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Nos últimos anos, os avanços tecnológicos têm melhorado significativamente
nossa capacidade de entender materiais porosos, focando em uma propriedade cru-
cial conhecida como permeabilidade, que dita o fluxo de fluidos através desses meios.
Inovações como tomografias de rochas altamente detalhadas e modelos de inteligên-
cia artificial sofisticados revolucionaram a determinação da permeabilidade. Ao
aproveitar essas ferramentas, os pesquisadores podem analisar geometrias porosas
complexas com uma precisão sem precedentes. No entanto, há a necessidade de
conjuntos de dados extensos e confiáveis para treinar esses modelos de inteligência
artificial de forma eficaz. Tradicionalmente, a obtenção de dados de fluxo em meios
porosos requer experimentos caros e demorados ou simulações de dinâmica dos flui-
dos computacional (CFD). No entanto, métodos CFD convencionais frequentemente
dependem de modelos simplificados de redes de poros, limitando sua aplicabilidade a
estruturas reais de rochas observadas em tomografias. O método lattice-Boltzmann
(LBM), uma abordagem alternativa enraizada na mecânica estatística e na teoria
cinética, opera no nível mesoscópico e simula diretamente o comportamento do fluido
dentro de materiais porosos, contornando a necessidade de aproximações de redes
de poros. Utilizando o operador de colisão MRT para melhorar a precisão e acurá-
cia dos resultados, um esquema LBM é proposto, validado por meio de simulações
do escoamento Poiseuille e observância à lei de Darcy, reproduzindo corretamente o
comportamento previsto pela equação de Navier-Stokes. Estruturas de rochas artifi-
cialmente geradas são empregadas para as simulações diretas e assim gerar um banco
de dados abrangente correlacionando permeabilidades, tortuosidades, porosidades e
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áreas superficiais com o objetivo de treinar modelos de inteligência artificial. No-
tavelmente, a rede supera equações tradicionais, como a equação de Kozeny-Carman,
demonstrando seu potencial como uma ferramenta confiável para caracterizar meios
porosos.
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In recent years, technological advances have significantly enhanced our ability to
understand porous materials, focusing on a crucial property known as permeability,
which dictates the flow of fluids through these mediums. Innovations such as highly
detailed rock tomographies and sophisticated artificial intelligence models have rev-
olutionized permeability determination. By harnessing these tools, researchers can
analyze complex porous geometries with unprecedented precision. However, there is
a need for extensive and reliable datasets to train these artificial intelligence models
effectively. Traditionally, obtaining flow data in porous media requires expensive
and time-consuming experiments or computational fluid dynamics (CFD) simula-
tions. However, conventional CFD methods often rely on simplified models of pore
networks, limiting their applicability to real rock structures observed in tomogra-
phies. The lattice-Boltzmann method (LBM), an alternative approach rooted in
statistical mechanics and kinetic theory, operates at the mesoscopic level and di-
rectly simulates fluid behavior within porous materials, circumventing the need for
pore network approximations. Using the multiple-relaxation-time (MRT) collision
operator to improve the accuracy and precision of results, an LBM scheme is pro-
posed, validated through Poiseuille flow simulations and adherence to Darcy’s law,
correctly reproducing the behavior predicted by the Navier-Stokes equation. Ar-
tificially generated rock structures are employed for direct simulations to generate
a comprehensive database correlating permeabilities, tortuosities, porosities, and
surface areas to train artificial intelligence models. Notably, the network outper-
forms traditional equations, such as the Kozeny-Carman equation, demonstrating
its potential as a reliable tool for characterizing porous media.
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Chapter 1

Introduction

1.1 Motivation

Reducing carbon emissions and dealing with their consequences are one of the most
significant challenges of the 21st century. Since 2005 the world has emitted more
than 30 billion tons of CO2 each year [1]. However, it is estimated that if most of the
countries adopt net-zero targets, it is still possible to limit the warming of the planet
in 2.4 − 2.9 °C [2]. To reach that, many strategies must be implemented to reduce
emissions without compromising industry and economic growth, besides dealing with
the climate changes associated with the carbon already in the atmosphere.

A combination of strategies that have emerged over the last years as a tool
to reduce the impact of the use of fossil fuels for power generation and industry
processes that are carbon intensive is Carbon Capture Usage and Storage (CCUS).
CCUS strategies are divided in CO2 capture, CO2 looping, CO2 transport, CO2

utilization and CO2 storage [3].
Carbon storage can be divided into forest carbon storage [4], soil carbon storage

[5], and geological carbon storage [6]. Geological carbon storage is a hot topic in
engineering sciences for its capabilities of storing large amounts of CO2 replicating
the carbon cycle [7] [8] [9].

It is necessary to characterize the geology underneath to calculate the amount
of carbon that can be stored at a specific reservoir. Reservoir rocks are necessarily
porous, as they store fluids in rock voids. Using mathematical models for porous
media provides the tools to address this problem and numerically describe different
reservoirs.

Therefore, permeability prediction is essential in the context of CCUS to under-
stand fluid flow under these conditions. This study aims to analyze and understand
its measurement, explicitly focusing on the numerical estimation of permeability
through the lattice Boltzmann method. Then, another approach is proposed, to
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predict permeability from rock images using neural networks and data correlation.

1.2 Porous media

Porous media are everywhere in nature. Adler [10] divides them into at least three
categories: Artificial, Biological, and Geological porous media. Artificial media,
such as a group of packed spheres or cylindrical tubes, are helpful for models and
theoretical investigation. They also play a role in materials created by man, such
as fabrics, catalysts, and cement. Biological media are often found due to transport
processes needed to sustain life, relying on interfacial surfaces to exchange heat and
mass. It is the case of the liver, the lungs, and the circulatory system. Geological
media have been extensively studied for their importance to the oil and gas industry
and groundwater flow applications. Most of the terminology used in studying porous
media comes from geology, such as throats, fractures, and grains.

1.2.1 Porosity

Consider a medium composed of two phases, L and S (Generally associated with
liquid and solid, but can also be seen as void and solid or any two phases in contact),
it is possible to write a phase function as:

XK(x) =

1 if x ∈ phase K

0 otherwise
(1.1)

Where K = L, S, in such a way that considering the interface negligible, in any
point at position x:

XL(x) +XS(x) = 1 (1.2)

This expression is equivalent to saying that there is no point in this phase space
that is in both phases, as for any x the sum must be 1. The porosity ϕ of such a
medium can be calculated through a weighted integral in respect to the volume of
the medium:

ϕ =
1

V

∫
V

XL(x) d
3x (1.3)

Therefore, porosity may be seen as the fraction of the liquid phase inside of the
domain, tending to zero when the solid phase is more abundant than the liquid
phase, and to unity otherwise. To imagine a medium with ϕ = 1 is simply a block
of fluid, without any obstacle or resistance to flow.

Approximate porosity values for rocks are shown in table 1.1 [11].
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Material Porosity (%)

Limestone 15
Sandstone 20

Fritted glass 35
Semi-quartzitic sandstone 4

Chalk 33

Table 1.1: Typical porosity values for common rocks

Porosity may be the most critical property of porous media. The porosity of
a material strongly affects it properties, both structural and functional, such as
elasticity, ultimate strength, thermal and electric conductivities and magnetization.
Many mathematical models have been proposed to study their relation with porosity,
but they are restricted to some cases due to how the connectivity of the pores and
their morphology affects the material [12].

As porosity is a multi-scale phenomenon, many methods are available to measure
a medium’s porosity. The most common method that covers the significant range
of porosities is mercury intrusion, capable of measuring pores in the scale of 10nm
to 0.1mm. Other standard methods are gas adsorption, x-ray scattering, electron
microscopy, thermoporosimetry, fluid flow, light microscope image analysis, and x-
ray tomography, even though these methods work on a shorter range of scales than
mercury intrusion [13].

1.2.2 Tortuosity

The hydraulic tortuosity of a path may be calculated as the squared ratio of the
shortest path between two points and the actual path between them (Equation 1.4).

TH =

(
Le

L

)2

(1.4)

Tortuosity directly impacts electric and hydraulic permeability [14]. However,
due to the diversity of concepts regarding tortuosity, the literature has failed to
unify its definition. Percolation theory has been vastly used to unify tortuosity, but
it still lacks accuracy when near the limit of ϕ = 1. However, Blunt (2017) [15] notes
that is not precisely tortuosity that limits the flow, but dead ends in unconnected
throats.

In this text, the word "Tortuosity" means the hydraulic tortuosity of a medium,
as the simulations carried through the text are all single-phase fluid flow experiments.
It is important to remark that tortuosity is an axis-dependent property, which means
it is only defined with respect to the direction of flow. For a single porous media, it
is possible to have different tortuosities related to the pair of boundaries chosen to
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perform the calculations.

1.2.3 Specific surface area

The specific surface area is the last of the main characterizing parameters treated
in this text. It is defined as the surface area per unit of volume in a given porous
domain. It is especially essential when the interface takes a critical role, as in the
study of wettability, chemical reactions over solid catalysts and absorption.

Mathematically, the specific surface area is given as a ratio between the surface
area (Sarea) and the volume:

A =
Sarea

V
(1.5)

Generally, adsorption experiments characterize surfaces and find the specific sur-
face area of a given material [16]. This is done through the deposition of an inert
gas such as nitrogen over the surface of a material, then the desorption is done to
measure the exact amount of gas adsorpted. Then, by estimating the radius of the
gas molecules, the superficial area for a given volume can be calculated.

1.2.4 Permeability

Permeability (k) was first defined by the French engineer Henry Darcy in 1856 in
his works over public fountains in Dijon [17]. He noticed that the relationship
between the pressure gradient and the velocity at which fluids pass through a rock
was proportional to a constant at laminar flow. The laminar regime for flow through
porous media, known as the Darcy hypothesis, is generally valid for Re < 1 [18]. If
it is valid, the relation known as Darcy’s law is written initially as:

q = −k
h2 − h1

L
(1.6)

Where q is the water flow rate, h1 and h2 are the heights above a reference
level,L is the length of the medium in the direction of flow, and k is a constant
named permeability. It is a purely geometrical property that denotes the ability
of a medium to allow fluid flow through it. Even though Darcy discovered his law
empirically, it may be directly derived from Navier-Stokes Equations [19] [20]. A
more generic way of writing Darcy’s Law for any fluid is given as:

ux = k
ρ

µ
∇P (1.7)

Each material will have a different permeability value because it is a property of
the medium in which the flow occurs. Permeability unit in the International System
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is m2, but for most practical scenarios, it is in the order of 10−12m2, or 1µm2, defined
as one Darcy, or 1D. As this study focuses only on the permeability of consolidated
porous media, typical permeability values for consolidated rocks are presented in
table 1.2 according to Woessner and Poeter [21].

Rock type Permeability (Darcys)
Karst limestone 105 − 10−1

Permeable basalt 103 − 10−2

Fractured igneous and metamorphic rocks 100 − 10−4

Limestone/Dolostone 10−1 − 10−4

Sandstone 10−1 − 10−5

Unfractured igneous and metamorphic rocks 10−5 − 10−9

Table 1.2: Permeability values for common consolidated rocks

As permeability is a critical property to understand fluid flow, different method-
ologies for predicting it exist. A classical way of estimating the permeability of rocks
is through the Kozeny-Carman equation [22]:

k =
Fϕ3

A2(1− ϕ2)
(1.8)

Where ϕ is the porosity of the medium, s is its specific surface area, and F is a
fitting parameter. This equation has been extensively used in the determination of
porosity, although it has been shown that it may overestimate permeability values
as heterogeneity of the medium increases [23].

The multi-scale nature of permeability determination presents a significant chal-
lenge, as the porous morphology of a material can vary across different scales, in-
cluding nano, micro, meso, and macroscales. Consequently, various characterization
methods are appropriate for different scales, leading to differing values of porosity,
tortuosity, and permeability depending on the level of magnification applied to the
problem.

