
i 

 

 

 

 

 

PREDICTIVE MODELING OF THERMODYNAMIC PROPERTIES AND PHASE 

EQUILIBRIUM FOR PRAZIQUANTEL USING SAFT-γ MIE AND PC-SAFT 

FRAMEWORK 

 

ANTONIO CAVALCANTE DE LIMA NETO 

 

 

Dissertação de Mestrado apresentada ao 

Programa de Pós-graduação em Engenharia 

Química, COPPE, da Universidade Federal do 

Rio de Janeiro, como parte dos requisitos 

necessários à obtenção do título de Mestre em 

Engenharia Química.  

 

 

Orientadores: Frederico Wanderley Tavares 

Iuri Soter Viana Segtovich

   

Rio de Janeiro  

Março, 2024 



ii 

 

PREDICTIVE MODELING OF THERMODYNAMIC PROPERTIES AND PHASE 

EQUILIBRIUM FOR PRAZIQUANTEL USING SAFT-γ MIE AND PC-SAFT 

FRAMEWORK 

 

Antonio Cavalcante de Lima Neto 

 

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO 

LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA DA 

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS 

REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM 

CIÊNCIAS EM ENGENHARIA QUÍMICA. 

 

Orientadores: Frederico Wanderley Tavares 

                       Iuri Soter Viana Segtovich 

 

Aprovada por:  Prof. Argimiro Resende Secchi 

Prof. Marcelo Castier 

 

 

 

 

 

 

 

 

 

 

RIO DE JANEIRO, RJ - BRASIL 

MARÇO DE 2024 



iii 

 

 

 

Cavalcante, Antonio 

Predictive Modeling of Thermodynamic Properties for 

Praziquantel Using SAFT-γ Mie and Pc-SAFT Framework 

/ Antonio Cavalcante de Lima Neto. – Rio de Janeiro: 

UFRJ/COPPE, 2024. 

XXIV, 122 p.: il.; 29,7 cm. 

               Orientadores:  Frederico Wanderley Tavares 

                       Iuri Soter Viana Segtovich  

Dissertação (mestrado) – UFRJ/ COPPE/ Programa de 

Engenharia Química, 2024. 

 Referências Bibliográficas: p. 75-80. 

1. Thermodynamics. 2. Phase Equilibrium. 3. 

Praziquantel. I. Tavares, Frederico Wanderley et al. II. 

Universidade Federal do Rio de Janeiro, COPPE, Programa 

de Engenharia Química. III. Título. 

 

 

  



iv 

 

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos 

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.).  

MODELAGEM PREDITIVA DAS PROPRIEDADES TERMODINÂMICAS 

E EQUILIBRIO DE FASES DO PRAZIQUANTEL USANDO OS MODELOS 

SAFT-γ MIE E PC-SAFT 

Antonio Cavalcante de Lima Neto 

Março/2024 

Orientadoes:   Frederico Wanderley Tavares 

Iuri Soter Viana Segtovich 

 

Programa: Engenharia Química 

Esta dissertação apresenta um estudo sobre as propriedades termodinâmicas de 

compostos, com especial enfoque em uma substância farmacêutica, praziquantel (PZQ) 

e um solvente orgânico amplamente utilizado, N-Metil-2-pirrolidona (NMP), utilizando 

os modelos SAFT-γ Mie e PC-SAFT. O objetivo principal era aumentar a acurácia 

preditiva desses modelos para comportamentos de misturas complexas, ajustando novos 

parâmetros, especificamente dois novos parâmetros de grupo para amidas cíclicas 

(cNcCO para NMP e PZQ, cNCO para PZQ) no contexto de SAFT-γ Mie, 

contabilizando 8 parâmetros de grupo like e 34 parâmetros de grupo unlike. Além disso, 

foram ajustados 18 parâmetros de interação binária (𝑘𝑖𝑗) entre PZQ e solventes no 

contexto do PC-SAFT. O estudo revelou que a SAFT-γ Mie, com um desvio relativo 

absoluto médio (AARD) de 5,72% e máximo de 27,38%, superou o modelo PC-SAFT, 

que teve AARD de 9,90% e máximo de 28,15%, na previsão da solubilidade do 

praziquantel em diversos solventes. Isto destaca as capacidades preditivas superiores 

dele e seu potencial para aplicações mais amplas na indústria farmacêutica. No entanto, 

a pesquisa encontrou limitações devido à variabilidade e incerteza nos dados 

experimentais, incluindo a ausência de réplica e variância, o que prejudicou a análise 

estatística dos resultados. Este trabalho abre um precedente para futuras investigações 

que visam superar as limitações atuais e expandir as aplicações destes modelos, 

particularmente na desafiadora área da purificação de enantiômeros, avançando assim 

no campo das ciências farmacêuticas. 
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This dissertation presents a comprehensive study on the thermodynamic 

properties of compounds, with a special focus on a pharmaceutical substance, 

Praziquantel (PZQ) and a widely used organic solvent, N-Methyl-2-pyrrolidone (NMP), 

using the SAFT-γ Mie and PC-SAFT models. The primary aim was to enhance the 

predictive accuracy of these models for complex mixture behaviors by adjusting new 

parameters, specifically two new group parameters for cyclic amides (cNcCO for NMP 

and PZQ, cNCO for PZQ) in the context of SAFT-γ Mie, accounting for 8 like group 

parameters and 34 unlike group parameters. Moreover, it was adjusted 18 binary 

interaction parameters (𝑘𝑖𝑗) between PZQ and solvents in the context of PC-SAFT. The 

study revealed that the SAFT-γ Mie model, with an average absolute relative deviation 

(AARD) of 5.72% and maximum of 27.38%, outperformed the PC-SAFT model, which 

had an AARD of 9.90% and maximum of 28.15%, in predicting the solubility of 

praziquantel in various solvents. This highlights the SAFT-γ Mie model's superior 

predictive capabilities and its potential for broader applications in the pharmaceutical 

industry. However, the research encountered limitations due to the variability and 

uncertainty in experimental data, including the absence of replica and variance, which 

impaired the statistical analysis of the findings. This work sets a precedent for future 

investigations aimed at overcoming the current limitations and expanding the 

applications of these models, particularly in the challenging area of enantiomer 

purification, thereby advancing the field of pharmaceutical sciences. 
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1. Introduction 

Schistosomiasis, a parasitic disease caused by a type of flatworm known as 

schistosomes, poses a significant public health challenge, particularly in developing 

countries such as Brazil, where access to clean water is often limited. The World Health 

Organization (WHO) estimated that over 250 million people required treatment for 

schistosomiasis in 2021, yet only 75 million received the necessary care. Despite its 

high prevalence and substantial impact on public health, schistosomiasis is classified as 

one of the Neglected Tropical Diseases (NTDs), which predominantly affect 

impoverished and marginalized populations and suffer from inadequate attention and 

funding for research and development due to their low financial return. 

Praziquantel, an anthelmintic drug, is widely used for its effectiveness against a 

broad range of parasitic worms, including schistosomes. It is recognized for its safety 

and tolerability, presenting minimal side effects (RASO et al., 2004). However, a 

notable limitation of praziquantel is its chirality; it contains a chiral carbon, which can 

lead to issues regarding the drug's efficacy and safety. A chiral carbon atom in a 

molecule is bonded to four distinct groups, resulting in two mirror-image forms known 

as enantiomers. These enantiomers are chemically identical except for their mirror-

image configuration, which can lead to significantly different biological activities 

despite their thermodynamic properties being remarkably similar. 

Since praziquantel possesses a chiral carbon, the drug has two enantiomers: one 

is biologically active, contributing to the therapeutic effects, while the other is inactive, 

potentially contributing only to adverse effects such as nausea, vomiting, and dizziness. 

Pure enantiomers would be more effective and have fewer adverse effects than the 

racemic mixture. However, the production and purification of pure enantiomers are 

expensive and time-consuming, potentially limiting their availability. 

The optimization of the crystallization process in pharmaceutical development 

critically relies on understanding and modeling the thermodynamic properties of Active 

Pharmaceutical Ingredients (APIs). Studies by SHEIKHOLESLAMZADEH and 

ROHANI (2012), BOUILLOT et al. (2011), DOHRN et al.(2021), BOCHMANN, 

NEUMANN, et al., (2019) and VALAVI et al. (2017) have highlighted the importance 

of solubility prediction, solvent selection, and the understanding of crystallization from 

mixed solvents in enhancing this process. Utilizing thermodynamic models such as 
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UNIFAC, NRTL-SAC, the Hansen Flory Huggins model, and notably, the PC-SAFT 

model, these studies enable the selection of optimal solvents or solvent mixtures that 

significantly improve API solubility, yield, and purity. The PC-SAFT model, in 

particular, is showcased in the work of DOHRN et al. (2021), demonstrating its utility 

in predicting API solubility in solvent mixtures and avoiding unwanted phase 

separation. Accurate solubility predictions allow for the fine-tuning of crystallization 

conditions, ensuring efficient API recovery and enhancing stability and bioavailability 

through improved crystallization techniques. This synthesis of work underscores the 

pivotal role of thermodynamic modeling, including the PC-SAFT model, in advancing 

the efficiency and quality of pharmaceutical crystallization processes, ultimately 

influencing the performance of the final drug products. 

Advancements in theoretical methods for predicting solubility and other 

thermodynamic properties have significantly expedited the development process and 

reduced costs by diminishing reliance on experimental assays. Among these methods, 

Equations of State (EoS) stand out as mathematical models that describe the 

thermodynamic properties of fluids based on the fluid's composition and state. These 

EoS models offer a comprehensive representation of fluid behavior across a broad range 

of temperatures, pressures, and compositions, making them invaluable tools in the 

chemical and pharmaceutical industries for optimizing separation processes, including 

the purification of enantiomers from chiral compounds. 

EoS models excel over activity coefficient-based models in their ability to 

predict phase behavior and thermodynamic properties over extensive conditions. Unlike 

activity coefficient models, which are typically limited to describing deviations from 

ideal behavior in mixtures at low pressures, EoS models can accurately represent the 

physical state of substances under a much wider array of conditions. This broad 

applicability stems from their fundamental basis in the principles of thermodynamics 

and statistical mechanics, allowing them to capture the critical interactions and phase 

equilibria of complex systems. Furthermore, these models can be integrated into process 

simulation software to optimize the design and operation of separation units, thereby 

enhancing efficiency and reducing experimental trial and error. 

The study by TSIVINTZELIS et al. (2009) exemplifies the power of EoS models 

for extrapolating beyond the range of available experimental data, a capability of 

particular importance in the pharmaceutical industry. In their work, they developed a 
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methodology for modeling the phase equilibria of complex chemical mixtures, 

specifically pharmaceutical-solvent mixtures that exhibit complex hydrogen bonding 

behavior. They applied the nonrandom hydrogen bonding (NRHB) EoS to accurately 

correlate the solubilities of three pharmaceuticals: acetanilide, phenacetin, and 

paracetamol. The accuracy of their correlations and the successful evaluation against 

predictions from the COSMO-RS model underscore the potential of EoS models to 

predict the solubility and stability of new drug compounds under a wide range of 

conditions. This approach not only aids in the successful formulation and process design 

by reducing reliance on extensive experimental assays but also demonstrates the 

exceptional ability of EoS models to perform extrapolations where direct experimental 

data might be scarce or unavailable, thus underlining the models' excellence in 

extrapolation. 

One of the most common separation methods for enantiomers is 

chromatography, which involves separating a mixture of chiral compounds based on 

their differential interactions with a stationary phase. Thermodynamic models, not 

limited to Equations of State, can be used to optimize the chromatographic separation 

process by predicting the thermodynamic behavior of chiral compounds in the mobile 

phases. This approach is exemplified in the work by CASTELLS and CARR (2000), 

which studied the thermodynamics of chiral separations using cellulosetris(3,5-

dimethylphenylcarbamate) coated on porous zirconia stationary phases over a range of 

temperatures. By analyzing differences in enthalpy and entropy of transfer from the 

mobile to the stationary phase, their study provides valuable insights into the driving 

forces for chiral recognition, showing that while most separations are enthalpy-driven, 

others are dominated by entropy. This comprehensive thermodynamic perspective 

enables the design of chromatographic columns that maximize separation efficiency and 

minimize the amount of mobile phase required for separation, illustrating the intricate 

relationship between thermodynamic interactions and chromatographic performance. 

Furthermore, thermodynamic models, can be utilized to optimize the conditions 

for the recrystallization of enantiomers. Recrystallization, a prevalent method for 

purifying chiral compounds, involves dissolving the racemic mixture in a solvent and 

inducing the formation of crystals of one enantiomer, while the other remains in 

solution. The study by GLYNN et al. (1990) delves into equilibrium in binary solid-

solution aqueous-solution systems after dissolution, precipitation, or recrystallization 
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processes, based on the composition and relative proportion of the initial phases. Their 

exploration of stoichiometric saturation offers insights into understanding the 

thermodynamic equilibrium points and reaction paths during recrystallization, which is 

crucial for optimizing solvent composition, temperature, and other process parameters. 

Although Glynn et al. focused on solid-solution systems of minerals, the thermodynamic 

principles they elucidated, particularly regarding equilibrium, could be similarly applied 

using EoS models, therefore, it could provide a more detailed and predictive framework 

for adjusting recrystallization parameters to enhance the purity and yield of the desired 

enantiomer.  

A class of EoS extensively utilized for drug optimization is founded on the group 

contribution approach. This methodology posits that molecules can be conceptualized 

in terms of functional groups, allowing for the deduction that the properties of any 

system can be derived from the contributions of its constituent groups to the system's 

thermodynamic properties. The work by PANKOW and ASHER (2008) introduces the 

SIMPOL.1 group contribution method, developed for predicting the vapor pressure and 

enthalpy of vaporization of organic compounds as functions of temperature. This 

method assumes the vapor pressure of a compound can be predicted from the sum of 

contributions by its structural groups, incorporating a wide range of molecular 

functionalities. The group contribution approach is pivotal for extrapolating properties, 

as it enables predictions for molecules not yet synthesized or lacking experimental data, 

by leveraging known group properties rather than specific molecular configurations. 

This capability of group contribution methods to extrapolate beyond the confines 

of experimentally characterized compounds underscores their utility in drug 

development. By using functional groups as the basis for prediction, these models can 

forecast the thermodynamic behavior of novel compounds, facilitating the exploration 

of a vast chemical space without the immediate need for laboratory synthesis and 

characterization. Such a predictive tool is invaluable for identifying promising drug 

candidates by assessing their solubility, stability, and other critical properties in silico, 

significantly accelerating the drug development process and reducing reliance on 

extensive empirical testing. 

The SAFT-γ Mie  model, devised by PAPAIOANNOU et al. (2014), is a 

powerful group contribution EoS used for modeling the thermodynamic properties of a 

wide range of fluids, including pharmaceuticals. This equation of state utilizes the mie 
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potential, a versatile adaptation of the Lennard-Jones potential, to capture the complex 

intermolecular interactions within fluids. The flexibility of the mie potential allows for 

the accurate prediction of properties across various interaction ranges and intensities. 

Specifically, FEBRA et al. (2021) applied this approach to predict the solubility of 

pharmaceutical compounds, demonstrating its utility in drug development for predicting 

the behavior of compounds even before their synthesis. This capability significantly aids 

in the optimization of drug formulations and manufacturing processes.  

1.1. Objective 

The main aim of this dissertation is to delve into the realm of thermodynamic 

modeling, with a particular focus on EoS, enriching both theoretical understanding and 

practical computational skills for future applications This study is particularly focused 

on employing the SAFT-γ Mie and PC-SAFT EoS models to investigate the solubility 

behaviors of praziquantel in diverse solvents and to assess the extrapolation capabilities 

of these models. This investigation marks a step toward elucidating the separation 

process of praziquantel's racemic mixture, aiming to refine its optimization. A critical 

component of this endeavor involves compiling a detailed database capturing the 

thermodynamic properties of each enantiomer. This database will facilitate the 

estimation and differentiation of parameters associated with the group that encompasses 

the chiral carbon of each enantiomer. While this research does not extend to the 

crystallization improvement of the drug or the differentiation of enantiomers, it 

establishes an essential groundwork for future exploration in the purification of 

enantiomers. 

2. Thermodynamic Background 

2.1. General Overview of Thermodynamic Models History 

Process simulation is fundamental to numerous industrial applications. It hinges 

on a deep understanding of both physical and chemical phenomena, with 

thermodynamic modeling at its core. This modeling is crucial for analyzing and 

predicting system behaviors under different conditions. It is vital in driving product 

innovation, expanding production capacities, and improving quality and profitability.  

In the field of chemical engineering, a profound understanding of the 

thermodynamic properties of complex molecules is essential for numerous processes. 

As a result, older and more limited models, such as those grounded in just observed data, 
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are becoming increasingly obsolete. However, due to their simplicity and ease of 

implementation, these classic models continue to find various applications in the 

industry. 

The forthcoming sections are dedicated to providing a general overview of some 

excess Gibbs free energy models (GE) and equations of state (EoS). This exploration 

will span from Random-Mixing Activity Coefficient Models to more sophisticated ones, 

such as the SAFT (Statistical Associating Fluid Theory) family. 

2.1.1. Random-Mixing Activity Coefficient Models 

Activity coefficient models in chemical engineering describe the properties of 

condensed phases. These models are extensively used to detail how various components 

in a mixture interact at the molecular level, influencing properties such as volatility and 

solubility. 

To understand a chemical system, it is interesting to comprehend the diverse 

effects on entropy and enthalpy resulting from the mixing of components. This 

understanding is complex, which is why activity coefficients are often modeled using 

excess Gibbs free energy, which is a function of both entropy and enthalpy. This 

approach is straightforward and simpler. 

These models exhibit a high dependence on the composition of their 

components, a moderate dependence on temperature, and are generally independent of 

pressure. Notably, it is a justified assumption, considering that the behavior of solids 

and liquids are, in general, minimally affected by pressure changes, unless they are 

extremely high. 

The Margules equations (MARGULES, 1895) represent a historical milestone 

as the first significant model for the activity coefficient with relevance in 

thermodynamics. Despite being developed nearly two centuries ago, they continue to be 

widely employed in the industry. ANICETO et al. (2012) explored the applicability of 

the Margules model among others for ion exchange equilibrium. ZARGARZADEH and 

ELLIOTT (2019) used the  Margules activity model for solid-liquid equilibrium, 

calculating parameters from experimental phase equilibrium data for various systems. 

VATANI et al. (2012) applied Two-Suffix Margules models for ternary extraction ionic 
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liquid systems. This testifies to the robustness and ongoing relevance of these equations, 

even in the face of scientific advancements. 

There are two main variations of the Margules equations: the single-parameter 

and the two-parameter version. Both forms are described for a binary mixture as follows: 

𝑔𝐸 = 𝑔 −  𝑔𝑖𝑑 = A𝑥1𝑥2 2-1 

 

𝑔𝐸 = (A21𝑥1 + A12𝑥2)𝑥1𝑥2 2-2 

 

Where 𝑔𝐸 is the deviation of the Gibbs free energy of a solution (𝑔) from that of 

an ideal solution (𝑔𝑖𝑑), A is a matrix comprising the adjustable parameters and x are the 

mole compositions. An ideal solution is a theoretical construct, which refers to a solution 

where the intermolecular forces between unlike molecules are the same as those between 

like molecules. This implies no volume or temperature changes, when mixing at 

constant Pressure and adiabatically. 

The Margules equations were developed to represent experimental data on the 

non-ideal behavior of mixtures using second-order polynomials. This approach is 

practical in many situations because the 𝑔𝐸 often exhibits a parabolic behavior in many 

systems. 

Another important model in thermodynamics is the Van Laar equation. It's built 

on the van der Waals equation, upon using the conventional vdW one fluid mixing rules. 

However, it uses two parameters that don't have a clear physical meaning, just as 

Margules. These parameters are used to help fit the model to real-world data, which 

means the Van Laar equation is also considered an empirical model. The Van Laar 

equation for a binary mixture is represented as follows: 

𝑔𝐸 = 𝑥1𝑥2 [
𝑥1
A21

+
𝑥2
A12
]
−1

 2-3 

 

It can be noticed that when the constants are equal, the equation simplifies to the 

single-parameter Margules equation. The Van Laar equation predicts the behavior of 
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mixtures similarly to the Margules equations. It works best for mixtures where the 

different substances are quite similar to each other in terms of their molecular properties.  

2.1.2. Local Composition Activity Coefficient Models  

One notable limitation of random-mixing models lies in their inherent 

assumption of randomness within mixtures. This assumption does not fully encapsulate 

the reality due to the presence of molecular forces, which introduce a degree of non-

randomness. To address this, models that consider the oriented short-range nature of 

intermolecular forces within the mixture—termed Local Composition Models—have 

been developed to enhance the predictive accuracy of properties of mixtures. These 

models provide a more realistic depiction of phase behavior in complex mixtures 

compared to their random-mixing counterparts. Among the most prevalent Local 

Composition Models in use are the Wilson, NRTL, and UNIQUAC equations. 

WILSON (1964) was the first one to assume a model that the local composition 

differs from the bulk composition in the liquid mixture. He derived a relation between 

the local mole fraction of molecules j around molecules i: 

𝑥𝑗𝑖

𝑥𝑖𝑖
=
𝑥𝑗𝑒

−
𝑔𝑗𝑖
RT

𝑥𝑖𝑒
−
𝑔𝑖𝑖
𝑅T

 2-4 

 

Where 𝑔𝑖𝑗 is the interaction energy between components i and j and T is the 

temperature. The fraction 𝑒
𝑔𝑗𝑖−𝑔𝑖𝑖

𝑅T  is related to a weighting factor, relative to the overall 

compositions. If this fraction equals 1, the interaction energy is the same and it will 

mean that the solution is random. For multicomponent systems, the Wilson equations 

can be written as: 

𝑔𝐸

𝑅𝑇
=  −∑𝑥𝑗 ln (∑𝑥𝑖𝛬𝑗𝑖

𝑖

)

𝑗

 2-5 

 

Where 𝛬𝑗𝑖 represents the matrix of adjustable binary parameters. It relates to the 

interaction energy between molecules as follows: 
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𝛬𝑗𝑖 =
𝑣𝑖
𝑣𝑗
𝑒−
𝑔𝑗𝑖−𝑔𝑖𝑖
𝑅𝑇  2-6 

 

Where 𝛬𝑖𝑖 = 1, 𝛬𝑗𝑖 = 𝛬𝑗𝑖 and 𝑣𝑗  is the molar volume of molecule j. Notice that 

the specification of liquid molar volumes is not strictly essential because the 𝛬 

parameters for each pair of components within a multicomponent mixture are 

determined through experimental data. For instance, in a ternary system, the pairs would 

be 𝛬12, 𝛬13and 𝛬23. This model exhibits a limitation in its inability to accurately 

characterize systems that exhibit partial miscibility. This constraint presents 

complexities beyond the model's descriptive capacity. 

The NRTL (Non-Random Two-Liquid) model, introduced by RENON and 

PRAUSNITZ in 1968, extends the two-liquid theory of Scott and incorporates a non-

randomness parameter that significantly improves the prediction of phase behavior in 

complex mixtures and, unlike Wilson’s model, applies to partially miscible systems. 

