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Data analytics for industrial processes are currently in high demand. A
family of non-linear algorithms called machine learning is used to process the
data. Deployment of machine learning algorithms is not trivial, and depends
on knowledge from both an engineering and a statistical perspective to achieve
desirable results. This work seeks to develop a methodology to facilitate and
improve data analysis and machine learning applications in chemical processes.
This methodology is an iterative procedure validated and guided by data and
model analysis, until resulting in a sufficiently good model. Four case studies
are presented, one simulation, one using a public dataset and two with industry
partners. The simulation case study is the control of a gas lift oil well. The public
dataset one is about fault detection in offshore oil wells, while the industrial ones
are inference of melt flow index in a polyethylene plant and detection of faults
in a compressor dry gas seal. The gas lift oil well was successfully controlled,
despite suffering from disturbances never seen before. The fault detection in
offshore oil wells achieved better results after applying the methodology, with
a median improvement in the F1-score of 44%. The melt flow index inference
performed well in validation, in production it had a lower efficacy. However,
analysis using operators’ knowledge helped the models to achieve good efficacy,
with up to 92% "accuracy". The gas seal fault detection worked well in valida-
tion, achieving up to 95% accuracy, but the dataset was not sufficient to ensure a
good product. Therefore, a framework for building a new more comprehensive
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dataset was developed. Overall, the methodology lead to significant improve-
ments on the tasks it was applied to and the insights generated helped in the
acceptability of the models by the operators.
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Há uma grande demanda para análise de dados em processos industri-
ais. Para analisar esses dados utiliza-se uma família de algoritmos não-lineares
chamada de Machine Learning. A aplicação desses algoritmos não é trivial e eles
dependem de conhecimento tanto de engenharia quanto de estatística pra se
obter resultados desejáveis. Esse trabalho busca desenvolver uma metodologia
para facilitar e melhorar a análise de dados e aplicação de Machine Learning em
processos químicos. A metodologia se baseia em um processo iterativo guiado
e validado por análise de dados e de modelos, repetido até criar de um modelo
bom o suficiente. Quatro estudos de caso foram realizados, um de simulação,
um usando uma base de dados públicos e dois com parceiros da indústria. O
estudo de caso de simulação é o controle de um poço de petróleo produzido com
gas lift. O estudo de caso com dados públicos é a detecção de falha em poços de
petróleo. Um dos estudos de caso industriais é a inferência do índice de fluidez
de polietileno a partir de dados de planta e o outro é a detecção de falhas em um
selo a gás de um compressor. O poço de gas lift foi controlado, mesmo contra
distúrbios nunca antes vistos. A detecção de falhas em poços mostrou uma mel-
hora mediana de 44% no F1-score após a aplicação da metodologia. A estimativa
do índice de fluidez teve bons resultados na validação, mas piorou considerav-
elmente durante a produção. Porém uma análise usando o conhecimento dos
operadores mostrou uma boa eficácia, chegando a alcançar uma "acurácia" de
92%. O detector de falhas do selo a gás funcionou bem na validação, alcançando
acurácias maiores de 95%. Porém os dados foram insuficientes para uma boa

vii



avaliação da solução, induzindo ao desenvolvimento de um procedimento para a
construção de um novo dataset. A metodologia gerou melhoras no desempenho
e explicabilidade dos modelos, construindo uma maior aceitação por parte dos
operadores.
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Chapter 1

Introduction

1.1 Motivation

We are presently living in the 4.0 revolution. There is a huge increase in
information available in the industries due to cheaper sensors, improved data
storage capabilities and better information technology. This data is called big
data. In process system engineering, big data usually means laboratory analysis
and sensor data, but can include maintenance reports, economic forecasts, pic-
tures of microorganisms (VON CHAMIER et al., 2021), spectral analysis (SUN
and BROCKHAUSER, 2022), etc.

In this new world full of information, it became clear for chemical industry
players in Brazil and abroad the potential such data brings. For example: in
Petrobras 2022 "connection for innovation" public call, in which start-ups pro-
posed solutions for challenges the company currently struggles with 23 of 35
challenges were related to data science, machine learning and/or artificial intel-
ligence 1. This shows the demand for these solutions.

This global context leads to an increased demand for data analysis, so engi-
neers and operators can extract useful knowledge from the data. A family of
algorithms called machine learning is employed to analyze these huge amounts
of data. Machine learning algorithms have non-linear modeling capabilities, few
assumptions about the data and ability to handle a considerable features and
data samples (HASTIE et al., 2001).