1.3 Experimental determination

The traditional method for determining permeability is the core-flooding experi-
ment. The core-flooding experiment consists of passing a fluid through a porous
rock sample trapped in a permeable membrane, generally with the aid of a Perme-
ameter, precisely measuring the fluid velocity its the associated pressure drop at the
stationary state [24]. These measurements are habitual in the oil and gas industry,
as core-flooding can predict not only absolute but relative permeability of a medium
concerning a particular component [25].
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However, experimental challenges, such as fractures in the samples due to the
high pressures and different flow regimes from laminar to turbulent, may cause in-
accuracies in permeability values and limit the application of this technique [26].
Also, reservoir rocks might not be homogeneous and evenly distributed, so the sam-
ples analyzed may not always represent the whole medium. Finally, core-flooding
is generally limited to a particular core scale, below which permeability cannot be
predicted [25].

Other experimental methods for determining porosity, permeability, and net-
work parameters include Mercury Injection Capillarity Pressure (MICP), Nuclear
Magnetic Ressonance (NMR), Core analysis method by the Gas Research Institute
(GRI), and pulse decay.

MICP involves injecting mercury and plotting a capillarity pressure curve that
represents mercury wetting at the rock, and by integrating this curve it is possible
to recover the permeability of the porous sample. It can recover permeability in an
extensive range of scales from the micropores to the mesopores but fails at filling
the nanopores [27].

NMR induces a spin polarization of proton in hydrogenous fluids located at the
pores of a sample, using numerical models to estimate permeability based on the
spin relaxation time [28]. It can estimate in situ formation permeability much faster
than other methods, making it useful for measurements in offshore reservoirs [29].

GRI is mainly used in tight rocks and consists in passing a high-pressure gas
through a reference cell, which is more convenient for the removal of liquids in-
side the sample and avoids the problem of induced fractures in the samples as the
core-flooding experiment [30]. However, it is susceptible to significant variations in
permeability due to micro-fractures in the geometry, which may produce inaccurate
results.

These drawbacks show that no perfect experimental analysis can predict per-
meability for any rock sample. The intrinsic laboratory difficulties and the time
needed for this analysis make them cost-intensive, which creates the urge for differ-
ent methodologies for predicting permeability [31].

1.4 Numerical simulation

Different computational approaches to the problem of measuring permeability have
been used throughout the literature. Major strategies revolve around approximating
the macroscopic medium by Representative Element Volume (REV), using a pore
network to approximate the media, or performing direct simulation over the porous
geometries obtained through tomographies and image scanning.

In these three scenarios, traditional CFD methods have been deployed to per-
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meability calculation, such as the finite difference method [23], the finite volume
method [32], and the finite element method [33]. Also, especially for pore-scale sim-
ulation, the lattice Boltzmann method has gained much attention over the years
[34].

Besides CFD, there are numerical strategies for estimating permeability directly
from the parameters obtained from the characterization of the rocks [35]. The
potential of Particle Swarm Optimization, Support Vector Regression, and restricted
Boltzmann Machine has been shown in the prediction of permeability correlating
data from oil fields [36]. It is also possible to estimate permeability with the aid of
neural networks directly from images of porous media [37]. This will be the main
scope of this work, which will be analyzed in detail in the further chapters.

The main advantages of numerical determination of permeability versus experi-
mental determination are the non-destructive nature of numerical experiments, al-
lowing multiple tests in multiple conditions to be performed over a single sample,
the reduced costs, as laboratory analysis may be time and resource consuming, the
accessibility to extreme conditions of pressure, usually unavailable in laboratories
due to safety issues, the possibility of precisely controlling boundary conditions and
the inherent flexibility of testing different samples directly and fast [38]. These rea-
sons corroborate using only numerical simulation for permeability determination in
this study. Different approaches for this task will be explored in the following topics.

1.4.1 REV approach and classical CFD

REV is a critical property of macroscopic porous media as it signifies the critical
volume where the properties of the fractured rock mass will remain stable with the
increase in volume [39]. These properties include porosity, permeability, and pore-
connectivity, meaning that a well-defined REV can fully characterize a whole porous
media through a sample.

The permeability of an entire given location, such as an aquifer or reservoir, can
be measured through the definition of a REV if the porous domain can be considered
periodic [40]. Macroscopic CFD methods may be used to perform the simulation over
a mesh representing the REV of a medium [41] [42]. These traditional approaches
have been extensively studied, and plenty of commercial solvers are available that
make their implementation direct for the final user. However, the complexity of
porous geometries offers challenges to these solvers.

The main problems related to deploying classical CFD in porous media regard
the trade-off between oversimplificating the porous domains, which may not capture
the complex flow patterns that occur in natural domains, or to overdetailing the
media, which may lead to a prohibitive computational requirement [43].
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1.4.2 Pore network approach

Another strategy is simplifying the porous domain through a network formed by
pores and throats. Pore network models have been extensively used in problems
involving flow in porous media at the pore scale[44]. These models are advantageous
as they allow multiphase flow simulation when integrated with CFD, and they allow
the simplification of actual rock samples with spherical pores and cylindrical throats,
approximately capturing the topology and geometry of the sample [45].

One broadly used choice for creating pore network models is the software
OpenPNM [46]. In this software, it is possible to create the geometries from scratch
and simplify authentic rock images as pore-network models. Additionally, it is pos-
sible to perform simulations on the networks created using the macroscopic conser-
vation equations directly inside the software, without further codes or software for
the transport equations implementation.

However, as with the REV approach, pore network models rely on oversimpli-
fying geometries and cannot correctly simulate the microscopic details of natural
porous media, relying on simplifying macro structures. These simplifications lead to
inaccuracies due to the lack of resolution based on the pore-throat geometry, unable
to represent the complexities of natural rock structures in microscale [47]. There-
fore, these models may be deployed to macroscale reservoirs, but fail to capture the
microstructure diversities that cause fluctuation in permeability values. Then, other
strategies must be applied when the necessity of detail arises.

1.4.3 Direct numerical simulation

In recent years, the power of X-ray computed tomography [48] and Scanning Elec-
tron Microscopy (SEM) [49] have made it possible to obtain almost exact 3D images
of porous media, limited by scanning resolution. These data allow direct fluid flow
simulations over these geometries to determine permeability as a relation between
the calculated velocity and pressure gradient. The lattice Boltzmann method is gen-
erally a core choice to perform these simulations due to its mesoscopic characteristics
and natural ability to deal with fluid flow at the pore scale.

The main advantages of direct numerical simulation over the pore network ap-
proach include the high fidelity and accurate flow resolution over the microscopic
rock structure, allowing valuable insights into the pore-scale physics such as pore
filling processes [50]. The direct simulation allows precise results without simplifi-
cation of the structures, even though it may be more computationally expensive,
leaving the choice between pore-networks or direct numerical simulation as a trade-
off between the availability of computational resources and the accuracy needed of
the simulations carried [51].
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The choice of using direct numerical simulation in this study justifies joining its
strengths of high-fidelity simulations while bypassing its disadvantages of computa-
tional intensity. This is mainly done through the aid of artificial intelligence, trying
to correlate the rock images and their characterizing parameters in a network that
should be able to predict permeability several orders of magnitudes faster. Direct
simulation data is required to train this network, but once the training is complete,
high-fidelity results can be achieved without costly simulations.

1.5 Objectives

1.5.1 General objective

Considering the challenges exposed in the previous topics, it is clear that perme-
ability prediction is a complicated task and that many approaches can be used to
deal with this problem, with the advantages and disadvantages of each method.
Then, the general objective of this work is to predict permeability using a deep neu-
ral network trained with direct numerical simulation data obtained via the lattice
Boltzmann method. This is expected to minimize the problems with the lack of
detail while being computationally efficient once the training is complete.

1.5.2 Specific objectives

To achieve the general objective of this work, some specific objectives are proposed:

• First, to better understand, gain experience, and construct theoretical knowl-
edge with the mathematical tools of the kinetic theory of gases and the lattice
Boltzmann method.

• Second, to code a lattice Boltzmann algorithm capable of reproducing a sys-
tem’s correct hydro-dynamical behavior and validating it according to litera-
ture.

• Third, to generate and characterize hundreds of artificial rock geometry sam-
ples for further use in direct numerical simulation.

• Fourth, to guarantee that permeability may be calculated through Darcy’s law
by securing that the simulations are carried in the Stokes regime, and then
calculating the permeability for all rock geometries.

• Then, finally fifth, to calculate permeability directly from the generated ge-
ometry’s images with the aid of artificial intelligence.
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1.6 Text structure

This work is divided into five main chapters.
In chapter two, the fundamentals of Boltzmann’s kinetic theory are presented as

they form the basis of LBM theory. It introduces the concept of the particle distri-
bution function, the fundamental variable in LBM. Then its evolution in space and
time is analyzed through the Boltzmann Transport Equation, resulting in the macro-
scopic conservation laws due to its moments. Finally, the discretization procedure
is discussed to obtain the lattice Boltzmann equation.

In chapter three, a brief explanation of the lattice Boltzmann method is pre-
sented to familiarize the reader with the main algorithm used in the simulations
presented in this work. It introduces the algorithm cycle: initialization, applying
boundary conditions, equilibrium calculation, collision, streaming, and convergence
check. Then, the proposed code is validated through a laminar flow between parallel
plates, as an analytical solution for this problem is available through Navier-Stokes
assumptions.

In chapter four, permeability calculation with LBM is discussed. A bibliography
review shows the chronology of the attempts to predict permeability with LBM.
Then, the methodology for generating the geometries used in this study is presented,
explaining the software used and the main assumptions made in the process. The
characterization of such geometries is also explained, focusing on its main parameters
and how they are computed. Finally, the results of a flow through porous media
guarantee that the flow is in Stokes regime, showing the validity of Darcy’s law.
This is necessary to validate permeability as a linear relation between the pressure
gradient and the mean velocity along the flow axis.

In chapter five, the deep neural network architecture is presented. It starts with
a brief review of Neural Network architectures, reviewing standard models present in
the literature. Then, the mathematical foundations of the model used are presented,
creating the path for the implementation methodology. Then, the final results are
shown, and the sensitivity analysis is discussed, analyzing the importance of each
parameter input in the model.

Finally, chapter six summarizes the discussion and the main results presented.
The difficulties found in the study are also reviewed, to advise the readers for further
implementation. Then, research topics and suggestions are presented for future
works.
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Chapter 2

The lattice Boltzmann method

2.1 Mathematical background

The Lattice Boltzmann Method (LBM) arose in the 1980s as a new suitable option
for fluid flow simulation [52]. It is a reliable numerical tool for simulating transfer
phenomena such as heat [53] [54] and mass transfer [55] [56] along multiphase fluid
dynamics [57] [58] [59]. Due to its particle-based nature differs from traditional
Computational Fluid Dynamics (CFD) methods that describe a fluid macroscop-
ically, in LBM the microscopic behavior of particles is collected to calculate the
macroscopic properties of fluids. It is then considered a mesoscopic method, as it is
mathematically founded upon Boltzmann’s statistical mechanics, and can naturally
handle the adversities of simulating micro and nano flows.

For this reason, LBM has gained attention due to its capability of simulating flow
in porous media [60] [61], being capable of coupling multiphase flow [62] [63] and
transfer phenomena [64] [65] [66] in these domains. Its squared-grid nature makes
it possible to accurately represent complex domains, as it treats any image as a
collection of squares (or cubes, in 3D). The interaction between the fluid and the solid
interface is also facilitated regarding traditional CFD, without significant concerns
with the resulting velocity direction due to the discrete velocity space, which only
allows specific movement directions within the grid. Finally, it is naturally suitable
for parallelization as it only needs local information for calculating the following
timestep, allowing faster simulations in larger domains.

This chapter aims at introducing the basic concepts of the method and show
classical hydrodynamic results that validate its ability to simulate fluid flow, es-
pecially in porous domains. It introduces Boltzmann’s Kinetic Theory of Gases,
its fundamental variables, and the Boltzmann Transport Equation (BTE). Then,
BTE’s discretization procedure is discussed in detail, enabling its computational
implementation in a regular lattice as the Lattice Boltzmann Equation (LBE). On
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the following topic, the Lattice-Boltzmann algorithm is presented detailing each
timestep cycle. Finally, the Poiseuille flow is solved as a reference problem, to guar-
antee the hydrodynamical behavior of the flow and show its capabilities of recovering
NSE results.