The NRTL equations for the description of multicomponent systems are: 

𝑔𝐸

RT
=  ∑

𝑥𝑖 ∑ 𝑥𝑗𝜏𝑗𝑖𝐺𝑗𝑖𝑗

∑ 𝑥𝑗𝐺𝑗𝑖𝑗
𝑖

 2-7 

 

𝐺𝑗𝑖 = 𝑒
−𝛼𝑗𝑖𝜏𝑗𝑖 2-8 

 

Where the adjustable parameters are 𝜏 and 𝛼. In this case, 𝜏𝑖𝑖 = 0 and 𝛼 is the 

non-randomness parameter. 𝛼 generally assumes values between 0.2 and 0.47, and it 

could be calculated (if not estimated) as 2/Z, where Z is the coordination factor. If 𝛼𝑗𝑖 is 

zero, while 𝜏𝑗𝑖and 𝜏𝑖𝑗 are not, the mixture becomes completely random, and the original 

equation is reduced to the Margules equation. Whenever 𝛼 is above 0.426, the model 

will predict partially miscible liquids. 

2.1.3. Cubic EoS  

Cubic equations of state (EoS) stand out for their cubic correlation with molar 

volume, relating pressure, molar or specific volume, temperature, and fluid composition 

at equilibrium. Their ability to simultaneously represent both liquid and vapor phases 
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within a singular mathematical structure is a key advantage over activity coefficient 

models, which excel in characterizing only one phase. However, it's important to note 

that cubic EoS generally exhibit less precision in describing liquid phase behaviors 

compared to activity coefficient models. 

The advent of the VAN DER WAALS (vdW) (1873) equation as the first 

practical cubic EoS was a breakthrough. It incorporated the concepts of finite molecular 

size and intermolecular forces into the equation of state, thus modifying the ideal gas 

law to better reflect real gas behaviors. This innovation laid the groundwork for the 

development of more types of EoS. 

Following the vdW equation, other significant cubic EoS emerged. These 

include the REDLICH/KWONG (RK) (1948) equation, the 

SOAVE/REDLICH/KWONG (SRK) (1972) equation, and the PENG/ROBINSON 

(PR) (1976) equation. These various cubic equations can be generalized into a single 

form of a cubic equation of state: 

𝑃 =
RT

𝑣 − 𝑏
−

𝑎(T)

(𝑣 + 𝜖𝑏)(𝑣 + 𝜍𝑏)
 2-9 

 

In this equation, 𝑃 represents the pressure, 𝑇 the temperature, 𝑣 the molar 

volume and 𝑅  is the universal gas constant. The parameters 𝑎 and 𝑏 are specific to each 

gas. Here, 𝑎 reflects the strength of intermolecular forces, which can be dependent of 

temperature in some models. The parameter 𝑏 represents the volume occupied by the 

gas molecules. The terms 𝜖 and 𝜍 are additional numbers used to differentiate the 

equations. 

The parameters 𝑏 and 𝑎(𝑇) can be related to the critical pressure (𝑃𝑐) and critical 

temperature (𝑇𝑐) of a substance: 

𝑏 = Ω
𝑅𝑇𝑐
𝑃𝑐

 2-10 

 

𝑎(𝑇) = 𝜓
𝛼(𝑇,𝜔)𝑅2𝑇𝑐

2

𝑃𝑐
 2-11 
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The terms 𝜓 and Ω are also additional numbers used to differentiate the 

equations. The function 𝛼(𝑇,𝜔) is an empirical expression, specific to each EoS. 𝜔 is 

the acentric factor, a parameter specific to a given chemical species. It represents a 

measure of the non-sphericity of the molecule. 

To extend these cubic EoS to mixtures, empirical mixing rules are used to link 

mixture parameters to pure-species parameters. A common approach to adapt cubic EoS 

for mixtures employs the van der Waals one-fluid (vdW1f) mixing rules. These rules 

involve quadratic mixing rules using an arithmetic combination for parameter 𝑏 and a 

geometric combination for parameter 𝑎, as follows: 

𝑏 =∑∑𝑥𝑖𝑥𝑗
𝑗

(𝑏𝑖 + 𝑏𝑗)

2
(1 − 𝑙𝑖𝑗)

𝑖

 2-12 

 

𝑎 =∑∑𝑥𝑖𝑥𝑗
𝑗

√𝑎𝑖𝑎𝑗(1 − 𝑘𝑖𝑗)

𝑖

 2-13 

 

Where 𝑙𝑖𝑗 and 𝑘𝑖𝑗 are the interaction parameters, typically fitted to phase 

equilibrium data. While 𝑙𝑖𝑗 is often neglected (being set to zero), 𝑘𝑖𝑗 is particularly 

important for systems involving polar or complex molecules, where standard mixing 

rules may not suffice to capture the subtleties of intermolecular interactions. By 

adjusting these parameters, a cubic EoS can be fine-tuned to represent the behavior of a 

wide range of mixtures in various conditions. 

2.1.4. EoS/GE mixing rule 

Cubic equations of state have limitations in adequately describing the phase 

equilibria of mixtures with the presence of highly polar or associative molecules. While 

they are effective in predicting the behavior of nonpolar mixtures at both low and high 

pressures, a standard cubic EoS struggle to accurately capture the complex interactions 

between polar or associative molecules. 

On the other hand, activity coefficient models perform well for polar liquid 

mixtures but are unable to describe complete phase envelopes. Moreover, activity 

coefficient models tend to lose accuracy at high pressure. This is because the most 

commonly used models, such as the ones discussed here, do not incorporate pressure as 
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a direct variable in their formulations. They are primarily developed for low-pressure 

conditions, where pressure has minimal impact on the activities. 

To address these limitations, it can be used an approach that involves the 

integration of Gibbs excess energy models with cubic EoS through specific mixing 

rules. This hybrid method seeks to combine the strengths of both the excess Gibbs 

energy model and cubic EoS, offering a more thorough description of complex mixtures. 

The EoS/GE approach combines the proficiency of the Gibbs excess energy model in 

handling polar liquids with the efficacy of cubic EoS in modeling nonpolar mixtures 

under high-pressure conditions.  

In 1979, HURON and VIDAL proposed a novel approach for determining the 

attractive term in the cubic EoS. This method involves aligning the excess Gibbs free 

energy of the EoS at the infinite pressure limit with the activity coefficient of the local 

composition models. 

The mixing rule introduced in their framework is formulated as follows: 

𝑎 = (∑𝑥𝑖𝑏𝑖
𝑖

)(∑𝑥𝑖
𝑎𝑖
𝑏𝑖

𝑖

−
�̅�∞
𝐸

𝐶
) 2-14 

 

In this equation, �̅�∞
𝐸  denotes the molar excess Gibbs free energy at the infinite 

pressure limit, and 𝐶 is a dimensionless numerical constant characteristic of the specific 

EoS used.  

In addition to the approach for calculating the attractive term at the infinite 

pressure limit, some methods use zero pressure as a reference. This approach was first 

proposed by MOLLERUP in 1986 and subsequently refined and applied to more 

practical systems by MICHELSEN in 1990. Due to its resemblance to the mixing rules 

developed by Huron and Vidal (HV), Michelsen's mixing rule is often referred to as the 

modified Huron-Vidal mixing rule. The formulation is as follows: 

𝛼 =
1

𝑞1
[
�̅�0
𝐸

𝑅𝑇
+ ∑𝑥𝑖 ln (

𝑏

𝑏𝑖
)

𝑖

] +∑𝑥𝑖𝛼𝑖
𝑖

 2-15 
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𝛼 =
𝑎

𝑏𝑅𝑇
 2-16 

 

Where 𝑔0
𝐸 denotes the molar excess Gibbs free energy at the zero pressure limit 

and 𝑞1 is also a dimensionless numerical constant characteristic of the specific EoS used.  

2.1.5. The statistical associating fluid theory 

In the original Statistical Associating Fluid Theory (SAFT), molecules are 

represented as chains of spheres that are tangentially connected. Each chain in this 

representation corresponds to a component within a mixture. It's important to note that 

within a given chain, the spheres share identical properties, such as matching diameters 

and energy of interaction. SAFT, like many other equations of state in engineering, is 

rooted in perturbation theory. 

While several established engineering equations of state employ the hard sphere 

as a reference fluid, the CHAPMAN et al. (1990) version of SAFT takes a different 

approach by using a reference fluid that interacts via the Lennard-Jones potential (LJ) 

(JONES, 1924). Additionally, Chapman SAFT integrates considerations for chain 

length and molecular association. This involves initially computing the Helmholtz 

energy for the fluid mixture, considering it as comprised of spherical Lennard-Jones 

segments, before any bonding or association phenomena occur. 

ϕLJ(r) =  4𝜀 [(
𝜎

𝑟
)
12

− (
𝜎

𝑟
)
6

] 2-17 

 

The parameter ε signifies the potential's minimum energy, often referred to as 

the potential well. This ε value denotes the strength of attractive interactions between 

segments within the potential. On the other hand, σ represents the distance at which the 

potential becomes zero, indicating the point where attractive forces balance out 

repulsive ones. Essentially, σ corresponds to the temperature-independent diameter of 

the spherical segments. 

Originally devised to model the cohesive forces observed in liquid noble gases 

like argon, the LJ potential behaves distinctly based on the radius of the interacting 

particles. For smaller radii, the first term of the potential exerts a more substantial 

influence, causing an elevation in its overall value. In cases of 2
1

6𝜎 of radii, the potential 
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tends towards its minimum value. However, as the radius increases, the potential 

gradually tends towards zero.  

The Lennard-Jones potential stands as a cornerstone in classical many-body 

molecular simulations due to its widespread applicability. Its versatility allows it to 

describe interactions not just between atoms, but also among molecules and coarse-

grained models representing various entities like organic molecules, proteins, and 

sometimes even larger particles such as nano-colloids. 

Despite its prevalent use across diverse systems, there exists a notable absence 

of empirical evidence that unequivocally establishes the superiority of the LJ potential 

over other plausible alternatives for these specific systems. Nevertheless, in the realm 

of testing new simulation techniques, the LJ 12-6 potential consistently emerges as the 

initial model of choice. This trend underscores its reputation as a satisfactorily versatile 

and adaptable potential, making it a go-to option for a wide array of simulation scenarios 

(WANG et al., 2020). 

In addition to considering the attractive and repulsive forces described by the LJ 

potential, the SAFT EoS incorporates the influence of chain formation on the Helmholtz 

energy. This model employs multi-segmented chain molecules formed by enforced 

bonding, mimicking covalent-like bonds. Each LJ sphere can bond with up to two sites, 

compelled to form chains. Consequently, this approach allows for a more accurate 

representation of chain-like molecules compared to classical models, where molecules 

are typically depicted in a spherical manner. Importantly, in this theory, molecule 

spheres cannot bond together to form ring-like structures. For instance, representing 

cyclic molecules such as benzene involves utilizing the aliphatic chain of LJ spheres to 

better approximate the properties of the ring-like molecule. 

One of the most distinctive aspects of the SAFT EoS lies in its ability to 

approximate hydrogen bonding among molecules, i.e., the short-range and highly 

orientation-dependent interactions between sites. This feature significantly enhances the 

model's ability to represent highly polar molecules like alcohols, organic acids, and 

water. To simulate the strength of association of these interactions, the SAFT EoS 

employs a square-well potential (SW) between associating sites. The SW potential is 

used to describe interactions between particles with a finite range of attraction beyond 

which there is no interaction. The square-well potential is characterized by a potential 
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energy that is zero when particles are beyond a certain distance from each other, infinite 

when they are very close (to model the hard-core repulsion), and a constant negative 

value (indicating attraction) when they are within a specific intermediate range. 

Spherical segments can possess multiple tangential positioned associating sites, which 

center the SW potential. Crucially, these spherical entities can only form an association 

bond when both the distance and orientation between them align favorably. 

ϕ𝐴𝐵
HB
(r) = {

∞,r < 0
−εAB, 0 < r < r𝐴𝐵

c

0, r > r𝐴𝐵
c

 2-18 

 

Equation 2-18 represents the SW potential utilized to model the interactions 

between associating molecules. In this equation, the parameter εAB characterizes the 

association energy (well depth), while the parameter  r𝐴𝐵
c  delineates the cut-off range of 

the interaction between sites A and B (well width), which is related to the association 

volume parameter. 

Over recent years, the SAFT model has undergone numerous refinements and 

modifications. These adaptations encompass diverse methodologies aimed at 

calculating the Helmholtz energy of fluids. These methods often involve selecting a 

reference fluid, outlining association schemes, selecting different intermolecular 

potentials, and integrating additional terms to accommodate intermolecular forces. As a 

result, multiple types of the SAFT model have emerged, each with its unique approach. 

For instance, variations like SAFT-SW (HUANG and RADOSZ, 1993) 

implement the square-well potential to calculate intermolecular forces. TPT-D 

(TAVARES et al., 1995) utilizes a reference fluid composed of dimers. Meanwhile, the 

polar soft-SAFT (ALKHATIB et al., 2020) introduces a Helmholtz energy term 

specifically tailored to capture polar forces. 

In this dissertation, the focus will be on revisiting and examining two specific 

versions of the SAFT model: PC-SAFT, as outlined by GROSS and SADOWSKI 

(2001), and SAFT-γ Mie , a proposition presented by PAPAIOANNOU et al. (2014). 

These versions represent distinct adaptations of the SAFT framework, each offering its 

unique set of assumptions and methodologies for modeling fluid behavior. 
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2.2. Phase Equilibria 

According to Gibbs, equilibrium refers to a state of stability where no driving 

forces exist to alter the system, leading to an observable constancy in its macroscopic 

properties. In the context of phase equilibrium, this stability is pertinent to mass and 

energy exchanges among the system's phases. Therefore, for a closed system with no 

reactions, no total mass variations, no external field (gravitational, electric, magnetic, 

etc.), no interface curvature, with 𝑁𝑝 phases and 𝑁𝑐 components, the necessary 

condition for equilibrium is: 

T1 = T2 = ⋯ = T𝑁𝑝 

𝑃1 = 𝑃2 = ⋯ = 𝑃𝑁𝑝 

µ1
1 = µ1

2 = ⋯ = µ1
𝑁𝑝  

µ2
1 = µ2

2 = ⋯ = µ2
𝑁𝑝

 

… 

µ𝑁𝑐
1 = µ𝑁𝑐

2 = ⋯ = µ𝑁𝑐
𝑁𝑝

 

2-19 

 

In these expressions, T is ensuring thermal equilibrium; P is guaranteeing 

mechanical equilibrium; and μ is ensuring chemical equilibrium. These equalities are 

fundamental in defining the equilibrium conditions for intensive properties. When a 

system is in equilibrium, it's at a state where the thermodynamic potential is minimized 

for specified state variables. The chemical potential for each component i can be defined 

as: 

𝜇𝑖 =
𝜕𝑈

𝜕𝑛𝑖
|
𝑆,𝑉,𝑛𝑗≠𝑖

=
𝜕𝐻

𝜕𝑛𝑖
|
𝑆,𝑃,𝑛𝑗≠𝑖

=
𝜕𝐺

𝜕𝑛𝑖
|
T,𝑃,𝑛𝑗≠𝑖

=
𝜕𝐴

𝜕𝑛𝑖
|
T,𝑉,𝑛𝑗≠𝑖

 
2-20 

 

The equality of the chemical potential for all phases in a multicomponent system 

at constant T and P, leads to the minimization of the Gibbs free energy. The Gibbs free 

energy has great importance in the calculation of thermodynamic properties, since many 

chemical and physical transformations occur at constant pressure and temperature. We 

can also define the chemical potential in terms of fugacity: 
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𝜇𝑖 − 𝜇𝑖
0 = 𝑅T𝑙𝑛 (

𝑓𝑖

𝑓𝑖
0) 2-21 

 

Where 𝑓𝑖, 𝑓𝑖
0 and 𝜇𝑖

0 are the fugacity, fugacity in the reference state and the 

chemical potential in the reference state of component i, respectively. Fugacity accounts 

for the attractive and repulsive forces between molecules. It's an abstract concept 

representing a substance's tendency to "escape" from a particular phase. Although its 

unit is pressure, it can be conceptualized as another Gibbs energy scale and can be 

directly inferred from PVT data. Through fugacity, the chemical equilibrium can be 

articulated without resorting to chemical potential. We can also write this expression for 

a scenario with two phases, 𝛼 and 𝛽:  

𝜇𝑖
𝛼(T, 𝑃, 𝑥𝛼) − 𝜇𝑖

0 = 𝜇𝑖
𝛽
(T, 𝑃, 𝑥𝛽) − 𝜇𝑖

0 

𝜇𝑖
𝛼 = 𝜇𝑖

𝛽
= 𝑅T𝑙𝑛 (

𝑓𝑖
𝛼

𝑓𝑖
0) = 𝑅T𝑙𝑛 (

𝑓𝑖
𝛽

𝑓𝑖
0)∀ 𝑖 = 1,2…𝑁𝑐 

2-22 

 

Therefore, the equation defining the chemical equilibrium of component i 

between two phases 𝛼 and 𝛽, can be written in terms of only fugacity: 

𝑓𝑖
𝛼(T, 𝑃, 𝑥𝛼) = 𝑓𝑖

𝛽
(T, 𝑃, 𝑥𝛽)           ∀ 𝑖 = 1,2…𝑁𝑐 2-23 

 

The determination of equilibrium properties in multiphase systems can be 

meticulously approached through several computational strategies, each tailored to 

specific conditions and known variables. Among these, bubble point, dew point 

calculations, stability analysis, and flash calculations, stand as the foundational 

techniques. In this work, the focal point will be primarily on bubble point calculations 

to elucidate the vapor-liquid equilibria. For the solid-liquid equilibria, we will 

incorporate relations involving the enthalpy of fusion to model the solid phase. 

Furthermore, to ensure the fidelity of the phase equilibria predictions, this work will 

employ additionally the tangent plane distance as a verification tool. This will ensure 

the phases predicted by the computational models are not only thermodynamically 

stable but also align with empirical observations. 
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2.2.1. Vapor-Liquid Equilibrium 

As previously mentioned, the isofugacity condition is crucial for accurately 

describing phase equilibria. To achieve this, two primary methodologies are generally 

employed: the phi-phi approach and the gamma-phi approach. Each method offers a 

distinct mechanism for representing the non-ideal behavior of components in various 

fluid phases, crucial for understanding complex systems where interactions between 

particles play a significant role. 

The gamma-phi approach combines the concept of activity coefficients 𝛾, 

calculated via activity coefficient models, with the fugacity coefficients 𝜙, derived from 

equations of state (EoS). As discussed in the section 2.1.4, the activity coefficient 

models quantify deviations from ideal solution behavior in the liquid phase, capturing 

the essence of molecular interactions and mixtures' non-ideality. On the other hand, the 

fugacity coefficient accounts for the non-ideal behavior of gases, calculated using an 

EoS, which effectively encapsulates the real gas behaviors and phase interactions. This 

approach provides a comprehensive view by integrating these two aspects, making it 

suitable for systems where both liquid and vapor phases exhibit non-ideal behaviors. 

In contrast, the phi-phi approach relies solely on the use of equations of state to 

compute the fugacity coefficients for all phases involved, be it vapor, liquid, or even 

supercritical. This method is deemed more symmetric and straightforward, as it applies 

a consistent thermodynamic framework across all phases, relying on the robustness of 

the chosen EoS to describe the system's behavior. It's particularly advantageous when 

the EoS accurately represents the phase behavior of the components across different 

conditions, making it a preferred choice for certain types of systems. 

In the context of this study, the focus is exclusively on the phi-phi approach to 

compute the vapor-liquid equilibrium (VLE). Specifically, we are employing equations 

of state, namely PC-SAFT and SAFT-𝛾-Mie. These sophisticated EoS are known for 

their accuracy in modeling complex interactions within fluids, particularly for predicting 

thermodynamic properties and phase behavior in multi-component systems.  

The phi-phi approach represents the fugacities in the following forms: 

𝑓𝑖
𝑗
= 𝜑𝑖

𝑗
𝑃𝑤𝑖

𝑗
                    ∀𝑖 = 1,2…𝑁𝑐   𝑎𝑛𝑑   ∀𝑗 = 1,2…𝑁𝑝 2-24 
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where 𝜑𝑖
𝑗
 and 𝑤𝑖

𝑗
 are the fugacity coefficients and mole fraction of component i 

in in the phase j, respectively.  

This study determines either the limit pressure or temperature at which a nascent 

vapor phase begins to appear from a developed liquid mixture with a predetermined 

composition. This type of calculation, known as bubble point, also aims to ascertain the 

composition of the incipient vapor phase in the context of liquid-vapor equilibrium 

problems. Given the liquid phase composition, the working equations for bubble point 

calculation are the following: 

𝑃𝑉 = 𝑃𝐿 

T𝑉 = T𝐿 

𝑦𝑖 = 𝐾𝑖𝑥𝑖                             ∀𝑖 = 1,2…𝑁𝑐 

ln (𝑥𝑖𝜙𝑖
𝐿(�̅�, T, 𝑃)) − ln (𝑦𝑖𝜙𝑖

𝑉(�̅�, T, 𝑃)) = 0               ∀𝑖 = 1,2…𝑁𝑐 

∑𝑦𝑖 = 

𝑁𝑐

𝑖

 1                    ∀𝑖 = 1,2…𝑁𝑐 

2-25 

 

In a scenario where the vapor phase cannot be represented by an ideal gas, and 

the liquid phase is far from an ideal mixture, it's impossible to arrive at an analytical 

expression to calculate the saturation temperature or pressure and the vapor phase 

composition. This difficulty arises because the distribution of the phase compositions 

depends on all the compositions involved. The computational strategy to calculate the 

bubble point, therefore, follows an iterative process. Numerical techniques for such 

calculations are described in numerous references, but in this study, we will use the 

bubble point algorithms described by SANDLER (2016). 

2.2.2. Solid-Liquid Equilibrium for Pure Solids 

Solubility is a chemical property that quantifies the ability of a substance, known 

as the solute, to dissolve in a solvent. It is typically expressed in terms of the maximum 

quantity (saturation) of solute that can dissolve in a specific amount of solvent under 

certain temperature and pressure conditions. Component 1, which forms a pure solid, 
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reaches saturation in the liquid phase at equilibrium. Therefore, this state can be 

characterized by the equality of the fugacities of this solute in both of the phases. 

𝑓1
𝑠𝑎𝑡,𝐿 = 𝑓1

𝑠 2-26 

 

In this context, the superscripts “𝐿”, “𝑠” and “𝑠𝑎𝑡”  denote the liquid phase, solid 

phase, and saturation, respectively. These two fugacities are independent of the nature 

of the solvent and we are treating the interactions in the solid phase as ideal. The fugacity 

of component 1 in the liquid phase under saturation conditions is given by the following 

expression: 

𝑓1
𝑠𝑎𝑡,𝑙 = 𝑥1

𝑠𝑎𝑡,𝑙𝛾1
𝑠𝑎𝑡,𝑙𝑓1

𝑙(𝑥1 = 1, T) 2-27 

 

Where 𝑥1
𝑠𝑎𝑡,𝑙

 and 𝛾1
𝑠𝑎𝑡,𝑙

 are the mole fraction composition and the activity 

coefficient, respectively, of component 1 in the liquid phase under saturation conditions. 

