ) =

∫ 1

0

ϕ(ζ, η)dη (3.8)

whose solution using the boundary condition given by Equation 3.6 is:

ϕ̄(ζ) =
∞∑
n=0

2

λ2
n

exp

{
PeB
2R

ζ

[
1−

(
1 +

4Rλ2
n

Pe2B

)1/2
]}

(3.9)

while, for the boundary condition given by 3.7, the solution is:

ϕ̄(ζ) =
∞∑
n=0

2

λ2
n

exp(r2nζ)−
(

r2n
r1n

)
exp [A(r2n − r1n) + r1nζ]

1−
(

r2n
r1n

)
exp[(r2n − r1n)A]

 (3.10)

where r1n and r2n are the positive root and the negative roots, and λn are the

eigenvalues of the eigenproblem derived from the partial differential equation, being

defined as follow:

r1n =
PeB
2R

[
1 +

(
1 +

4Rλ2
n

Pe2B

)1/2
]
, (3.11)

r2n =
PeB
2R

[
1−

(
1 +

4Rλ2
n

Pe2B

)1/2
]
, (3.12)

λn = π

(
n+

1

2

)
(3.13)

Annexe A provides a detailed deduction of the analytical solutions.
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3.3 Dispersion in pore-network models

SAHIMI (2011) stated that the solute transport equation, which describes the dis-

persion during injection at the pore scale, can be written as:

∂c

∂t
+U · ∇c = ∇ · (Dm∇c) (3.14)

where c is the concentration at the pore scale, U is the fluid velocity vector in the

porous space, and Dm is the solute molecular diffusion coefficient. The integration

of Equation 3.14 over the effective pore volume, V eff
i , followed by the application

of the divergence theorem, gives:

V eff
i

∂ci
∂t

= −
Zi∑
j=1

ṁij (3.15)

where V eff
i is the sum of the volume of pore i and the halves of all throat volumes

connected to it, ci is the mean solute concentration in V eff
i , Zi is the coordination

number which represents the number of pores connected to pore i through throats,

and ṁij is the net mass flow rate that is transported by diffusion and advection from

pore i to pore j. For the pore network model, the inlet condition is the injection of

fluid with zero solute concentration by advection.

Figure 3.2: Effective pore volume.

For the steady-state incompressible flow of a Newtonian fluid, the flow from pore
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i to pore j can be given by:

qij = ghc,ij (pi − pj) (3.16)

where ghc,ij is the hydraulic conductance of the conduit between pores i and j, pi and

pj are the pressures values at pores i and j, respectively. ghc,ij takes into account

the conductance of the throat that connects pores i and j and the conductance of

halves of these pores, and it can be calculated as:

ghc,ij =

(
1

ghi
+

1

ghij
+

1

ghj

)−1

(3.17)

which ghi , g
h
j and ghij represents the hydraulic conductances of the halves of the pores

i, j and the throat that connects them. It is important to highlight that these

conductances become defined by applying the Hagen-Poiseuille equation to Equa-

tion 3.17. If considering pores as spheres and throats as cylinders, the hydraulic

conductances of the throat connecting pores i and j can be calculated by:

ghij =
π

128µ

(
d4ij
lij

)
(3.18)

where dij and lij is the throat diameter and throat length connection pores i and j.

The ghi and ghj are calculated similarly, but replacing li = di/2 and lj = dj/2.

The net volumetric flow rate at all pores of the network must be zero due to

volume conservation, which means that (GOSTICK et al., 2016):

Q =

Zi∑
j=1

ghc,ij (pi − pj) = 0, i = 1, 2, ..., Np (3.19)

where Np is the total number of pores in the pore network, and the index j is the

index of a pore connected to of pore i. Equation 3.19 is a sparse linear system,

whose solution provides the pressure at the network pores. Once the pressure is
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found for each pore, one can use Equation 3.16 to calculate the flow rates, qij, at all

conduits.

3.4 The sub-volume analysis (SVA)

Recently, MACHADO et al. (2023) developed a new methodology to use volume-

averaged data from the pore-network simulations to estimate parameters values and

their uncertainties for macroscopic models. The sub-volumes are domains within the

pore network, which can be understood as a slab perpendicular to the flow but with

a small thickness in the flow direction. The superposition of slabs centred in nearby

axial positions defines a moving averaging window. The dimensionless sub-volume

thickness is determined L = lv/lpp, where lv and lpp are the sub-volume thickness

and pore-to-pore distance, which is illustrated in Figure 3.3.

Figure 3.3: Sub-volumes with L equal to (a) 1, (b) 3 and (c) 5 in a pore network.
Reproduced from MACHADO et al. with permission.

This methodology allows us to estimate the dimensionless longitudinal dispersion

coefficient, Dv, and its error at the 95% confidence level. Similarly, the present work

aimed to estimate the dimensionless transverse dispersion coefficient, Dvt, and its

error at 95% confidence level, e95(Dvt), as an extension of the SVA methodology. For

this, as in the work of MACHADO et al. (2023), the volume-averaged solute concen-

tration, ⟨cp⟩(k)V , at all k sub-volume barycenter positions, ⟨xp⟩(k)V , should represent

the cross-area averaged solute concentration profile along the domain. Moreover,
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the standard deviation of the solute concentration, σ
(
⟨cp⟩(k)V

)
, and the barycen-

ter position error, ∆⟨xp⟩(k)V , were used to measure the effect of the domain on the

determination of Dv and Dvt.

For L > 1, the sub-volume thickness increases equally in both directions, up-

stream and downstream, generating overlapping sub-volumes. The barycenter posi-

tion in x direction of each sub-volume is described by:

⟨xp⟩(k)V =

∑n
(k)
p

i=1 xi,pV
V eff
p,i

p,i∑n
(k)
p

i=1 V
V eff
p,i

p,i

(3.20)

where n(k)
p is the total number of pores in the sub-volume k, and xp,i is the barycenter

of pore i. The error in the determination of the barycenter position was estimated

using:

∆⟨xp⟩(k)V =
∣∣∣⟨xp⟩(k)V − ⟨xp⟩(m)

V

∣∣∣ (3.21)

where ⟨xp⟩(m)
V is calculated analogously to ⟨xp⟩(p)V , just replacing p to m. The sub-

volume m has one more layer of pores in both the left and right directions when

compared with the sub-volume k. Similar to the barycenter position calculation, the

volume-averaged solute concentration in the sub-volume k can be calculated using

the following equation:

⟨cp⟩(k)V =

∑n
(k)
p

i=1 cp,iV
eff
p,i∑n

(k)
p

i=1 V eff
p,i

(3.22)

In addition, the standard deviation of the solute concentration for the pores within

a sub-volume comes from:

σ
(
⟨cp⟩(k)V

)
=

√√√√√ 1

n
(k)
p

n
(k)
p∑

i=1

(
⟨cp⟩(k)V − cp,i

)2
(3.23)
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3.5 Longitudinal and transverse dispersion coeffi-

cient estimation

In order to determine Dv, at a given time t, L is considered adequate when α does

not vary by more than 1% if its value for a further increase in L, where α is the

standard deviation, of the σ
(
⟨cp⟩(k)V

)
(see details in MACHADO et al., 2023). On

the other hand, because of the steady-state nature of the present work, L is adequate

when the values of Dvt and its 95% confidence error does not vary more than 1%.