In this chapter, the notation used by Kruger et al [67] was followed, as his book
has become the standard reference to the Lattice-Boltzmann Method. Also, the
works of Guo and Shu [68] and Succi [69] were vastly used throughout the text.

2.2 Kinetic Theory of Gases

The Kinetic theory of gases consists of understanding fluids as a collection of particles
that fly randomly through space and change their velocity by colliding with each
other. The kinetic theory was developed mainly in the XIX century as a scientific
discussion between two prominent scientists of that time, James Clark Maxwell and
Ludwig Boltzmann [70]. It led to prominent achievements in theoretical physics
as the statistical understanding of entropy, rarefied gases, and surface phenomena,
explicit expressions for viscosity, heat conduction, and diffusion, and ultimately led
to the foundation of quantum mechanics [71].

One of the main equations in kinetic theory is the Boltzmann Transport Equa-
tion, a transport equation from which it is possible to recover the macroscopic
conservation equations with a microscopic approach, and used to solve fluid flow
problems at the mesoscale. As this equation holds the theoretical basis of the Lat-
tice Boltzmann Method, the Kinetic Theory of Gases is briefly presented in this
section.

2.2.1 The particle distribution function

The idea of the distribution function is a powerful concept, and it is the fundamental
variable of the lattice Boltzmann method as it enables complex elaboration on the
density of particles. f(x, ξ, t) regards the evolution in time of both the distribution
of mass in space (x = x, y, z) and the distribution of mass with specific velocities,
creating a so called velocity space (ξ = ξx, ξy, ξz).

It means that in each coordinate, the macroscopic density of particles will be
the sum of f over all its possible velocities ξ, or that the collection of particles with
all possible velocities in a given control volume will be equivalent to the density of
particles in that control volume. Mathematically, this can be written as:

ρ(x, t) =

∫
f(x, ξ, t) dξ (2.1)

This is known as the zeroth moment of f , defined as an integral weighted by the
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variable (In this case, ξ). This result may be interpreted as visualizing density in a
given point x and time t as the sum of the mass of a distribution of particles with
different speeds at that point: there will be particles in high speeds, particles in low
speeds, and most particles have an average speed. Density is found when all of these
particles are collected. Besides, f allows mathematically obtaining more physical
information than simply from density. For example, it is possible to discover the
density of the particles flying in one specific direction: it would be the integral on
velocity space ξ over that direction. It is also possible to find the density of particles
moving in a specific range of speeds.

Analogously to density, it is possible to consider two other moments with physical
meanings. The first moment of f is related to the momentum density of each particle
fξ, and its second moment to the individual kinetic energy 1

2
fξ2. They are written

as:

u(x, t) ρ(x, t) =

∫
f(x, ξ, t) ξ dξ (2.2)

E(x, t) ρ(x, t) =
1

2

∫
f(x, ξ, t) |ξ2|dξ (2.3)

This set of equations represents one of the significant advances of Kinetic the-
ory: the link between the microscopic variables and their macroscopic counterparts.
Through the concept of f , the individual nature of particles is abandoned for a col-
lective description of ensembles of particles, and the dynamic behavior of the system
may be predicted using statistical techniques.

2.3 The Boltzmann Transport Equation

It is now possible to write a balance for f , accounting for its change over time under
three main assumptions: First, the particles are considered pointlike, hard spheres
with a much smaller radius than the distance between them, so their volumes can
be neglected. It is also assumed that particles only have one degree of freedom, i.e.
translational energy, so changes in f happen only due to elastic binary collisions. Fi-
nally, the potentials of each particle are considered to be short-ranged, not affecting
each other due to long-term interactions. Then, BTE may be written as:

∂f

∂t
+ ξ1 ·

∂f

∂x1

=
1

m

∫
V [f(x1, ξ1

′, t) f(x1, ξ2
′, t)− f(x1, ξ1, t) f(x1, ξ2, t)] dωdξ2

(2.4)
The right side of the equation is known as the collision integral and represents

the momentum exchange between particles 1 and 2, with respective microscopic
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velocities ξ1 and ξ2 before and ξ′1 and ξ′2 after collision. A new term V = ξ2− ξ1 is
introduced representing the relative microscopic velocity. The integration happens
over dω and dξ′2, representing the geometric space in polar coordinates and the
velocity space of the second distribution, respectively.

For simplicity, it is common to omit the collision integral in its full form as a
collision operator Ω(t). It is also possible to add a force term F that represents
the influence of potentials upon the distribution. With these two terms, the most
common way of writing BTE is:

∂f

∂t
+ ξ · ∂f

∂x
+

F

ρ
· ∂f
∂ξ

= Ω(t) (2.5)

This can be seen as an advection equation for the property f . Even though its
solution might be challenging, the consequences of Boltzmann’s Transport Equation
offer useful information on the analysis of fluid systems.

It is expected that in an elastic collision, mass, momentum, and energy are
conserved. The Boltzmann Equation proposes a balance for f to respect these
constraints. Then any function may be used as a collision operator substituting the
collision integral if they respect the constraints:

∫
Ω(t)

 1

ξ

|ξ2|

 dξ = 0 (2.6)

This set of equations represents the mass, momentum, and total energy conser-
vation equations regarding the collision Ω(t) that transports quantity f , and the
terms inside the brackets are called collisional invariants.

It was not until 1954 when Bhatnagar, Gross, and Krook proposed an alter-
nate solution [72] considering collision simply as a deviation from the Maxwellian
equilibrium distribution function.

Ω(t) = −1

τ
(f − f eq) (2.7)

Where τ is the relaxation time, a constant with magnitude with order of the
mean free path time of molecules between collisions, and f eq is the distribution
function in equilibrium. The relaxation time τ is related to viscosity due to the non-
slip boundary condition, as the mean time between collisions will be the mechanism
that relates the collisions with viscosity. This is expressed through:

ν = c2s

(
τ − 1

2

)
(2.8)
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2.3.1 The equilibrium distribution

Maxwell’s description of the equilibrium distribution was presented almost one hun-
dred years before BGK presented their solution to BTE [73], following a work on
swarms of particles that he proposed as a model for the motion of Saturn rings [70].

f eq(x, ξ, t) =
ρ

(2πRT )
3
2

exp

[
−(ξ − u)2

2RT

]
(2.9)

Essentially, this equation represents the normal distribution of f with three de-
grees of freedom related to the three components of the velocity vector. This de-
scription has found prestige by accurately describing viscosity, allowing Maxwell to
calculate the viscosity of air correctly and show that viscosity was independent of
density.

Curves with these characteristics are known as Maxwellians, even though the
distribution itself is known as the Maxwell-Boltzmann distribution, accounting for
Boltzmann’s improvements in Maxwell’s works [74].

2.4 The Lattice-Boltzmann Equation

The Lattice Boltzmann Method initially evolved from the Lattice Gas Automata
(LGA). Hardy, Pomeau, and Pazzis first conceived LGA as a particle-based scheme
for fluid flow called Hardy Pomeau and Pazzis (HPP) Model [75]. The idea is
to simulate the fluid as particles confined in the corners of a 2-dimensional grid.
These particles have associated velocities pointing to the four possible directions of
the grid (Up, down, left, right). At each iteration, particles move one grid space
toward their velocity. Each node can only contain one particle. If two particles
are to occupy the same node coming from opposite directions, they collide and
are deflected perpendicularly. If not, they pass through each other. As simple as
this model may seem, it conserves linear momentum and therefore runs indefinitely
without ever losing energy, it also lacked rotational invariance due to its squared
nature.

The anisotropy problem was solved in 1986 when Frisch, Hasslacher, and Pomeau
proposed a hexagonal lattice with six possible velocities as the Frisch Hasslacher and
Pomeau (FHP) model [76]. Another fundamental difference between HPP and FHP
models is that collisions are not deterministic in the latter, and may produce two
possible outcomes due to a single collision. This outcome requires a pseudorandom
process to decide the directions, adding a layer of empiricism to the method. Finally,
it is still a boolean process where the particles have a 1 or 0 probability of occupying
a cell in the lattice, so it suffers from statistical noise. Also, this model is not easily
scalable for three dimensions due to symmetry problems caused by the hexagonal
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grid.
With the advances in hardware, LBM naturally evolves from LGA as a floating

point algorithm instead of a boolean algorithm, where the particles follow a density
distribution function when occupying a lattice cell. McNamara and Zanetti could use
the Boltzmann Equation to eliminate statistical noise, with a resulting algorithm
that demanded less computational time and was more efficient for low Reynolds
number [52].

However, although LBM shares many similarities with LGA and historically has
been developed as an extension of the model, LBE can be directly derived from
BTE. Thus, it can be seen as an independent method. It was first proved by He and
Luo [77] by deriving the Lattice Boltzmann Equation directly from the Boltzmann
Transport Equation using a Mach series expansion.

In the mid-2000s, another strategy was presented by Shan and Yuan [78], which
consisted of applying a Hermite series expansion on BTE. This procedure is known
as being more mathematical rigorous as it takes advantage of the similarities between
the Hermite weight function and the Equilibrium distribution function.

Guo and Shu [68] remark that LBE is originated from LGA, but was shown later
to be an independent method found through the discretization of BTE with the
right mathematical tools. This characterizes LBM as a quite different method than
other CFD algorithms that are essentially solvers of the Navier-Stokes Equations.

In the following section, the text presents a simplified version of the Hermite
Series approach, as it is as mathematically rigorous as it is heavy. The complete
procedure may be found in the original article [78] or explained fluidly in the third
chapter of Kruger’s book [67].

2.4.1 Discretization in velocity space: Hermite polynomials

The discretization procedure begins in velocity space and compares the Equilibrium
distribution function with the Hermite Polynomials generator function. The Hermite
Polynomials of order n are created following the rule generalized for d dimensions
as:

H(n)(x) = (−1)n
1

w(x)
∇(n)w(x) (2.10)

Where w(x) is the generator function, that reads as:

w(x) =
1

(2π)
d
2

e−
x2

2 (2.11)

As the Hermite Polynomials are a class of Orthogonal Polynomials, they form
a basis for R and can represent any continuous real function as a series of Hermite
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Polynomials. Thus, any generic continuous function g(x) can be written as:

g(x) = w(x)
∞∑
n=0

1

n!
a(n) H(n)(x) (2.12)

Where a(n) are the generalized series coefficients:

a(n) =

∫
g(x) H(n)(x) ddx (2.13)

Taking a closer look at equation 2.11, it is possible to see that it resembles
equation 2.9. By writing the adimensional temperature θ = RT

V 2 , it is easy to see
that the form of the weight function naturally resembles the equilibrium distribution
function, so it is possible to write the equilibrium distribution through the idea of
the weight function as:

f eq =
ρ

θ
d
2

w

(
ξ − u√

θ

)
(2.14)

Through this definition, it is possible to write the series coefficients as:

a(n) eq =
ρ

θ
d
2

∫
w

(
ξ − u√

θ

)
H(n)(u) ddu (2.15)

This equation may be solved with the aid of mathematical software to give the
results for the first three coefficients of the series:

a(0) eq = ρ (2.16a)

a(1) eq = ρuα (2.16b)

a(2) eq = ρ(uαuβ + (θ − 1) δαβ) (2.16c)

This result shows that the conserved quantities ρ, mu and E are directly related
to the coefficients of the Hermite series expansion, so it is also possible to write the
distribution function with the aid of the Hermite polynomials:

a(0) eq =

∫
f eq dξ = ρ =

∫
fdξ = a(0) (2.17a)

a(1) eq =

∫
f eq ξdξ = ρu =

∫
f ξdξ = a(1) (2.17b)

a(2) eq + ρd

2
=

∫
f eq |ξ2|

2
dξ = ρE =

∫
f

|ξ2|
2

dξ =
a(2) + ρd

2
(2.17c)

These equations establish the link between the Hermite polynomials and the
distribution function. The advantage of this approach is that it makes it possible to
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express the integrals over f (its momenta) as summations in a finite set of points,
called abscissae. If one is to choose these points as the roots of H(x), any polynomial
P (N)(x) with N = 2n− 1 will be exactly:

∫ ∞

−∞
w(x) f(x) dx =

q∑
i=1

wi f(xi) (2.18)

This is called the Gauss-Hermite quadrature, Where q represents the number of
abcissae xi and wi equals to:

wi =
n!