𝑓1
𝑙 is the fugacity of pure component 1 in the sub-cooled liquid state at temperature 𝑇. 

The ratio 
𝑓1
𝑙

𝑓1
𝑠 can be related to the change in molar Gibbs energy (Δ𝑔) of the solid's fusion 

at this temperature. This change in Gibbs energy is a function of the enthalpic (Δℎ) and 

entropic (Δ𝑠) changes, as expressed by the relationship: 

𝑅T ln(𝑥1
𝑠𝑎𝑡,𝑙𝛾1

𝑠𝑎𝑡,𝑙) = −𝑅T ln (
𝑓1
𝑙

𝑓1
𝑠) = Δ𝑔1 = Δℎ1 − TΔ𝑠1  2-28 

 

PRAUSNITZ et al., (1999) provides a method to evaluate these enthalpy and 

entropy changes using the triple point, given by: 

Δℎ =  Δℎ𝑡
𝑓𝑢𝑠
+ ∫ Δ𝐶𝑝

𝑇

𝑇𝑡

𝑑T  2-29 

 

Δs =  Δ𝑠𝑡
𝑓𝑢𝑠
+ ∫

Δ𝐶𝑝

𝑇

𝑇

𝑇𝑡

𝑑T  2-30 
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Where, 

Δ𝐶𝑝 = 𝐶𝑝
𝐿 − 𝐶𝑝

𝑠 2-31 

 

Here, the subscript 𝑡 indicates the condition at the triple point, and the superscript 

𝑓𝑢𝑠 represents the property associated with fusion or melting. 𝐶𝑝
𝐿 is the molar heat 

capacity at constant pressure in the pure liquid state, and 𝐶𝑝
𝑠 is the equivalent in the 

crystalline state. The fusion entropy can be substituted by its relationship with the fusion 

enthalpy, which is a good approximation of the ΔCp (NEAU et al, 1997). This relation 

is expressed as follows: 

Δ𝑠 =  
Δℎ𝑓𝑢𝑠

T
≅  Δ𝐶𝑝 2-32 

 

When approximating the triple point temperature with the melting temperature 

at the system's pressure, while also assuming that the differences in heat capacities 

between the solid and liquid are temperature-independent, we can substitute equations 

2-30, 2-31, 2-32 and 2-33 into 2-29. By performing the integrations with these 

assumptions, we obtain the following expression for solubility: 

ln(𝑥1
𝑠𝑎𝑡,𝑙𝛾1

𝑠𝑎𝑡,𝑙) =
Δℎ1

𝑓𝑢𝑠

𝑅𝑇
(
𝑇

𝑇𝑚1
− 1) +

Δ𝐶𝑝1
𝑅

(ln (
𝑇𝑚1
𝑇
) − 

𝑇𝑚1
𝑇
+ 1) 2-33 

 

Note that Δℎ1
𝑓𝑢𝑠

 represents the latent heat of fusion of component 1 at its melting 

temperature 𝑇𝑚1. This equation describes the crystallization curve of a solution, 

provided that the solution forms no mixed crystals. It is reasonable to assume that the 

difference in heat capacities between the solid and liquid states is small enough to be 

negligible in the equation, besides, this term can be very difficult to measure. 

 

2.2.3. Solid-Liquid Equilibrium for Racemic Mixtures 

In the specific case of a racemic mixture, an equation similar to Equation 2-33 

can be used. However, one should consider a solid composed by two molecules in the 

same proportion. Therefore, considering components 1 and 2 as the enantiomers, the 
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compositions in the liquid phase can be approximated as equal (𝑥1
𝑠𝑎𝑡,𝐿 = 𝑥2

𝑠𝑎𝑡,𝐿
), while 

in the racemic solid (𝑥1
𝑠𝑎𝑡,𝑠

 and  𝑥2
𝑠𝑎𝑡,𝑠

) they should be set to 0.5. Moreover, it is also 

required to replace the calorimetric properties with those of the racemic mixture (𝑇𝑚𝑟𝑎𝑐, 

Δ𝐶𝑝𝑟𝑎𝑐
 and Δℎ𝑟𝑎𝑐

𝑓𝑢𝑠
. Note that these parameters vary greatly with the composition of the 

solid. This means that a racemic mixture will have different properties from the 

enantiopure one. Therefore, substituting the new fugacities, the equation representing 

the solubility curve of a racemic solid is given by: 

ln (4(𝑥1
𝑠𝑎𝑡,𝑙)

2
(𝛾1
𝑠𝑎𝑡,𝑙)

2
) =

Δℎ𝑟𝑎𝑐
𝑓𝑢𝑠

𝑅𝑇
(
𝑇

𝑇𝑚𝑟𝑎𝑐
− 1) +

Δ𝐶𝑝𝑟𝑎𝑐
𝑅

(ln(
𝑇𝑚𝑟𝑎𝑐
𝑇

) − 
𝑇𝑚𝑟𝑎𝑐
𝑇

+ 1) 2-34 

 

2.2.4. Phase Stability and Tangent Plane Distance (TPD) 

The analysis of phase stability and the calculation of thermodynamic equilibrium 

for a multicomponent mixture are crucial tools in the field of thermodynamics. As 

previously mentioned, equilibrium is achieved when there is an equality of the fugacities 

of each species in each phase. However, ensuring thermodynamic stability requires that 

the thermodynamic potential in question, typically Gibbs energy in a state defined by 

temperature and pressure, must converge to its global minimum while varying the 

compositions of each component in each phase.  

A primary approach to finding the minimum of Gibbs energy in a system with 

𝑛𝑝 phases and at a given temperature 𝑇 and pressure 𝑃 can be described as follows: 

min𝐺 = ∑∑𝑛𝑖
𝑝ln (𝑥𝑖

𝑝𝛾𝑖
𝑝)

𝑁𝑐

𝑖=1

𝑁𝑝

𝑝=1

 2-35 

 

Under the constraints: 

∑𝑛𝑖
𝑝

𝑁𝑝

𝑝=1

= 𝑍𝑖 2-36 

 

𝑛𝑖
𝑝 ≥ 0                 ∀ 𝑖 𝑎𝑛𝑑 𝑝 2-37 
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Where 𝑍𝑖 is the global mole number of component “i” and 𝑛𝑖
𝑝
 is the total number 

of mols of component “i” in the phase “p”.  

The minimum of Gibbs energy is both a necessary and sufficient condition for 

equilibrium. However, locating this global minimum can be particularly challenging 

when the initial estimate is far from the actual solution, due to the complex and nonlinear 

nature of the function. 

The method for phase stability analysis proposed by MICHELSEN in 1982 

offers a practical algorithm to this challenge. It presents the tangent plane distance 

(TPD) of the Gibbs energy of the mixture, which is a powerful criterion in determining 

phase stability. Michelsen's method provides a systematic approach to evaluate the 

composition of a new phase at equilibrium. 

Assuming a system that initially has one phase (𝛼) with composition 𝑛 and a 

Gibbs energy of  𝐺(𝛼)(𝑛), let's consider a scenario where a new phase (𝛽) emerges, 

removing an infinitesimal amount 𝑊 from the first phase. The variation in the Gibbs 

energy of the system due to this development can be expressed as follows: 

Δ𝐺 = (𝐺(𝛼)(�̅� − �̅�) + 𝐺𝛽(�̅�)) − 𝐺(𝛼)(�̅�) 2-38 

 

We can approximate the Gibbs energy of the first phase using a Taylor series 

expansion around the point just before the formation of the new phase: 

𝐺(𝛼)(�̅� − �̅�) = 𝐺(𝛼)(�̅�) −∑𝜉𝑖 (
𝜕𝐺(𝛽)

𝜕𝑛𝑖
)

𝑁𝑐

𝑖 𝑁

  2-39 

 

Given the definitions: 

𝐺(𝛼)(�̅�) =∑𝑛𝑖

𝑁𝑐

𝑖

𝜇𝑖
(𝛼)
  2-40 

 

𝜕𝐺(𝛼)

𝜕𝑛𝑖
= 𝜇𝑖

(𝛼)
  2-41 
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If we substitute Equations 2-39, 2-40 and 2-41 into 2-38, and then divide the 

entire expression by the total number of moles in the second phase, we obtain the 

expression for the Tangent Plane Distance (TPD) as described by BAKER et al. in 1982. 

Δ𝐺

∑ 𝑊𝑖
𝑁𝑐
𝑖

= 𝐹(𝑤) =∑𝑤𝑖  (𝜇𝑖
(𝛼)(𝑤) − 𝜇𝑖

(𝛽)
(𝑧))

𝑁𝑐

𝑖

   2-42 

 

In this equation, 𝑤 and 𝑧 represent the mole fractions of the newly formed phase 

and the initial phase, respectively. The function 𝐹 is a representation of the Tangent 

Plane Distance (TPD). It measures the vertical distance from the composition point of 

the new phase to the tangent hyperplane at the composition point of the initial phase. 

The significance of 𝐹 lies in its ability to determine the stability of the new phase. 

If 𝐹 is positive, it implies that the formation of the new phase has led to an increase in 

the Gibbs energy of the system, indicating that this new phase is not stable. For the 

initial phase to be the only stable phase, 𝐹 must assume positive values for any 

composition 𝑤. 

Michelsen, utilizing the above stability criterion, developed an equivalent 

version of the minimization problem with a single constraint. It is given by: 

𝑇𝑃𝐷(𝑊𝑖) =∑𝑊𝑖  [ln(𝑊𝑖) + ln (𝜙𝑖
(𝛽)
(𝑊𝑖) − 𝑙𝑛 (𝑧𝑖𝜙𝑖

(𝛼)(𝑧𝑖))]  

𝑁𝑐

𝑖

   2-43 

 

In this equation, Michelsen introduces a new variable, 𝑊, which represents the 

total number of moles in the incipient phase (II). The single constraint is that 𝑊𝑖 > 0. 

This formulation is useful when it is already known that the first phase (I) is stable. It 

allows for the use of a successive substitution method to compute the composition of 

the incipient phase (II). This method is iteratively applied and is represented as follows: 

ln (Wi
[k+1]) =  ln(𝑧𝑖) + ln (𝜙𝑖

(𝛼)(𝑧𝑖)) − ln (𝜙𝑖
(𝛽)
(𝑊𝑖

[𝑘])) 2-44 

 

The superscript [𝑘] denotes the iteration step in the successive substitution 

method. 
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3. Methodology 

3.1. PC-SAFT EoS 

The Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) is an 

adaptation of the SAFT framework, devised by GROSS and SADOWSKI in 2001. This 

theory, like other perturbation theories, relies on two primary elements: the reference 

system and the perturbation expansion form. These elements are chosen based on 

numerical practicality and convergence efficiency. The reference system's properties 

should closely resemble the target system, facilitating simpler computation of the 

perturbation expansion compared to direct analysis of the target system. Despite these 

criteria, options remain broad. In contrast to SAFT's hard sphere fluid reference, PC-

SAFT uses a hard-chain fluid for perturbation reference. The dispersion potential is 

specifically introduced between connected segments or chains, as opposed to the 

conventional SAFT approach that considers dispersion potential between individual 

spherical segments. This adjustment enables a more accurate representation of 

interactions between these linked molecular structures, thereby enhancing the model's 

predictive capabilities in systems where such unbranched chain-like organizations are 

prevalent (SMITH and NEZBEDA, 1983). 

The formulation of the PC-SAFT Equation of State hinges on computing the 

residual Helmholtz energy, represented as A𝑟𝑒𝑠 through the summation of various 

Helmholtz contributions arising from distinct intermolecular interactions. This 

computation is expressed by the following expression: 

A𝑟𝑒𝑠

NkbT
= 

A

NkbT
−
A𝑖𝑑𝑒𝑎𝑙

NkbT
=
Aℎ𝑐

NkbT
+ 
A𝑑𝑖𝑠𝑝

NkbT
+ 
A𝑎𝑠𝑠𝑜𝑐

NkbT
+  … 3-1 

 

Or in its dimensionless form: 

ã𝑟𝑒𝑠 = ã − ã𝑖𝑑𝑒𝑎𝑙 = ãhc + ãdisp + ãassoc +⋯ 3-2 

 

Where ã =
A

NkbT
. The superscript notations res, ideal, hc, disp, and assoc 

correspond, respectively, to the residual property, ideal gas property, the contribution 

stemming from the presence of rigid molecular chains, the dispersive contribution, and 

the contribution to the Helmholtz energy arising from associations between molecules. 

In this notation the tilde indicates reduced properties which are obtained by normalizing 
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a given variable with respect to the Boltzmann’s constant (kb), the total number of 

molecules in the mixture (N) and the temperature. 

3.1.1. Intermolecular Potential 

The pair potential attributed to the segments forming a chain is characterized by 

a modified square well potential, a proposition introduced by KREGLEWSKI and 

CHEN (1980). This modified potential governs the interactions between the spherical 

segments composing the molecular chains, representing the manner in which these 

segments interact with each other within the chain structure. 

ϕ(r) = {

∞, r < (σ − 0.12σ)

3ε, (σ − 0.12σ) ≤ r < σ
−ε, σ ≤ r < S2σ
0, r ≥ S2σ

 3-3 

 

The function ϕ(r) characterizes the pair potential, with r denoting the radial 

distance between two segments. The parameter σ represents the segment diameter, 

providing insight into the characteristic size of the involved segments. S2 is the reduced 

well width. ε symbolizes the depth of the potential well.  

Moreover, the step function within this representation approximates a soft 

repulsion. This step function serves as a simplified yet rougher model akin to the 

Lennard-Jones potential, although possessing a more straightforward mathematical 

treatment. PRAUSNITZ et al., (1999) highlighted this approach for its mathematical 

convenience despite its deviation from the intricacies of the Lennard-Jones potential. 

The presented ϕ(r) potential is utilized to calculate the effective collision 

diameter of a specific substance i through the integration of the following equation: 

𝑑𝑖(T) = ∫ (1 − exp(−
ϕ(r)

kbT
))

𝜎𝑖

0

 dr 3-4 

 

Wich leads to: 

𝑑𝑖(T) =  σ𝑖 (1 − 0.12e
−
3ε𝑖
kbT) 3-5 
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3.1.2. Hard Sphere Term 

The term ãhs signifies the alteration in Helmholtz free energy resulting from 

interactions among hard spheres at particular density and temperature conditions. This 

contribution can be characterized by the following expression: 

ãhs =
1

ζ0
[
3ζ1ζ2
1 − ζ3

+
ζ2
3

ζ3(1 − ζ3)2
+ (

ζ2
3

ζ3
2 − ζ0) ln(1 − ζ3)] 3-6 

The terms ζn represent the reduced densities, which is a vector proportional to 

molar density, as proposed by CHAPMAN et al. (1990), and its formulation is detailed 

as follows: 

ζn =
𝜋

6
𝜌∑𝑥𝑖𝑚𝑖𝑑𝑖

𝑛

𝑁𝑐

𝑖

       𝑛 =  {0,1,2,3}  3-7 

 

The symbol 𝜌 denotes the density measured in molecules per volume unit. 𝑁𝑐 

represents the total number of components within the system. The parameter 𝑚 signifies 

the number of segments pertaining to a specific component i, while 𝑥 denotes the mole 

fraction corresponding to that particular component i. The exponent and subscript n 

takes the values 0, 1, 2, and 3. The term reduced density, or packing fraction (η), is used 

for n = 3. 

3.1.3. Hard Chain Term 

The term ãℎ𝑐 represents the change in dimensionless Helmholtz energy due to 

the covalent bonds between the segments, providing the formation of chains. The 

expression described by BOUBLIK (1970) is represented as follows: 

ãℎ𝑐 = m̅ãℎ𝑠 −∑x𝑖(m𝑖 − 1) ln(g𝑖𝑖
ℎ𝑠)

𝑁𝑐

𝑖

 3-8 

 

Where the term �̅� is the mean segment number of the mixture, calculated in 

Equation 3-10. Additionally, the term g𝑖𝑖
ℎ𝑠 represents the radial distribution function of 

this hard sphere fluid, and it is expressed as follows: 

gij
ℎ𝑠 =

1

(1 − ζ3)
+ (

didj

di + dj
) (

3ζ2
(1 − ζ3)2

) (
didj

di + dj
)

2

(
2ζ2
2

(1 − ζ3)3
) 3-9 
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The radial pair distribution function is a measure of the probability of finding a 

particle of type i in a given distance from a fixed particle of type j in the fluid. 

 

3.1.4. Dispersive Term  

According to BARKER and HENDERSON (1967), it is possible to write the 

residual Helmholtz free energy as: 

 

Where 𝐴0 is the Helmholtz free energy of the reference fluid, in this case, 

composed of chains of hard spheres and 𝐴𝑛 are the nth-order perturbation terms. 

 

We can then compute the Helmholtz free energy related to the dispersive forces 

expressed as a second-order expansion. Gross and Sadowski's PC-SAFT expression for 

this term occurs as follows: 

𝐴𝑑𝑖𝑠𝑝

NkbT
=

A1
NkbT

+
A2
NkbT

= ã𝑑𝑖𝑠𝑝 = ã1 + ã2 3-12 

 

Where A1 and A2 are determined by the integrals: 

A1
NkbT

= −2πρm2 (
ε

kbT
)σ3∫  

−∞

1

[
ϕ(r)

ε
gℎ𝑐 (m; r

σ

d
) r2] dr 3-13 

 

A2
NkbT

=  −πρm ( 1 + Zℎ𝑐  + ρ
∂Zℎ𝑐

∂ρ
)−1  × 

                                               m2 (
ε

kbT
)
2

σ3
∂

∂ρ
{∫  

−∞

1

[(
ϕ(r)

ε
)

2

gℎ𝑐 (m; r
σ

d
) r2] dr} 

3-14 

 

m̅ =∑𝑥𝑖𝑚𝑖

𝑁𝑐

𝑖

 3-10 

ã𝑟𝑒𝑠 =∑
𝐴′𝑛

N(𝑘𝑏T)𝑛

∞

𝑛=0

 3-11 



29 

 

Where Z represents the compressibility factor, calculated as 
𝑃

𝜌kbT
 , and gℎ𝑐 

represents the radial distribution function of the binding potential of a specific segment 

from any other chain.  

The expression that combines the compressibility factor with its rate of change 

concerning density, as presented in Equation 3-14, can be derived using the following 

equation: 

 

The integrals in Equations 3-13 and 3-14 have analytical solutions, but for 

practicality, Gross and Sadowski solved these using series and denoted them as variables 

I1 and I2, respectively. They are calculated as follows: 

∫  
−∞

1

[ũ(r)2gℎ𝑐 (m; r
σ

𝑑
) r2] = I1(η,m) =∑a𝑖ζ3

𝑖

6

i=0

 3-16 

 

∂

∂ρ
{∫  

−∞

1

[ũ(r)2ghc (m; r
σ

𝑑
) r2] dr} = I2(η,m) =∑biζ3

i

6

i=0

 3-17 

 

Here, ai and bi are the series constants using experimental data from pure 

alkanes. The relationship describing the coefficients concerning the segment number 

has been deduced by LIU and HU (1997) as follows: 

ai = a0i +
m− 1

m
a1i +

m− 1

m

m− 2

m
a2i 3-18 

 

bi = b0i +
m− 1

m
b1i +

m− 1

m

m− 2

m
b2i 3-19 

 

Where ani and bni for n = 0,1,2 are universal constants. Their values can be 

found in the original paper of GROSS and SADOWSKI (2001). 

Zhc  + ρ
∂Zhc

∂ρ
= m̅

8η − 2η2

(1 − η)4
+ (1 − m̅)

20η − 27η2 + 12η3 − 2η4

((1 − η)(2 − η))
2  3-15 
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The first and second-order perturbation terms can be expressed for mixtures as 

follows: 

A1
NkbT

= −2πρI1m2εσ3̅̅ ̅̅ ̅̅ ̅̅  3-20 

 

A2
NkbT

= −2πρm̅ (1 + Zhc  + ρ
∂Zhc

∂ρ
)

−1

I2 m2ε2σ3̅̅ ̅̅ ̅̅ ̅̅ ̅̅  3-21 

 

m2εσ3̅̅ ̅̅ ̅̅ ̅̅ = ∑∑x𝑖x𝑗m𝑖m𝑗 (
εij

kbT
) σ𝑖𝑗

3

𝑁𝑐

𝑗

𝑁𝑐

𝑖

 3-22 

 

m2ε2σ3̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ∑∑x𝑖x𝑗m𝑖m𝑗 (
ε𝑖𝑗

kbT
)
2

σ𝑖𝑗
3

𝑁𝑐

𝑗

𝑁𝑐

𝑖

 3-23 

 

Where the parameters for a pair of different segments are obtained through the 

conventional BERTHELOT-LORENTZ (1877) combining rules, as described by the 

following equations: 

 

 

Where kij is one of the binary interaction parameters, related to the dispersive 

forces. It is determined through fitting procedures based on experimental data.  

3.1.5. Association Term 

As previously mentioned, SAFT-type equations of state can model associative 

systems involving hydrogen bonding. In this scenario, the term accounting for the 

contribution to the Helmholtz free energy due to hydrogen bond forces will be: 

σij =
1

2
(σi + σj) 3-24 

εij = √εjεi(1 − kij) 3-25 
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Where X𝑗𝑖 represents the fraction of molecules of type i not bonded to site j, and 

S𝑗𝑖 refers to the multiplicity of site j within molecule i. If we consider a mixture of water 

and ethanol, modeling both water and ethanol as having two types of sites—an electron 

donor and an electron acceptor—𝑆 will have dimensions of 2x2. The columns represent 

the components, while the rows denote the type of site. In a more realistic scenario, 

water could be modeled with 2 pairs of electrons and 2 hydrogen atoms available for 

bonding, whereas ethanol would have 2 pairs of electrons and only one hydrogen. In 

this case, it would give us the following site multiplicity matrix: 

 

We can iteratively calculate the fraction X𝑗𝑖 using the approach demonstrated in 

the studies by SOLMS, et al. (2003) and MICHELSEN and HENDRIKS (2001), 

following the expression: 

 

Here we introduce the term 𝛥𝑙𝑘𝑗𝑖. It represents the strength of interaction due to 

the association of site l of molecule k with site j of the molecule i. It can be calculated 

as follows: 

 

Where 𝜀𝑙𝑘𝑗𝑖 and 𝜅lkji are the associating model parameters representing the 

association energy and effective association volume between the sites l and j per 

molecule k and i, respectively. These parameters can be obtained through fittings to 

phase equilibrium or other thermodynamic property data. 

�̅�𝑎𝑠𝑠𝑜𝑐 =∑𝑥𝑖  (∑(ln( X𝑗𝑖) −
X𝑗𝑖

2
+ 
1

2
) S𝑗𝑖 

𝑗

)

𝑖

 3-26 

|
2 2
2 1

| 3-27 

𝑋𝑗𝑖 =
1

1 + 𝜌∑ 𝑥𝑖𝑖 ∑ ∑ 𝑆𝑙𝑘𝑋𝑙𝑘𝛥𝑙𝑘𝑗𝑖𝑘𝑙
  3-28 

𝛥𝑙𝑘𝑗𝑖 =
𝜋

6
𝑔𝑖𝑗
ℎ𝑠𝜎𝑖𝑗

3𝜅lkji (𝑒𝑥𝑝 (
𝜀𝑙𝑘𝑗𝑖

kbT
) − 1) 3-29 
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For the determination of the two cross-association parameters between two 

substances, one can utilize the combination rule proposed by WOLBACH and 

SANDLER (1998). They devised this rule based on an analysis of association in the gas 

phase under low-pressure conditions. The combination rules are provided as follows: 

 

 

These combination rules may or may not include an additional binary correction 

parameter, 𝑘2𝑖𝑗
𝑎𝑠𝑐

. 