Despite this demand, the chemical industry is lagging behind the imple-
mentation of machine learning (SCHWEIDTMANN et al., 2021). Many indus-
trial initiatives face challenges that hinder progress and create subpar products.
Knowing how to solve these challenges is important and is the primary focus of
this thesis.

1Information found in https://www.worldlabs.org/opportunity/petrobras-conexoes-para-
inovacao-modulo-startups, acessed March 30th, 2023.
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Business solutions for the process industry already exist like Hysys’s multi-
variable interpolators or Microsoft’s Azure, but they are not ready-to-use tools
and demand statistical expertise alongside process expertise for reliable results.
In this work, common pitfalls of data analysis are investigated and it is demon-
strated through case studies how to improve process monitoring and control
with machine learning.

Currently, most applications of machine learning focus in system monitoring
with few applications to process control (VENKATASUBRAMANIAN, 2019).
There is a mistrust of automation solutions due to the safety and operability
issues that can come with an unreliable control system (MUIR and MORAY,
1996). Most successful applications are in monitoring and fault detection and
diagnosis.

Most of the scientific literature on application of machine learning for indus-
trial processes use simulated data or public datasets (NOR et al., 2020), since
most of the data, results and models used in these studies are proprietary and
economically valuable, therefore not something companies are willing to share
publicly due to the risk of losing competitive advantages. Sometimes this infor-
mation is partially found in patents, for example, KURAMOTO et al. (2021). But
even in these instances they cannot report on the whole process.

The union of first principle knowledge and machine learning models is widely
recognized by many researchers as one of the most significant and promising re-
search areas in chemical engineering for the future. Researchers like SANSANA
et al. (2021), QIN and CHIANG (2019) and VENKATASUBRAMANIAN (2019)
share the viewpoint that knowledge integration presents a compelling challenge
and opportunity.

Pure data-based models lack domain knowledge and can make incorrect pre-
dictions in not imbued with process knowledge (VENKATASUBRAMANIAN,
2019). For first principle models, assumptions are inherent to them, and these
assumptions can give rise to gaps in our understanding of the original system
(SANSANA et al., 2021). Models using process knowledge help bridging the gap
between both types of models (BIKMUKHAMETOV and JÄSCHKE, 2020).

1.2 Objectives

The objectives of this work are to develop a methodology to facilitate and
improve the implementation of machine learning techniques to chemical pro-
cess monitoring and control, noting and avoiding common pitfalls and deliv-
ering meaningful results and insights on the processes. Another objective is to
show how to solve some chemical engineering problems with machine learning.
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Common pitfalls include data leakage, overly optimistic results due to multi-
modality, not taking account the measurement noise, among others (HASTIE
et al., 2001).

The central hypothesis guiding this thesis is that including engineering and
process knowledge in machine learning projects improve the results of the project.
This hypothesis is generally accepted by modeling and simulation engineers and
researchers (RAWLINGS et al., 2017), but testing it and developing a methodol-
ogy for its application is valuable for future researchers.

1.3 Thesis structure

In Chapter 2, machine learning and statistical analysis concepts are intro-
duced, along with potential applications. Their limitations and strengths are also
presented. There is also a review of currently used machine learning methodolo-
gies. In Chapter 3, the methodology is presented, with emphasis on how to use
it in process systems. Due to the structure of this thesis, the literature review for
each case study will be presented in their respective sections. In Chapter 4, the
case study for gas lift oil well control is presented. In Chapter 5 the benchmark
3W dataset (VARGAS et al., 2019) case study, fault detection in offshore oil wells
is presented. In Chapter 6 the estimation of the melt flow index of polyethylene
is presented and, in Chapter 7, the detection of faults in a dry gas seal system
case study is presented. Finally, in Chapter 8, the results are summarized and
the conclusions are presented. Appendix A contains a more in-depth explana-
tion of several statistical techniques that appear along the text, while Appendices
B to D contain equations, intermediate results and analysis that are important
for a more comprehensive thesis.
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Chapter 2

Literature review

2.1 Machine learning

There are several overlapping definitions for machine learning, depending on
the background or intention of the authors. MITCHELL (1997), wanting to give
a more general definition, wrote: "A computer program is said to learn from
experience E with respect to some class of tasks T and performance measure
P, if its performance at tasks in T, as measured by P, improves with experience
E.". MURPHY (2013), using a probabilistic approach and in a big data context,
wrote "we define machine learning as a set of methods that can automatically
detect patterns in data, and then use the uncovered patterns to predict future
data, or to perform other kinds of decision making under uncertainty (such as
planning how to collect more data!)". The machine learning definition used here
is "the collection of using various algorithms to teach computers to find patterns
in data to be used for future prediction and forecasting or as a quality check for
performance optimization", found in BELYADI and HAGHIGHAT (2021).