(nH(n−1)(xi))2
(2.19)

Equation 2.18 resembles the moment equations for f , thus opening a path to rep-
resent these moments in a discrete grid with the right sets of weights and abscissae.
The procedure is to apply the Gauss-Hermite quadrature in equations 2.17a, and
after some mathematical manipulation, the resulting discrete equilibrium function
for the isothermal case can be read as:

f eq
i = wiρ

(
1 +

ci · u
c2s

+
(u · ci)2

2c4s
− u · u

c2s

)
(2.20)

This equation introduces new concepts as the discrete velocity sets ci, the weight
of each velocity direction wi, and the sound speed cs. The discrete velocities need
further explanations as they define how the distributions evolve in space and time.
Here, a finite set of movement directions is chosen to guarantee mass, momentum,
and energy conservation, as a simplified equilibrium f eq and a discrete velocity set
are sufficient to obtain the correct macroscopic conservation laws [67]. Addition-
ally, rotational isotropy must be respected. The weights of each direction are then
calculated to respect the conservation and isotropic constraints.

Then, using equations 2.17, it is possible to recover the macroscopic momenta as
a summation over the distribution function, as the macroscopic conservation laws
are respected in the finite set of velocities ci.

ρ =
∑
i

f eq
i =

∑
i

fi (2.21a)

ρu =
∑
i

ci f
eq
i =

∑
i

ci fi (2.21b)

These equations represent the end of the discretization in velocity space. How-
ever, it is still necessary to discretize f in x and t.
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2.4.2 Discretization in time: Explicit Euler scheme

The LBM algorithm is classically discretized using an explicit forward Euler scheme
for time and a squared regular grid for space. This guarantees that the distribution
passes its values to the neighboring nodes following the velocity set directions in
each time step.

Following these rules, the main equation of the algorithm, the Lattice-Boltzmann
Equation, may be finally obtained:

fi(x+ ci∆t, t+∆t) = fi(x, t) + Ωi(x, t) (2.22)

Where simply the value of the distribution at a given time step t+∆t and position
x + ci∆t will be the value of f at the previous time step t and position x plus a
collision term Ωi(x, t). The collision is generally modeled using the BGK collision
operator as a deviation from equation 2.20, originating the LBGK equation.

It is important to remark that all the simulations in this text are two dimensional.
The most common velocity set used for 2D hydrodynamics is the D2Q9 velocity set
(Figure 2.1), where D stands for 2 dimensions and Q for the 9 possible movement
directions for a given point in a squared lattice (2 horizontal, 2 vertical, 4 diagonal,s
and 1 rest position). The main parameters of the D2Q9 are summarized below in
table 2.4.2.

D2Q9 velocity set

Velocities (ci) Number Length (|ci|) Weight (wi)
(0,0) 1 0 4/9

(±1, 0) (0,±1) 4 1 1/9
(±1,±1) 4

√
2 1/36

Table 2.1: D2Q9 velocity set parameters

2.5 The algorithm

The lattice Boltzmann method is a numerical algorithm that can simulate fluid flow
in a regular squared grid. This is possible through a closed loop of equations that
are solved at each timestep in each grid node. By imposing a boundary condition,
a deviation from the equilibrium is induced and the system loops until it reaches a
steady state. Possessing equations 2.20, 2.21 and 2.22, it is possible to write this
closed loop that can be used to simulate fluid systems.

Figure 2.2 shows the main steps of the algorithm. It starts by uploading a
geometry containing fluid and solid nodes and initializing the density and velocity
fields. The first step of the loop is to calculate the macroscopic properties using
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Figure 2.1: The D2Q9 velocity set is presented with the common notation for each
possible velocity direction.

the moment equations. The boundary conditions are then applied to move the
system out of rest, and the equilibrium condition at each node is calculated to
create a difference between the actual values of f and the values of f eq. The LBE
is applied and distributes the post-collision values of f through the grid, in two
separate processes of Collision and Streaming. If the post-collision distributions
meet the convergence criteria, the simulation finishes and outputs the results.

This section describes in detail the main algorithm used for the simulations
present in this work.

2.5.1 Initialization

The algorithm starts by choosing a geometry on which to perform simulations. The
geometry is drawn in a simple boolean-squared lattice where 0 represents the solid
nodes, and 1 represents the fluid nodes. The density, velocity, and distribution func-
tion matrices are created with dimensions equal to the image input. The equations
presented throughout this chapter are only defined in fluid nodes, leaving the solid
nodes as obstacles that the fluid dodges. In the remaining nodes, we define the initial
conditions for density, velocity, and the distribution functions, using ρ = 1, u = 0,
and the equilibrium assumption to calculate the distribution functions values.

In initialization, the flow parameters are also set. The Reynolds number will
dictate the flow regime, that acts as a bridge from the lattice domain to the physical
domain. In this algorithm, Re and umax are inputs, leaving the adimensional kine-
matic viscosity ν as a free parameter, as the density and the characteristical length
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Figure 2.2: Flowchart of the main algorithm used in this work’s simulations.
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are also fixed.
As viscosity remains as a free parameter, so remains the relaxation time. This

choice of parameters has the objective of improving stability, as the process of man-
ually choosing τ values is inefficient. Not optimal values may cause slow simulation
times, and wrong values may even crash the simulation.

With fluid and flow parameters set, the simulation loop starts. The first step of
the loop is to calculate the macroscopic properties, applying the momentum equation
to calculate ρ and u values based on the equilibrium distributions.

2.5.2 Boundary Conditions

At this point, the system remains in equilibrium. The boundary conditions are
set to move the system out of rest, creating the gradient that will be the driving
force of the flow. Here the entrance velocity is set, which may be seen as the most
critical parameter of the simulation, as the algorithm goal is to calculate the pressure
gradient generated by the imposition of a specified velocity in a given geometry.

Two boundary conditions are applied: First, the bounce-back boundary condi-
tion, which is equivalent to the non-slip condition [79]. Second, the Zou-He boundary
conditions are Dirichlet boundary conditions where a fixed value of ρ and u are set
[80]. These boundary conditions are known as Open Boundaries, where the fluid is
created on the inlet boundary and is destroyed at the outlet boundary, they differ
from Periodic Boundaries, where the fluid that escapes on the outlet returns to the
inlet at each iteration, maintaining its density and velocities values.

As the Bounce-back scheme is applied intricately with streaming, it will be dis-
cussed in the following topics of this section. Now, the Zou-He boundary conditions
will be addressed.

2.5.2.1 Open Boundaries

Differing from Periodic Boundaries, where symmetry considerations must be made
to guarantee that the fluid behavior corresponds to the actual physics of the prob-
lem, the Open Boundaries may be applied in any geometry without further concerns
about symmetry. The Open Boundaries are, therefore, more versatile than the Peri-
odic Boundaries, but are trickier to implement due to the mathematical development
behind it.

One of the suitable choices for the implementation of open boundaries is the Zou-
He boundary conditions. The idea is to use the bounce-back of the non-equilibrium
distributions at the boundaries and then formulate a fixed equation to the distribu-
tions that will continuously create fluid at the entrance of the domain and destroy
fluid at the exit. The equations applied in the inlet and outlet are written so that
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they always conserve mass, momentum, and energy.
The Zou-He Boundary Conditions specify the macroscopic variable value in a

node and then calculate all the following quantities through that specified value.
The complete formalism may be found in the original article [80]. Here, a brief
version of the main equations will be presented.

Generally, velocity is specified on the inlet, and density is specified on the outlet.
Considering specifying macroscopic velocities ux and uy at the inlet, and that the
inlet is positioned at the left border of the domain following the standard D2Q9
orientation, the macroscopic equation for density is written as:

ρ =
1

1− uy

(f0 + f2 + f4 + 2 · (f3 + f6 + f7)) (2.23)

Now in the outlet, velocity is calculated as:

ux = −1 +
(f0 + f2 + f4 + 2 · (f1 + f5 + f8))

ρ
(2.24)

The macroscopic variables have been set, but some distributions are still missing
in this numerical scheme, specifically those that enter the system at the inlet (1, 5,
and 8) and those that leave the system at the outlet (3, 6, and 7). For the inlet, the
distributions may be written as:

f1 = f3 +
2

3
ρux (2.25a)

f5 = f7 +
1

2
(f4 − f2) +

1

6
ρux +

1

2
ρuy (2.25b)

f8 = f6 +
1

2
(f2 − f4) +

1

6
ρux −

1

2
ρuy (2.25c)

Then, for the outlet, a similar set of equations is applied:

f3 = f1 −
2

3
ρux (2.26a)

f7 = f5 +
1

2
(f2 − f4)−

1

6
ρux −

1

2
ρuy (2.26b)

f6 = f8 +
1

2
(f4 − f2)−

1

6
ρux +

1

2
ρuy (2.26c)

These equations may vary for each geometry and must be recalculated for each
problem. In all simulations presented in this work, fluid inlets are defined at the
left border, and fluid outlets are defined at the right border of the domain. But this
is not always the case, as if a geometry has inlets or outlets in the top or bottom
borders, a new set of equations needs to be formulated to account for the entrance
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and exit of fluid through fi with i = (2, 4, 5, 6, 7, 8) according to D2Q9.

2.5.3 Equilibrium calculation

The new values of ρ and u must be associated with a new value of f eq to accurately
reproduce the particle equilibrium distribution at these new conditions in phase
space. At the initialization the particles in each node were at rest, so the equilibrium
initially set was equal in each node. As velocity and density have changed at the
borders, f eq values must be recalculated through equation 2.20.

2.5.4 Collision

Having f corrected by the Zou-He scheme and recalculated f eq, it is time to apply
the LBE. This is computationally done in two main steps: Collision and Stream-
ing. First, in collision, the post-collision values f ∗ are obtained with the difference
between f and f eq. Then, in streaming, these values are distributed to their neigh-
boring nodes.

In this work, collision is performed using the MRT Collision Operator, as it has
been proved as a better choice for porous media simulations than BGK [81]. The
main advantages of the MRT over the BGK collision operator are that the LBM-
MRT scheme does not violate the Galilean invariance and that it is less susceptible
to accuracy deviations due to τ values [82]. The idea is to perform collision in
moment space rather than in population space, allowing more than one relaxation
time, which is the main parameter that impacts the accuracy and stability of the
simulations.

There are different strategies for obtaining the MRT matrix that mathemati-
cally performs the transformation of f and f eq from the population space to the
moment space. One of the first approaches to this problem is to use the steady
recurrence equations obtained through linear combinations of the evolution of the
LBE, which leads to a closure problem that may be solved with a proper matrix
of "magic numbers" that conserves mass, momentum, and energy while allowing
multiple relaxation times [83]. On the other hand, the algorithm presented in this
work follows the description by Kruger [67] in the 10th chapter of his book, using
the Gram-Schmidt procedure.

2.5.4.1 MRT Collision Operator

The LBE-MRT equation is read as:

fi(x+ ci∆t, t+∆t)− fi(x, t) = −M−1SM[f − f eq]∆t (2.27)
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Where M is the MRT Matrix, that performs algebraically transformation to the
moment space, S is the relaxation times matrix and M−1 is the inverse of M that
takes back the populations from the moment to the population space. Accordingly
to the Gram-Schmidt procedure, M takes the form:

M =



1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 −2 0 2 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 −2 0 2 1 1 −1 −1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1


(2.28)

This perhaps obscure set of numbers derives from a strong mathematical back-
ground, as they form a set of orthogonal vectors that can map the populations to
a new set of orthogonal momenta. Subsequently, S carries the multiple relaxation
times as:

S =
[
0 ω1 ω2 0 ω3 0 ω3 ω4 ω4

]T
(2.29)

Where ωi =
1
τi

represents the four different relaxation times with different phys-
ical meanings, with ω1 related to bulk viscosity, ω4 related to shear viscosity and ω2

and ω3 are free parameters to adjust according to simulation’s stability.