3.2. SAFT-γ Mie EoS 

The SAFT-γ Mie is a SAFT-type equation of state formulated by 

PAPAIOANNOU et al. (2014). It was built upon a group contribution approach of 

SAFT-VR-Mie. Within this model, molecules are characterized as connected chains of 

spheres. Diverging from the PC-SAFT model, the SAFT-γ Mie approximates a single 

molecule as spheres of varying sizes, interconnected with a certain degree of overlap, 

denoted by the parameter Sk. A reduced Sk value implies a smaller contribution of a 

chain to the Helmholtz energy (DUFAL et al., 2014). Within this framework, which 

employs group contributions to compute properties within a mixture of compounds, 

each group 'k' is made by a chain of spheres sharing identical parameters. This 

uniformity spans diameters, dispersive energies, as well as attractive and repulsive 

exponents for segment-segment interactions. This functional group or chain 'k', 

comprises a count of νk spheres or segments, interacting through the Mie potential. 

Moreover, the multiplicity or frequency of occurrence of a group 'k', in a molecule 'i', is 

denoted by the parameter νki. Analogous to the PC-SAFT approach, association sites 

may be incorporated to account for highly directional short-range forces. However, 

distinct from PC-SAFT, these sites are linked within a group. 

The SAFT-γ Mie formulation deviates slightly from the PC-SAFT EoS in the 

computation of A𝑟𝑒𝑠 : 

𝜅lkji  = √𝜅𝑙𝑖𝑗𝑖𝜅lkjk (
√σiiσkk

1
2
(σii + σkk)

)

3

(1 − k2𝑖𝑗
𝑎𝑠𝑐) 3-30 

𝜀𝑙𝑘𝑗𝑖 =
(𝜀𝑙𝑖𝑗𝑖 + 𝜀𝑙𝑘𝑗𝑘)

2
 3-31 
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A𝑟𝑒𝑠

NkbT
=
A𝑚𝑜𝑛𝑜

NkbT
+ 
A𝑐ℎ𝑎𝑖𝑛

NkbT
+ 
A𝑎𝑠𝑠𝑜𝑐

NkbT
+  … 3-32 

 

Or in its dimensionless form: 

ã𝑟𝑒𝑠 = ã𝑚𝑜𝑛𝑜 + ã𝑐ℎ𝑎𝑖𝑛 + ã𝑎𝑠𝑠𝑜𝑐 +⋯ 3-33 

 

Where ã =
A

NkbT
. This formulation introduces two distinct subscripts: "mono" 

denotes the monomer term, while "chain" represents the chain formation term. 

3.2.1. Intermolecular Potential 

Unlike PC-SAFT, which employs a modified square well potential as an 

approximation of the Lennard-Jones potential, SAFT-γ Mie utilizes the Mie potential to 

characterize the forces between segments. The Mie potential is expressed as follows: 

 

Where 𝑟𝑘𝑙 signifies the distance between the center of segment ‘k’ and the center 

of segment ‘l’, ε𝑘𝑙 represents the combination of dispersive forces' energy between 

segments, 𝜆𝑘𝑙
𝑟  and 𝜆𝑘𝑙

𝑎  are the combinations of repulsive and attractive exponents of the 

segment-segment interaction, 𝜎𝑘𝑙 denotes the average between the interacting diameters, 

and Ckl is a function of the interaction exponents used such that the minimum of the 

potential remains at ε𝑘𝑙 for all  𝜆𝑘𝑙
𝑟  and 𝜆𝑘𝑙

𝑎 . This function is formulated as follows: 

 

It's important to note that the Lennard-Jones potential constitutes a specific case 

of the Mie potential when the exponents 𝜆𝑘𝑙
𝑟  and 𝜆𝑘𝑙

𝑎  are set to 6 and 12, respectively. In 

the Lennard-Jones potential, the selection of the exponent "6" aligns with the lowest 

exponent in London dispersion forces among spherical, nonpolar molecules, while the 

choice of "12" remains arbitrary and is adopted for simplicity. Consequently, adjusting 

ϕkl
𝑚𝑖𝑒(𝑟𝑘𝑙) = C𝑘𝑙  ε𝑘𝑙 ((

𝜎𝑘𝑙
𝑟𝑘𝑙
)
𝜆𝑘𝑙
𝑟

− (
𝜎𝑘𝑙
𝑟𝑘𝑙
)
𝜆𝑘𝑙
𝑎

) 3-34 

C𝑘𝑙 =
𝜆𝑘𝑙
𝑟

𝜆𝑘𝑙
𝑟 − 𝜆𝑘𝑙

𝑎  (
𝜆𝑘𝑙
𝑟

𝜆𝑘𝑙
𝑎 )

𝜆𝑘𝑙
𝑎

𝜆𝑘𝑙
𝑟 −𝜆𝑘𝑙

𝑎

 3-35 
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these exponents within the Mie potential affords an enhanced portrayal of inter-segment 

forces overall, particularly when they deviate from being nonpolar and exhibit distinct 

shapes compared to spheres (HIRSCHFELDER et al., 1964, PRAUSNITZ et al., 1999) 

3.2.2. Monomer Term 

The SAFT-γ-Mie model employs perturbation theories to compute molecular 

interactions. These theories propose that molecule interactions can be calculated using 

attractive and repulsive contributions from the potential. Soft-core potentials, such as 

Mie or LJ, approximate the reference system as a fluid with no attraction forces, having 

hard repulsion, and a temperature-dependent diameter, 𝑑𝑘𝑘(T). This term resembles the 

one in Equation 3-4 in PC-SAFT, yet its calculation through the Equation 3-5 cannot be 

performed, due to the Mie potential's dependence on 𝜆𝑘𝑙
𝑟  and 𝜆𝑘𝑙

𝑎 , instead of the constants 

6 and 12.  

In this work, we numerically integrate Equation 3-4 using Simpson's method, for 

which an implementation was readily available. It worked satisfactorily and no other 

methods were tried in this work scope.  

Given the assumption that each segment is a Mie Sphere, the first term from 

Equation 3-32, A𝑚𝑜𝑛𝑜, can be formulated as a third-order high-temperature perturbation 

expansion over the hard spheres reference, Aℎ𝑠 : 

A𝑚𝑜𝑛𝑜

NkbT
=
Aℎ𝑠

NkbT
+

A1
NkbT

+
A2
NkbT

 +
A3
NkbT

 3-36 

 

Here, A1, A2 and A3 symbolize the dispersive forces and Aℎ𝑠 the repulsive ones. 

The Aℎ𝑠 expression of the mixture is given by: 

𝐴ℎ𝑠

NkbT
= (∑x𝑖

𝑁𝑐

𝑖

 ∑𝜈𝑘𝑖𝜈𝑘
∗𝑆𝑘 

𝑁𝑔

𝑘

)ãℎ𝑠  3-37 

 

Where 𝑁𝑐 represents the total amount of components in the system, 𝑁𝑔 is the 

number of different groups in the system and ãℎ𝑠 is the dimensionless contribution to 

the hard spheres per segment. Similar to the PC-SAFT EoS, the expression of Boublik 

is used for mixtures of the hard-sphere reference system: 

ãhs =
6

𝜋𝜌𝑠
[
3ζ1ζ2
1 − ζ3

+
ζ2
3

ζ3(1 − ζ3)2
+ (

ζ2
3

ζ3
2 − ζ0) ln(1 − ζ3)] 3-38 
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Where 𝜌𝑠, the total number of spherical segment density of the Mie fluid, is a 

function of the mixture density, 𝜌, by the following relation: 

𝜌𝑠 = 𝜌(∑x𝑖

𝑁𝑐

𝑖

 ∑𝜈𝑘𝑖𝜈𝑘
∗𝑆𝑘 

𝑁𝑔

𝑘

)  3-39 

 

With ζn defined as: 

ζn =
𝜋

6
𝜌𝑠∑𝑥s𝑘𝑑𝑘𝑘

𝑛

𝑁𝑔

𝑘

       𝑛 =  {0,1,2,3}  3-40 

 

Where 𝑥s𝑘 represents the fraction of segments of a specific type k group within 

the mixture, which is defined as: 

𝑥s𝑘 =
(∑ x𝑖

𝑁𝑐
𝑖  𝜈𝑘𝑖𝜈𝑘

∗𝑆𝑘)

(∑ x𝑗
𝑁𝑐
𝑗  ∑ 𝜈𝑙𝑗𝜈𝑙

∗𝑆𝑙 
𝑁𝑔
𝑙 )

  3-41 

 

3.2.3. Dispersive Term  

The third-order perturbation expansion used to calculate the attractive part of the 

spheres interactions is given as follows: 

A𝑑𝑖𝑠𝑝

NkbT
=

A1
NkbT

+
A2
NkbT

 +
A3
NkbT

 3-42 

 

A1 is the mean-attractive energy, while A2 and A3 are the fluctuations of the 

attractive energy within the system. Each perturbation term can be expressed as follows: 

A𝑝

NkbT
= (

1

kbT
)
𝑝

(∑x𝑖

𝑁𝑐

𝑖

 ∑𝜈𝑘𝑖𝜈𝑘
∗𝑆𝑘 

𝑁𝑔

𝑘

)ã𝑝       𝑝 =  {1,2,3}    3-43 

 

Where ã𝑝 is either the mean-attractive or fluctuation energy term per segment. 

Each of these terms can be obtained by the following summations: 
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𝑎𝑝 = ∑∑𝑥s𝑘𝑥s𝑙𝑎𝑝𝑘𝑙       𝑝 =  {1,2,3}   

𝑁𝑔

𝑙

𝑁𝑔

𝑘

 3-44 

 

Where 𝑎𝑝𝑘𝑙 are the pairwise interactions between groups ‘k’ and ‘l’ over all 

functional groups present in the system. The first term, 𝑎1𝑘𝑙, can be calculated as 

follows: 

𝑎1𝑘𝑙 = 𝐶𝑘𝑙 (𝑥0𝑘𝑙
𝜆𝑘𝑙
𝑎

 (𝑎1𝑘𝑙
𝑠 (𝜆𝑘𝑙

𝑎 ) + 𝐵𝑘𝑙(𝜆𝑘𝑙
𝑎 ))  −  𝑥0𝑘𝑙

𝜆𝑘𝑙
𝑟

(𝑎1𝑘𝑙
𝑠 (𝜆𝑘𝑙

𝑟 ) + 𝐵𝑘𝑙(𝜆𝑘𝑙
𝑟 ))) 3-45 

 

Where 𝑥0𝑘𝑙 is defined as: 

𝑥0𝑘𝑙 =
𝜎𝑘𝑙
𝑑𝑘𝑙

 3-46 

 

The terms 𝑎1𝑘𝑙
𝑠  and 𝐵𝑘𝑙 are functions of the exponents in the Mie potential. They 

can be calculated using either the repulsion or attraction term. 𝐵𝑘𝑙 is defined as: 

𝐵𝑘𝑙(𝜆𝑘𝑙) = 2𝜋𝜌𝑠𝑑𝑘𝑙
3 ε𝑘𝑙 (

1 − ζ𝑥/2

(1 − ζ𝑥)3
𝐼(𝜆𝑘𝑙) −

9ζ𝑥(1 + ζ𝑥)

2(1 − ζ𝑥)3
𝐽(𝜆𝑘𝑙)) 3-47 

 

Where ζ𝑥 represents the density of a hypothetical pure fluid calculated using the 

segment density and the unlike effective hard-sphere diameter 𝑑𝑘𝑙 : 

ζ𝑥 =
𝜋𝜌𝑠
6
∑∑𝑥s𝑘𝑥s𝑙𝑑𝑘𝑙

3  

𝑁𝑔

𝑙

𝑁𝑔

𝑘

 3-48 

 

The unlike effective hard-sphere diameter (𝑑𝑘𝑙) is calculated from a simple 

arithmetic mean. The functions 𝐼(𝜆𝑘𝑙) and 𝐽(𝜆𝑘𝑙), similarly to 𝑎1𝑘𝑙
𝑠  and 𝐵𝑘𝑙, are 

functions of the exponents in the Mie potential. These terms are algebraic expressions 

used to simplify the first part of the integration of the first-order perturbation term for a 

Mie potential, as described by LAFITTE et al. (2013) 

The 𝐼(𝜆𝑘𝑙) and 𝐽(𝜆𝑘𝑙) terms are calculated as follows: 
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𝐼 = ∫
𝑥2

𝑥𝜆𝑘𝑙   
𝑑𝑥

𝑥0𝑘𝑙

1

=
1 − 𝑥0𝑘𝑙

3−𝜆𝑘𝑙    

𝜆𝑘𝑙 − 3 
 3-49 

 

𝐽 = ∫
𝑥3 − 𝑥2

𝑥𝜆𝑘𝑙
𝑑𝑥

𝑥0𝑘𝑙

1

=
1 − 𝑥0𝑘𝑙

4−𝜆𝑘𝑙(𝜆𝑘𝑙 − 3) +  𝑥0𝑘𝑙
3−𝜆𝑘𝑙(𝜆𝑘𝑙 − 4)  

(𝜆𝑘𝑙 − 3)(𝜆𝑘𝑙 − 4) 
 3-50 

The term 𝑎1𝑘𝑙
𝑠  presented in Equation 3-45 refers to the first-order perturbation 

term of a fluid composed by hard spheres of diameter 𝑑𝑘𝑙 interacting through the 

Sutherland potential, with well-depth potential energy of ε𝑘𝑙 and attractive interaction 

range of 𝜆𝑘𝑙
𝑎 . Originally, the calculation of this term requires the integration of the radial 

distribution function for the hard spheres reference fluid, however, Pappoiannou derived 

an analytical expression for this term using the mean-value theorem: 

𝑎1𝑘𝑙
𝑠 = −2𝜋𝜌𝑠𝑑𝑘𝑙

3 ε𝑘𝑙 (
1 −

ζ𝑥
𝑒𝑓𝑓

2

(1 − ζ𝑥
𝑒𝑓𝑓
)
3
(𝜆𝑘𝑙 − 3)

) 3-51 

 

Where ζ𝑥
𝑒𝑓𝑓

 is the effective packing fraction, which was parameterized for 

exponents of the potential in the range 5 < 𝜆𝑘𝑙 ≤ 100. It is calculated as follows: 

ζ𝑥
𝑒𝑓𝑓.

=∑𝑐𝑛𝑘𝑙ζ𝑥
𝑛

4

𝑛

  3-52 

 

Where the 𝑐𝑖𝑘𝑙 coefficients are obtained as functions of the attractive or repulsive 

exponents of the potential: 

(

𝑐1𝑘𝑙
𝑐2𝑘𝑙
𝑐3𝑘𝑙
𝑐4𝑘𝑙

) = (

0.81096 1.7888
1.0205 −19.341

−37.578 92.284
151.26 −463.50

−1.9057 22.845
1.0885 −6.1962

−228.14 973.92
 106.98 −677.64

) ×

(

 
 
1
𝜆𝑘𝑙
−1

𝜆𝑘𝑙
−2

𝜆𝑘𝑙
−3

)

 
 

 3-53 

 

An analytical expression for second-order perturbation term, 𝑎2𝑘𝑙, is derived 

using the macroscopic compressibility approximation (MCA), along with a correction 

for soft potentials (ZHANG, 1999). 𝑎2𝑘𝑙 can be calculated as: 
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𝑎2𝑘𝑙 =
1

2
𝐾ℎ𝑠(1 + 𝜒𝑘𝑙)ε𝑘𝑙𝐶𝑘𝑙

2 (𝑥0𝑘𝑙
2𝜆𝑘𝑙
𝑎

(𝑎1𝑘𝑙
𝑠 (2𝜆𝑘𝑙

𝑎 ) + 𝐵𝑘𝑙(2𝜆𝑘𝑙
𝑎 ))

− 2𝑥0𝑘𝑙
𝜆𝑘𝑙
𝑎 + 𝜆𝑘𝑙

𝑟

(𝑎1𝑘𝑙
𝑠 (𝜆𝑘𝑙

𝑎 + 𝜆𝑘𝑙
𝑟 ) + 𝐵𝑘𝑙(𝜆𝑘𝑙

𝑎 + 𝜆𝑘𝑙
𝑟 ))

+ 𝑥0𝑘𝑙
2𝜆𝑘𝑙
𝑟

(𝑎1𝑘𝑙
𝑠 (2𝜆𝑘𝑙

𝑟 ) + 𝐵𝑘𝑙(2𝜆𝑘𝑙
𝑟 ))) 

3-54 

The value of 𝐾ℎ𝑠, representing the isothermal compressibility of the hypothetical 

vdW one-fluid system, is obtained using the Carnahan and Starling expression, given 

as: 

𝐾ℎ𝑠 =
(1 − ζ𝑥)

4

1 + 4ζ𝑥 + 4ζ𝑥2 − 4ζ𝑥
3 + ζ𝑥4

  3-55 

 

The correction factor 𝜒𝑘𝑙 is obtained by the expression: 

𝜒𝑘𝑙 = 𝑓1ζ𝑥
∗ + 𝑓2ζ𝑥

∗ 5 + 𝑓3ζ𝑥
∗ 8 3-56 

 

The terms 𝑓𝑚 , for m = 1,2, … 6, are functions of 𝛼𝑘𝑙, which is a dimensionless 

representation of the integrated van der Waals energy of the Mie potential, expressed as 

follows: 

𝛼𝑘𝑙 =
1

ε𝑘𝑙𝜎𝑘𝑙
3 ∫  

∞

𝜎

ϕ𝑘𝑙
Mie(𝑟)𝑟2d𝑟 = 𝐶𝑘𝑙 (

1

𝜆𝑘𝑙
a − 3

−
1

𝜆𝑘𝑙
r − 3

) 3-57 

 

Note that the term in equation 3-54 is not the same in equation 3-46, which uses 

de diameter 𝑑𝑘𝑙. Instead, it is calculated using de unlike diameter 𝜎𝑘𝑙: 

𝜎𝑥
3 = ∑∑𝑥s𝑘𝑥s𝑙𝜎𝑘𝑙

3  

𝑁𝑔

𝑙

𝑁𝑔

𝑘

 3-58 

 

Therefore, can be calculated as follows: 

ζ𝑥
∗ =

𝜋𝜌𝑠
6
𝜎𝑥
3 3-59 
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The third-order perturbation term can be calculated using the following 

empirical expression: 

𝛼3𝑘𝑙 = −ε𝑘𝑙
3 𝑓4ζ𝑥

∗   𝑒𝑥𝑝( 𝑓5ζ𝑥
∗ + 𝑓6ζ𝑥

∗ 2) 3-60 

 

Which is also dependent of ζ𝑥
∗ , computed as follows: 

𝑓𝑚 = 
∑ 𝜙𝑚𝑛𝛼𝑘𝑙

𝑛4
𝑛=1

1 + ∑ 𝜙𝑚𝑛𝛼𝑘𝑙
𝑛−37

𝑛=5

        𝑛 =  {1, … , 7} 3-61 

 

Notice that this term has no dependence on temperature, as the diameter 𝜎𝑘𝑙 is 

used for the packaging fraction ζ𝑥
∗ , instead of 𝑑𝑘𝑙. The values for 𝜙𝑚𝑛 can be found in 

Table 1. 

Table 1: 𝜙𝑚𝑛 coefficients. They are utilized for the term 𝛼2𝑘𝑙 as presented in Equation 

3-54, the term 𝛼3𝑘𝑙 as outlined in Equation 3-60, and 𝛾c,𝑖𝑖 of the 𝑔2 term depicted in 

Equation 3-80. The symbol "-" indicates that a value is not necessary for those instances 

n\m 1 2 3 4 5 6 7 

1 7.5365557 -359.44 1550.9 -1.19932 -1911.28 9236.9 10 

2 -37.60463 1825.6 -5070.1 9.063632 21390.175 -129430 10 

3 71.745953 -3168 6534.6 -17.9482 -51320.7 357230 0.57 

4 -46.83552 1884.2 -3288.7 11.34027 37064.54 -315530 -6.7 

5 -2.467982 -0.82376 -2.7171 20.52142 1103.742 1390.2 -8 

6 -0.50272 -3.1935 2.0883 -56.6377 -3264.61 -4518.2 - 

7 8.0956883 3.709 0 40.53683 2556.181 4241.6 - 

3.2.4. Chain Formation Term 

The expression for the Helmholtz free energy contribution due to chain 

formation follows the original Wertheim TPT1 formulation, but adapted for fused 

heteronuclear segments. To do this, some average molecular parameters are defined, 

based on the group-specific parameters, namely the average molecular segment size 𝜎𝑖𝑖, 

as well as the average exponent range �̅�𝑖𝑖 and well-depth ε̅𝑖𝑖 of dispersion interactions. 

These average parameters are obtained by means of appropriate combining rules based 

on the group-specific parameter. These parameters are function of molecular fraction 

𝑧𝑘𝑖, which is the fraction of group type k in the molecular structure of component i, 

defined as: 
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𝑧𝑘𝑖 =
𝜈𝑘𝑖𝜈𝑘

∗𝑆𝑘

∑ 𝜈𝑙𝑖𝜈𝑙
∗𝑆𝑙 

𝑁𝑔
𝑙

  3-62 

 

The effective molecular parameters are: 

𝜎𝑖𝑖
3 = ∑∑𝑧𝑘𝑖𝑧𝑙𝑖𝜎𝑘𝑙

3  

𝑁𝑔

𝑙

𝑁𝑔

𝑘
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�̅�𝑖𝑖
3 = ∑∑𝑧𝑘𝑖𝑧𝑙𝑖𝑑𝑘𝑙

3  

𝑁𝑔

𝑙

𝑁𝑔

𝑘
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ε̅𝑖𝑖 = ∑∑𝑧𝑘𝑖𝑧𝑙𝑖εkl 

𝑁𝑔

𝑙

𝑁𝑔

𝑘
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�̅�𝑖𝑖 = ∑∑𝑧𝑘𝑖𝑧𝑙𝑖𝜆kl 

𝑁𝑔

𝑙

𝑁𝑔

𝑘
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Where �̅�𝑖𝑖 is generalized for attractive or repulsive exponents. It’s important to 

notice that none of these expressions are function of the compositions, which makes the 

computation simpler. Therefore, the resulting contribution to the free energy of mixture 

due to the formation of chains  

A𝑐ℎ𝑎𝑖𝑛

NkbT
= − ∑𝑥𝑖∑(𝜈𝑘𝑖𝜈

∗𝑆𝑘 − 1) ln(𝑔𝑖𝑖
𝑀𝑖𝑒(�̅�𝑖𝑖, ζx))

𝑁𝑔

𝑘

𝑁𝑐

𝑖
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Where the function 𝑔𝑖𝑖
𝑀𝑖𝑒 is the radial distribution function (RDF) at the effective 

contact distance 𝜎𝑖𝑖 and the temperature-dependent packing fraction ζx of the mixture. 