To estimate the dimensionless longitudinal dispersion coefficient, at a given time

instant, t, the volume-averaged values of ⟨cp⟩(k)V and ⟨xp⟩(k)V with their respective

error estimates are calculated and it is assumed that ⟨cp⟩(k)V and ⟨xp⟩(k)V represents

the solute distribution in time and position, C̄(x, t). So DL, can be estimated

by adjusting the analytical solution to the data extracted from the pore-network

simulation. The reader can find more details of the SVA and its application to

determine DL in the original work of MACHADO et al. (2023).

A complementary methodology was developed for the DT determination. One

can realise that the analytical solution for ϕ̄(ζ) depends on the R parameter, which

represents DL/DT , in other words, the method is valid once the value of DL is

obtained using the SVA methodology. Another difference is the usage of a solution

for the steady-state, as mentioned before, which means that the sub-volumes’ solute

concentrations at their barycenter positions represent the solute distribution along

the flow direction, which can be used together the analytical solution to determinate

R, and, thus, DT . Several simulations were performed to verify the influence of the

length and height of the domain on the value of DL and DT , for a few Péclet (Pem)

numbers. Each pore network was statistically built 10 times and then the mass

transport simulation was performed in each one, to verify the range of DL values

among them.

For both dispersion coefficients, two different types of averages were performed.

First, for a set of realisations, ⟨Dvt⟩±e95(⟨Dvt⟩) were calculated, which are the mean
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values to the transverse dispersion coefficient and its error at 95% confidence level.

Secondly, taking the values of the transverse dispersion coefficient and their errors

for each realisation and adjusting them to a constant function, we can obtain the

D̄vt ± e95(D̄vt).
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Chapter 4

Numerical Procedure

All the simulations and analytical solutions implemented in this work and the open-

source codes used were written or accessed via Python. The OpenPNM version

2.6.0, developed by GOSTICK et al. (2016) uses the Numpy v1.20.3 and Scipy

v1.6.3 libraries, which were developed by HARRIS et al. (2020) and VIRTANEN

et al. (2020), respectively. OpenPNM was used to build the pore networks and

simulate the flow and the solute transport process. A Python routine using the

OpenPNM library calculated the sub-volume properties.

4.1 Implementation of the finite and semi-infinite

solutions

The ζ values were defined within [0, 1− A] with equidistant intervals of 0.1 and

A = 10. The A value was chosen in accordance with the analytical solutions’

behaviour in order that ϕ̄ → 0 but with a clear picture of their exponential decay.

Thus, we could compare the two analytical solutions. Since DT ⩽ DL, the R values

were defined as 1, 100.5 and 10. The PeL values were set to 0.01, 0.1 and 1. The

absolute error of the series solutions, Equations 3.9 and 3.10 at each point ζi = 0.1i

(i = 1, 2, ..., Nζ = 100), where Nζ is the number of points within the ζ interval, was

calculated according to:
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δ(ζi) =
∣∣ϕ̄(ζi)f − ϕ̄(ζi)f−1

∣∣ (4.1)

where ϕ̄(ζi)f represents the sum of the values of the series terms up to n = f at

ζi until the absolute error criteria achieves a value lower than 10−4. On the other

hand, ϕ̄(ζi)f−1 is the sum of series’ terms up to n = f − 1 at ζi. Once the absolute

error at all points are known, the maximum absolute error, δmax, and mean absolute

error, δ̄, can be calculated by:

δmax = max
i=1,...,Nζ

[δ(ζi)] and δ̄ =
1

Nζ

Nζ∑
i=1

δ(ζi) (4.2)

The 95% confidence error of ϕ̄ can be calculated as follow:

e95%(ϕ̄) =
t95%np−1√

np

σ(ϕ̄) (4.3)

where np is the number of porous contained in each sub-volume, σ(ϕ̄) the standard

deviation of the mean dimensionless concentration and t95%np−1 is the value of t-

student with the confidence level of 95% which approaches 1.96 when np → ∞.

4.2 Pore network construction

Porous media are investigated using two different types of cubic-network models:

Simple cubic lattice and multi-directional connectivity pore network in a cubic

lattice. The former has pores with a coordination number equal to 6, the lat-

ter has pores with a coordination number equal to 26 with random elimination

of 30% of pores and throats connected to them. The pores are characterised as

spherical and are connected to each other by cylindrical throats with circular cross-

sections. MACHADO et al. (2023) implemented using OpenPNM an algorithm to

build statistically-defined cubic lattice pore networks with prescribed petrophysical
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properties, those can be found in Table 4.1, where Lx, Ly and Lz are the length of

the domain in x, y and z directions, respectively, ε is the porosity, Kx is the perme-

ability in the x direction, Np is the total number of pores in the pore network and

Lpp is the distance between two pores. The networks with (∗) symbol mean that

were built by MACHADO et al. (2023).

Table 4.1: Properties of statistically built pore networks.

Network Np Lpp(mm) Lx(mm) Ly(mm) Lz(mm) ε(%) KX(D)

C1∗ 200 000 0.5 250 10 10 39.96 100.4

C3∗ 600 000 0.5 750 10 10 39.98 100.4

C4∗ 800 000 0.5 1000 10 10 39.99 100.4

C42h 1 600 000 0.5 1000 20 10 39.97 100.4

CZ1∗ 112 546 0.1 40 2 2 29.87 1.013

CZ3∗ 338 154 0.1 120 2 2 29.90 1.013

CZ4∗ 450 618 0.1 160 2 2 29.90 1.013

CZ42h 905 578 0.1 160 4 2 29.93 1.013

To construct cubic-lattice pore networks, we utilised the Permuted Congruential

Generator method (O’NEILL, 2014) from the Numpy library to generate pseudo-

random numbers. These numbers were essential for reducing mean coordination

numbers by randomly eliminating pores and throats and determining pore and

throat diameters based on a prescribed distribution. The size of pores and throats

in all networks is determined by a statistical distribution algorithm, which is tai-

lored to attain the desired values of porosity and permeability for each network. For

the simple cubic network, MACHADO et al. (2023) outlined the algorithm in their

work, which is provided below.

1. Read the prescribed properties: porosity, permeability, coordination number,

the averaged distance between pores, and network lengths: Lx, Ly and Lz.

2. Define first guesses for the mean pore and throat diameters using approximated

correlations based on the porous media representation as a bundle of capillarity

25



tubes connecting the inlet and outlet of the sample, where we used the Hagen-

Poiseuille and Darcy equations.

3. A cubic pore network is built with a coordination number equal to 6 for all

pores.

4. Define all pore-network geometry entities considering a normal distribution of

pore and throat diameters, using the estimates obtained in step 2 as mean

values for pore and throat diameters.

5. Minimize the absolute difference between the prescribed and calculated poros-

ity value by tweaking the pore diameter distribution’s mean value until reach-

ing a defined tolerance.

6. Minimize the absolute difference between the prescribed and calculated per-

meability value by tweaking the mean value of the throat diameter distribution

until it reaches a defined tolerance.

7. Repeat steps 5 and 6 as many times as necessary.

The steps for a multi-directional connectivity pore network in a cubic lattice are

almost the same as the simple cubic. However, the step 3 was replaced by the steps

below:

• Build a cubic pore network with a coordination number equal to 26 for all

pores.

• Randomly remove 30% of pores and throats connected to them.

• Adjust the averaged coordination number by randomly eliminating throats.