2.5.5 Streaming

Finally, the last step of the algorithm is to redistribute the values of f ∗ to the correct
places according to x∗ = x + ci∆t. These values will occupy the previous values of
f in each node to close the cycle and start a new iteration. The streaming process
is illustrated in Figure 2.3.

It is also in streaming that the bounce-back boundary conditions are naturally
implemented, as they are set at the moment that a fluid node is to pass its f ∗

values to a neighboring solid node, the solid "deflects" the populations back to their
specular counterparts 2.4. This effect is equivalent to the no-slip boundary condition
to a second-order accuracy with a halfway wall scheme [84], as proposed in this work.
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Figure 2.3: The nine components of f ∗ are shown before and after the streaming
process. From a given node point of view, the left distribution shows how its neigh-
bors pass their f ∗ values. After streaming, the right distribution shows f values in
the following time step, closing the algorithm’s loop.

Figure 2.4: Three post-collision distributions collide with a solid wall, redistributing
their f values in the respective specular reflection of each direction.
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2.5.6 Check convergence

Now that the entire mathematical loop is detailed, explaining how the simulation
stops is necessary. To end this loop, the flow must have reached a steady state,
which is done through a convergence analysis. In this work, convergence is checked
for density and velocity at each ∆tcheck = 1000 iteration, comparing its actual values
with their values at a previous ∆tcheck. If the deviation is under a certain tolerance
for both density and velocity, it is said that the system has reached its steady
state concerning the imposed boundary conditions. Then, the simulation stops and
outputs the results.

2.5.7 Application I: Poiseuille Flow

The Poiseuille Flow is a classic fluid flow problem. As it is an analytic solution
of the Navier-Stokes Equation for parallel plates, it can be used as a benchmark
to verify the validity of 2D fluid flow simulations. Also, it is appealing due to
its simple geometry, making it a natural choice for computational implementation.
With the no-slip boundary condition at the top and bottom walls, a laminar flow is
induced with Dirichlet boundary conditions at the inflow and outflow, at a moderate
Reynolds number.

The Poiseuille flow has consistently been used as a benchmark for the hydrody-
namical consistency of an LBM scheme [85] [86] [87] [67]. In the lack of experimental
data, the relatively simple analytic solution for the Poiseuille profile is generally the
first goal to be achieved by a hydrodynamics simulation model. This problem is
also helpful for τ values tuning, as the non-slip boundary condition is induced by
bounce-back, different τ values may produce different results.

Starting with the Navier-Stokes Equation in its complete form, assuming that
we have zero velocity at the walls, that the fluid has only velocity along the x-axis,
that the plates are separated by a distance a, and that the flow is fully developed at
the steady state, the governing equation for the velocity as a function of the position
along the y axis is given by:

ux =
a2

µ

∂p

∂x

[
y2

a2
− y

a

]
(2.30)

y represents the position along the y direction, µ represents the fluid’s dynamic
viscosity, and ∂p

∂x
is its pressure gradient along the x-axis. Through this equation,

it is possible to see the parabolic profile expected for the fluid to assume a steady
state.

Regarding the Lattice-Boltzmann simulation, a domain composed of nothing
but top and bottom walls is created. At the inflow, velocity is specified using
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Figure 2.5: 2D Lattice Boltzmann simulation of a fluid flow between parallel plates.
The plates are separated by a distance of a = 0.001m, and the x-axis has a length
of 3a.

Zou-He boundary conditions, equivalent to the Dirichlet boundary conditions. At
the outflow, density is specified, as it is directly related to the pressure via LB’s
standard EoS. The flow direction is from left to right, and it is possible to see
the laminar pattern created in Figure 2.5, where the rainbow profile denotes the
parabolic profile with the zero velocity at the walls and the umax at the center along
the whole geometry.

It is possible then to compare these results with the analytic solution given
by equation 2.30 to verify the validity of our model. First, determining which grid
refinement will accurately match the Poiseuille solution is necessary. Eight grid sizes
are chosen, starting with a Poiseuille channel of 9 + 2 pixels in width (counting two
extra pixels for the channel walls) and 27 pixels in length, multiplying these numbers
by factors counting from 1 to 8. Then we reach the configurations of 11x27, 20x54,
29x81, 38x108, 47x135, 56x162, 65x189 and 74x216 pixels. The results are shown in
lattice units in Figure 2.6.

All grids could correctly match the analytical solution given by the Navier-Stokes
equation. However, the coarser grids displayed more errors than the refined ones,
almost matching the analytical solution. It is essential to notice the slight deviation
near the walls present in all simulations, being less prominent as the grid becomes
finer.
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Figure 2.6: Grid convergence test resulting of a Poiseuille flow between parallel
plates. Eight grid sizes solutions are compared with the analytical solution (In
black) given by the Navier-Stokes Equation.

Therefore, it is possible to conclude that the proposed lattice Boltzmann scheme
is an effective tool to solve hydrodynamic problems, with results equivalent to the
traditional Navier-Stokes approach. Besides, it can solve it at the pore scale, which
accounts for an advantage over NSE in the context of the problem it aims to solve.
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Chapter 3

Permeability with LBM

This chapter presents a strategy to determine permeability through direct simula-
tions over porous geometries with the lattice Boltzmann method, using the algorithm
described in Chapter 3 to perform direct numerical simulation over artificial geome-
tries. It starts with a bibliography review of experimental and numerical methods
to determine permeability, showing why LBM is a suitable alternative to solve this
problem in the pore scale. Then, the methodology for generating the porous geome-
tries that will be used for direct lattice Boltzmann simulations is shown, focusing on
the characterizing parameters such as tortuosity and porosity, among others. Finally
Darcy’s law results are presented to guarantee that the systems simulated respect
the Darcy regime, so the permeability values calculated through Darcy’s law are
valid.

3.1 LBM in porous media

In recent years, the lattice Boltzmann method has been consolidated as the leading
choice for flow in porous media applications [69]. This is due to its particle-like na-
ture, efficiently dealing with irregular geometries regarding mechanical events, such
as bounce-backs and mirror reflections. Also, its field-like nature carries all smooth
hydrodynamic information, accessing tiny interstitial regions that macroscopic mod-
els could not achieve.

The first attempts to use LBM to estimate the permeability of porous geome-
tries go back to the early 90s when Cancelliere et al [88] used a 64³ voxels three-
dimensional medium composed of randomly positioned spheres to emulate a porous
media. At that time, the BGK operator was used to carry the simulations, and
the movement of fluid particles was driven by an external force imposed upon the
geometry. They concluded that lattice gas models effectively predict permeability
and could also be extended for studies of hydrodynamic dispersion and multiphase
flows.
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In the first decade of the 2000s, this topic was further explored by directly simu-
lating over 400³ voxels tomographies of Fontainebleau sandstone comparing LBGK
and Finite Differences [85]. It was shown that the two methods apply to the prob-
lem, with comparable computing time. However, LBM needed special attention
with τ dependency on the non-slip boundary condition and the compressibility ef-
fects noticed. They compared the results with experimental values and concluded
that direct numerical simulation was becoming a possible reality to determine per-
meability due to the increasing computational power available. Also in 2002, Kang
et al [60] proposed a multiscale unified lattice Boltzmann model capable of recover-
ing Darcy’s law in an extensive range of scales. The method was very satisfactory
in predicting the permeability of fractured systems where different scales coexist in
a single medium.

In 2010, the MRT Collision Operator started being used to extend the LBGK
model for porous media. Narvaez et al [87] concluded that, in general, BGK and
MRT produced comparable results for quadratic, circular, and triangular pipes,
however, when simulating tomographies of Fontainebleau sandstones, the increase
in geometries complexity caused more significant errors for permeability in the BGK
model, as it creates a dependency between τ and permeability. A few years later,
Eshghinejadfard et al [89] tested different collision operators and force schemes to
show that the permeability dependency with τ happens with all models, even though
it may be primarily reduced using MRT coupled with the Guo forcing scheme. It
also shows the dependency with proper grid size, with the coarser grids having more
significant errors than the refined grids.

3.2 Methodology

This section aims to explain how the geometries used in this study were created,
and characterized and how the simulations were performed.

3.2.1 Artificial geometries models

To perform simulations on porous media, choosing a proper model to generate the
geometries upon which the simulations will take place is necessary. Porous media
are naturally random, but some structures may be perceived and recreated with
mathematical tools. It is then possible to make approximations of real media using
computational algorithms for artificial porous media generation.

A model represents a simplification of the complex reality. Identifying significant
structures makes it possible to simplify porous media as a gathering of these struc-
tures. Generally, porous media are recreated by two significant models: Capillarity
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networks and packing of particles [10]. These spatially periodic structures can be
studied as deviations of more perfect and ordered structures such as FCC crystal.
The randomness components added to the initial significant structures create good
artificial representations of natural porous media.

Also, it is necessary to notice that porous media generally occurs in an extensive
range of scales, and the significant structures common in a certain length may or
may not be repeated throughout these scales. These kinds of objects repeating
themselves in various lengths are called fractals, complex geometric structures often
used to depict porous media. They were first described in the works of Sierpinski,
Koch, Cantor, and Haussdorf, but Mandelbrot (1982) [90] created a systematic
approach to unify all of those works.

All the models mentioned above may be used to create artificial porous media
models. Ordered-placed spheres (or tubes, or squares), randomly placed spheres
(or tubes, or spheres), fractal noises, the Sierpinski carpet and Gasket, the random
Cantor dust, and the Voronoi Edges are some models that are commonly used for
the generation of porous-like structures. None of these models is inherently better
than the others, so choosing one model over another is purely a user’s choice for the
more accurate description of the system they want to study.

This study has used the Voronoi algorithm for porous media generation, as this
pattern is typical, especially when dealing with rock fractures. This will be further
explained in the following topic.

3.2.2 Voronoi algorithm

The Voronoi Algorithm (also called Voronoi Decomposition or Dirichlet tessellation
[91]) represents a way of subdividing space around a given set of points, also called
seeds, that are randomly distributed. The algorithm guarantees that each subdi-
vided region contains all the points that are closer to a specific seed in relation to
any other. This is exemplified in figure 3.1 with a randomly generated diagram
around 30 seeds [92].

The mathematician Georgy Voronoi proposed the algorithm in a series of two
papers in 1908 [93] [94]. Its formal definition to an n dimensional space is given by
equation 3.1, where m Voronoi seeds creates Vi Voronoi cells based on the euclidean
distance d between the position vector x and the position of the seeds si and sj.

Vi = {x : ∀j ̸= i, d(x, si) ≤ d(x, sj)}, with i, j ∈ 1, 2, ...,m (3.1)

The Voronoi pattern naturally occurs when the randomly placed set of seeds
grows at a fixed rate in all directions. This is the interaction between cells, where
its contact arcs’ overall circular shape and size distribution can be modeled [95].
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Figure 3.1: An example of a randomly generated Voronoi Diagram with 30 points.
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The algorithm has also been shown to take part in animal fur pattern generation
by studying the melanin producer cells randomly placed in the giraffe’s body [96].
Finally, it can simulate geological processes that generate reservoir soils, critical to
reservoir engineering [97].

One of the main applications of the Voronoi algorithm is the generation and char-
acterization of porous media. Tesselations are useful in pore network models, where
porous media are simplified through pores (randomly placed spheres) and throats
(cylinders that connect the spheres). The Voronoi algorithm rules the distribution
of throats, defining the connectivity between the pores [98]. It can also characterize
porous media at the microscopic level, identifying pore sizes and shapes [99]. Also,
the tesselations lead to direct representations of porous media by defining the edges
between two adjacent sub-divisions as the percolating region. Therefore, creating
2D and 3D porous media for fluid flow simulation is possible by directly applying
the Voronoi algorithm [100] [101].