As described by Laffite et al., the RDF can be approximated by a second-order 

expansion: 
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𝑔𝑖𝑖
𝑀𝑖𝑒 = 𝑔𝑑

ℎ𝑠(𝜎𝑖𝑖)𝑒𝑥𝑝

(

 

ε̅𝑖𝑖𝑔1(�̅�𝑖𝑖)
kbT

 + (
ε̅𝑖𝑖
kbT

)
2

𝑔2(𝜎𝑖𝑖)

𝑔𝑑
ℎ𝑠(𝜎𝑖𝑖)

)
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Where the initial term in the expansion, denoted as 𝑔𝑑
ℎ𝑠, represents the RDF for 

a reference hard-sphere mixture, each with a diameter of �̅�𝑖𝑖. This function is specifically 

assessed at a distance of 𝜎𝑖𝑖 and a density of ζx. As detailed by Pappaioannou et al., the 

function can be calculated by the following Boublík's expression: 

𝑔𝑑
ℎ𝑠 = 𝑒𝑥𝑝(∑ 𝑘𝑚�̅�0𝑖𝑖

𝑚

3

𝑚=0

 )      1 < �̅�0𝑖𝑖 < √2 3-69 

 

Where the coefficients 𝑘𝑚 in this expression are obtained as: 

𝑘0 = −ln (1 − 𝜁x) +
42𝜁x − 39𝜁x

2 + 9𝜁x
3 − 2𝜁x

4

6(1 − 𝜁x)3
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𝑘1 =
𝜁x
4 + 6𝜁x

2 − 12𝜁x
2(1 − 𝜁x)3
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𝑘2 =
−3𝜁x

2

8(1 − 𝜁x)2
 3-72 

 

𝑘3 =
−𝜁x

4 + 3𝜁x
2 + 3𝜁x

6(1 − 𝜁x)3
 3-73 

 

The first-order term of the expansion 3-78, denoted as 𝑔1, is estimated through 

approximation using its value at the point of contact ( 𝑔1(�̅�𝑖𝑖) ≈ 𝑔1(�̅�𝑖𝑖) ): 

𝑔1 =
1

2𝜋𝜀�̅�𝑖�̅�𝑖𝑖
3
× 

[3
∂�̅�1,𝑖𝑖

∂𝜌s
 − 𝐶�̅�𝑖�̅�𝑖𝑖

a �̅�0𝑖𝑖
�̅�𝑖𝑖
a �̅�1𝑖𝑖

s (�̅�𝑖𝑖
a )+�̅�𝑖𝑖(�̅�𝑖𝑖

a )

𝜌s
+C̅𝑖𝑖�̅�𝑖𝑖

r �̅�0𝑖𝑖
�̅�𝑖𝑖
r �̅�1𝑖𝑖

s (�̅�𝑖𝑖
r )+�̅�𝑖𝑖(�̅�𝑖𝑖

r )

𝜌s
]  

3-74 
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In the given expression, 𝐶�̅�𝑖, �̅�1𝑖𝑖
s  and �̅�𝑖𝑖 are associated with the effective 

molecular interaction potential of component 'i'. They are calculated using the values of 

the average molecular repulsive or attractive exponents, denoted as �̅�𝑖𝑖
r  and �̅�𝑖𝑖

a , 

respectively. Additionally, these terms as well as �̅�1,𝑖𝑖 and �̅�0𝑖𝑖, are determined utilizing 

the effective molecular parameters, detailed in Equations 3-63 – 3-66. 

�̅�𝑖𝑖(�̅�𝑖𝑖) = 2𝜋𝜌s�̅�𝑖𝑖
3 ε̅𝑖𝑖 [

1 − 𝜁x/2

(1 − 𝜁x)3
𝐼(̅�̅�𝑖𝑖)−

9𝜁x(1 + 𝜁x)

2(1 − 𝜁x)3
𝐽(̅�̅�𝑖𝑖)] 3-75 

 

�̅�1,𝑖𝑖 = 𝐶�̅�𝑖 [�̅�0,𝑖𝑖
�̅�𝑖𝑖
a

(�̅�1,𝑖𝑖
s (�̅�𝑖𝑖

a ) + �̅�𝑖𝑖(�̅�𝑖𝑖
a ))−�̅�0,𝑖𝑖

�̅�𝑖𝑖
𝑟

(�̅�1,𝑖𝑖
s (�̅�𝑖𝑖

r ) + �̅�𝑖𝑖(�̅�𝑖𝑖
r ))] 3-76 

 

�̅�1,𝑖𝑖
s (�̅�𝑖𝑖) = −2𝜋𝜌s (

𝜀�̅�𝑖�̅�𝑖𝑖
3

�̅�𝑖𝑖 − 3
)
1 − 𝜁�̅�𝑖

eff. /2

(1 − 𝜁�̅�𝑖
eff. )

3 3-77 

 

The effective packing fraction, 𝜁�̅�𝑖
eff. , is calculated as follows: 

ζ̅𝑖𝑖
𝑒𝑓𝑓.

=∑𝑐�̅�𝑖𝑖ζ𝑥
𝑛

4

𝑛=1
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Where the 𝑐�̅�𝑖𝑖 coefficients are obtained as functions of the average molecular 

repulsive or attractive exponents: 

(

𝑐1̅,𝑖𝑖
𝑐2̅,𝑖𝑖
𝑐3̅,𝑖𝑖
𝑐4̅,𝑖𝑖

) = (

0.81096 1.7888 −37.578 92.284
1.0205 −19.341 151.26 −463.50
−1.9057 22.845 −228.14 973.92
1.0885 −6.1962 106.98 −677.64

) ×

(

 

1
�̅�𝑖𝑖
−1

�̅�𝑖𝑖
−2

�̅�𝑖𝑖
−3)

  3-79 

 

Similar to the first-order term, 𝑔1, the approximation for the second-order term, 

𝑔2, is also derived based on its value at the effective diameter, �̅�𝑖𝑖 (𝑔2(�̅�𝑖𝑖) ≈ 𝑔2(�̅�𝑖𝑖)). 

The calculation of this term is derived by Lafitte, and it involves using an approximation 

expression for macroscopic compressibility and adding an empirical correction: 

𝑔2 = (1 + 𝛾cii)𝑔2
MCA 3-80 
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Where 𝛾cii is the correction factor. It can also be calculated using the averaged 

parameters:  

𝛾c,𝑖𝑖 = 𝜙7,1 (− tanh (𝜙7,2(𝜙7,3 − �̅�𝑖𝑖)) + 1) × 

𝜁x
∗ 𝑒

�̅�𝑖𝑖
𝑘𝑏𝑇

−1
exp(𝜙7,4𝜁𝑥

∗ + 𝜙7,5(𝜁𝑥
∗)2) 

3-81 

 

Where the 𝜙7,𝑛 coefficients are given in the Table 1. The expression for �̅�𝑖𝑖 

mirrors that of 𝛼𝑘𝑙, however, it distinctively employs averaged parameters for its 

calculation: 

�̅�𝑖𝑖 = 𝐶�̅�𝑖 (
1

�̅�𝑖𝑖
a − 3

−
1

�̅�𝑖𝑖
r − 3

) 3-82 

 

The term comprising the macroscopic compressibility approximation is also 

calculated using the averaged parameters and it is based on the fluctuation term of the 

Sutherland potential: 

𝑔2
MCA(�̅�𝑖𝑖) =

1

2𝜋𝜀�̅�𝑖
2�̅�𝑖𝑖

3
[3

∂

∂𝜌s
(
�̅�2𝑖𝑖
1 + �̅�𝑖𝑖

)  

−𝜀�̅�𝑖𝐾
ℎ𝑠𝐶�̅�𝑖

2�̅�𝑖𝑖
r �̅�0𝑖𝑖

2�̅�𝑖𝑖
r �̅�1𝑖𝑖

s (2�̅�𝑖𝑖
r ) + �̅�(2�̅�𝑖𝑖

r )

𝜌s
 

+𝜀�̅�𝑖𝐾
HS𝐶�̅�𝑖

2(�̅�𝑖𝑖
r + �̅�𝑖𝑖

a )�̅�0𝑖𝑖
(�̅�𝑖𝑖
r +�̅�𝑖𝑖

a ) �̅�1𝑖𝑖
s (�̅�𝑖𝑖

r + �̅�𝑖𝑖
a ) + �̅�(�̅�𝑖𝑖

r + �̅�𝑖𝑖
a )

𝜌s
 

−𝜀�̅�𝑖𝐾
HSC̅𝑖𝑖

2 �̅�𝑖𝑖
a �̅�0𝑖𝑖

2�̅�𝑖𝑖
a �̅�1𝑖𝑖

s (2�̅�𝑖𝑖
a ) + �̅�(2�̅�𝑖𝑖

a )

𝜌s
] 
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Where the expression for �̅�𝑖𝑖 is: 

�̅�𝑖𝑖 = 𝑓1(�̅�𝑖𝑖)𝜁x
∗ + 𝑓2(�̅�𝑖𝑖)(𝜁x

∗)5 + 𝑓3(�̅�𝑖𝑖)(𝜁x
∗)8 3-84 

 

Where the coefficients 𝑓𝑚 are calculated similarly as in the Equation 3-61, but 

applying �̅�𝑖𝑖 instead of αkl. 
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3.2.5. Association Term 

The term of the contribution to Helmholtz energy related to the association 

between molecules through highly directional and short-range molecular interactions 

follows similar expressions to the work of WERTHEIM (1986), but is applied to group 

contribution methodology: 

Aassoc. 

NkBT
=∑  

𝑁c

𝑖

𝑥𝑖∑ 

𝑁g

𝑘

𝑣𝑘𝑖 ∑  

𝑁ST𝑘

𝑎

𝑛𝑘𝑎 (ln 𝑋𝑖𝑘𝑎 +
1 − 𝑋𝑖𝑘𝑎
2

) 3-85 

 

Where 𝑁ST𝑘 denotes count of distinct sites within group ‘k’, 𝑛𝑘𝑎 represents the 

quantity of ‘a’-type sites within group ‘k’, and 𝑋𝑖𝑘𝑎 signifies the proportion of 

unbounded molecules belonging to component ‘i’ with respect to group ‘k’ through the 

site ‘a’. The determination of 𝑋𝑖𝑘𝑎 can be achieved through an iterative solution to the 

following system of non-linear equations, as originally proposed by TAN et al. (2004), 

although adapted for application within the context of group contribution: 

𝑋𝑖𝑘𝑎 =
1

1 + ∑  
𝑁c
𝑗
∑  
𝑁g
𝑙
∑  
𝑁ST𝑙
𝑏 𝜌𝑥𝑗𝑣𝑙𝑗𝑛𝑙𝑏𝑋𝑗𝑙𝑏Δ𝑖𝑗𝑘𝑙𝑎𝑏

 3-86 

 

Here, similarly to the PC-SAFT, Δ𝑖𝑗𝑘𝑙𝑎𝑏  represents the overall strength of 

interaction due to the association of the site ‘a’ of the group ‘k’ in the molecule ‘i’ with 

the site ‘b’ of the group ‘l’ in the molecule ‘j’. It can be calculated as follows: 

Δ𝑖𝑗𝑘𝑙𝑎𝑏 = 𝜎𝑖𝑗
3𝐹𝑘𝑙𝑎𝑏𝐾𝑘𝑙𝑎𝑏𝐼𝑘𝑙𝑎𝑏 3-87 

 

Where 𝐹𝑘𝑙𝑎𝑏 is the Mayer-f function of the square-well association potential, 

calculated as: 

𝐹𝑘𝑙𝑎𝑏 = exp (
𝜀𝑘𝑙𝑎𝑏
𝑘𝑏𝑇

) − 1 3-88 

 

𝐾𝑘𝑙𝑎𝑏, defined as the bonding volume, can be calculated using the method 

outlined by LAFFITE et al. (2013). In this study, similar to the method employed by 
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DUFAL et al. (2014), 𝐾𝑘𝑙𝑎𝑏is approached as an estimated parameter.  Iijklab, also known 

as the association kernel, is the association integral for a Lennard-Jones monomer. It is 

expressed as a temperature-density polynomial correlation, derived from molecular 

simulations: 

Iijklab =∑ ∑ 𝑐𝑝𝑞(𝜌𝜎𝑥
3)𝑝 (

kbT

𝜀�̅�𝑗
)

𝑞10−𝑝

𝑞

10

𝑝
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3.3. Automatic Differentiation  

Differentiation is an essential practice in thermodynamics, particularly in 

problems involving minimization. These derivatives are crucial for use in Newton-based 

programs that perform phase equilibrium and other process engineering calculations.  

There are four main methodologies for computing derivatives in chemical process 

calculations. The first methodology involves manually deriving expressions and hard-

coding the derivatives. This approach is the most straightforward and likely demands 

the least computational effort and time. Moreover, it is not subject to truncation errors. 

However, this method becomes increasingly complicated as the complexity of the 

function increases, making it more prone to human error. Furthermore, not all 

derivatives will have analytical expressions. This is because modeling results are often 

obtained as implicit solutions of complex systems of linear or non-linear equations, 

which do not allow for explicit and closed derivation of model results in relation to 

parameters or state variables. 

Another alternative for obtaining derivatives is numerical derivation. This 

methodology is also straightforward and is the simplest among them. This is because it 

does not require any specific extra coding for each function. In fact, it utilizes the finite 

difference approximation using values of the original function evaluated at points near 

where we want to derive. For example, we can approximate the derivative of a function 

of one variable 𝑓(𝑥) using a center difference approximation: 

𝜕𝑓(𝑥)

𝜕𝑥
≅
𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)

2ℎ
 3-90 
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where ℎ is a small step value. Note that implementing this derivative is quite 

simple, but requires the function to be evaluated at least twice. For greater accuracy in 

the derivative value, the function must be evaluated at more points. Moreover, this is 

the case of a function with only one variable that returns a scalar. For a function 𝑓: Rn 

→ Rm, computing the Jacobian matrix of 𝑓 would require at least 2mn evaluations.  

Truncation errors occur when an infinite process (like a series) is 'truncated' or 

cut short to make calculations feasible. In the context of numerical differentiation, 

truncation errors arise when we approximate the derivative using discrete intervals (like 

h). The smaller the interval, the closer the approximation to the true derivative, but only 

to a certain extent. Rounding errors, on the other hand, are due to the limited precision 

of numerical representation in computers. As h becomes very small, the difference 

between 𝑓(𝑥 + ℎ) and 𝑓(𝑥 − ℎ) can become comparable to the precision limit of the 

computer, leading to significant rounding errors. This creates a trade-off in choosing h: 

while a smaller h reduces truncation error, it increases rounding error, and vice versa. 

Balancing these errors is crucial for achieving accurate numerical differentiation. 

To elucidate this challenge in numerical differentiation, consider the modeling 

of methane gas at a temperature of 25°C and with density of 40mol/m3 using PC-SAFT. 

The compressibility factor (Z), can be derived from the residual Helmholtz free energy 

as a function of density. The Z is defined by the following relationship: 

𝑍(𝜌, T) = 1 + 𝜌
𝜕

𝜕𝜌
(
𝐴𝑟𝑒𝑠(𝜌, T)

NkBT
) 3-91 

 

This formulation entails computing the partial derivative of the residual 

Helmholtz free energy with respect to density. 

Figure 1 provides a visual representation of the variation in computational error 

for the compressibility factor using the centered difference method for numerical 

differentiation at 𝜌 = 40mol/m3. The graph plots the error magnitude against the step 

size (ℎ) and illustrates a clear trend of decreasing error with diminishing step size until 

a critical threshold is reached, beyond which the error sharply increases. In practice, a 

step size that is too large leads to high truncation errors, while a step size that is too 

small results in rounding errors due to finite numerical precision in computer 



47 

 

calculations. The red line shows the automatic differentiation (AD) error for 

comparison, which will be explained later. 

 

Figure 1: Error in center difference (Equation 3-90) approximations as a function of step 

size (h), for the calculation of Z (Equation 3-91) using derivative of 𝐴𝑟𝑒𝑠. Plotted errors 

are computed using the deviation from symbolically calculated Z at T = 25°C and  𝜌 = 

40mol/m3. 

Symbolic computation is the third methodology for calculating derivatives. This 

method essentially automates the manual differentiation process, utilizing computer 

programs to perform mathematical operations with symbols that represent values. These 

programs manipulate expressions, automatically applying transformation rules that 

correspond to the principles of differentiation. As a result, the process of differentiating 

an expression tree becomes a streamlined, mechanical task, well-suited for automation, 

and eliminates the need for repetitive manual calculations. 

This approach mitigates the errors inherent in numerical derivation by enabling 

the computation of derivatives with the precision afforded by computer calculations. 

However, it is not without its challenges. A prevalent issue in symbolic computation is 
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"expression swell." This phenomenon occurs when the expressions for derivatives 

become significantly larger than the original expressions. This is often a result of certain 

differentiation rules, such as the product rule, which naturally lead to duplicated 

expressions. For instance, consider the recurrence relation known as the logistic map, 

depicted in Table 2, Taken from BAYDIN et al., 2018. 

Table 2: illustration on the progression of derivatives calculated using symbolic 

computation, specifically through the example of the logistic map. This table showcases 

how derivatives evolve from simple expressions to significantly more complex forms 

due to expression swell, a common challenge in symbolic differentiation.  

𝒏 𝒍𝒏 𝝏

𝝏𝒙
𝒍𝒏  

𝝏

𝝏𝒙
𝒍𝒏 (simplified) 

1 𝑥 1 1 

2 4𝑥(1 −  𝑥) 4(1 −  𝑥)  −  4𝑥 4 −  8𝑥 

3 16𝑥(1 −  𝑥) 

(1 −  2𝑥)2 

16(1 −  𝑥)(1 −  2𝑥)2  

− 16𝑥(1 −  2𝑥)2  

− 64𝑥(1 −  𝑥)(1 −  2𝑥) 

16(1 −  10𝑥 +  24𝑥2  

− 16𝑥3 ) 

4 64𝑥(1 −  𝑥) 

(1 −  2𝑥)2 

 (1 −  8𝑥 +  8𝑥2 )2 

128𝑥(1 − 𝑥)(−8 +  16𝑥) 

(1 −  2𝑥)2(1 − 8𝑥 +  8𝑥2) 

+64(1 −  𝑥) 

(1 − 2𝑥)2(1 − 8𝑥 +  8𝑥2 )2 

−64𝑥(1 −  2𝑥)2  

(1 −  8𝑥 + 8𝑥2)2 

−256𝑥(1 − 𝑥)(1 − 2𝑥) 

(1 − 8𝑥 + 8𝑥2)2 

64(1 −  42𝑥 +  504𝑥2  

− 2640𝑥3  +  7040𝑥4 

 − 9984𝑥5  +  7168𝑥6  

− 2048𝑥7) 

 

When n is 1 or 2, the derivative's expression remains relatively simple. However, 

as further derivatives are taken, the resulting expression exponentially increases in size. 

Regularly applying simplification algorithms during differentiation can help manage 

expression swell. These algorithms identify and remove redundant terms, factor 

expressions, and perform other algebraic simplifications. Simplifying expressions for 

polynomials to match the size of the original function may be straightforward, as 

demonstrated in the third column of the Table 2. However. This kind of simplification 

is not always applicable for other types of expressions. This can be exemplified by the 
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softplus ReLu function, which is commonly used as an activation function in neural 

networks: 

𝑓(𝑥;𝑤, 𝑏) = log(1 + 𝑒𝑤𝑥+𝑏) 3-92 

 

Where 𝑥 is the input, 𝑏 is the bias and 𝑤 is the weight. When training a neural 

network, the derivative of the activation function is calculated concerning the weighted 

input, where the goal is to update the weights and the bias in the network to minimize 

the loss function. Let's consider a simple neural network with two layers (input layer 

and output layer) and one neuron in each layer. The final output would be: 

𝑔(𝑥;𝑤1, 𝑤2, 𝑏1, 𝑏2) = log(1 + 𝑒
𝑤2 log(1+𝑒

𝑤1𝑥+𝑏1)+𝑏2 ) 3-93 

 

The first derivative of this function in relation to the second weight in a neural 

network with merely two layers results in a large expression: 

𝜕𝑔

𝜕𝑤2
=
𝑒𝑏2(𝑒𝑏1 + 𝑥 𝑤1 +  1)𝑤2 log(𝑒𝑏1 + 𝑥 𝑤1 +  1)

𝑒𝑏2(𝑒𝑏1 + 𝑥 𝑤1 +  1)𝑤2 +  1
 3-94 

 

Where the subscript represents the layer of the neural network. As the 

complexity of the functions involved increases, the symbolic representation of 

derivatives demands significantly more memory. Given that neural network 

architectures commonly comprise dozens of layers, this method of differentiation 

becomes impractical. 

Furthermore, symbolic differentiation only works in the functions that are 

expressed in closed forms, which restricts the ability to work with control flow 

mechanisms, such as conditionals or loops.  

The final methodology explored here is automatic differentiation (AD). AD 

computes derivatives with precision comparable to symbolic differentiation but operates 

directly on the program of interest. Unlike producing an expression for the derivative, 

automatic differentiation yields the numerical value of the derivative. AD transforms a 

program that calculates numerical values of a function into one that computes numerical 
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values of the function's derivatives. The core mechanism of AD involves converting the 

text of a program into the text of a transformed program that computes the desired 

derivative values. It accomplishes these calculations by systematically employing the 

chain rule from elementary calculus to floating-point numerical values, bypassing the 

need for manipulation of symbolic expressions. This process inherently involves 

decomposing complex functions into elementary operations for which the derivatives 

are known. These operations include basic arithmetic (addition, subtraction, 

multiplication, division) and elementary functions (exponential, logarithmic, sine, 

cosine, etc.).  

In the realm of AD, the computation of a function is approached by establishing 

an evaluation trace. The evaluation trace is essentially a step-by-step breakdown of the 

computational process, listing each elementary operation, the sequence of intermediate 

variables generated, and the operations that compute them. This process is not merely a 

replication of the function's computational graph but an enhancement of it, incorporating 

derivative computation simultaneously. To Illustrate this, let's consider the simple 

function taken from MARGOSSIAN (2019): 

𝑓(𝑥, 𝑦, 𝑧) = −
1

2
 (
𝑦 − 𝑥

𝑧
)
2

− log(𝑧) −
1

2
log(2𝜋) 3-95 

 

We aim to compute the derivatives of 𝑓 with respect to 𝑥. First, let’s see how the 

computer execute the sequence of operations for 𝑓 when 𝑥 = 5, 𝑦 = 10 and z = 2 in the 

Table 3: 
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Table 3: Forward Mode Automatic Differentiation of 𝑓(𝑥, 𝑦, 𝑧) = −
1

2
 (
𝑦−𝑥

𝑧
)
2

−

log(𝑧) −
1

2
log(2𝜋). This table demonstrates the process of forward mode AD for the 

function 𝑓, evaluated at the point (5,10,2) with the objective of computing  
𝜕𝑓

𝜕𝑥
 . The table 

is structured into two sections: the left side detailing the primal calculations and the right 

side outlining the corresponding derivative operations. 