However, preserve all throats belonging to the sample-spanning cluster.
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4.3 Flow and tracer transport simulation

4.3.1 Flow conditions

To determine the flow field of the network, a constant volumetric flow rate at the

inlet boundary was imposed using the pressure difference between inlet and outlet

boundaries, ∆P . The following equation defines the microscopic Péclet number:

Pem =
vx|x=0Lpp

Dm

(4.4)

The Darcy equation can used to determine the pressure difference that gives the

outlet value of the intrinsic velocity

∆P =
vx|x=0εµLx

KX

(4.5)

where µ is the viscosity of the fluid. Combining in Equations 4.5 and 4.4, one can

easily obtain the pressure difference between inlet and outlet by:

∆P =
PemDm

Lpp

εµLx

KX

(4.6)

Once the Pem value is fixed and the other parameters are known, the pressure

difference between the inlet and outlet boundaries is calculated and imposed as

boundary conditions. Then, the algorithm StokesFlow from the OpenPNM code

was performed to solve the sparse linear system of the pressure field, given by Equa-

tion 3.19, allowing to determine the flow rate in each throat from Equation 3.16

and, consequently, the flow field. The sparse linear system within the Stokes Flow

algorithm was solved with a relative tolerance of 10−10 by the PARDISO library, de-

veloped by SCHENK et al. (2001) and accessed via PyPardiso version 0.4.1 (HAAS

and SROCKA, 2023).
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4.3.2 Tracer transport conditions

Once the flow field is known, the mass transport inside the pore network could be

performed. Two different algorithms were used, one to determine DL and other to

determine DT . The former was performed with a transient solver, TransientAd-

vectionDiffusion, and the latter with a stationary solver, AdvectionDiffusion. The

species conservation equation at steady-state for an arbitrary pore i is given by the

simplification of Equation 3.15 as:

zi∑
j=i

ṁij = 0 (4.7)

To perform the steady-state tracer transport, the stationary algorithm was settled

up with a relative tolerance of 10−8 for the pores’ concentrations. The top and

bottom walls were saturated with solute, while the inlet and outlet had no solute.

The pores at the outlet boundaries allowed no solute accumulation to enforce a

boundary condition compatible with Equation 3.7. Further, there were no normal

flow at the other boundaries that are kept saturated. The reader can find more

information about the transient solver and its numerical procedure to determine DL

in the work of MACHADO et al. (2023).

4.4 SVA application to determine the longitudinal

dispersion coefficient

To determine the longitudinal dispersion coefficient, at a given time t, of the tran-

sient mass transfer process, we calculated the volume-averaged values of ⟨cp⟩(k)V and

⟨xp⟩(k)V , with their respective errors estimates for all sub-volumes k with thickness L

in the domain. Assuming that ⟨cp⟩(k)V and ⟨xp⟩(k)V represent the distribution of solute

in time and space in the macroscopic model, we could estimate DL by adjusting the

analytical solution to these data. Furthermore, other input data were needed during

the procedure, including the network properties described in Table 4.1. The estima-
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tion of DL was performed using the ODRPACK, where, according to MACHADO

et al. (2023), the relative tolerance for all fitting curves were 10−20 and 10−25 for

the convergence of the sum of squares and the estimated parameter, respectively.

The ODR (Orthogonal Distance Regression) package differs from normal regression

as takes into account the determination errors for both independent and dependent

variables.

Once DL is estimated at each time t, their values were analysed by plotting

the dimensionless longitudinal coefficient, Dv = DL/Dm, and their errors using the

95% confidence interval, e95(Dv), versus the dimensionless time, T = vxt/Lx. If

the domain is long enough, the asymptotic dispersion regime is reached somewhere

within 0.4 < T < 0.8, where Dv tends to a constant value. However, if the length is

not long enough, Dv can be estimated before the tracer advancing front reaches the

domain outlet (MACHADO et al., 2023), but it would not be the asymptotic value.

Therefore, when the Dv(T ) remains nearly constant within a certain T range, we

can use its value and uncertainties to determine the dimensionless dispersion coef-

ficient, D̄(∆t)
v , and its uncertainty in the asymptotic regime by adjusting a constant

function over the T interval. Additionally, we can estimate an average value for

the dimensionless longitudinal coefficient and its uncertainty for a set of realisations

using differents procedures (see details MACHADO et al., 2023).

4.5 SVA application to determine the transverse

dispersion coefficient

To determine the transverse dispersion coefficient, DT , after the flow and tracer

concentration fields were obtained as described previously, we could extract the val-

ues of ⟨cp⟩(k)V and ⟨xp⟩(k)V and their errors from the pore-network results for different

sub-volume thickness. Assuming that ⟨cp⟩(k)V and ⟨xp⟩(k)V represent the solute distri-

bution in space in the macroscopic model, we could estimate R = DL/DT = Dv/Dvt

by adjusting the analytical solution to these data, which tolerance of 10−8 was set-
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tled up in order to ensure that the values of concentration in each point no longer

depend on the value of n, where n is the number of terms needed in the series an-

alytical solution in each point. When ODR was used to estimate R, the Dv value

and pore-network petrophysical parameters were required as input data.

The values of R and its 95% confidence error, e95(R), varied according to the

sub-volume thickness, L. Furthermore, the value of R and its error also depends

on the amount of data that was used during the estimation procedure using the

ODR package, and because of this, a point selection criterion was implemented.

The values for σ(ϕ̄) and ϕ̄ are known for ζ ∈ [0, A]. In order to narrow down the

ζ range utilised for estimating R, a maximum value, ζmax, is selected such that the

both the conditions ϕ̄ < ϕ̄min and ϕ̄−2σ(ϕ̄) < 0 are met. Here, ϕ̄min is a value close

to zero.

The parameters e95(R) and e95(Dv) represent the 95% confidence error for each

parameter, while the 95% error for Dvt, e95 (Dvt), can be calculated using the prop-

agation error of R and Dv as:

e95 (Dvt) = Dvt

[(
e95(Dv)

Dv

)2

+

(
e95(R)

R

)2
]1/2

(4.8)

It’s noteworthy to recall that R = DL/DT = Dv/Dvt.

For a set of realisations, we could also estimate a mean value for the dimensionless

transverse dispersion coefficient, ⟨D̄vt⟩, and its error, e95(⟨D̄vt⟩). The former could

be calculated as

⟨D̄vt⟩ =
1

NR

r∑
i=1

Dvti (4.9)

while the latter comes from

e95(⟨D̄vt⟩) =
1

NR

r∑
i=1

e95(⟨Dvti⟩) (4.10)

where NR is the total number of realisations, Dvti and e95(⟨Dvti⟩) is the dimension-
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less transverse dispersion coefficient and its error for the realisation of number i,

respectively and r is the maximum value of realisation. Likewise was done for the

dimensionless longitudinal dispersion coefficient in the work of MACHADO et al.

(2023), in this case, the values of Dvt ± e95(Dvt) for a set of realisation were ad-

justed to a constant function in order to obtain a new value for the dimension-

less transverse dispersion coefficient and its error, D̄vt ± e95(D̄vt), where this value

takes account the error of each realisation. To verify the agreement among realisa-

tions’ results, a compatibility matrix was used in such way that when the criterion

|Dvt,i−Dvt,j| < e95(Dvt,i)+ e95(Dvt,j) is satisfied, the realisation i is compatible with

realisation j. Moreover, the same criterion was used to calculate the percentage of

realisations that were in agreement with the value of ⟨Dvt⟩.
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Chapter 5

Results and Discussion

This chapter aims to compare the results of the two analytical solutions, regarding

the effect of R in the ϕ̄ profiles, the usage of SVA to estimate DT , and the influence

of the domain’s height and length to determine R and DT . Moreover, the variation

of the estimated DT for different network realisations is described as well.