The choice of using the Voronoi algorithm for generating the geometries of this
work is due to the direct granular representation that it creates with ease. With
the need to create hundreds of different geometries for direct numerical simulation,
the algorithm emerges as a natural candidate for fast and accurate representation
of reservoir rocks. The software used and the process of creating geometries is
explained in the following topic.

3.2.3 Porespy

There are different options on the internet of software or free code to generate porous
media through Voronoi tesselations. This work chose Porespy as it is a reliable,
fast, and easy-to-use tool available in Python [102]. It has gained much attention
from the porous media community in the last couple of years, leading to significant
applications [103] [104] [105].

The ps.voronoi_edges module is found in the "Generators" section of Porespy’s
website. It can generate Voronoi matrices in Python, allowing the user to manipulate
the parameters to obtain a perfect geometry for its needs. The main inputs are the
size of the system in pixels in each direction (Two or three-dimensional), the number
of Voronoi seeds, and the radius of the throats (channels). It is also possible to define
the location of the seeds (if not, they are randomly placed) and if the Voronoi edges
will lie on the boundary of the image. The function returns a boolean matrix of the
desired geometry based on the parameters provided.

The relation between porosity and the number of Voronoi seeds is shown in figure
3.2. One hundred figures are plotted for each radius, varying the number of Voronoi
seeds from 2 to 200 to analyze its effect on porosity.
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Figure 3.2: The effect of the number of Voronoi seeds in Porosity.

One thousand geometries were generated with 200x200 pixels and a radius set to
4, leading to a diameter of 9 pixels. This channel radius was chosen to be the same
size as the coarser grid validated with the Poiseuille flow in Chapter 3, to guarantee
hydrodynamical validity in our simulations. Then, the number of Voronoi seeds was
manipulated to create a porosity range from 0.096 (5 Voronoi seeds) to 0.448 (45
Voronoi seeds).

A sample of 100 geometries randomly chosen out of the 1000 total set is shown in
figure 3.3. The black portions represent the solid phase and the white represents the
fluid phase, and geometries are stacked in a 10x10 grid in ascending order of porosity.
It is then visually apparent that the increase in Voronoi seeds with a constant channel
diameter causes porosity to rise, as the sub-divisions become increasingly small, and
the white color starts to be more present than the black color.

A suitable strategy for increasing the complexity of the Voronoi diagrams is
to create voids in the geometry by removing small regions. Porespy function
ps.filters.trim_small_clusters extracts regions that have less area than a certain
user-defined level. The strategy was to vary the cut area, creating void regions
inside the Voronoi diagrams resembling geological failures common to rock tomo-
graphies, so an area of cut filter ranging from 150to300px2 was applied. A sample of
100 of the 220 geometries created is stacked in Figure 3.4 to show the imperfections
generated through this method visually.
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Figure 3.3: A visual representation of 100 sample geometries ordered by porosity.
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Figure 3.4: A visual representation of 100 sample geometries with voids ordered by
porosity.
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Figure 3.5: A visual representation of 100 sample geometries generated with blobs
ordered by porosity.

Finally, to generate even more complex geometries, the ps.generators.blobs algo-
rithm is used to create geometries completely different from the Voronoi algorithm.
It takes as input the dimension of the domain, the porosity needed, and the "blobi-
ness", a parameter that characterizes if there will be more or fewer bubbles in the
final geometry. The geometries were created using 200x200 pixels, a porosity range
from ϕ = 0.6 to 0.8, and the blobiness was set to 3. The idea is to create a set that
is radically different from the previous one to increase the complexity of the Neural
Networks that will close this work, as the two previous geometry generation models
were too simple, which could lead to overly simplification of natural geometries. The
blobs show that porosity is greater than the previous geometries, and they are much
more complex than simple Voronoi diagrams (Figure 3.5).

38



3.2.4 Geometries characterization

Porespy has many intrinsic modules for calculating geometrical parameters. These
will be briefly summarized and explained to familiarize the reader with the metrics
used in the following chapter to feed the neural network.

3.2.4.1 Porosity

The ps.porosity module on Porespy works simply using a 2D or 3D matrix as its
only argument to calculate porosity as the fraction between the liquid cells CL and
the total number of cells CT (Equation 3.2).

ϕ =
CL

CT

(3.2)

This is equivalent to equation 1.3 in a discrete grid, as CL represents the sum-
mation of the phase function XL(x) over all the porous domain. For this function
to work correctly, the solids cells must be marked as 0, and the liquid cells must be
marked as 1.

3.2.4.2 Tortuosity

The ps.tortuosity_fd function uses the binary geometry matrix and the axis con-
cerning which tortuosity will be calculated as inputs. It applies a fickean diffusion
algorithm based on the finite difference method.

The algorithm of the function starts by calculating the porosity of the medium.
Then, the function ps.trim_nonpercolating_paths is applied to remove the paths
that start in the inlet and are not connected to the outlet. Then, the effective
porosity is calculated based on the new geometry without the non-percolating paths.
Now, it invokes OpenPNM’s function op.algorithms.FickianDiffusion, setting the
inlet concentration as 1 and the outlet concentration as 0. The effective diffusion
coefficient Deff is computed as:

Deff =
Ṅ(L− 1)

A∆C
(3.3)

Where Ṅ represents the mass rate inlet, L the size of the domain in the direc-
tion of flow, A the area of the domain (Volume for a 3D domain), and ∆C the
concentration delta, in this case, set to 1. Then, the hydraulic tortuosity TH may
be calculated as:

TH =
DAB

Deff

ϕeff (3.4)

The ratio DAB

Deff
is also known as Formation Factor.
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3.2.4.3 Specific surface area

The specific surface area in a discrete grid is calculated as surface area cells over the
liquid volume cells:

A =
Csurface

CL

(3.5)

Where Csurface represents the surface cells in contact with the solid. However,
the determination of the surface is not simple. As Porespy does not have a specific
function to calculate A, we have implemented a code that counts the bulk cells in
contact only with fluid cells in the x and y-axis. It’s a loop on every cell, seeing if the
upper, lower, right, and left cells are fluid. The cell is marked as bulk cell Cbulk if all
conditions are satisfied. Then, the surface cells are counted as Csurface = CL−Cbulk.
Note that the diagonal cells do not need liquid to mark the primary cell as the bulk.

3.3 Application II: Darcy Law

The last characterizing parameter left for these geometries is permeability, as it is
the main task of this text. The lattice Boltzmann method is chosen to perform
direct numeric simulation over the geometries created, and then permeability is
given through Darcy’s law as the relationship between the imposed velocity and the
resulting pressure gradient. However, to ensure the correct application of Darcy’s
law and the permeability values calculated, it is necessary to guarantee that the
simulations are carried in laminar flow.

One random porous geometry was chosen to perform 10 simulations at different
imposed velocities, calculated according to the inputted Reynolds number to show
that the Darcy hypothesis is valid. The range of Re = 0.1 to 1 is simulated with a
geometry with 0.001m of channel diameter, as these values are closer to the limit of
laminar flow in porous domains as described by Arora (1989) [18]. The results are
shown in Figure 3.6.

The linear relationship found correctly emulates the linear behavior expected
in Darcy’s law: Permeability behaves as a constant at these Re, calculated as the
angular coefficient of a R2 = 0.9998 line. This result is crucial as it shows that
for this range of Reynolds numbers (Or lower), the flow regime is guaranteed to be
laminar at this geometry [60].

This is not necessarily valid for all geometries. It would be necessary to perform
the same experiment with different Reynolds numbers with all 1.000 geometries to
guarantee that they all correctly reproduce laminar flow and the Darcy hypothesis.
However, as this procedure would increase the time consumed by the simulations
at least by a factor of 10, for the scope of this work, this result is expected to
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Figure 3.6: The resulting pressure gradient is plotted as a function of the average
velocity in the flow direction.

be extrapolated for all artificially generated geometries. Then, from this point on,
all simulations were performed only once with Re = 0.003, and permeability is a
constant given by the ratio of µux and ρ∇P .

Considering that the simulations are carried in the Stokes regime, permeability
results for 771 geometries are shown in Figure 3.7.

Figure 3.7a shows permeability as a function of porosity. These two properties
exhibit a linear relationship, which follows the expected physical behavior as the
flow should be facilitated as void increases. Eshghinejadfard (2016) [89] remarks
that permeability is very sensitive to porosity fluctuations, explicating this relation
using FCC and BCC-packed spheres.

Figures 3.7b and 3.7c show permeability as a function of tortuosity and the
formation factor, respectively. In both cases, permeability is inversely proportional
to the quantities, even though the values show different behavior for tortuosity
and the formation factor. In respect to tortuosity, the values are more scattered,
while for the formation factor, the fall is smooth. This may be explained through
the relation between the formation factor and tortuosity, the effective porosity will
affect the relation between tortuosity and permeability, making its relationship more
mathematically complex than the ratio of DAB and Deff .

Figure 3.7d relates specific surface area and permeability, exhibiting a linear
correlation. This may seem strange initially, as the increase in surface area could
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Figure 3.7: Permeability is plotted against the characterizing parameters for simple
Voronoi. a) Porosity, b) Tortuosity, c) Formation factor and d) Surface area.

diminish fluid flow through viscous forces, but it seems logical if the relation with
porosity is observed. Here a disclaimer is advised, due to the nature of the Voronoi
algorithm as implemented, as throat radius remains constant in all geometries, the
surface area will be directly proportional to porosity. This may not be true in all
scenarios for more complex or even for 3D geometries.

Then, the simulations are performed with the set of geometries that contains
voids. It is possible to see in Figure 3.8 that we had a general increase in permeability
values as the porosities were higher and that the general tendencies for the four
parameters are the same even if more scattered. The increase in complexity had
a remarkable effect on porosity, diminishing its linear behavior and creating an
exponential tendency similar to the Kozeny-Carman relation’s predictions for high
porosity values. Tortuosity and the formation factor remained with their tendencies,
even if associated with higher permeability values. Finally, the specific surface area
showed a significant increase in range, leading to higher permeability values than
the simple Voronoi diagram samples.

Finally, the blobs are used as input for the simulations, and the results are
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Figure 3.8: Permeability is plotted against the characterizing parameters for Voronoi
with voids. a) Porosity, b) Tortuosity, c) Formation factor and d) Surface area.
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Figure 3.9: Permeability is plotted against the characterizing parameters for blobs.
a) Porosity, b) Tortuosity, c) Formation factor and d) Surface area.

summarized in Figure 3.9. It is possible to see that the parameters follow the
same tendency as before. with the permeabilities being, in general higher than for
the previous geometries. This is expected as the porosity-permeability relation has
been successfully established so that more porous geometries will lead to higher
permeability values. The significant differences lie in the effect of tortuosity and
formation factor data, which are more prominent as they increase, exhibiting lower
values for permeability. This may be explained as high tortuosity values at these
porosities leading to slower permeability values since they are related to tighter
packings and less porous geometries.

These results combined show the capacity of the lattice Boltzmann method in
dealing with complex geometries and calculating permeability values according to
Darcy’s law for low Reynolds numbers. These data will be used as input in the next
chapter for the Neural Networks analysis, aiming to predict permeability directly
from the characterizing parameters along the images.
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Chapter 4

Artificial Neural Networks

4.1 Introduction to machine learning

To meet the last specific objective, analyzing the data generated through the LBM
simulations is necessary. The data obtained until this point are the artificially
generated rock geometries and their characterizing parameters, porosity, tortuosity,
specific surface area, and permeability. To predict permeability, this chapter aims
to correlate these data types (Images and numbers) and create a tool to predict
permeability from the images, porosities, tortuosities, and specific surface areas. It
is then necessary to choose an adequate artificial intelligence model that can solve
the problem of handling the different types of data available.