Variables Numerical value  Variables Numerical value 

𝑣1 𝑦 10 𝑣1
′  

𝜕𝑣1
𝜕𝑣2

 0 

𝑣2 𝑥 5 𝑣2
′  

𝜕𝑣2
𝜕𝑣2

 1 

𝑣3 𝑧 2 𝑣3
′  

𝜕𝑣3
𝜕𝑣2

 0 

𝑣4 𝑣1  −  𝑣2 5 𝑣4
′  

𝜕𝑣4
𝜕𝑣1

𝑣1
′  +

𝜕𝑣4
𝜕𝑣2

𝑣2
′   0 + (−1) × 1 = −1 

𝑣5 𝑣4/𝑣3 2.5 𝑣5
′  

𝜕𝑣5
𝜕𝑣4

𝑣4
′  +

𝜕𝑣5
𝜕𝑣3

𝑣3
′  

1

2
(−1) + 0 = −0.5 

𝑣6 𝑣5
2 6.25 𝑣6

′  
𝜕𝑣6
𝜕𝑣5

𝑣5
′    2 × 2.5(−0.5) = −2.5 

𝑣7 −0.5𝑣6 −3.125 𝑣7
′  

𝜕𝑣7
𝜕𝑣6

𝑣6
′   −0.5 (−2.5) =  1.25 

𝑣8 𝑙𝑜𝑔(𝑣3) 
𝑙𝑜𝑔(2) =

 0.30103   
𝑣8
′  

𝜕𝑣8
𝜕𝑣3

𝑣3
′   0 

𝑣9 𝑣7 −  𝑣8 
3.125 − 0.30103

= 2.82397 
𝑣9
′  

𝜕𝑣9
𝜕𝑣7

𝑣7
′  +

𝜕𝑣9
𝜕𝑣8

𝑣8
′  1 ×  1.25 +  0 =  1.25 

𝑣10 
𝑣9  

−  0.5 log(2𝜋) 

2.82397 −  0.5𝑙𝑜𝑔(2𝜋)

=  2.4248 
𝑣10
′  

𝜕𝑣10
𝜕𝑣9

𝑣9
′   1.25 

 

The evaluation trace, presented in Table 3, methodically lists a sequence of 

distinct mathematical variables, each representing specific functions and their respective 

numerical values. For each variable 𝑣𝑖 in this sequence, we compute the derivative with 

respect to an independent variable, 𝑥, by accompanying a corresponding derivative 

variable, 𝑣𝑖
′ =

𝜕𝑣𝑖

𝜕𝑥
. This derivative computation is known as Forward mode, and 

efficiently executed by systematically applying the chain rule at each step of the trace. 

Additionally, it's important to note that another mode of AD, Reverse mode, exists 

which calculates derivatives in a different manner, backpropagating from the output to 
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the inputs. However, we are not using this mode in our work, primarily because it is not 

suitable for our needs. Specifically, we utilize JAX (just after execution) for computing 

differentials, and its reverse mode is incompatible with loops, which are used in the 

association calculation involved here. JAX is a Python library designed for high-

performance numerical computation and machine learning research. Note that JAX has 

a JIT compiler (just-in-time compiler) that automatically compiles the python code into 

low level instructions to obtain performance similar to c/c++/fortran for the 

thermodynamic models while developing applications in python environments as 

parameter estimation and plotting. 

A key aspect of this approach is the unique definition and consistent retention of 

values for each mathematical variable. This practice ensures computational efficiency 

by avoiding redundant evaluations of subexpressions, allowing their computed results 

to be reused throughout the process. This strategy distinguishes this methodology from 

symbolic differentiation. 

To calculate the value of the function and its derivative while simultaneously 

enhancing the efficiency of AD, we employ operator overloading. This technique 

involves redefining and extending basic arithmetic operations, which typically only 

work with simple numerical values, to operate with a different object that encapsulates 

both the function's value and its derivative. These objects are often implemented as data 

structures or classes in programming languages, capable of storing and operating on 

multiple pieces of related data. 

A particular methodology of automatic differentiation where operator 

overloading is applied is with dual numbers. Dual numbers are objects, like a tuple for 

instance, that carry the information of both values and derivatives of a function. We can 

understand how a dual number functions through an analogy with complex numbers. 

Just as a complex number has its imaginary part tied to an "i", dual numbers have their 

dual part tied to a new term: "ε". It then has a distinct property, where ε² = 0 but ε ≠ 0. 

Thus, a dual number x can be represented as: 

𝑥 = 𝑥0 + 𝑥1ε 3-96 
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where 𝑥0 is the real part and 𝑥1 is the dual part. Note that operations with dual 

numbers conveniently mirror the rules of symbolic differentiation. Consider, for 

example, the polynomial P(x): 

𝑃(𝑥) = 𝑎0 +∑𝑎𝑖𝑥
𝑛

𝑁

𝑛

 3-97 

 

If we apply a dual number as an argument to this polynomial, we would have: 

𝑃(𝑥0 + 𝑥1ε) = 𝑎0 +∑𝑎𝑖(𝑥0 + 𝑥1ε)
𝑛

𝑁

𝑛

 

𝑃(𝑥0 + 𝑥1ε) = 𝑎0 +∑𝑎𝑖𝑥0
𝑛

𝑁

𝑛

+ 𝑛ε𝑥1∑𝑎𝑖𝑥0
𝑛−1

𝑁

𝑛

 

3-98 

 

Note that all terms multiplied by ε with a degree greater than 1 disappear, as they 

equal zero. Consequently: 

𝑃(𝑥0 + 𝑥1ε) = 𝑃(𝑥0) + 𝑥1ε𝑃′(𝑥0) 3-99 

 

Where P' is the derivative of P. In general, any real function can be evaluated 

with the exact Taylor expansion. Also, the chain rule applies to the composition of 

functions in this representation: 

𝑓(𝑔(𝑥0 + 𝑥1𝜀)) = 𝑓(𝑔(𝑥0)) + 𝑓
′(𝑔(𝑥0))𝑔

′(𝑥0)𝑥1𝜀 3-100 

 

A generalization of this methodology for higher-order derivatives and cross 

derivatives is the hyper-dual numbers(FIKE, ALONSO, 2011). In this mechanism, 

hyper-dual numbers possess N extra dimensions, with analogous properties: 

𝜀𝑗𝜀𝑘 =
(𝑗 + 𝑘)!

𝑗! 𝑘!
𝜀𝑗+𝑘 𝑖𝑓 𝑗 + 𝑘 < 𝑁 𝑎𝑛𝑑 𝜀𝑖𝜀𝑗 = 0 𝑖𝑓 𝑗 + 𝑘 > 𝑁 3-101 

 

Where a term multiplying the 𝜀𝑖 represents the ith derivative. 
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3.4. Parameter Estimation 

In a general manner, the development of a new group utilizing the SAFT-γ Mie 

approach entails the derivation of group parameters through the use of experimental data 

as part of a parameter estimation strategy. The determination of interaction parameters 

is conducted successively, where the newly characterized group will have its parameters 

informed by those of previously established groups. Within the SAFT-γ Mie equation 

of state framework, each functional group is considered independent of its position 

within the molecule, thereby ensuring that interactions between groups remain constant 

and, hence, are transferable across different systems. 

In this study, the interaction parameters for both like and unlike interactions of 

two novel groups were estimated. Prior to the estimation, these new groups were 

defined. The first group, referred to as "cNcCO," represents an alkylated cyclic amide, 

in which both the nitrogen and the carbonyl components are part of the ring structure. 

The selection of this group was made following the approach of GMEHLING et al. 

(2002), who estimated the parameters for several groups, including this type of amide, 

within the UNIFAC model framework. Gmehling et al. noticed a significant difference 

in polarity among amides, whether cyclic, aliphatic, monoalkylated, or dialkylated, 

indicating that a single group encompassing multiple amide types would not yield 

satisfactory thermodynamic property predictions. 

The Figure 1, provides an illustrative representation of the groups present in the 

NMP molecule, including the “cNcCO” group, colored as orange: 

 

Figure 2: Stick figure and SAFT-γ Mie molecular modelling of N-Methyl-2-

Pyrrolidone. This molecule is modelled by a combination of one CH3, three cCH2 and 
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one cNcCO group. Association sites are denoted by the smaller black circles, labelled 

e for electronegative (acceptor) sites. 

For the parameter estimation of this group, liquid-vapor equilibrium data 

involving binary mixtures with N-Methyl-2-Pyrrolidone (NMP) and the saturation 

pressure data of NMP were utilized. The first objective function to be minimized was 

defined as: 

min
Ω
𝐹𝑜𝑏𝑗1 =  (‖(

�̅�𝑉𝐿𝐸0
𝑒𝑥𝑝 − �̅�𝑉𝐿𝐸0

𝑐𝑎𝑙𝑐 (Ω̅)

�̅�𝑉𝐿𝐸0
𝑒𝑥𝑝 )‖ + ‖(

�̅�1𝑉𝐿𝐸0
𝑒𝑥𝑝 − �̅�1𝑉𝐿𝐸0

𝑐𝑎𝑙𝑐 (Ω̅)

�̅�1𝑉𝐿𝐸0
𝑒𝑥𝑝 )‖)

𝜔0
𝑁𝑉𝐿𝐸0

+ (‖(
�̅�𝑉𝐿𝐸1
𝑒𝑥𝑝 − �̅�𝑉𝐿𝐸1

𝑐𝑎𝑙𝑐 (Ω̅)

�̅�𝑉𝐿𝐸1
𝑒𝑥𝑝 )‖

+ ‖(
�̅�1𝑉𝐿𝐸1
𝑒𝑥𝑝 − �̅�1𝑉𝐿𝐸1

𝑐𝑎𝑙𝑐 (Ω̅)

�̅�1𝑉𝐿𝐸1
𝑒𝑥𝑝 )‖)

𝜔1
𝑁𝑉𝐿𝐸1

+ ‖(
�̅�𝑉𝐿𝐸2
𝑒𝑥𝑝 − �̅�𝑉𝐿𝐸2

𝑐𝑎𝑙𝑐 (Ω̅)

�̅�𝑉𝐿𝐸2
𝑒𝑥𝑝 )‖

𝜔2
𝑁𝑉𝐿𝐸2

+ ‖(
�̅�𝑠𝑎𝑡
𝑒𝑥𝑝 − �̅�𝑠𝑎𝑡

𝑐𝑎𝑙𝑐(Ω̅)

�̅�𝑠𝑎𝑡
𝑒𝑥𝑝 )‖

𝜔3
𝑁𝑠𝑎𝑡

− 𝜔4 ∑ min(Ωi − Ωi
min; 0)

𝑁𝑝𝑎𝑟

𝑖

 

3-102 

 

Where ‖�̅�‖ is the euclidean norm of vector �̅�, which is mathematically expressed 

as √∑ 𝑥𝑖
2

𝑖 . The term 𝑉𝐿𝐸 specifically denotes vapor-liquid equilibrium data, 

distinguished by 𝑉𝐿𝐸0 and 𝑉𝐿𝐸1, which encompasses compositional information of 

both phases, in contrast to the 𝑉𝐿𝐸2 that solely pertains to the liquid phase composition. 

The 𝑉𝐿𝐸0 refers to isothermal data, while 𝑉𝐿𝐸1 category refers to isobaric data. The 

computational determination of the vapor composition and the phase equilibrium 

pressure or temperature employs the bubble point algorithms as mentioned in section 

2.2.1. The variable 𝑁 represents the aggregate number of data points for each molecule. 

This methodology ensures equitable error distribution across each binary system by 

normalizing against the respective experimental data points, thereby mitigating biases 

towards any particular molecule arising from discrepancies in the volume of available 

data. The last part of the equation is used to prevent the parameters, symbolized by Ω, 
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to go under a threshold limit, Ωmin , by penalizing the objective function if so. 𝑁𝑝𝑎𝑟 here 

represents total number of parameters adjusted. 

The weighting of each category of data, denoted by 𝜔, was determined through 

empirical methods. Notably, the saturation pressure of NMP was accorded to have 

greater significance within the objective function in comparison to the binary data. This 

prioritization is justified by the observation that the vector of parameters, which exerts 

a more pronounced influence on the objective function as the mole fraction of NMP 

increases - NMP being the sole molecule characterized by the “cNcCO” group. In 

scenarios where the mole fraction of NMP approaches zero within a binary mixture, the 

error attributed to the objective function tends towards a constant value. This is 

attributable to the prediction of the second component properties relying solely on the 

parameters already established. In light of this consideration, the 𝜔3 was set to 100. The 

weights 𝜔1, 𝜔2 and 𝜔3 were assigned the value 1, while the 𝜔4 was set to 100000. 

The initial step in the minimization involved selecting certain parameters to be 

fixed. It was decided that a single sphere would suffice to represent this group ( 

𝜈𝑐𝑁𝑐𝐶𝑂
∗ = 1 ). The repulsion potential exponent was fixed at 6, similar to the majority of 

other groups ( 𝜆𝑐𝑁𝑐𝐶𝑂
𝑎 = 6 ). Additionally, this group was assigned a single association 

site, formed by a pair of electrons ( 𝑁𝑠𝑡𝑐𝑁𝑐𝐶𝑂 = 1 and 𝑒1 = 2). 

The second group, termed "cNCO," represents an alkylated cyclic amide where 

only the nitrogen is part of the ring. The Figure 2, provides an illustrative representation 

of the groups present in the praziquantel molecule, including the “cNcCO” and the 

“cNCO” groups, colored as orange and green, respectfully: 
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Figure 3 Stick figure and SAFT-γ Mie molecular modeling of Praziquantel. This 

molecule is modeled by a combination of nine cCH2, two cCH, four aCH, two aC, one 

cNcCO group and one cNCO group. Association sites are denoted by the smaller black 

circles, labeled e for electronegative (acceptor) sites. 

Solubility data of praziquantel in various solvents were employed for the 

estimation of this group's parameters. The second objective function to be minimized 

was defined as: 

min
Ω
𝐹𝑜𝑏𝑗2 = (‖(

�̅�𝑠𝑎𝑡
𝑒𝑥𝑝 − �̅�𝑠𝑎𝑡

𝑐𝑎𝑙𝑐(Ω)

�̅�𝑠𝑎𝑡
𝑒𝑥𝑝 )‖) 3-103 

 

Where ‖�̅�‖ is the euclidean norm of vector �̅�, which is mathematically expressed 

as √∑ 𝑥𝑖
2

𝑖 . The term 𝑠𝑎𝑡 specifically denotes the solubility, or in other terms, the 

saturation of the Praziquantel in the liquid phase with different solvents. These 

predictions were made as presented in the Equations 2-35 in Section 2.2.3. 

The initial step in the minimization was analogue to the first group. It was 

decided that two spheres could represent this group ( 𝜈𝑐𝑁𝑐𝐶𝑂
∗ = 2 ), the repulsion 

potential exponent was fixed at 6 ( 𝜆𝑐𝑁𝑐𝐶𝑂
𝑎 = 6 ), and this group was assigned a single 

association site, formed by a pair of electrons ( 𝑁𝑠𝑡𝑐𝑁𝑐𝐶𝑂 = 1 and 𝑒1 = 2). 

A heuristic approach was adopted for parameter estimation to isolate 

contributions to the Helmholtz free energy from interactions between groups, thereby 

facilitating the objective function's minimization. Starting with the cNcCO group, the 

like parameters within the group, namely 𝜎𝑐𝑁𝑐𝐶𝑂,𝑐𝑁𝑐𝐶𝑂, 𝑆𝑐𝑁𝑐𝐶𝑂, 𝜀𝑐𝑁𝑐𝐶𝑂,𝑐𝑁𝑐𝐶𝑂, and 



58 

 

𝜆𝑐𝑁𝑐𝐶𝑂,𝑐𝑁𝑐𝐶𝑂
𝑟  along with the unlike parameters of this new group with other groups 

present in NMP, i.e., 𝜀𝐶𝐻3,𝑐𝑁𝑐𝐶𝑂 and 𝜀𝑐𝐶𝐻2,𝑐𝑁𝑐𝐶𝑂 were estimated using only the saturation 

pressure data of pure NMP. This was achieved through the Particle Swarm Optimization 

(PSO) algorithm. This minimum served as the initial guess for the next step. All 

subsequent steps utilized the NELDER-MEAD algorithm. This procedure of using the 

previous result as the initial guess for the next step was repeated until the final 

estimation. The Unlike parameters between cNcCO and the remaining groups present 

in the molecules of the available VLE data, which do not associate, including 𝜀𝐶𝐻3,𝑐𝑁𝑐𝐶𝑂 

and 𝜀𝑐𝐶𝐻2,𝑐𝑁𝑐𝐶𝑂, were estimated/reestimated. This step was crucial as mixtures involving 

a nonpolar molecule, such as hexane, could only be described with the combination 

parameters between the new group and CH3 and CH2 groups, unlike a mixture with 

butanol, which would also be described by the association parameters with the CH2OH 

group, making the adjustment easier. Subsequently, the association parameters between 

the new group and the associative groups present in the experimental data were 

estimated individually. In the final stage, all parameters were reestimated together. 

The second group, cNCO, the like parameters within the group, along with the 

unlike parameters of this new group with other groups present in the Praziquantel and 

hexane were estimated first using the Particle Swarm Optimization (PSO) algorithm. 

Similar to the other procedure, this minimum served as the initial guess for the next step 

and this was repeated. All subsequent steps utilized the NELDER-MEAD algorithm. 

The Unlike parameters between cNCO and the remaining groups present in the 

molecules of the available VLE data, which do not associate, were 

estimated/reestimated. Subsequently, the association parameters between the new group 

and the associative groups present in the experimental data were estimated individually. 

In the final stage, all parameters were reestimated together. 

Finally, the binary interaction parameters (𝑘𝑖𝑗) for the PC-SAFT model were 

refined through an optimization process utilizing an objective function akin to the one 

employed for the second group parameter estimation. The keys distinction in this stage 

lies in the focus on optimizing the 𝑘𝑖𝑗 values rather than the group parameters 

themselves and the use of the Equation 2-34 detailed in section 2.2.2. The optimization 

of the 𝑘𝑖𝑗 parameters was conducted in a single iterative stage, starting with an initial 
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assumption of 𝑘𝑖𝑗=0, thereby streamlining the parameter estimation process to 

efficiently enhance the model's predictive accuracy for solubility. 

4. Results and Discussion 

This section presents tables that delineate the estimated parameters for SAFT-γ 

Mie for both like and unlike group interactions, as well as the binary interaction 

parameters for PC-SAFT. It evaluates the accuracy of SAFT-γ Mie in describing 

experimental data on liquid-vapor and solid-liquid equilibria, alongside the efficacy of 

PC-SAFT in characterizing experimental data on solid-liquid equilibria for the 

constituents considered within this work. Furthermore, this section predicts the 

saturation pressure of N-Cyclohexyl-2-pyrrolidinone utilizing SAFT-γ Mie, despite 

being omitted from the parameter estimation process. The regression of group 

parameters took into account the phase equilibria of NMP and PZQ with various 

solvents. Tables 4 and 5 show the specific values for both like and unlike parameters for 

the groups under discussion. 

Table 4: Group-Specific parameters within the SAFT-γ Mie framework for the groups 

considered in this work. Values marked with a CR are calculated using combining rules. 

 

Group k Group l 
𝜺𝒌𝒍
𝒌𝒃𝑻

 𝝀𝒌𝒍
𝒓  Site a on group k Site b on group l 

𝜺𝒌𝒍𝒂𝒃
𝒌𝒃𝑻

 
𝑲𝒌𝒍𝒂𝒃

Å𝟑
 

cNcCO CH3 455.072 14.3919 - - - - 

cNcCO CH2 488.016 16.4870 - - - - 

cNcCO CH3COCH3 514.972 CR - - - - 

cNcCO [CH2][OCH2] 453.280 CR - - - - 

cNcCO [CH3][OCH2] 157.046 CR - - - - 

cNcCO cCH2 514.624 CR - - - - 

cNcCO CH2OH CR CR e1 H 2082.45 208.854 

cNcCO CHOH CR CR e1 H 76.5681 122803 

cNcCO CH3OH CR CR e1 H 2689.52 40.3398 

cNcCO COOH CR CR e1 H 4737.58 6.06928 

cNcCO H2O 450.885 CR e1 H 2643.55 39.8381 

cNCO CH3 78.3501 CR - - - - 

cNCO CH2 823.014 CR - - - - 

cNCO CH3COCH3 716.484 CR - - - - 

cNCO [CH2][OCH2] 748.474 CR - - - - 

cNCO cNcCO 1217.06 CR - - - - 

cNCO COO 889.494 CR - - - - 

cNCO CH3CO 755.784 CR - - - - 

cNCO CH2OH 690.740 CR e1 H 13.1408 900760 

cNCO CHOH 1065.54 CR e1 H 2757.22 8.764696 

cNCO CH3OH CR CR e1 H 30.2431 930735 



60 

 

 

Table 5: Group parameters for the functional groups cNcCO and cNCO within the 

SAFT-γ Mie framework. 

group 𝝂∗ 𝑺𝒌 𝝈𝒌𝒌 𝜺𝒌𝒌 𝝀𝒌𝒌
𝒓  𝝀𝒌𝒌

𝒂  𝑵𝒔𝒕𝒌 𝒏𝑯𝒌 𝒏𝒆𝟏𝒌 𝒏𝒆𝟐𝒌 

cNcCO 1 0.998062 3.59719 753.120 13.7703 6 1 0 2 0 

cNCO 2 0.75517 2.24814 1403.96 15.5354 6 1 0 2 0 

 

As previously discussed, the Mie potential offers a significant advantage by 

allowing the modification of the interaction potential between segments through 

adjustments in the dispersive energy values and the repulsive and attractive exponents, 

as well as their intergroup combinations. This flexibility facilitates the detailed capture 

of interaction characteristics essential for accurately describing thermodynamic 

properties. However, employing a greater number of parameters in the regression 

process—specifically, estimating more unlike group combination parameters instead of 

calculating them—increases the risk of overfitting. Such overfitting can diminish the 

model's predictive accuracy. Therefore, a conscious strategy was adopted to minimize 

the number of unlike parameters in the regression, initially opting to keep the minimum 

number of unlike parameters with an acceptable error. The parameters utilized in this 

study are presented in Figure 3, with color coding to indicate their derivation: parameters 

estimated in this work are marked in green, those previously published are in blue 

(BURGER et al., 2015, DUFAL et al., 2014, FEBRA et al., 2021, FERNANDES, 2023, 

HASLAM et al., 2020, HUTACHAROEN et al., 2017, PAPAIOANNOU et al., 2016, 
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PAPAIOANNOU et al., 2014, SADEQZADEH et al., 2016), and orange denotes the 

use of combining rules. 

 

Figure 4: Groups Developed needed for use within the SAFT-γ Mie Approach applied 

to NMP and PZQ. The green shading indicates the intergroup interaction parameters 

estimated in this work, the blue shading indicates parameters estimated in previous 

works, while the orange shading indicates the unlike interaction parameters predicted 

using the combining rules. 