5.1 Comparing the solutions for the finite and semi-

infinite domains

For fixed PeL, the values of δ̄ and δmax for both solutions and chosen values of A,PeL

and R are shown in Table 5.1, which also provides the mean, ∆, and maximum

values, ∆max, of these differences. The solutions agree well except for PeL = 10,

when δmax > 0.003. Table 5.2 shows δ̄, δmax,∆ and ∆max for fixed value of PeB where

the finding reveals that the highest disparity between the series solutions remained

below 0.0054. Such differences do not support the usage of the semi-infinite domain

solution for the Dvt estimation. Therefore, we used the finite domain solution for

all other analyses.
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Table 5.1: Mean and maximum absolute percentage errors for series solutions and
the difference between the solutions.

Parameters Finite domain solution
Semi-infinite

domain solutions

Absolute difference

between solutions

A PeL R δ̄ × 106 δmax × 106 δ̄ × 106 δmax × 106 ∆× 106 ∆max × 106

10

0.01

1 8.67 66.39 8.67 66.39 5.28× 10−9 2.31× 10−2

100.5 9.33 74.47 9.33 14.47 3.15× 10−3 45.7

10 11.69 94.12 11.69 94.12 3.87 3287.23

0.1

1 8.67 66.45 8.67 66.45 5.11× 10−9 2.34× 10−2

100.5 9.33 73.67 9.33 73.67 3.15× 10−3 45.78

10 11.70 94.33 11.70 94.33 3.67 3287.27

1

1 8.47 68.31 8.47 68.31 5.24x10−9 3.76× 10−2

100.5 9.01 74.23 90.14 74.23 2.06× 10−3 62.17

10 11.29 94.61 11.29 94.61 3.39 4102.87

Table 5.2: Mean and maximum absolute percentage errors for series solutions and
the difference between the solutions for a fixed value of PeB.

Parameters Finite domain solution
Semi-infinite

domain solutions

Absolute difference

between solutions

A PeB R δ̄ × 106 δmax × 106 δ̄ × 106 δmax × 106 ∆× 106 ∆max × 106

10

0.01

1 0.713 67.9 0.71 67.9 5.63× 10−9 1.12× 10−1

100.5 0.827 76.7 0.827 76.7 3.13× 10−3 1127.13

10 1.14 94.27 1.14 94.27 3.92 5380.27

0.1

1 0.717 68.4 0.717 68.4 5.42× 10−9 1.58× 10−1

100.5 0.823 75.5 0.823 75.5 2.91× 10−3 1222.43

10 1.14 94.32 1.14 94.32 3.84 5373.39

1

1 0.717 68.4 0.717 68.4 5.42× 10−9 0.158

100.5 0.823 75.5 0.823 75.5 2.91× 10−3 1222.43

10 1.14 94.32 1.14 94.32 3.84 5373.39
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5.2 The effect of R in the dimensionless mean con-

centration profile

The impact of DT on solute dispersion within the porous domain is illustrated in

Figure 5.1 by the change of R for a given fixed value of PeL. It’s worth noting that a

higher R value corresponds to a larger PeL number, leading to greater dimensionless

concentration values for a given ζ location, indicating a more dominant transport

in the axial direction.

Figure 5.1: Influence of DT via R (fixed PeL) in ϕ̄(ζ) profiles with A = 10.

An analogous evaluation is carried out to explore the responsiveness of ϕ̄ profiles

to variations in DL using R for fixed PeB and A, which is shown in Figure 5.2.

It should be noted that a value for PeB can be determined for a given DT and

A, which allows for the estimation of DL using R. For PeB = 0.01 and A = 10, the

values for PeL are 0.1, 10−1.5, and 0.01 for R equal to 1, 100.5, and 10, respectively.

34



Similarly, for PeB = 0.1 and the same values of R, PeL values are 1, 10−0.5, and

0.1, respectively. The criterion δmax(ζi) < 10−4 was imposed in determining the

values of ϕ̄ at each point using both analytical solutions. Figure 5.2 demonstrates

the sensitivity of ϕ̄ profiles to changes in the DL values.

R =
DL

DT

vL

vL
=

vB
DT

vL
DL

=
L

B
=

PeBA

R
→ PeL =

PeBA

R
(5.1)

Figure 5.2: Influence of DL via R (fixed PeB) in ϕ̄ profiles with A = 10 using the
analytical solution for finite domain.

This analysis shows that ϕ̄ profiles are sensitive to changes in DT and DL, which

means that ϕ̄ data can be used to estimate one or both dispersion coefficients.

5.3 Estimation of DT using the SVA

The results in this section are related to the determination of the appropriate sub-

volume thickness (L) required to reliably estimate the value of R, the impact of

the domain’s length and height on the estimates of R and Dvt, and the influence of

different realisations on the Dvt value.

5.3.1 Sub-volume width analysis

To determine the required L value for estimating R, specific values were selected,

specifically 1, 3, 5, 7, 9, 13, and 21, and R values were estimated from the resulting
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ϕ̄ profiles for Pem values of 1 and 10. The results showed that L ⩾ 5 were needed

for both Pem numbers, because the estimated R values independent of the L value.

Table 5.3 list the networks and the corresponding R and e95(R) for ζ = 5, 7 and 9.

The values of sub-volume thickness and Dv±e95(Dv) were calculated using the SVA

methodology, which the procedure can be found in the work of MACHADO et al.

(2023).

Table 5.3: Values for R parameter with their respective 95% confidence error, e95(R),
considering the whole domain length.

Pem Network Dv ± e95(Dv)
R± e95(R)

ζ = 5 ζ = 7 ζ = 8

1

C1 0.8595± 0.0024 1.3508± 0.0010 1.3508± 0.0010 1.3508± 0.0010

C3 0.8590± 0.0009 1.3537± 0.0007 1.3537± 0.0007 1.3537± 0.0007

C4 0.8591± 0.0015 1.3576± 0.0003 1.3576± 0.0003 1.3576± 0.0003

CZ1 0.8506± 0.0021 1.8468± 0.0017 1.8468± 0.0017 1.8468± 0.0017

CZ3 0.8367± 0.0029 1.8574± 0.0016 1.8574± 0.0016 1.8574± 0.0016

CZ4 0.8204± 0.0014 1.8521± 0.0003 1.8521± 0.0003 1.8521± 0.0003

10

C3 8.1610± 0.0104 4.3333± 0.0023 4.3333± 0.0023 4.3333± 0.0023

C4 8.1284± 0.0138 4.4066± 0.0017 4.4066± 0.0017 4.4066± 0.0017

CZ3 9.9756± 0.0017 3.0767± 0.0015 3.0767± 0.0015 3.0767± 0.0015

CZ4 9.8925± 0.0424 3.0894± 0.0005 3.0894± 0.0005 3.0894± 0.0005

For each network realisation and Pem value, Table 5.3 shows that the value of R

vary within the error margins for different values of L, indicating that the length of

the sub-domain does not significantly influence the value of R. Table 5.3 also shows

that the domain lengths can significantly impact the R value for the same network

type, specially for Pem = 10. Therefore, it is crucial to investigate how domain

length affects the R estimate.

Figure 5.3 shows the mean dimensionless concentration profile along the number

of the pores layer in flow direction for different L values for the C1 pore network.

In essence, upon initial inspection of these profiles, they appeared identical. Note
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that plotting ϕ̄ using the number of layers, NLayers, in cubic networks implies that

there are approximately the same number of pores for given NLayer value and type

of network.

Figure 5.3: Dimensionless concentration profile along the pore layer number in flow
direction for C1 network and Pem = 1.