The difference between machine learning and standard statistical models like
Principal Component Analysis (PCA) is up to debate, especially as many ma-
chine learning algorithms are extensions from standard statistical models, or
have been around for decades, but the lack of quality data and computational
power limited their use. There are 3 main types of machine learning problems:
supervised, unsupervised, and reinforcement learning (HASTIE et al., 2001).

Supervised problems consist in learning the relationship between two datasets,
e.g., correlate polymer melt flow index to operational conditions. It is the most
common problem in engineering, as it is easily formulated and has straightfor-
ward metrics. Transforming other problems in supervised problems is a com-
mon procedure when feasible. The most common supervised problems are re-
gression and classification. Regression is estimating a number from a dataset
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and classification is estimating a category from a dataset (HASTIE et al., 2001).
Unsupervised problems consist in finding underlying structures in one dataset,

e.g., finding abnormalities in process operation. While less common than su-
pervised problems, unsupervised analysis is useful to develop a better under-
standing of a problem. Traditional statistical analysis like autocorrelation gives
a better understanding of process dynamics, and machine learning approaches,
like kernel PCA, can be used to identify unexpected correlation between sen-
sors. However, unsupervised problems are rarely straightforward, demanding
specialist confirmation of results and more throughout tests. The most com-
mon unsupervised problems are dimensionality reduction and clusterization.
Clusterization is aggregating the samples and dimensionality reduction is ag-
gregating/removing the features (HASTIE et al., 2001). Recently there have been
developments on semisupervised problems, that is a bit of both supervised and
unsupervised learning. They are classification problems with plenty of unla-
beled samples, and use iterative procedures to automatically label the data.

Reinforcement learning is a type of problem in which the algorithm inter-
acts with an environment and learns to minimize a cost function. It is usually
used for control in which the inputs, disturbances and transients are stochastic
and not tabular, e.g., self-driving cars where inputs are cameras recording, dis-
turbances are pedestrians and the whole process is transient. It generally lacks
many assurances that normal control theory provides like optimality, constraint
adherence and stability (SUTTON and BARTO, 2018), and demands much more
data than available for industrial applications. Standard procedure to reinforce-
ment learning problems is to transform them into supervised learning problems
(HASTIE et al., 2001).

Training or fitting is adjusting the parameters of a model to the data. Valida-
tion or testing is presenting new data to the model to evaluate its ability. In this
work validation will be used when evaluating the model to available data and
testing when using data only available during implementation or never seen be-
fore data. Hyperparameters are the model parameters that are not fitted to the
data, e.g., regularization penalties (BAUGHMAN and LIU, 1995). Tuning is hy-
perparameter optimization and is a difficult task, there is no standard approach
on how to do it. Recent works use Bayesian optimization, grid or random search
or manual tuning (HUTTER et al., 2018). Overfitting is when the machine learn-
ing model memorizes the data and not learn the underlying relationship in the
data. Generalization is how well the model works when presented with new
data. Information leakage or data leakage is when the training dataset contains
information about the test or validation set, resulting in overly optimistic mod-
els. Regularization is a penalty or restraint to model complexity, and is added to
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machine learning models to avoid overfitting and improve generalization. Fea-
tures or dimensions are the characteristics of the data and in a table are usually
presented as columns. Rows of the table are known as samples or data points
(HASTIE et al., 2001) (BAUGHMAN and LIU, 1995).

In process engineering the first data based models were empirical correla-
tions. Empirical correlations have been used for decades and have assumptions
about the general shape of the relationship between variables. For example the
famous Antoine equation and its extensions assume that the log of the satura-
tion pressure is proportional to the inverse of the temperature, an assumption
that can be derived from thermodynamic equations (WAGNER, 1973).