4.1. Vapor-Liquid Equilibria 

For the evaluation of liquid-vapor equilibria involving NMP or analogous 

molecules via the SAFT-γ Mie methodology, it is imperative to integrate the novel group 

parameters introduced in this study, specifically cNcCO, along with its detailed unlike 

interactions as cataloged in Tables 5 and 4. These parameters should be integrated with 

inter-group interactions documented in prior research. The outcomes of the saturation 

pressure calculations for pure NMP, alongside with experimental data sourced from the 

National Institute of Standards and Technology (NIST) database, are exhibited in Figure 

4. The comparison between the predicted and experimental data underscores a high level 

of agreement, with the SAFT-γ Mie model achieving an average absolute relative 
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deviation (AARD) of 2.26% for this compound, highlighting the model's efficacy in 

replicating experimental findings.  

 

Figure 5. Saturation Pressure of NMP. The blue line illustrates the properties calculated 

using SAFT-γ Mie model, while the points repres  ent experimental data taken from 

NIST database. 

To evaluate the SAFT-γ Mie model's predictive power, the saturation pressure 

curve for N-Cyclohexyl-2-pyrrolidinone was computed and assessed. The outcomes of 

this analysis, alongside with experimental data from the NIST database, are depicted in 

Figure 5. This comparison shows an AARD of 9.59% for this compound. Despite this 

deviation, the relatively low AARD underscores the model's ability to make highly 

accurate predictions without necessitating additional fitting of unlike group parameters. 

It is important to note, however, that the experimental data presented in the figure 

exhibits some uncertainty in the reported physical property. The saturation curve 

appears to follow different trajectories for each set of experimental data, suggesting a 

high variance among the data points. This observation highlights potential 

inconsistencies within the experimental measurements, which may impact the 

interpretation of the model's predictive accuracy. Despite these uncertainties, the 

model's robustness in extrapolating to compounds not directly included in the parameter 

estimation phase is confirmed.  

Vapor Pressure of NMP 



63 

 

 

Figure 6: Saturation Pressure of N-Cyclohexyl-2-pyrrolidinone. The blue line illustrates 

the properties calculated using SAFT-γ Mie model, while the blue points represent 

experimental data taken from NIST database. 

Tables 6, 7, and 8 present a comparison of the VLE correlation outcomes for 28 

distinct binary mixtures involving NMP against experimental data, employing the 

SAFT-γ Mie methodology. The interaction parameters deduced in this section are 

shown to accurately reflect the fluid phase behavior of the mixtures incorporated into 

the regression analysis. However, one exception is noted in the VLE behavior of the 

NMP + dodecane mixture. For this specific combination, the SAFT-γ Mie model 

forecasts a vapor-liquid-liquid equilibrium (VLLE) region, a prediction that diverges 

from the observed experimental data as presented in Figure 7. This anomalous behavior 

can be elucidated by considering the inherent limitations of the EOS when applied to 

large molecules. As discussed by PAPAIOANNOU (2012), while the SAFT-γ Mie 

model provides a robust framework for predicting the behavior of complex mixtures, its 

accuracy might decrease for larger molecules, such as dodecane, particularly in 

predicting vapor pressures and handling compounds with significant polar interactions. 

The discrepancy in the prediction of the NMP + dodecane mixture's behavior 

underscores the importance of acknowledging and addressing the model's constraints, 

particularly in the context of mixtures involving large hydrocarbon molecules. This 

insight points to the necessity for further refinement of the model or the adoption of 

Vapor Pressure of N-Cyclohexyl-2-pyrrolidinone 
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complementary approaches when dealing with compounds exhibiting a wide range of 

molecular sizes to enhance the accuracy of predictions across all types of mixtures. 

Table 6: Average absolute relative deviation (AARD) for bubble pressure (Δ𝑃𝐵𝑢𝑏𝑏𝑙𝑒) 

calculations, alongside temperature range (
𝑇𝑚𝑖𝑛

𝐾
 to 

𝑇𝑚𝑎𝑥

𝐾
), pressure range (

𝑃𝑚𝑖𝑛

𝑘𝑃𝑎
 to 

𝑃𝑚𝑎𝑥

𝑘𝑃𝑎
), 

and the number of experimental data points (N), for vapor-liquid equilibrium (VLE) 

studies of N-Methyl-2-Pyrrolidone (NMP) with various solvents. Calculations were 

performed using the SAFT-γ Mie Equation of State. 

2nd 

Component 

AARD (%) 

𝚫𝑷𝑩𝒖𝒃𝒃𝒍𝒆 

𝑻𝒎𝒊𝒏
𝑲

 
𝑻𝒎𝒂𝒙
𝑲
  

𝑷𝒎𝒊𝒏
𝒌𝑷𝒂

 
𝑷𝒎𝒂𝒙
𝒌𝑷𝒂

 
N 

Ethanol 4.90 333.15 333.15 2.16 4.53 20 

Methanol 1.04 333.15 393.19 2.69 640.52 40 

Propanol 3.88 333.15 333.15 0.78 19.78 24 

Ethane 9.59 263.20 393.20 101.30 7127.0 53 

Propane 15.68 263.11 328.10 23.47 815.00 25 

Hexane 1.58 342.83 363.58 9.22 192.72 56 

Heptane 0.60 292.88 371.62 1.50 99.86 49 

Cyclohexane 1.03 333.18 354.20 18.04 97.43 37 

Acetone 1.89 333.15 333.15 28.60 95.70 9 

Benzene 1.69 292.65 364.43 1.65 100.26 42 

Toluene 2.10 313.15 436.81 0.79 101.32 46 

Isopentane 6.87 363.55 363.55 181.70 546.40 13 

Water 1.30 380.24 351.01 1.58 129.91 82 

2-propanol 1.39 353.15 454.25 11.10 111.70 55 

2-butanol 1.75 373.15 468.35 9.10 104.10 20 

Isobutanol 4.91 382.55 465.65 95.30 95.30 8 

Isoamyl 1.66 403.85 465.65 95.30 95.30 8 
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Table 7: Average absolute relative deviation (AARD) for bubble pressure (Δ𝑃𝐵𝑢𝑏𝑏𝑙𝑒) 

and vapor phase composition (𝛥𝑦1) calculation, alongside temperature range (
𝑇𝑚𝑖𝑛

𝐾
 to 

𝑇𝑚𝑎𝑥

𝐾
), pressure range (

𝑃𝑚𝑖𝑛

𝑘𝑃𝑎
 to 

𝑃𝑚𝑎𝑥

𝑘𝑃𝑎
), and the number of experimental data points (N), for 

vapor-liquid equilibrium (VLE) studies of N-Methyl-2-Pyrrolidone (NMP) with various 

solvents. Calculations were performed using the SAFT-γ Mie Equation of State. 

2nd Component 
AARD 

(%) 𝚫𝑷𝑩𝒖𝒃𝒃𝒍𝒆 
AARD 

(%) 𝜟𝒚𝟏 

𝑻𝒎𝒊𝒏
𝑲

 
𝑻𝒎𝒂𝒙
𝑲

 
𝑷𝒎𝒊𝒏
𝒌𝑷𝒂

 
𝑷𝒎𝒂𝒙
𝒌𝑷𝒂

 N 

Methylcyclohexane 5.65 21.82 373.25 354.15 22.73 94.9 21 

Dodecane 1.54 28.87 393.25 393.25 6.37 10.69 12 

Propanol 2.11 33.33 354.13 354.13 2.46 47.55 9 

Hexanol 0.96 22.94 393.32 351.73 1.22 23.59 19 

Cyclohexane 1.02 2.86 354.15 281.10 0.7522 97.33 51 

Benzene 1.21 7.78 354.13 281.10 0.2628 96.65 75 

Toluene 1.39 14.00 383.32 343.15 1.4 94.47 51 

Heptane 1.19 19.25 365.00 340.00 5.43 82.65 27 

Hexane 2.50 22.94 343.15 333.25 63.79 102.77 19 

2-Methyl-2-propanol 2.75 14.91 373.15 353.15 1.665 50.989 45 

Water 4.22 12.22 380.15 273.10 0.02 91.03 33 

Dibutyl ether 4.57 28.87 373.15 373.15 11.3 27.9 12 

Dipropyl ether 4.29 25.82 373.15 353.15 27 116.6 15 

 

Table 8: Average absolute relative deviation (AARD) for bubble temperature 

(Δ𝑇𝐵𝑢𝑏𝑏𝑙𝑒) and vapor phase composition (𝛥𝑦1) calculations, alongside temperature 

range (
𝑇𝑚𝑖𝑛

𝐾
 to 

𝑇𝑚𝑎𝑥

𝐾
), pressure range (

𝑃𝑚𝑖𝑛

𝑘𝑃𝑎
 to 

𝑃𝑚𝑎𝑥

𝑘𝑃𝑎
), and the number of experimental data 

points (N), for vapor-liquid equilibrium (VLE) studies of N-Methyl-2-Pyrrolidone 

(NMP) with various solvents. Calculations were performed using the SAFT-γ Mie 

Equation of State. 

2nd Component 
AARD 

(%) 𝚫𝑻𝑩𝒖𝒃𝒃𝒍𝒆 

AARD 

(%) 𝜟𝒚𝟏 

𝑻𝒎𝒊𝒏
𝑲

 
𝑻𝒎𝒂𝒙
𝑲

 
𝑷𝒎𝒊𝒏
𝒌𝑷𝒂

 
𝑷𝒎𝒂𝒙
𝒌𝑷𝒂

 N 

Butanol 0.066 3.09 446.08 339.22 10 50 43 

2-Methoxyethanol 0.114 2.72 470.71 398.19 95.3 95.3 13 

2-Ethoxyethanol 0.374 8.15 470.95 409.46 95.3 95.3 13 

Cyclohexane 0.222 10.26 418.20 355.25 101.33 101.33 11 

Benzene 0.346 6.44 448.45 355.30 101 101.33 30 

Toluene 0.225 21.37 443.65 387.15 101.3 101.32 15 

Heptane 0.092 13.56 463.80 371.55 101.33 101.33 9 

Hexane 0.378 10.42 384.40 342.00 101.3 101.33 27 

Methylcyclopentane 1.047 28.65 373.87 346.51 101.3 101.3 18 

Acetic acid 0.306 6.86 475.02 364.10 26.67 101.33 53 

Water 0.217 7.64 380.15 343.15 9.01 91.03 24 
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Figure 7: Pressure-composition relationship of the NMP + dodecane system at 393 K. 

It is provided a direct comparison between experimental data, sourced from NIST, 

represented by discrete points, and predictions obtained using the SAFT-γ Mie EOS 

depicted as a continuous line for the VLE and dashed line for the liquid-liquid 

equilibrium. 

To mitigate this kind of incoherent results, one could use the TPD algorithm to 

penalize the objective function whenever the EOS predicts different phases compared 

to experimental data. In the case discussed above, the TPD could be calculated with the 

mother phase being either liquid measured in experimental data or vapor predicted by 

the bubble point calculation. As for the incipient phase, it could be used an almost pure 

liquid composed by the most abundant component in the vapor phase or the least 

abundant component of the first liquid phase. If the TPD returns a negative value, it 

means that this second liquid reduces the Gibbs energy of the system, and therefore, is 

stable. The Equation 4-1 provides an example of a modification in the objective function 

using the TPD results as a penalty: 

Min
Ω
𝐹′𝑜𝑏𝑗1 =  𝐹𝑜𝑏𝑗1(Ω) − 𝜔5∑min(𝑇𝑃𝐷(𝑥𝑒𝑥𝑝𝑖, zguess𝑖

, Ω); 0)

𝑁𝑎𝑙𝑙

𝑖

  4-1 

 



67 

 

Where zguess is incipient liquid composition guess and 𝑁𝑎𝑙𝑙 is the total number 

of the available VLE data. For qualitative comparison purposes, this modification in the 

objective function was applied to all the mixtures containing the NMP and 

hydrocarbons. The parameters after the modification in the objective function are 

presented in tables 9 and 10. 

Table 9: Group parameters for the functional group cNcCO within the SAFT-γ Mie 

framework after the modification in the objective function. 

group 𝑺𝒌 𝝈𝒌𝒌 𝜺𝒌𝒌 𝝀𝒌𝒌
𝒓  

cNcCO 0.993818 3.63074 794.263 13.4401 

 

Table 10: Group-Specific Parameters within the SAFT-γ Mie Framework after the 

modification in the objective function. 

 

 

 

Figure 8 shows the VLE of the NMP + dodecane system after applying the 

modification in the objective function using the TPD. It can be seen that the model is 

not predicting a region with VLLE, which shows more agreement with the experimental 

data. However, the error in the calculated pressures were higher.  

Group k Group l 
𝜺𝒌𝒍
𝒌𝒃𝑻

 𝝀𝒌𝒍
𝒓  

cNcCO CH3 411.214 15.0082 

cNcCO CH2 554.844 18.5813 
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Figure 8: Pressure-composition relationship of the NMP + dodecane system at 393 K. 

It is provided a direct comparison between experimental data, sourced from NIST, 

represented by discrete points, and predictions obtained using the SAFT-γ Mie EOS 

depicted as a continuous line for the VLE. For this system, it was used the estimated 

parameters after the modification in the objective function 

In order to further evaluate the impact of the modification in the objective 

function as well as the extrapolability of the model, liquid-liquid equilibria (LLE) 

calculation was performed and compared to experimental data from NIST. Figures 9 

and 10 show the LLE of the NMP + dodecane system before and after applying the 

modification in the objective function using the TPD, respectively. In both cases the 

SAFT-γ Mie model predicts LLE even though these experimental points were not 

included in the estimation. Moreover, it can be seen that the modified parameters 

reduced the error between the experimental and the calculated temperatures. 
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Figure 9: Temperature-composition relationship of the NMP + dodecane system at 

1.013 bar. It is provided a direct comparison between experimental data, sourced from 

NIST, represented by discrete points, and predictions obtained using the SAFT-γ Mie 

EOS depicted as a dashed line for the LLE. 

 

 

Figure 10: Temperature-composition relationship of the NMP + dodecane system at 

1.013 bar. It is provided a direct comparison between experimental data, sourced from 
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NIST, represented by discrete points, and predictions obtained using the SAFT-γ Mie 

EOS depicted as a dashed line for the LLE. For this system, it was used the estimated 

parameters after the modification in the objective function 

The evaluated metrics, including the average bubble-point pressure, bubble-

point temperature, and vapor composition differences, yield AARDs of 3.175%, 0.31%, 

and 15.615%, respectively. These values indicate a high degree of accuracy in the 

model's replication of experimental data for binary mixtures. Nevertheless, it is observed 

that mixtures involving compounds like dibutyl ether or methylcyclohexane tend to 

exhibit less accurate results, with these pure components already demonstrating 

significantly poorer predictions (approximately 20%, in the case of, for example). 

Consequently, the group interaction parameters alone are insufficient to rectify the 

intrinsic errors present in previously estimated parameters. This insight suggests a 

limitation in the model's capacity to universally account for the complexities of all 

component interactions without specific adjustments or additional parameter 

estimations for certain mixtures. 

 

4.2. Solid-Liquid Equilibria  

The primary aim of this investigation was to forecast the solubility of 

praziquantel in a variety of solvents using the SAFT-γ Mie Equation of State and to 

undertake a comparative analysis with the predictions made by the PC-SAFT EoS. This 

comparison also focused on assessing their capabilities for extrapolation. The 

availability of comprehensive and reliable experimental data is critical for extending the 

modeling to pharmaceutical compounds. Given that complex molecules such as 

praziquantel tend to decompose rather than vaporize, direct data on praziquantel's 

saturation pressure are unattainable. Consequently, this study concentrated exclusively 

on binary SLE systems, with an inclusion of one case of ternary. 

A literature review was conducted to gather experimental solubility data for 

praziquantel across 20 different solvents under atmospheric pressure, including 

variations across temperature ranges. This data collection is fundamental in assessing 

the efficacy of the SAFT-γ Mie and PC-SAFT EOS models in predicting the solubility 

of pharmaceutical substances. 
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In this study, parameters for pure components within the PC-SAFT framework 

were sourced from existing literature, ensuring a foundation built on previously 

validated data. Additionally, single temperature-independent binary interaction 

parameters (𝑘𝑖𝑗) for 18 mixtures were estimated. The fitting of 𝑘𝑖𝑗 values was conducted 

exclusively using SLE mixture data.  

Just as with VLE predictions, forecasting solubilities with the SAFT-γ Mie 

approach necessitates the integration of two newly developed group parameters 

introduced in this study, specifically cNCO and cNcCO. These parameters, along with 

their associated unlike interactions, are detailed in Table 4 and 5. To ensure 

comprehensive modeling, these new parameters must be integrated with inter-group 

interactions that have been identified in previous research. This methodological 

approach allows for a nuanced representation of solubility behaviors by incorporating 

both novel and established interaction parameters, thereby enhancing the predictive 

capability of the SAFT-γ Mie model for praziquantel solubility calculations.  

The SLE for praziquantel is determined utilizing the methodology outlined in 

Section 2.2.2, incorporating experimental data on the enthalpy of fusion and melting 

temperature of praziquantel. The calculation of the activity coefficient of the solute in 

the liquid phase is performed using either the SAFT-γ Mie or the PC-SAFT model. In 

employing the SAFT-γ Mie approach for solubility predictions, a specific equation 

(referred to as Equation 2-34) is applied, predicated on the assumption that the solid 

phase is composed of two solutes, with each enantiomer accounting for 50% of the 

mixture. This contrasts with the PC-SAFT approach, which conceptualizes the solid 

phase as a single, pure solute, as delineated in Equation 2-33. The assumption of an 

enantiomeric solid phase more accurately reflects this thermodynamic condition. 

The distinction in methodologies allows for the use of pre-existing PC-SAFT 

parameters, facilitating a direct comparison with the work of SADOWSKI et al.(2021). 

For the SAFT-γ Mie model, the calculation includes terms accounting for the difference 

in heat capacity between the solid and liquid phases, as specified in Equation 2-32. The 

melting temperature and enthalpy of fusion for praziquantel were set at 410.6 K and 

30.9 kJ mol−1, respectively, in accordance with the findings of de MOARES et al. (yet 

to be published). These thermodynamic properties in the PC-SAFT model were aligned 
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with those reported by Sadowski, ensuring consistency in the comparative analysis of 

the solubility predictions provided by the two models. 

The accuracy of the models was assessed through the reported errors for 

solubility computations across a range of organic solvents. Table 11 showcases a 

comprehensive comparison of SLE correlation results for 20 different solvents against 

experimental data, employing both the SAFT-γ Mie and PC-SAFT methodologies. The 

analysis reveals that both models, with the newly proposed parameter set in this study, 

deliver satisfactory outcomes. Notably, the SAFT-γ Mie model achieves better results, 

exhibiting an AARD of 5.72% comparing all the mixtures, while the PC-SAFT model 

reports an AARD of 9.90%. Moreover, SAFT-γ Mie model achieved smaller deviation 

in 15 of the 20 mixtures. The most significant deviations observed were a 27.37% 

AARD with the SAFT-γ Mie model for ethanediol and a 28.15% AARD with the PC-

SAFT model for octanol. These results indicate a generally high level of accuracy in the 

solubility predictions for both models. 
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Table 11: Percentage average absolute relative deviation (%AARD) for the solubilities 

of the Praziquantel in various solvents at atmospheric pressure obtained with the SAFT-

γ Mie group contribution and PC-SAFT approach with respect to the experimental data 

points. 

Solvent 

AARD (%) SAFT-y-

Mie 

AARD (%) PC-

SAFT 

Hexane 1.51 12.81 

Toluene 6.28 9.69 

NMP 1.19 4.19 

Methyl isobutyl ketone 4.26 7.90 

Acetone 3.27 8.44 

Butylacetate 1.22 11.85 

Ethylacetate 5.13 11.00 

Isopropylacetate 19.34 10.24 

Methylacetate 1.68 10.35 

Propylacetate 2.83 9.80 

2-Ethoxyethanol 5.06 2.17 

2-Propoxyethanol 3.51 8.10 

2-Butoxyethanol 6.56 6.22 

Butanol 2.00 1.46 

Ethanol 5.68 24.89 

Octanol 5.28 28.15 

Propanol 2.63 3.09 

Methanol 6.56 12.05 

2-Butanol 1.35 3.10 

2-Propanol 7.44 16.37 

Ethanediol 27.38 6.06 
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Table 12: Binary PC-SAFT Interaction Parameters (𝑘𝑖𝑗) between Praziquantel and the 

Solvents. 

Solvent 𝒌𝒊𝒋 Source 

Hexane 0.061416 this work 

Toluene 0.004528 this work 

NMP -0.0368 this work 

Methyl isobutyl ketone 0.013682 this work 

Acetone 0.034236 this work 

Butylacetate 0.019963 this work 

Ethylacetate 0.030746 this work 

Isopropylacetate 0.027724 this work 

Methylacetate 0.041318 this work 

Propylacetate 0.022393 this work 

2-Ethoxyethanol 0.023591 this work 

2-Propoxyethanol 0.023717 this work 

2-Butoxyethanol -0.00455 this work 

Butanol -0.0102 this work 

Octanol -0.00455 this work 

Ethanol 0.02 SADOWSKI et al.(2021) 

Propanol 0.007189 this work 

Methanol -0.00653 this work 

2-Butanol -0.00829 this work 

2-Propanol 0.03 SADOWSKI et al.(2021) 

Ethanediol 0.02098 this work 

 

In this study, the predictive performance of the SAFT-γ Mie and PC-SAFT 

models for PZQ’s solubility in a mixed solvent system of NMP and 2-propanol was 

evaluated, with no direct experimental data for this specific mixture included in the 

parameter estimation. This approach was aimed at testing the models' extrapolation 

capabilities. The Figures 6 and 7 depict the solubility predictions for PZQ in varying 

proportions of NMP and 2-propanol using both SAFT-γ Mie and PC-SAFT models.  
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Figure 11: Comparison of Experimental and Predicted Solubilities of Praziquantel in 

Mixtures of NMP and 2-Propanol (2propanol). This figure illustrates the solubility 

predictions of praziquantel in mixed solvent systems of NMP and 2-propanol at varying 

proportions using the SAFT-γ Mie modeling. Different colors are used to denote various 

solvent mixture ratios. The continuous lines indicate the model's predicted solubilities, 

whereas the dots correspond to the actual experimental data points. Experimental data 

sourced from LI et al. (2020). 
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Figure 12: Comparison of Experimental and Predicted Solubilities of Praziquantel in 

Mixtures of NMP and 2-Propanol. This figure illustrates the solubility predictions of 

praziquantel in mixed solvent systems of NMP and 2-propanol at varying proportions 

using the PC-SAFT modeling. Different colors are used to denote various solvent 

mixture ratios. The continuous lines indicate the model's predicted solubilities, whereas 

the dots correspond to the actual experimental data points. Experimental data sourced 

from LI et al. (2020). 

The SAFT-γ Mie model demonstrated superior accuracy, achieving an AARD 

of 3.59%, compared to the PC-SAFT model's AARD of 5.7%. This improved accuracy 

from the SAFT-γ Mie model was made possible after estimating the unlike parameter 

𝜀𝐶𝐻2𝑂𝐻,𝑐𝑁𝐶𝑂, which initially, calculated with combining rules, resulted in an AARD of 

11.29%, significantly higher and indicative of potential inaccuracies in the model's 

predictions. The initial reluctance to estimate unlike parameters was driven by concerns 

over the risk of overfitting. The strategy was to refrain from adjusting unlike parameters 

when the error margin for the majority of compounds, which interact through these 

parameters, was below approximately 10%. Nonetheless, this instance demonstrated 

that, with ample experimental data, the fitting of unlike SAFT-γ Mie parameters could 

lead to more accurate outcomes and enhance the model's ability to extrapolate. The 

combining rules, in this context, failed to accurately capture the interaction energies 



77 

 

between groups, emphasizing the importance of parameter estimation in achieving 

higher predictive accuracy in modeling complex systems. 