To investigate the minor differences in the concentration profiles, a closer exami-

nation near the inlet was conducted. Figures 5.4 (a) and (b) display ϕ̄ for C3 and C4

networks, respectively. For L = 1, there are results in oscillations in the ϕ̄ profiles,

making this sub-volume thickness not suitable for estimating R. A comparison of

the peak value of e95(ϕ̄) in Figures 5.5 (a) and (b) with L = 1 and 5, and then

between L = 5 and 21, reveals a reduction of about 50%. It is worth noting that

this trend is observed in the results for all networks, either Pem = 1 or Pem = 10,

as illustrated in Figures 5.6 and 5.7. As shown in Figure 5.7 the e95(ϕ̄) profiles for

Pem = 10 exhibit significantly more oscillations than those with Pem = 1.
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(a) (b)

Figure 5.4: Dimensionless concentration profiles near the inlet for different sub-
volume thicknesses obtained with Pem = 1 for (a) C3 and (b) C4 networks.

(a) (b)

Figure 5.5: e95(ϕ̄) profiles along the domain in flow direction for different sub-volume
thicknesses obtained with Pem = 1 for (a) C3 and (b) C4 networks.
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(a) (b)

Figure 5.6: Dimensionless concentration profiles near the inlet for different sub-
volume thicknesses obtained with Pem = 10 for (a) C3 and (b) C4 networks.

(a) (b)

Figure 5.7: e95(ϕ̄) profiles along domain in flow direction for different sub-volume
thicknesses obtained with Pem = 10 for (a) C3 and (b) C4 network.

5.3.2 Influence of domain length and height in estimating R

The variation in tracer concentration within the network is influenced by the porous

and throat size heterogeneity and coordination number during mass transport. A

higher concentration distribution in the transversal direction leads to a higher stan-

dard deviation. The dimensionless concentration varies from 1 at the inlet to zero

at a sufficiently large ζ value. However, an excessively long pore network presents a

large region with ϕ̄ close to zero where the standard deviation is quite small. Figures

5.8 (a) - (f) illustrate the dimensionless concentration profile for C and CZ network

39



types with Pem = 1. The band region represents the mean concentration standard

deviation, with the highest value near the inlet that decreases to zero along the

domain length. For Pem = 1, we observed that all networks are long enough to

ϕ̄ → 0, and the longer the domain length, the greater the number of low values for

σ(ϕ̄). This result directly impacts the estimation of e95(R) as we can see in Table

5.3, where the longer the length, the lower the R error, for the same type of pore

network.

(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Dimensionless concentration profile along the pores’ layer number in
flow direction with bands which represent the σ(ϕ̄) for Pem = 1 with L = 5 for C
and CZ type network.
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For Pem = 1, both network types achieved a near-zero ϕ̄ value at almost the

same layer number. This is explained by the R values close to one (Table 5.3), which

makes DL and DT approach Dm, for both network types. For this low value of Pem,

diffusion transport is also important within the network elements.

(a) (b)

Figure 5.9: Dimensionless concentration profile along the pores’ layer number in
flow direction with bands which represent σ(ϕ̄) with L = 5L for different types of
network with (a) Pem = 1 and (b) Pem = 10.

In Figures 5.9 (a) and (b), compare ϕ̄±δ(ϕ̄ for different network types simulated

with Pem = 1 and 10, respectively. It can be observed that both network types

reach ϕ̄− 0 at a similar position for Pem = 1. However, for Pem = 10, the ϕ̄ values

drop to near zero at a lower NLayer value for the CZ-type network when compared

to the C-type network. This is explained by the smaller R values for the former

networks shown in Table 5.3. The smaller R values determined for the CZ networks

originate from their larger heterogeneity when compared to the C networks. This

effect is pronounced for Pem = 10 because advection is dominant within the network

elements.

To reduce σ(ϕ̄) values, two networks were modified by doubling their height

(denoted as 2h). This strategy increases the number of elements utilised to calculate

the concentration standard deviation within a sub-volume, subsequently used to

determine R and e95(R), which should be more accurate.
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(a) (b)

Figure 5.10: Dimensionless concentration profile along the pores’ layer number in
flow direction with bands which represent σ(ϕ̄) with L = 5 for C4, C42h, CZ4 and
CZ42h with Pem = 1.

(a) (b)

Figure 5.11: Dimensionless concentration profile along the pores layer number in flow
direction with bands which represent the mean concentration standard deviation
with L = 5Lpp for C4, C42h, CZ4 and CZ42h with Pem = 10.

Figure 5.10 (a) displays the ϕ̄ profiles for the C4 and C42h networks realisations

with Pem = 1 whereas 5.10 (b) shows the corresponding results for the CZ4 and

CZ42h networks. Figure 5.11 shows similar results, but, obtained with Pem = 10. It

is evident that when the height is duplicated for the same Pem, the distance between

the saturated boundaries increases. As a result, the solute must be transported over

a longer longitudinal path to the ϕ̄ values become close to zero. As Pem increases,

the value of NLayer required to achieve ϕ̄ = 0 increases as well. This is due to the fact
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that advection becomes dominant, and the solute is transported faster in the flow

direction. For instance, for C4 network, the fully developed mass transfer boundary

layer is attained at NLayer ≈ 250 and 1000 for Pem = 1 and 10, respectively. Figure

5.11 shows that the C42h pore network is not long enough to achieve the fully

development region of the concentration boundary layer.

Figure 5.9 to 5.11 show that similarly to the case of Péclet number of 1, the

δ(ϕ̄) for all networks with Pem = 10 initially starts at a high value and decreases,

reaching tiny values in the region where ϕ̄ is close to zero. Table 5.4 shows the used

values of Dv ± e95(Dv and the respective obtained values of R and its error for C4,

C42h, CZ4 and CZ42h networks for Pem = 1 and 10. The table reveals that doubling

the domain’s height resulted in a decrease in the e95(R) values, for Pem = 1. For

Pem = 10 and the CZ4 networks, the opposite effect occurred.

Table 5.4: Values for R parameter with their respective 95% confidence error, e95(R),
considering the whole domain length with L = 5.

Pem Network Dv ± e95(Dv) R± e95(R)

1

C4 0.8591± 0.0015 1.3576± 0.0003

C42h 0.8632± 0.0005 1.5381± 0.0002

CZ4 0.8204± 0.0014 1.8521± 0.0003

CZ42h 0.8256± 0.0021 2.0166± 0.0003

10

C4 8.1284± 0.0138 4.4066± 0.0017

C42h 8.2142± 0.0151 4.5437± 0.0017

CZ4 9.8925± 0.0424 3.0894± 0.0005

CZ42h 9.8357± 0.0237 3.2808± 0.0009

Figure 5.12 (a) and (b) shows the profiles of σ(ϕ)/ϕ̄ and e95
(
ϕ̄
)
/ϕ̄, respectively,

along the pores’ layer number for C4, C42h, CZ4 and CZ42h pore networks for

Pem = 10 and sub-volume with 5 layers. Figure 5.12 (a), reveals that networks with

the duplicated distance between boundary conditions exhibit slightly smaller values

of σ(ϕ)/ϕ̄, indicating that the smaller networks have already achieved a reasonable

level of heterogeneity. Additionally, Figure 5.12 (b) illustrates the differences in
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e95
(
ϕ̄
)
/ϕ̄ achieved when the number of pores within a sub-volume is duplicated.

When duplicating the height of a network the number of pores in the sub-volume

is duplicated. Figure 5.12 shows that increasing the pore number for the same sub-

volume thickness did not significantly change the concentration standard deviation

or the 95% confidence error.

(a)

(b)

Figure 5.12: Profile of σ(ϕ)/ϕ̄ (a) and e95
(
ϕ̄
)
/ϕ̄ (b) throughout the pores layer

number for C4, C42h, CZ4 and CZ42h pore networks for Pem = 10 and sub-volume
with 5 layers.