The terms artificial intelligence, machine learning, neural networks, deep learn-
ing, and Convolutional Neural Network correlate. Still, despite being misused as
synonyms, they are subsets of each other (Figure 4.1). Machine learning is a class
of models within the significant field of artificial intelligence. Neural networks are a
class of architectures for machine learning, among many others, and deep learning
refers to neural networks with multiple hidden layers. Finally, convolutional neural
networks are a subset of deep learning algorithms capable of interpreting image data
and identifying patterns in the images. This makes this model suitable for analyzing
the simulation data composed of images and parameters.

Artificial intelligence was first proposed by John McCarthy in 1955 as an in-
dependent field of study at the Dartmouth Summer Research Project on Artificial
Intelligence, held in the summer of 1956 in Dartmouth College [106]. Notably, a pro-
gram called Logic theorist was presented, capable of proving mathematical theorems
upon theorizing upon mathematical basic operations. Today, it is a significant area
of computer science that aims to use mathematical tools and algorithms to perform
tasks that would otherwise need human thinking.

Machine learning was a term first used by Arthur Samuel in 1959, when he
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Figure 4.1: Different terms in the Artificial Intelligence terminology are shown as
subsets from one another.

studied computer models to play checkers that could learn from past games [107].
He created a model that, in 1962, defeated Robert Nealey, the so-called "checkers
king" at the time. In a general sense, machine learning is the process of teaching
machines how to think. It is considered a significant field within artificial intelligence
in which algorithms can learn and generalize from data, performing tasks without
being explicitly programmed.

The idea of machine learning is to use an algorithm to reproduce the human
learning process, beyond all, being able to generalize knowledge. Machine learning
algorithms are instrumental in data science to handle and understand big datasets,
as the human mind is often incapable of dealing with them [108]. Inside the machine
learning domain are supervised learning, unsupervised learning, semi-supervised
learning, reinforcement learning, ensemble learning, instance-based learning, and
neural networks. Each of them is suitable for a different task, and only the latter
lies in the scope of this text. Other works should be consulted for the interested
reader, such as the book by Aurélien Geron (2022) [109].

Neural networks are a subset of applications within machine learning that aim to
reproduce the thinking process in the human brain. A feedforward neural network is
a complex graph structure [110]. A simple representation of a general neural network
architecture is shown in Figure 4.2. It is organized in layers containing multiple
neurons, the neural processing units that perform mathematical transformations
upon the information from the previous layer. Each neuron of a layer is connected
to the neurons of the following layers through weights, which define how much of
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Figure 4.2: A general architecture for neural networks.

the calculated value will be passed forward. All neurons converge to results in the
last layer (output layer), and the error between the calculated and expected results
is calculated. Then, it starts a feedback process that recalculates the weights to
minimize error. Through the loop of this feedforward-feedback process, the weights
are recalculated multiple times until the output error is reduced below a user-defined
threshold.

Deep learning is a class of neural network architectures that takes advantage of
multiple hidden layers to extract information through different levels of represen-
tation, decomposing an input into higher forms of abstraction and allowing feature
recognition [111]. Deep learning can deal with unlabeled datasets and understand
data in its raw form, eliminating human intervention and enabling more significant
amounts of data of different types. This feature is handy in classification tasks, as
higher layers of representation may generally offer details hidden at first sight. It
has consolidated deep learning as a significant image and speech recognition tool.

Convolutional Neural Networks is the architecture category within deep learning
that has been more extensively studied [112]. It is inspired by the natural image
perception of living organisms, so it is especially suitable for computer vision, speech,
and natural language processing. CNN’s modern architecture was first proposed by
LeCun (1998) [113], obtaining great success in an attempt to identify handwritten
digits (Usually referred as MNIST dataset).

A general CNN architecture contains convolutional layers, pooling layers, an
activation function, and a fully connected layer (Figure 4.3). Each layer has a
different objective and a different position in the architecture. Generally, pooling
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Figure 4.3: A general architecture for convolutional neural networks.

layers follow convolutional layers in pairs, and only after a sequence of convolutions
and poolings, do the values pass through a fully connected layer that outputs the
final value calculated. These layers are connected by activation functions that dictate
the dynamics of information flow between the neurons.

The convolutional layers are the most essential part of the CNN architecture,
giving its name to the method. At this layer, a convolution operation is performed
over the input with randomly initialized kernels, which can be seen as design filters
over the image. At each new image input, these kernels are recalculated, being
able to extract specific features of the images inputted after adequate training, for
example, a filter that blurs the image everywhere except in the extracted feature
region. The kernel performs operations in a high-dimensional implicit feature space,
capable of turning a linear model into a non-linear model [114]

The activation functions add another layer of non-linearity to the model. It
allows the convolution outputs to be saturated or terminated based on their values,
which enables CNN to perceive complex and sophisticated patterns. These functions
can be essentially any function going from -1 to 1, but some choices have been
consolidated as the most effective, such as ReLU, Sigmoid, and Tanh.

Then fully connected layer gathers all information previously passed and calcu-
lates the final output values. It is crucial, as is in this layer, that the algorithm
calculates the error between the solution and the output calculated. This is the
moment of backpropagation, recalculating the weights until the training can obtain
a satisfactory result.

The training step is followed by a validation step, where the model uses a separate
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subset of the data initially fed to the model to evaluate its results and adjust the
parameters. Once validation is complete, a separate test set, not yet fed, is used to
verify if the model can be used for real world applications.

4.1.1 Applications in industry

Two of the most notable conquers of CNN are speech recognition, natural language
processing, and computer vision [115]. CNN properties of locality, weight sharing,
and pooling make it sound at handling audio. It is less affected by non-white noise,
reduces over fitting due to multiple repeated frequency bands, and can deal with
natural frequency shifts of the human voice [116].

Advances in image processing due to CNNs led to computer vision, which has
brought advances in multiple areas. In medical sciences, computer vision has found
use in identifying body parts, lung texture and patterns analysis, thyroid nodule
diagnosis, breast cancer, and diabetes identification, among others [117]. It has also
linked image data and pattern identification that led to the almost instantaneous re-
sponse times needed for robot vision applications, such as identifying cracks in pipes
[118]. CNN has also shown great potential in modern facial recognition, that roots
in image recognition associated with the semantics perception of human expression
[119].

Computer vision has also found use in porous media applications. One of the
most immediate applications is the determination of properties such as porosity,
coordination number, and average pore size from 2D greyscale micro-CT imaging of
actual rock samples [120]. CNNs can also be applied directly to transport problems,
such as the determination of the dispersion coefficient, which was able to establish
the link between the coefficient and the morphology of the pore space [121]. Beyond
that, the area of physics-informed neural networks had used CNNs to perform direct
numerical simulation of fluid flow on porous media, performing the task of predicting
permeability in a matter of seconds versus the traditional simulation times of DNS,
which can take hours or even days in supercomputing facilities [122]. Besides, after
the model is trained, it can be used for any different porous geometry, instead of
having to perform another costly simulation, it can output an almost instantaneous
result based on image recognition. Finally, it is also capable of predicting correct
permeability values for geometries more complex than those used in the training set,
showing the capability of the model to generalize knowledge and make connections
between various cases.
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4.1.2 LBM applications

The rock images dataset must be labeled with the permeability values to perform
the training of recognizing permeability values from rock images. Thus, before the
training, the permeability values for a representative sample of images must be
calculated. As the lattice Boltzmann method has already been shown as the ideal
tool for these calculations, some studies have been done to couple LBM with CNNs.

Wu (2018) [37] has successfully predicted permeabilities with a CNN trained
with lattice Boltzmann data and porous geometry characterizing parameters. It
was shown that permeability is a geometric-dependant parameter and that CNN
achieved better predictions than the Kozeny-Carman relation. It was also shown
that the characterizing parameters of porosity and specific surface area, when in-
putted together in the fully connected layers scheme, can achieve more accurate
predicted values, even if the increase in geometrical complexity leads to worse pre-
dictions. The study’s main idea was to show that the potential of CNN informed
with geometric parameters of the images could obtain better permeability results
than a well-consolidated equation in the literature.

Wang (2021) [123] used a different approach, not feeding the model only with raw
geometry images but with the resulting steady-state velocity field images, then ask-
ing the model to reproduce new velocity fields in raw geometrical images previously
not seen. The study shows that it can accurately predict permeability values as do-
main averages for simple geometries, but the pressure and velocity fields predicted
by the model do not necessarily match the calculated through LBM, showing that
the fluid flow prediction’s accuracy was increasingly dependent on the complexity
of the geometry. The advection-dominated solution at high Peclet numbers, even
in the simplest geometries, lacked voxel-by-voxel accuracy showing the steady state
velocity fields predicted had no further use.

Yalamanshi (2024) [124] used SEM images of geological basins in India as in-
puts. These images were carefully characterized in relation to the pore size dis-
tribution, the grain size distribution, the throat radius, and the 2D coordination
number. Then, permeability is calculated through Darcy’s law after the steady
state is reached with a BGK-LBM scheme. It is shown that the porosity, the grain
size distribution, and the throat radius are the main parameters affecting perme-
ability, while pore size distribution and the coordination number showed almost no
impact on permeability calculation. The study showed that CNNs may be applied
to natural reservoir rocks, which contain much more intrinsic complexities than the
artificially generated geometries, obtaining a good agreement between the model
and the predicted permeability values and those calculated with LBM.
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4.2 Theoretical foundations

4.2.1 Mathematical description

The basic mathematical description of a neural network may be seen through the
function of a single neuron. It may be described as a functional mapping between
the input matrix q and the output matrix y:

y = W (2)σ(W (1)q+ b(1)) + b(2) (4.1)

Where coefficient vectors W (1) and W (2) represent the functional mappings, b(1)

and b(2) are their associated biases and σ represents the activation function.
The activation function is the mathematical entity that calculates the output

based on the inputs and the weights. Cybenko (1989) was able to show that a finite
linear combination of Sigmoid functions was capable of approximating any given
function [125]. Neural Networks use this result to perform complex generaliza-
tions, as the multiple neurons correspond to the superposition of different activation
functions. Common activation functions are Sigmoid (or logistic), ReLU, GELU,
hyperbolic tangent, Softplus, and exponential.

The validation of the model was performed following the Mean Squared Error
criteria:

MSE =
1

n

n∑
i=1

(kCNN
i − kLBM

i )2 (4.2)

The kis are the permeabilities predicted by the CNN and the direct simulation
via LBM, respectively.

4.3 Methodology

4.3.1 Architecture used

The architecture used mixed classic Convolutional Neural Networks for image anal-
ysis and Deep learning for numerical data analysis, joining them through densely
connected layers at the network’s end. This approach is advantageous as it allows the
user to manipulate image and numerical data separately, facilitating the importance
analysis without losing the information the images give.

The number of layers and neurons was optimized regarding MSE to create an
architecture that efficiently solved the problem minimizing computational cost.
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4.3.2 Implementation tools

The framework chosen for the numerical procedure was the tensorflow, keras, and
scikitlearn packages.

Tensorflow was first proposed by Abadi, et al (2016) [126] in the 12th USENIX
Symposium on Operating Systems Design and Implementation as a toolkit for solv-
ing matrix operations for machine learning. As TensorFlow is inspired by high-level
dataflow systems and the low-level efficiency of parameter servers, it can represent
both the operation and the state in which the algorithm operates. By unifying state
management, experimentation with parallelization schemes becomes more accessi-
ble for the final user. Due to that, Tensorflow has experienced massive success as a
machine learning framework currently used by most state-of-the-art companies and
research groups.

Scikit-learn is a Python interface with trustful implementations of standard ma-
chine learning algorithms [127]. Its main advantages include code efficiency, as it
relies solely on Numpy and Scipy for calculations and is focused on imperative pro-
gramming, differing from the dataflow framework.

Keras is a famous Python machine-learning package used as the primary imple-
mentation tool in this work. It is direct and clean to code and has been extensively
studied, being the topic of various books [128] [129] [130]. Keras was also reviewed
against other commercial Python frameworks for machine learning, such as PyTorch
and MXnet, obtaining a better overall performance [131].