This observation aligns with results obtained from the VLE modeling of the 

NMP + water system using the SAFT-γ Mie model. Prior to the adjustment of the 

𝜀𝐻2𝑂,𝑐𝑁𝑐𝐶𝑂 parameter, the model inaccurately predicted a three-phase region that was 

not supported by experimental evidence. This instance reinforces the notion that, with 

sufficient experimental data, the fitting of unlike parameters can lead to more accurate 

representations of thermodynamic properties. Furthermore, it emphasizes the potential 

of such adjusted models to extrapolate effectively to regions where experimental data 

may not be readily available, thereby enhancing the predictive power and reliability of 

the SAFT-γ Mie model in capturing complex system behaviors. 

In the Supplementary Information accompanying this dissertation, 

comprehensive datasets detailing VLE and SLE of the components used in this study 

are presented. These datasets encompass extensive experimental and modeled 

equilibrium data crucial for understanding the thermodynamic behaviors observed in 

the study. The inclusion of this supplementary data ensures that interested readers have 

access to the full scope of research findings, facilitating further analysis and application 

of the results presented herein. 

5. Conclusion 

This dissertation has made significant strides in enhancing our understanding of 

VLE and SLE of compounds, particularly through the application of the SAFT-γ Mie 

and PC-SAFT models to the PZQ and NMP. Through experimental work and theoretical 

modeling, it has been demonstrated that the introduction of novel parameters in these 

models can substantially improve the predictive accuracy for the behavior of 

Praziquantel in complex mixtures. Notably, the SAFT-γ Mie model has been highlighted 

for its enhanced predictive and extrapolability capabilities across a diverse range of 

solvents, indicating its potential for wider application in the field of pharmaceutical 

research. 

However, this research acknowledges several limitations. Among these, the low 

variability and not inclusion of uncertainties in the experimental data, present significant 

challenges. This uncertainty is compounded by the lack of replica and variance data in 

a large portion of the experimental results available, which would have provided a more 
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statistically robust basis for the analysis. The absence of this replica and variance data 

limited our ability to fully utilize statistical methods to enhance the reliability of our 

predictions. Furthermore, the necessity to use previously estimated parameters, which 

themselves were not derived using these variances, introduces additional layers of 

complexity and potential inaccuracy in the modeling efforts. 

5.1. Future Work 

To directly test the model's predictions, future work could involve conducting 

experiments to search for liquid-liquid equilibria (LLE) at the predicted location (Figure 

42). Finding LLE in these areas would provide direct evidence of the model's high 

predictive and extrapolative power, further confirming its applicability in 

pharmaceutical research. 

Additionally, this dissertation identifies the potential application of these 

thermodynamic models in the challenging area of enantiomer purification processes. 

The insights gained from the SLE studies lay the groundwork for future research aimed 

at modeling the purification of enantiomers, a critical step in the production of 

enantiopure pharmaceuticals. Addressing the limitations related to the experimental data 

and enhancing the statistical robustness of the modeling approaches could significantly 

impact the efficiency and reliability of enantiopure compound production. 

Future research directions should focus on improving the accuracy and reliability 

of experimental data reporting, including the incorporation of variance data where 

available. Efforts should also be made to refine the estimation of unlike parameters, 

especially including the TPD calculations in the objective function to prevent the 

prediction of incoherent phases. Moreover, it could also be explored the application of 

the studied thermodynamic models to enantiomer purification, making possible the 

practical utility of these models in pharmaceutical sciences. Through continued research 

and methodological improvements, there is a promising pathway toward advancing the 

field of pharmaceutical sciences, particularly in the development and production of 

enantiopure compounds. 
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7. Appendix 

The following appendix presents supplementary figures with corresponding literature 

sources given by NIST, Liu et al., (2020), Li et al. (2020) and de Moraes et al. (yet to 

be published). 

7.1. Appendix I. VLE Systems 

7.1.1. Isochores 

 

Figure 13: Temperature-composition relationship of the NMP + isobutanol system at 

0.9530 bar. It is provided a direct comparison between experimental data, sourced from 

NIST, represented by discrete points, and predictions obtained using the SAFT-γ Mie 

EOS depicted as a continuous line. 
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Figure 14: Temperature-composition relationship of the NMP + 2-propanol (2propanol) 

system at 0.9530 bar. It is provided a direct comparison between experimental data, 

sourced from NIST, represented by discrete points, and predictions obtained using the 

SAFT-γ Mie EOS depicted as a continuous line. 

 

Figure 15: Temperature-Composition Relationship of the NMP + water System under 

pressures ranging from 0.249 to 1.0124 bar. Different colors are used to denote various 

isochores, each representing a pressure variation of ±5% around the indicated values. A 

direct comparison is made between experimental data from NIST, shown as discrete 
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points, and the predictions calculated using the SAFT-γ Mie EOS, illustrated through 

continuous lines. 

 

 

Figure 16: Temperature-composition relationship of the NMP + methylcyclopentane 

(MCPentane) system at 1.013 bar. It is provided a direct comparison between 

experimental data, sourced from NIST, represented by discrete points, and predictions 

obtained using the SAFT-γ Mie EOS, illustrated through continuous lines. 
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Figure 17: Temperature-composition relationship of the NMP + hexane system at 

1.0131 bar. It is provided a direct comparison between experimental data, sourced from 

NIST, represented by discrete points, and predictions obtained using the SAFT-γ Mie 

EOS, illustrated through continuous lines. 

 

Figure 18: Temperature-composition relationship of the NMP + toluene system at 

approximately 1.0131 bar. It is provided a direct comparison between experimental data, 

sourced from NIST, represented by discrete points, and predictions obtained using the 

SAFT-γ Mie EOS, illustrated through continuous lines. 
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Figure 19: Temperature-composition relationship of the NMP + benzene system at 

approximately 1.0131 bar. It is provided a direct comparison between experimental data, 

sourced from NIST, represented by discrete points, and predictions obtained using the 

SAFT-γ Mie EOS, illustrated through continuous lines. 

 

Figure 20: Temperature-composition relationship of the NMP + heptane system at 

1.0133 bar. It is provided a direct comparison between experimental data, sourced from 

NIST, represented by discrete points, and predictions obtained using the SAFT-γ Mie 

EOS, illustrated through continuous lines. 
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Figure 21: Temperature-composition relationship of the NMP + 2-butanol (2butanol) 

system at 0.953 bar. It is provided a direct comparison between experimental data, 

sourced from NIST, represented by discrete points, and predictions obtained using the 

SAFT-γ Mie EOS, illustrated through continuous lines. 

 

 

Figure 22: Temperature-composition relationship of the NMP + acetic acid system at 

0.2667 and 1.0133 bar. It is provided a direct comparison between experimental data, 
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sourced from NIST, represented by discrete points, and predictions obtained using the 

SAFT-γ Mie EOS, illustrated through continuous lines. 

 

 

Figure 23: Temperature-composition relationship of the NMP + isoamyl alcohol system 

at 0.953 bar. It is provided a direct comparison between experimental data, sourced from 

NIST, represented by discrete points, and predictions obtained using the SAFT-γ Mie 

EOS, illustrated through continuous lines. 
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Figure 24: Temperature-composition relationship of the NMP + butanol system under 

pressures ranging from 0.1 to 0.5 bar. Different colors are used to denote various 

isochores. It is provided a direct comparison between experimental data, sourced from 

NIST, represented by discrete points, and predictions obtained using the SAFT-γ Mie 

EOS, illustrated through continuous lines. 

 

Figure 25: Temperature-composition relationship of the NMP + 2-ethoxyethanol (2 

ethoxyethanol) system at 0.953 bar. It is provided a direct comparison between 
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experimental data, sourced from NIST, represented by discrete points, and predictions 

obtained using the SAFT-γ Mie EOS, illustrated through continuous lines. 

 

 

Figure 26: Temperature-composition relationship of the NMP + 2-methoxyethanol 

(2methoxyethanol ) system at 0.953 bar. It is provided a direct comparison between 

experimental data, sourced from NIST, represented by discrete points, and predictions 

obtained using the SAFT-γ Mie EOS depicted as a continuous line. 
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7.1.2. Isotherms 

 

Figure 27: Pressure-composition relationship of the NMP + propane system under 

temperatures ranging from 276 to 328 K. It is provided a direct comparison between 

experimental data, sourced from NIST, represented by discrete points, and predictions 

obtained using the SAFT-γ Mie EOS, illustrated through continuous lines. 
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Figure 28: Pressure-composition relationship of the NMP + dibutyl ether (dibutylether) 

system at 373 K. It is provided a direct comparison between experimental data, sourced 

from NIST, represented by discrete points, and predictions obtained using the SAFT-γ 

Mie EOS, illustrated through continuous lines. 

 

Figure 29: Pressure-composition relationship of the NMP + 2-propanol system at 353 

and 373 K. It is provided a direct comparison between experimental data, sourced from 

NIST, represented by discrete points, and predictions obtained using the SAFT-γ Mie 

EOS, illustrated through continuous lines. 
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Figure 30: Pressure-composition relationship of the NMP + water system under 

temperatures ranging from 343 to 380 K. It is provided a direct comparison between 

experimental data, sourced from NIST, represented by discrete points, and predictions 

obtained using the SAFT-γ Mie EOS, illustrated through continuous lines. 

 

Figure 31: Pressure-composition relationship of the NMP + 1-methoxy-2-propanol 

(methoxy2propanol) system under temperatures ranging from 353 to 373 K. It is 
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provided a direct comparison between experimental data, sourced from NIST, 

represented by discrete points, and predictions obtained using the SAFT-γ Mie EOS, 

illustrated through continuous lines. 

 

Figure 32: Pressure-composition relationship of the NMP + hexane system under 

temperatures ranging from 333 to 363 K. It is provided a direct comparison between 

experimental data, sourced from NIST, represented by discrete points, and predictions 

obtained using the SAFT-γ Mie EOS, illustrated through continuous lines. 
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Figure 33: Pressure-composition relationship of the NMP + methanol system at 333 and 

393 K. It is provided a direct comparison between experimental data, sourced from 

NIST, represented by discrete points, and predictions obtained using the SAFT-γ Mie 

EOS depicted as a continuous line. 

 

Figure 34: Pressure-composition relationship of the NMP + dipropyl ether 

(dipropylether) system at 353 and 373 K. It is provided a direct comparison between 
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experimental data, sourced from NIST, represented by discrete points, and predictions 

obtained using the SAFT-γ Mie EOS depicted as a continuous line. 

 

Figure 35: Pressure-composition relationship of the NMP + 2-butanol system at 373 K. 

It is provided a direct comparison between experimental data, sourced from NIST, 

represented by discrete points, and predictions obtained using the SAFT-γ Mie EOS 

depicted as a continuous line. 
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Figure 36: Pressure-composition relationship of the NMP + methylcyclohexane 

(MCHex) system at 354 and 373 K. It is provided a direct comparison between 

experimental data, sourced from NIST, represented by discrete points, and predictions 

obtained using the SAFT-γ Mie EOS depicted as a continuous line. 

 

Figure 37:Pressure-composition relationship of the NMP + propanol system at 333 and 

354 K. It is provided a direct comparison between experimental data, sourced from 
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NIST, represented by discrete points, and predictions obtained using the SAFT-γ Mie 

EOS depicted as a continuous line. 

 

Figure 38: Pressure-composition relationship of the NMP + hexanol system at 351 and 

393 K. It is provided a direct comparison between experimental data, sourced from 

NIST, represented by discrete points, and predictions obtained using the SAFT-γ Mie 

EOS depicted as a continuous line. 
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Figure 39: Pressure-composition relationship of the NMP + cyclohexane (chexane) 

system at 287 and 343 K. It is provided a direct comparison between experimental data, 

sourced from NIST, represented by discrete points, and predictions obtained using the 

SAFT-γ Mie EOS depicted as a continuous line. 

 

Figure 40: Pressure-composition relationship of the NMP + acetone system at 333 K. It 

is provided a direct comparison between experimental data, sourced from NIST, 

represented by discrete points, and predictions obtained using the SAFT-γ Mie EOS 

depicted as a continuous line. 
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Figure 41: Pressure-composition relationship of the NMP + benzene system at 287 and 

342 K. It is provided a direct comparison between experimental data, sourced from 

NIST, represented by discrete points, and predictions obtained using the SAFT-γ Mie 

EOS depicted as a continuous line. 
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Figure 42: Pressure-composition relationship of the NMP + 2-methylbutane (2Mbutane) 

system at 363 K. It is provided a direct comparison between experimental data, sourced 

from NIST, represented by discrete points, and predictions obtained using the SAFT-γ 

Mie EOS depicted as a continuous line. 

 

Figure 43: Pressure-composition relationship of the NMP + ethanol system at 363 K. It 

is provided a direct comparison between experimental data, sourced from NIST, 

represented by discrete points, and predictions obtained using the SAFT-γ Mie EOS 

depicted as a continuous line. 
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Figure 44: Pressure-composition relationship of the NMP + heptane system under 

temperatures ranging from 298 to 365 K. It is provided a direct comparison between 

experimental data, sourced from NIST, represented by discrete points, and predictions 

obtained using the SAFT-γ Mie EOS depicted as a continuous line. 

 

Figure 45: Pressure-composition relationship of the NMP + toluene system under 

temperatures ranging from 313 to 383 K. It is provided a direct comparison between 
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experimental data, sourced from NIST, represented by discrete points, and predictions 

obtained using the SAFT-γ Mie EOS depicted as a continuous line. 

7.2. Appendix II. VLLE System 

 

Figure 46: Pressure-composition relationship of the NMP + ethane system under 

temperatures ranging from 311 to 393 K. It is provided a direct comparison between 

experimental data, sourced from NIST, represented by discrete points, and predictions 

obtained using the SAFT-γ Mie EOS depicted as a continuous line for the VLE and 

dashed line for the liquid-liquid equilibrium. Due to difficulties in the convergence of 

some points, the dotted line describes an extrapolation of the VLE without using the 

SAFT-γ Mie model, but based on the thermodynamics of the mixture. 
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7.3. Appendix III. SLE Systems 

 

Figure 47: Solubility temperature curve of PZQ in methyl isobutyl ketone (MIBK) at 

ambient pressure (101.1 KPa). Experimental solubility temperatures, identified by 

triangles, were determined and reported by Liu et al., (2020). The solid lines illustrate 

solubility predictions made using the SAFT-γ Mie EOS. In contrast, dashed lines show 

the solubility predictions as calculated by the PC-SAFT EOS. 
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Figure 48: Solubility temperature curve of PZQ in NMP at ambient pressure (101.1 

KPa). Experimental solubility temperatures, identified by squares, were determined and 

reported by Li et al. (2020). The solid lines illustrate solubility predictions made using 

the SAFT-γ Mie EOS. In contrast, dashed lines show the solubility predictions as 

calculated by the PC-SAFT EOS. 

 

Figure 49: Solubility temperature curve of PZQ in toluene at ambient pressure (101.1 

KPa). Experimental solubility temperatures identified by squares were determined and 
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reported by Li et al. (2020), while the circles were determined by de Moraes et al. (yet 

to be published). The solid lines illustrate solubility predictions made using the SAFT-

γ Mie EOS. In contrast, dashed lines show the solubility predictions as calculated by the 

PC-SAFT EOS. 

 

Figure 50: Solubility temperature curve of PZQ in ethane-1,2-diol (ethanediol) at 

ambient pressure (101.1 KPa). Experimental solubility temperatures, identified by 

diamonds, were determined and reported by Sha et al., (2021). The solid lines illustrate 

solubility predictions made using the SAFT-γ Mie EOS. In contrast, dashed lines show 

the solubility predictions as calculated by the PC-SAFT EOS. 
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Figure 51: Solubility temperature curve of PZQ in 2-butanol at ambient pressure (101.1 

KPa). Experimental solubility temperatures, identified by triangles, were determined 

and reported by Liu et al., (2020). The solid lines illustrate solubility predictions made 

using the SAFT-γ Mie EOS. In contrast, dashed lines show the solubility predictions as 

calculated by the PC-SAFT EOS. 

 

Figure 52: Solubility temperature curve of PZQ in 2-propanol at ambient pressure (101.1 

KPa). Experimental solubility temperatures identified by squares were determined and 
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reported by Li et al. (2020), while the triangles were determined and reported by Liu et 

al., (2020). The solid lines illustrate solubility predictions made using the SAFT-γ Mie 

EOS. In contrast, dashed lines show the solubility predictions as calculated by the PC-

SAFT EOS. 

 

 

Figure 53: Solubility temperature curve of PZQ in methanol at ambient pressure (101.1 

KPa). Experimental solubility temperatures identified triangles were determined and 

reported by Liu et al., (2020), while the circles were determined by de Moraes et al. (yet 

to be published). The solid lines illustrate solubility predictions made using the SAFT-

γ Mie EOS. In contrast, dashed lines show the solubility predictions as calculated by the 

PC-SAFT EOS. 
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Figure 54: Solubility temperature curve of PZQ in propanol at ambient pressure (101.1 

KPa). Experimental solubility temperatures are denoted by triangles from the study by 

Liu et al., (2020), diamonds from Sha et al., (2021), and circles from de Moraes et al. 

(yet to be published). The solid lines illustrate solubility predictions made using the 

SAFT-γ Mie EOS. In contrast, dashed lines show the solubility predictions as calculated 

by the PC-SAFT EOS. 
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Figure 55: Solubility temperature curve of PZQ in butanol at ambient pressure (101.1 

KPa). Experimental solubility temperatures are denoted by triangles from the study by 

Liu et al., (2020), diamonds from Sha et al., (2021), and circles from de Moraes et al. 

(yet to be published). The solid lines illustrate solubility predictions made using the 

SAFT-γ Mie EOS. In contrast, dashed lines show the solubility predictions as calculated 

by the PC-SAFT EOS. 
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Figure 56: Solubility temperature curve of PZQ in ethanol at ambient pressure (101.1 

KPa). Experimental solubility temperatures are denoted by triangles from the study by 

Liu et al., (2020), diamonds from Sha et al., (2021), and circles from de Moraes et al. 

(yet to be published). The solid lines illustrate solubility predictions made using the 

SAFT-γ Mie EOS. In contrast, dashed lines show the solubility predictions as calculated 

by the PC-SAFT EOS. 
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Figure 57: Solubility temperature curve of PZQ in octanol at ambient pressure (101.1 

KPa). Experimental solubility temperatures, identified by squares, were determined and 

reported by Li et al. (2020). The solid lines illustrate solubility predictions made using 

the SAFT-γ Mie EOS. In contrast, dashed lines show the solubility predictions as 

calculated by the PC-SAFT EOS. 

 

Figure 58: Solubility temperature curve of PZQ in 2-butoxyethanol (2butoxyethanol) at 

ambient pressure (101.1 KPa). Experimental solubility temperatures, identified by 
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diamonds, were determined and reported by Sha et al., (2021). The solid lines illustrate 

solubility predictions made using the SAFT-γ Mie EOS. In contrast, dashed lines show 

the solubility predictions as calculated by the PC-SAFT EOS. 

 

Figure 59: Solubility temperature curve of PZQ in 2-ethoxyethanol (2ethoxyethanol) at 

ambient pressure (101.1 KPa). Experimental solubility temperatures, identified by 

diamonds, were determined and reported by Sha et al., (2021). The solid lines illustrate 

solubility predictions made using the SAFT-γ Mie EOS. In contrast, dashed lines show 

the solubility predictions as calculated by the PC-SAFT EOS. 



117 

 

 

Figure 60: Solubility temperature curve of PZQ in 2-propoxyethanol (2propoxyethanol) 

at ambient pressure (101.1 KPa). Experimental solubility temperatures, identified by 

diamonds, were determined and reported by Sha et al., (2021). The solid lines illustrate 

solubility predictions made using the SAFT-γ Mie EOS. In contrast, dashed lines show 

the solubility predictions as calculated by the PC-SAFT EOS. 

 

Figure 61: Solubility temperature curve of PZQ in propyl acetate (propylacetate) at 

ambient pressure (101.1 KPa). Experimental solubility temperatures, identified by 

diamonds, were determined and reported by Sha et al., (2021). The solid lines illustrate 
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solubility predictions made using the SAFT-γ Mie EOS. In contrast, dashed lines show 

the solubility predictions as calculated by the PC-SAFT EOS. 

 

Figure 62: Solubility temperature curve of PZQ in ethyl acetate (ethylacetate) at ambient 

pressure (101.1 KPa). Experimental solubility temperatures identified by squares were 

determined and reported by Li et al. (2020), while the triangles were determined and 

reported by Liu et al., (2020). The solid lines illustrate solubility predictions made using 

the SAFT-γ Mie EOS. In contrast, dashed lines show the solubility predictions as 

calculated by the PC-SAFT EOS. 
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Figure 63: Solubility temperature curve of PZQ in isopropyl acetate (ipropylacetate) at 

ambient pressure (101.1 KPa). Experimental solubility temperatures, identified by 

triangles, were determined and reported by Liu et al., (2020). The solid lines illustrate 

solubility predictions made using the SAFT-γ Mie EOS. In contrast, dashed lines show 

the solubility predictions as calculated by the PC-SAFT EOS. 

 

Figure 64: Solubility temperature curve of PZQ in methyl acetate (methylacetate) at 

ambient pressure (101.1 KPa). Experimental solubility temperatures, identified by 

triangles, were determined and reported by Liu et al., (2020). The solid lines illustrate 
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solubility predictions made using the SAFT-γ Mie EOS. In contrast, dashed lines show 

the solubility predictions as calculated by the PC-SAFT EOS. 

 

Figure 65: Solubility temperature curve of PZQ in acetone at ambient pressure (101.1 

KPa). Experimental solubility temperatures are denoted by triangles from the study by 

Liu et al., (2020), squares from Li et al. (2020), and circles from de Moraes et al. (yet 

to be published). The solid lines illustrate solubility predictions made using the SAFT-

γ Mie EOS. In contrast, dashed lines show the solubility predictions as calculated by the 

PC-SAFT EOS. 
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Figure 66: Solubility temperature curve of PZQ in butyl acetate (butylacetate) at ambient 

pressure (101.1 KPa). Experimental solubility temperatures, identified by diamonds, 

were determined and reported by Sha et al., (2021). The solid lines illustrate solubility 

predictions made using the SAFT-γ Mie EOS. In contrast, dashed lines show the 

solubility predictions as calculated by the PC-SAFT EOS. 

 

Figure 67: Solubility temperature curve of PZQ in hexane at ambient pressure (101.1 

KPa). Experimental solubility temperatures, identified by squares, were determined and 

reported by Li et al. (2020). The solid lines illustrate solubility predictions made using 
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the SAFT-γ Mie EOS. In contrast, dashed lines show the solubility predictions as 

calculated by the PC-SAFT EOS. 