Despite using high values of σ(ϕ̄) to estimate R and its 95% confidence error, the

latter remained low. This was shown to be due to the large number of ϕ̄ and δ(ϕ̄)
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data close to zero that were used in the parameter estimation process. As previously

mentioned, simulations with Pem = 1 quickly attain the value of ϕ̄ = 0, but there

is a long “tail” with a substantial amount of ϕ̄ and σ(ϕ̄) data that was used. This

potentially masks the actual value of e95(R).

5.3.3 The data selection criterion for estimating R

Accurately calculating e95(R) is crucial since it is utilised to estimate e95(Dvt). Once

the concentration data and associated errors from pore network simulation are gath-

ered, the estimation process for R and Dvt can commence. However, it was discov-

ered that even for high values of σ(ϕ̄), the values of e95(R) remained low when all

the ϕ̄ data were employed to determine R. This was due to the numerous points

near ϕ̄ = 0 with very low values of σ(ϕ̄) incorporated into the estimation of R.

The criterion for data selection described in section 4 allowed for the estimation

of new values for R and Dvt as shown in Table 5.5.
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Table 5.5: Values for R parameter with its respective 95% confidence error, e95(R),
considering the whole domain length and using the data selection criterion with
ϕ̄min = 0.02. The sub-volume width is 5Lpp.

Pem Network
ζ ∈ [0, A] ζ ∈ [0, ζmax]

R± e95(R) A R± e95(R) ζmax

1

C1 1.3508± 0.0010 50 1.3371± 0.0033 23.55

C3 1.3537± 0.0007 150 1.3661± 0.0027 23.55

C4 1.3576± 0.0003 200 1.3296± 0.0030 23.55

C42h 1.5381± 0.0002 200 1.4388± 0.0006 50.17

CZ1 1.8468± 0.0017 40 1.8785± 0.0028 23.85

CZ3 1.8574± 0.0016 40 1.8357± 0.0022 23.98

CZ4 1.8521± 0.0003 160 1.8458± 0.0044 24.35

CZ42h 2.0166± 0.0003 160 1.9851± 0.0010 51.32

10

C3 4.3333± 0.0023 150 4.2976± 0.0044 79.25

C4 4.4066± 0.0017 200 4.2466± 0.0044 79.25

C42h 4.5437± 0.0017 100 4.5433± 0.0017 99.9

CZ3 3.0767± 0.0015 120 3.0357± 0.0061 29.65

CZ4 3.0894± 0.0005 160 3.0436± 0.0047 29.65

CZ42h 3.2808± 0.0009 80 3.2295± 0.0024 69.67

The findings in Table 5.5 align with the observations made in the previous sec-

tion. Networks with the same type and for each Pem have the same development of

the concentration boundary layer. For example, for Pem = 1, C1, C3, and C4 all

have the same ζmax, and the same pattern can be seen in CZ1, CZ3, and CZ4 net-

works. When the data selection criterion is activated, the required domain length to

estimate R decreases significantly for all networks with Pem = 1. However, because

many points near ϕ̄ = 0 are no longer used, the e95(R) increases. As the Péclet

number increases, the ζmax value also increases for the same type of network. This

is due to the increased advective solute transport in the longitudinal direction, with

ϕ̄ taking longer to achieve zero. It is worth noting that for C42h with Pem = 10,
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the domain length required remains the same, as the fully developed mass transfer

boundary layer is not achieved, since ζmax ≈ A− (L − 1)Lpp

Ly
.

Table 5.6: Dimensionless longitudinal dispersion coefficient values, Dv, and trans-
verse, Dvt, with their 95% confidence error. The latter is obtained using domain
length truncated by the data selection criterion with ϕ̄min = 0.02. The sub-volume
width is 5Lpp.

Pem Network Dv ± e95(Dv)
R± e95(R)

ζ = 5 ζ = 7 ζ = 8

1

C1 0.8595± 0.0024 0.6428± 0.0024 0.6428± 0.0024 0.6428± 0.0024

C3 0.8590± 0.0009 0.6288± 0.0015 0.6288± 0.0015 0.6288± 0.0015

C4 0.8591± 0.0015 0.6461± 0.0018 0.6461± 0.0018 0.6461± 0.0018

C42h 0.8632± 0.0005 0.5999± 0.0004 0.5999± 0.0004 0.5999± 0.0004

CZ1 0.8506± 0.0021 0.4528± 0.0013 0.4528± 0.0013 0.4528± 0.0013

CZ3 0.8367± 0.0029 0.4514± 0.0017 0.4514± 0.0017 0.4514± 0.0017

CZ4 0.8204± 0.0014 0.4445± 0.0013 0.4445± 0.0013 0.4445± 0.0013

CZ42h 0.8256± 0.0021 0.4159± 0.0011 0.4159± 0.0011 0.4159± 0.0011

10

C3 8.1610± 0.0104 1.8990± 0.0031 1.8990± 0.0031 1.8990± 0.0031

C4 8.1284± 0.0138 1.9141± 0.0038 1.9141± 0.0038 1.9141± 0.0038

C42h 8.2142± 0.0151 1.8080± 0.0112 1.8080± 0.0112 1.8080± 0.0112

CZ3 9.9756± 0.0017 3.2861± 0.0066 3.2861± 0.0066 3.2861± 0.0066

CZ4 9.8925± 0.0424 3.2503± 0.0148 3.2503± 0.0148 3.2503± 0.0148

CZ42h 9.8357± 0.0237 3.0456± 0.0077 3.0456± 0.0077 3.0456± 0.0077

Table 5.6 lists the Dv and Dvt values for all network realisations previously anal-

ysed for Pem = 1 and 10 for different values of sub-volume thickness. Immediately

one can realise that when L ≥ 5, the values of R ± e95(R) are equal, meaning that

L = 5 is the sub-volume thickness that can be used for the analysis. It also reveals

that the length and height of the domain do not account for the excess of low values

of σ(ϕ̄). For Pem = 1, the values of Dv for the same network type agree within

their error margins, indicating that length does not significantly affect the determi-

nation of Dv for this flow regime, for which that the solute transport by diffusion

47



is important. For the solute transport in the transverse direction, the possible flow

paths from one pore to another are crucial. As the CZ networks have a distribution

of pore connectivities, the values of Dvt for the CZ networks are about 30% smaller

than those for the C networks.

For Pem = 10, the Dv values of the C3 and C4 realisations agree within their

error margins and those for CZ3 and CZ4 only agree within twice their error mar-

gins. The Dv results for C4 and C42h networks and for CZ4 and CZ42h networks

differs 1%. However, these differences are about 2-3 times the sum of the estimated

uncertainties. The estimated values of Dvt for the C4 and C42h and for CZ4 and

CZ42h differ by 5−6%, indicating a more crucial role played by boundary conditions

in determining the transverse dispersion coefficient.

Table 5.6 also highlights the importance of achieving the fully developed transfer

mass boundary layer for estimating e95(Dvt), once this condition is not achieved as

in the case of C42h, the increase in the number of pores in the sub-volume does

not decrease the error for both dispersion coefficient. It is worth noting that both

CZ4 and CZ42h achieve this condition, resulting in a reduction of almost 50% in

e95(Dvt). The significance of achieving the fully developed boundary layer is evident

in the simulations with Pem = 10 and network C42h. Interestingly, duplicating

the number of pores inside a sub-volume did not decrease the value of e95(Dvt) but

instead increased it.