The popularity of Keras led it to be used in different research areas. Keras
has been used for real-time sentiment analysis on Twitter, reading and classifying
tweets based on positive or negative feelings [132]. Keras also easily handles mas-
sive datasets, used on the transfer learning of cloud street image data due to tuning
its hyperparameters to avoid excessive calculations [133]. Keras has also outshined
other software and showed its strengths in satellite image analysis for traffic detec-
tion, detecting vehicles with almost no misclassification [134]. Then, it has been
consolidated as a good choice for machine-learning implementation, especially for
convolutional neural network architectures, so it is naturally chosen as the main
library for neural networks used in this work.

4.3.3 Preparation of data

To upload the data in the model, the keras.preprocessing.image.load_img function
loads the labeled .png images of the artificially generated geometries and the pan-
das.read_csv function reads a .csv file that contains the parameters associated with
each label. Then, the model can associate each geometry with a previously calcu-
lated value of porosity, tortuosity, specific surface area, and permeability.
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Figure 4.4: The main permeability prediction results are shown versus the Kozeny-
Carman equation.

4.3.4 Validation and sensitivity analysis

After validation, a sensibility analysis is generally carried out to better understand
the influence of each parameter inputted. It consists of inducing an error in each of
the parameters and tracking how its variation influences the final output, with the
most sensible parameters being those with the most importance.

4.4 Results

After the training is complete, it is possible to summarize the permeability prediction
results for a model trained only with simple Voronoi geometries in Figure 4.4. The
permeabilities calculated with the CNN+DNN model were much closer to the actual
value than those predicted by the Kozeny-Carman equation, showing that the model
is generally better than the correlation.

Then, a sensibility analysis is performed to evaluate the model’s performance
(Figure 4.5). As expected, porosity is the most critical parameter, leading to signifi-
cant errors when perturbed. Tortuosity and formation factor plays a minor role, but
are also responsible for correctly calculating the permeability values. The specific
surface area and the image are parameters not important at all, as their influence
on the perturbation error is shown to be very small. This is interesting, as the main
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Figure 4.5: The main characterizing parameters are shown in order of importance
to permeability prediction.

idea of the work consisted of predicting permeability from images, but this test
shows that to predict permeability values in a simple Voronoi diagram scheme, the
geometry characterization parameters of Porosity, Tortuosity, and Formation factor
are sufficient. It is possible to conclude that simple Voronoi diagrams can calcu-
late permeability without the proper images, using only a less costly Deep Neural
Network.

It is interesting to see how the trained network responds when fed with data
that differs from what was previously trained. The Voronoi with voids and the
Blobs datasets are fed to the model as inputs. The results for the permeabilities
of these geometries are shown in Figure 4.6. The model can predict permeability
with a certain degree of accuracy, even though the values are slightly higher than
the reference LB values. However, the model could not predict permeability values
accurately for the blob geometries. This might be explained as the blobs are severely
different from the Voronoi geometries, presenting curved shapes that the Network
had not spotted before. Also, blob porosities were generally higher than Voronoi’s,
leading to increased permeability values.
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Figure 4.6: The permeability values predicted by a network trained only with simple
Voronoi data for three different sets of geometries.

Then, the strategy is to retrain the network using the Voronoi with voids and
Blobs as input, so the network is now presented to a different range of porosities,
permeabilities, and geometries. This is fundamentally important as the model is
generally only able to predict values regarding what it has been previously shown,
so it was expected that it could not predict Voids and Blobs when only trained with
simple Voronoi geometries. The prediction results for the new network trained with
all the geometries are shown in figure 4.7.

The R2 = 0.949 indicates a good agreement between the predictions and the
actual permeability results. Notably, the values are much more scattered in this
prediction as the range of permeabilities increases with the addition of the Blobs
geometries. Also, as there were fewer Blobs than Voronoi geometries, there is an
accumulation of results of lower permeability and a lack of higher permeability
values, as shown in the parity plot. A sensitivity analysis is conducted to verify the
influence of the characterizing parameters for the new network (Figure 4.8)

Interestingly, in this case, all of the parameters exhibit some importance, differing
from the case of the pure Voronoi geometries where the specific surface area and the
image were almost negligible. Particularly in the case of specific surface area, it has
become the most critical parameter for the new network, followed by tortuosity and
only then porosity. This may be explained since, in simple Voronoi geometries, the
relation of porosity and permeability is somewhat direct, while it is not perfectly
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Figure 4.7: The permeability values predicted by a network trained only with simple
Voronoi data for three different sets of geometries.

Figure 4.8: The permeability values predicted by a network trained only with simple
Voronoi data for three different sets of geometries.
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linear for the other geometries. Also, the increase in complexity due to voids and
blobs may explain why the specific surface area became so crucial concerning the
other parameters, as in simple Voronoi, it is directly proportional to the number of
seeds, with a constant channel radius, which is not valid as complexity increase.
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Chapter 5

Conclusions

5.1 Results overview

The results of the previous chapters can answer this work’s fundamental question:
Is it possible to train neural networks to obtain high-fidelity permeability results in
direct numerical simulation without the high computational cost of this technique?
The answer is yes, given the assumptions made, the neural networks were successful
in the task of predicting permeabilities while offering valuable insights about the
relative importance of each characterizing parameter.

To corroborate this answer, it is possible to review the specific objectives pro-
posed on the first chapter. First, theoretical knowledge should be constructed using
the mathematical tools of the kinetic theory of gases and the lattice Boltzmann
method, which was carefully reviewed in chapter two. The mathematical basis of
the kinetic theory of gases, defining the primary variables, explaining the construc-
tion of the Boltzmann Transport Equation, and the discretization process to obtain
the Lattice Boltzmann Equation. The solid theoretical basis gained has proven to
be a fundamental tool during all phases of this research, aiding the interpretation
of results concerning correct physics.

Then, a lattice Boltzmann algorithm is proposed to solve fluid flow prob-
lems,validated to guarantee hydrodynamical consistency. The algorithm used was
detailed in chapter three, focusing on implementation and applications, and the
Poiseuille flow is chosen as a benchmark problem for hydrodynamical accuracy as it
has been recommended by the specific literature. A grid convergence test confirms
that the model correctly approximates the analytical result for grids until a nine-
pixel channel radius, which will then be used as the channel radius for the porous
media artificially generated. The model is then validated for hydrodynamical simu-
lations and shall then be exposed to different geometries to calculate permeability
through Darcy’s law.
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The algorithm objective is to predict permeability through direct numerical sim-
ulation, so a set of artificially generated rock geometry samples are generated and
characterized for this further use. The python libraries Porespy were tested for
creating and characterizing the geometries, as through its simple interface, it is pos-
sible to create hundreds of Voronoi diagrams with varying porosity and to extract
cells creating void spaces that add complexity to the geometries. This leads to an
increase in their characterizing parameter diversity, specifically the specific surface
area. Later, blob geometries were also created to increase geometric complexity,
leading to a more diverse pattern of permeabilities for the Neural Network to ana-
lyze.

To guarantee that permeability may be calculated through Darcy’s law, it is
necessary to ensure that the simulations are carried out in the Stokes regime, and
only then calculate the permeability for all rock geometries. The laminar regime
is proven through experimentations with the Reynolds number, showing that the
pressure gradient followed linearly an increase in velocity. Then, assuming that the
Darcy hypothesis is valid for all simulations, direct simulations are carried out upon
771 traditional Voronoi geometries, 220 Voronoi geometries with voids and 173 blob
geometries. The results have shown that the complexity increase due to the insertion
of voids did not significantly affect the general properties, showing a slighter increase
in porosity and a significant increase in the specific surface area. Finally, the change
in the geometry model raised the values for porosity, as the blobs were more porous
than the previous Voronoi geometries. However, the general tendency of permeabil-
ity concerning the characterizing parameters is maintained, being proportional to
porosity and the specific surface area and inversely proportional to tortuosity and
the formation factor.

Finally, permeabilities are predicted directly with a joint CNN+DNN model
trained to predict permeability based on image input and the geometrical charac-
terization inputs. The first set of images to train the model was the simple Voronoi
geometries, where permeability is directly related to porosity. The sensibility analy-
sis confirms this relationship between porosity and permeability. Also, it shows that
the Specific Surface Area and the images were not necessary to calculate permeabil-
ity, evidencing the potential of the DNNs without the need for costly convolution
operations. The model could predict better results than the Kozeny-Carman equa-
tion, showing its capabilities of outperforming traditional methods for determining
permeability based on porous media characterizing parameters.

The Voronoi with voids and Blob sets are then used as input on the previously
trained network to test its capabilities of predicting permeabilities of geometries
that differ from the ones on the training set. It was found that the model could
still accurately calculate permeability for the Voronoi with voids input, but could

59



not correctly predict permeabilities for the Blob set. This is due to the significant
irregularities in blobs, such as curves and unconnected regions, besides their higher
porosity and permeability values. The network is then retrained with the Voronoi
with voids and Blobs, able to predict permeability values for all images with sig-
nificant accuracy correctly. However, the importance of each parameter changes
drastically, now with the specific surface area being classified as the most critical
parameter on permeability prediction, and the images are also more important, in-
validating the hypothesis of predicting permeability without them.

The main conclusion of this work is that artificial intelligence trained with LBM
simulation data is a powerful tool for predicting permeability values for rock ge-
ometries. It has direct field applications and, if appropriately trained, can calculate
permeability faster than direct numerical simulation, maintaining accuracy while
saving resources.

5.2 Limitations, suggestions and future works

It is essential to mention some intrinsic difficulties found during the development of
this work, serving as a word of caution for others who try to pursue similar research.

First, a heavy mathematical background is necessary to understand kinetic the-
ory and the lattice Boltzmann method. It may frighten readers not used to this
kind of mathematical sophistication and microscopic physics abstraction, and even
for those used to fluid mechanics, it may offer new challenges as kinetic theory is not
generally taught in standard engineering courses. Specifically, the section regarding
the discretization in velocity space through the Hermite Polynomials approach is
hard to explain, understand, and visualize, leaving the velocity sets a mystery for
the LBM users.

Second, implementing Zou-He boundary conditions is not trivial though it might
seem direct, and it’s not well established in the literature, with few works using it.
The divergences between the standard boundary condition implementation and wet
node approaches confuse those aiming to implement it. In this work, the Zou-He
boundary conditions were implemented directly over the nodes, not using the wet-
node approach, producing satisfactory results without extra care with interpolation
schemes.

The geometries created were not necessarily perfect for direct simulation, leading
to lots of time deployed in nonphysical simulations. As the geometries were created
randomly, some were unsuitable for fluid flow simulations because they did not have
percolating channels or a tiny channel radius (as 1px, for example). These simula-
tions generally took a long computing time as they could not reach equilibrium, and
some of them even crashed after hours of iterating as the values became too high for
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the computer to process. As the LBM simulations generally took at least one hour
to run, the extensive database of generated geometries took weeks of computing
time to run in a single computer using 10 CPU of its cores.

Further research topics can extend and improve this work to deal with 3D ge-
ometries, a choice made in chapter two when working with a bi-dimensional LBM
scheme instead of a 3D approach due to the limited time and computational re-
sources available. Also, training the Neural Network with 3D image data could
significantly improve the range of applications of the network, as 3D porous media
can exhibit phenomena that are not easily seen in 2D. This could make the model
eager for rock tomography analysis, even substituting direct numerical simulation
after correct training.

Also, this work is limited to the geometry sets used and the time necessary to
perform the simulations and the training. Ideally, several different geometry models
could be used to train a robust network that could predict the permeability of any
given geometry without large error margins. Images of actual rock geometries could
also have been used, making the model better for real-world applications. The time
consumed by the simulations to predict the permeability of the geometries was also
a problem, as this work did not use an efficient parallelization scheme based on
GPUs, one of the main advantages of LBM. Instead, we remained limited to a single
computer with 16 CPU cores. The training also consumed much time, even using
less than 2.000 images and points to feed the model, showing that parallelization
could also have been employed here to increase efficiency.
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