To verify the effect of the estimation error of Dv in the results for Dvt, new

values of the dimensionless transverse dispersion coefficient are calculated using the

perturbed Dv values given by:

D+
v = Dv + e95(Dv) (5.2)

D−
v = Dv − e95(Dv) (5.3)

Using D+
v and D−

v to estimate R and e95(R), and, therefore new values for the
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dimensionless transverse coefficients D+
vt and D−

vt. The 95% confidence error was

calculated as detailed in equation 4.8, with the value of e95(Dv) remaining the same

as presented in Table 5.6.

Table 5.7: D+
vt and D−

vt, with their 95% confidence error, using the domain truncated
by the data selection criterion with ϕ̄min = 0.02. The sub-volume width is 5Lpp.

Pem Network D+
vt ± e95(D+

vt) D−
vt ± e95(D−

vt)

1

C1 0.6428± 0.0027 0.6427± 0.0021

C3 0.6289± 0.0016 0.6288± 0.0013

C4 0.6461± 0.0018 0.6461± 0.0014

C42h 0.5999± 0.0006 0.5999± 0.0004

CZ1 0.4528± 0.0014 0.4528± 0.0011

CZ3 0.4518± 0.0017 0.4510± 0.0016

CZ4 0.4500± 0.0032 0.4500± 0.0029

CZ42h 0.4295± 0.0012 0.4295± 0.0010

10

C3 1.8990± 0.0035 1.8990± 0.0028

C4 1.9141± 0.0040 1.9141± 0.0035

C42h 1.8080± 0.0118 1.8079± 0.0107

CZ3 3.2861± 0.0068 3.2860± 0.0066

CZ4 3.2371± 0.0149 3.2371± 0.0147

CZ42h 3.0456± 0.0078 3.0456± 0.0072

Comparing the values of D+
vt and D−

vt in Table 5.7 and Dvt in Table 5.6, it is

possible to realise the dimensionless transverse dispersion coefficient is not sensitive

to the values of the dimensionless longitudinal dispersion coefficient within its error

margin.
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5.3.4 The effect of different network realisations in determin-

ing DT

Despite the network of the same type being equal statically, the spatial distribution

of pore and throat sizes for the C-type networks and also the spatial distribution of

pores and throats for the CZ-type networks are slightly different for each realisation.

Thus, it is essential to understand how this can influence the determination of Dvt.

Table 5.8 and 5.9 shows the Dvt value for ten realisations of the C4 and CZ4

networks with Pem = 1 and 10, respectively, using the data selection criterion with

ϕ̄min = 0.02. The values of the dimensionless transverse dispersion coefficient, ⟨Dvt⟩,

and its 95% confidence error, e95(⟨Dvt⟩) is presented for each realisation. Then, by

adjusting a constant using the Dvt ± e95(Dvt) values for each realisation, it is also

obtained the values for D̄vt and its 95% confidence error, e95(D̄vt). These tables

show the values of ⟨Dvt⟩ ± e95(⟨Dvt⟩) and D̄vt ± e95(D̄vt) agree within their error

margins. Most of the values of Dvt for different realisations also agree within their

error margins.
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Table 5.8: Effect of network realisation in the determination of Dvt for C4 networks
with Pem = 1 and 10 with the data selection criterion with ϕ̄min = 0.02. R-numbers
denote different realisations.

Pem 1 10

Realisation Dvt ± e95(Dvt)

C4 - R01 0.6461± 0.0018 1.9142± 0.0038

C4 - R02 0.6466± 0.0017 1.9101± 0.0023

C4 - R03 0.6456± 0.0017 1.9204± 0.0025

C4 - R04 0.6482± 0.0015 1.9099± 0.0025

C4 - R05 0.6532± 0.0016 1.9178± 0.0029

C4 - R06 0.6493± 0.0015 1.9157± 0.0031

C4 - R07 0.6419± 0.0018 1.9144± 0.0038

C4 - R08 0.6448± 0.0018 1.9189± 0.0030

C4 - R09 0.6483± 0.0014 1.9201± 0.0029

C4 - R10 0.6433± 0.0015 1.9168± 0.0034

⟨Dvt⟩ ± e95(⟨Dvt⟩) 0.6467± 0.0017 1.9213± 0.0038

D̄vt ± e95(D̄vt) 0.6471± 0.0078 1.9226± 0.0042

Table 5.8 and 5.9 shows that e95(⟨Dvt⟩ and e95(D̄vt) are almost identical when

Pem = 10, but they differs by almost five times for Pem = 1. These tables also

reveal that for C4 when Pem = 1 and 10, 70% and 80% of the Dvt values are in

agreement with ⟨Dvt⟩, respectively. On the other hand, for CZ4 these percentage

drops to 60% and 40% when Pem = 1 and 10, respectively. This shows that for C4

and CZ4, the realisation of more than 1 realisation is required in order to obtain

a mean value of the dimensionless transverse dispersion coefficient. The table 5.10

shows the mean and maximum value for the absolute difference between Dvt,i and

Dvt,j, ∆Dvt
a and ∆Dvt,max, respectively, and the mean and maximum value of the

sum of their errors, ∆e95
a and ∆e95,max, respectively.
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Table 5.9: Effect of network realisation in the determination of Dvt for CZ4 networks
with Pem = 1 and 10 with the data selection criterion ϕ̄min = 0.02. R-numbers
denote different realisations.

Pem 1 10

Realisation Dvt ± e95(Dvt)

CZ4 - R01 0.4445± 0.0013 3.2503± 0.0148

CZ4 - R02 0.4495± 0.0016 3.2797± 0.0062

CZ4 - R03 0.4528± 0.0012 3.3445± 0.0092

CZ4 - R04 0.4531± 0.0026 3.3400± 0.0066

CZ4 - R05 0.4464± 0.0015 3.2933± 0.0115

CZ4 - R06 0.4511± 0.0015 3.2992± 0.0137

CZ4 - R07 0.4449± 0.0015 3.2532± 0.0082

CZ4 - R08 0.4489± 0.0015 3.3219± 0.0128

CZ4 - R09 0.4548± 0.0015 3.3443± 0.0119

CZ4 - R10 0.4479± 0.0011 3.2964± 0.0090

⟨Dvt⟩ ± e95(⟨Dvt⟩) 0.4494± 0.0015 3.3023± 0.0104

D̄vt ± e95(D̄vt) 0.4501± 0.0027 3.3089± 0.0484

Table 5.10: Mean and maximum value of the difference between Dvt,i and Dvt,j and
the sum of their errors for C4 and CZ4 networks with Pem = 1 and 10 with the
data selection criterion ϕ̄min = 0.02

Pem Network ∆Dvt
a

∆Dvt,max ∆e95
a

∆e95,max

1
C4 0.0024 0.0065 0.0033 0.0035

CZ4 0.0029 0.0054 0.0030 0.0041

10
C4 0.0055 0.0114 0.0057 0.0076

CZ4 0.0283 0.0520 0.0208 0.0252
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Chapter 6

Conclusions

In this study, we introduce the application of the sub-volume analysis (SVA) pro-

posed by MACHADO et al. (2023), for determining the transverse dispersion coef-

ficient from pore-network simulations. For statistically build pore networks, our ap-

proach involves calculating Dv using the SVA methodology, followed by determining

Dvt using the techniques developed in this research. The findings also demonstrate

that in order to estimate R and its 95% confidence error, sub-volumes with five

layers of pores is suffice, as the values of R and its error no longer depends on the

sub-volume thickness.

In addition, the study revealed that the length and height of the domain have an

impact on the analysis. The e95(R) is sensitive to the data with near zero standard

deviation, and the data selection criterion was developed to avoid masking the true

value of e95(R). Furthermore, for Pem = 10, the transverse dispersion coefficient

Dvt varies between 5%-6% as a result of increasing the domain’s height highlighting

the role of the boundary conditions. Also one realisation of the C4 or CZ4 networks

can estimate Dvt of its error if assumed to be 2-5 times larger than e95(Dvt).

The findings indicate that the (⟨Dvt⟩) and D̄vt values are in agreement within

their error margins for the analysed network type. Unfortunately, this methodology

is unable to determine both dispersion coefficients simultaneously due to the high

correlation between Dv and Dvt.
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6.1 Future Work Suggestions

Based on the findings of this study, further research is required to gain a deeper

understanding of how boundary conditions impact the calculation of Dvt. Addition-

ally, the analytical solutions put forth offer both dispersion coefficients, providing

an opportunity to explore innovative approaches for simultaneous determination.

Furthermore, the developed methodology can be tested using tomographically re-

constructed pore networks to determine their transverse dispersion coefficient.
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Appendix A

Analytical Solutions

A.1 Separation of variables

Once the dimensionless concentration, ϕ̄, depends on the dimensionless axial, ζ, and

radial direction, η, we can write ϕ(ζ, η) = X(ζ)Y (η), and substitute it into Equation

3.3 to obtain:
PeBX

′
RX

′′

X
=

Y ′′

Y
= −λ2 (A.1)

where λ is the eigenvalue of this problem. The following system and its boundary

condition, Equation A.3, is generated and can be written as

Y ′′
n + λ2

nYn = 0 (A.2)

Y ′
n(0) = 0 Yn(1) = 0 (A.3)

with its solution being

Yn(η) = Ancos(λnη) +Bnsen(λnη) (A.4)

So, Y ′
n(η) = λn [−Ansen(λnη) +Bncos(λnη)] and when the boundaries conditions

are applied, the values of these constants are obtained as Bn = 0 and λn = π
(
n+ 1

2

)
,

where n = 0, 1, 2, ....
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A.2 Semi-infinite domain

For X(ζ), the ODE is represented below.

RX ′′ − PeBX
′ − λ2

nX = 0 (A.5)

This equation has the form of Rr2 − PeBr − λ2
n = 0, where the roots have the

following form:

r =
PeB ± [Pe2B + 4Rλ2

n]
1/2

2R
=

PeB
2R

[
1±

(
1 +

4Rλ2
n

Pe2B

)1/2
]

Considering r1 and r2 the distinct roots of the indexing equation with r1 > r2, the

signal ± will be positive or negative when the interested root is r1 or r2, respectively.

Note that for each λn, we have new roots. The solution for this ODE is given as:

Xn(ζ) = hn exp(r1nζ) + pn exp(r2nζ) (A.6)

Note that the infinite boundary condition (ζ → ∞, ϕ = 0) is satisfied only

when the negative root remains, in other words, that means hn = 0. The final form

of Xn(ζ) is:

Xn(ζ) = pn exp

(
PeB
2R

ζ

[
1−

(
1 +

4λ2
nR

Pe2B

)1/2
])

(A.7)

It is worthy to highlight that PeB
R

= PeL
A

= uB
DL

and hence Equation A.7 has a

dependence on both dispersion coefficients.

The analytical solution is presented as Equation A.8, where the exponential term

is a function of ζ and is defined as f(η).

ϕ(ζ, η) =
∞∑
n=0

Cncos(λnη) exp

(
PeB
2R

ζ

[
1−

(
1 +

4Rλ2
n

Pe2B

)1/2
])

︸ ︷︷ ︸
g(η)

(A.8)

When the boundary condition ϕ(0, η) = 1 is used, the value of the Cn can be

determined as

Cn =

∫ 1

0
cos(λnη)dη∫ 1

0
cos2(λnη)dη

=
4sen(λn)

2λn + sen(2λn)
(A.9)
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Once Cn is obtained, Equation A.8 can be integrated in the cross-section area nor-

mal to the flow direction, defining the mean dimensionless concentration given by

Equation A.10

ϕ̄(ζ) =
∞∑
n=0

Cn

(∫ 1

0

cos(λnη)dη

)
f(ζ) (A.10)

where
∫ 1

0
cos(λnη)dη = sen(λn)

λn
.

At the end, with all the terms written and replaced the final equation for infinite

domain is

ϕ̄(ζ) =
∞∑
n=0

2

λ2
n

exp

{
PeB
2R

ζ

[
1−

(
1 +

4Rλ2
n

Pe2B

)1/2
]}

(A.11)

A.3 Finite domain

For the case where a limited length is imposed to the domain, the boundary condition

used is (ζ = A, ∂ϕ
∂ζ

= 0) in Equation A.6, resulting in:

hnr1n exp(r1nA) = −pnr2n exp(r2nA) (A.12)

It is important to recall that the roots are the same found for the infinite boundary

condition, and as r1n > 0 and A > 1, the exponential term exp(r1nA) increases

rapidly with n. Because of that, it is better to write this term as a denominator to

avoid numerical issues as shown below:

hn = −pn
r2n exp(r2nA)

r1n exp(r1nA)
(A.13)

Replacing hn in Equation A.12, one can find:

Xn(ζ) = pn

[
−r2n
r1n

exp(r2nA) exp(−r1n(A− ζ)) + exp(r2nζ)

]
(A.14)

As |r1n| > |r2n| and r2n < 0, r1n > 0, it is concluded that 0 < exp(r2nA) < 1 and
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that the following inequality is valid as shown below:

0 <
−r2n
r1n

< 1 → 0 <
−r2n
r1n

exp(r2nA) < 1 (A.15)

Also, as PeB, R,A and λn define this value, we can say that the above expression

can be replaced by qn, in other words we can write

qn =
−r2n
r1n

exp(r2nA), 0 < qn < 1 (A.16)

and the Xn(ζ) solution can be written as

Xn(ζ) = pngn(ζ) (A.17)

where gn(ζ) = exp(r2nζ)+qn exp(−r1n(A−ζ)). So the series solution takes the form

of

ϕ(ζ, η) =
∞∑
n=0

C̄ncos(λnη)gn(ζ) (A.18)

Using the non-homogeneous boundary condition, ϕ = 1, ζ = 0, it is possible to

obtain the constant C̄n value as shown below.

ϕ(0, η) =
∞∑
n=0

C̄ncos(λnη)gn(0) (A.19)

Note that gn(0) = 1+ qn exp(−r1nA) and using the orthogonality properties, we

can find that:

C̄ngn(0) =

∫ 1

0
cos(λnη)dη∫ 1

0
cos2(λnη)dη

=
4sen(λn)

2λn + sen(2λn)
= Cn (A.20)

C̄n =
Cn

gn(0)
(A.21)

On this way it is concluded that ϕ(η, ζ) can be written as Equation A.22, where

in analogies with what was done for the infinite domain, this equation was inte-
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grated into the cross-section area of the domain to find the mean dimensionless

concentration as described by Equation A.23.

ϕ(ζ, η) =
∞∑
n=0

Cncos(λnη)
gn(ζ)

gn(0)
(A.22)

ϕ̄(ζ) =
∞∑
n=0

Cn

[∫ 1

0

cos(λnη)dη

]
gn(ζ)

gn(0)
(A.23)

Replacing Cn and the value of the integral in Equation A.23, the final solution

for the mean dimensionless concentration is found as:

ϕ̄(ζ) =
∞∑
n=0

2

λ2
n

exp(r2nζ)−
(

r2n
r1n

)
exp [A(r2n − r1n) + r1nζ]

1−
(

r2n
r1n

)
exp[(r2n − r1n)A]

 (A.24)
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