Empirical correlations work well when the relationship between variables is
smooth, not many features are used and general process uncertainty is higher
than the correlation error. For many properties, empirical correlations are un-
available (JAMES et al., 2014), and developing new empirical correlations or im-
proving known ones are an active area of research.

Another popular and well established class of data-based models are linear
dynamic models, like transfer functions, state space models and autoregressive
models. They have been used for decades by several fields like econometrics and
social studies, as they are easy to interpret and have a robust statistical back-
ground, and have important results about several topics of interest in process
engineering, like sampling time and informative excitation (THIL and GILSON,
2005), which is not commonly found in machine learning literature.

The main limitation of data-based models is their inability to extrapolate
outside the training region. For empirical correlations, while accuracy is not
guaranteed outside their validity region, it can be assumed that the property
being estimated at least follows a trend. For machine learning models, especially
black box models, model behavior outside training region cannot be predicted
and is not reliable (HASTIE et al., 2001).

Testing the performance of machine learning models demands special atten-
tion. Since they have more capacity for bias in the bias-variance trade-off and
therefore capacity for overfitting, most machine learning models will present
better metrics in the train dataset than in the test or validation dataset, therefore
results should be presented in terms of the latter datasets. There are couple of
ways to estimate those metrics, the most popular are holdout or K-fold.

Holdout is straightforward. It consists in just separating the dataset in train,
test and validation. The main disadvantage is that there is the possibility of
picking "well-behaved" regions of the dataset for test, or vice-versa, creating
inaccurate estimations of effectiveness of the model. On the other hand it is
relatively fast. It is usually recommended for big data and deep learning, where
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training can take days.
K-fold and its variants are by far the most popular method. It consists in

separating the dataset like holdout, train and test the model effectiveness, then
retrain the model and retest the model, but using different data in each set.
This procedure is done K times, each different repetition is called a fold, and
the final metric is given by the folds mean. It gives a better view of the model
effectiveness in general as it evaluates the whole dataset. However it has high
time costs. As most tasks take less than a couple of minutes fit, it is usually fine,
but it can build-up if testing several models (HASTIE et al., 2001).

2.2 Machine learning methodologies

There are plenty of researches regarding application of data-based modeling
in engineering problems. Most of them are dedicated to system identification
of linear models. Methodologies for system identification generally follow as:
generate a dataset through a specially designed identification experiment; select
a set of candidate models, fit and choose the best model, and finally validate
the model (LJUNG, 1986). There is a greater focus on the fitting algorithms and
convergence; Fourier and spectral analysis; and using prior knowledge.

Regarding more black-box modeling methodology, some include only basic
procedures like normalization and standardization, without which even some
classical algorithms, like PCA, does not work. CHIANG et al. (2001) is a seminal
book regarding data-based modeling applied to industrial processes. It focuses
on linear and time-delayed models with some mentioning of data treatment and
analysis. For the case studies, it used the Tennessee Eastman model as it is a
published problem easily available for any reader. However no data treatment
was applied in the case study and it used no feature selection.

HARROU et al. (2021) is a more recent book and while it does not do an
in-depth explanation of data analysis, it includes more advanced techniques.
For an abnormal ozone measurements detection problem, it used the correla-
tion coefficients matrix for feature aggregation and autocorrelation functions to
detect cyclic behavior. In a decentralized wastewater treatment plant monitor-
ing problem, the variables were selected by expert recommendation. Descriptive
statistics and correlation matrix were used for data analysis.

BELYADI and HAGHIGHAT (2021) focused on applying machine learning
using standard Python libraries, but partially dedicates a section to machine
learning workflow and data treatment, including data gathering and integra-
tion. The authors highlight the importance of institutional data infrastructure
and availability, which is essential for model deployment and acceptance. They
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also recommend feature selection by expert recommendation. The book uses
several datasets from the oil and gas industry to illustrate their results, and
those datasets are available online.

Regarding application of first principle engineering knowledge in Machine
learning frameworks, BIKMUKHAMETOV and JÄSCHKE (2020) introduces sev-
eral methodologies that combine engineering modeling and machine learning,
with the purpose of improved explainability and accuracy. Some methodologies
used feature engineering, others used a residual model given by the difference
of a phenomenological model and the data available and some even used both.
They also recommended a feature analysis method, partial dependency plot to
improve the understanding of the model inner workings.

This type of methodology study is more common in the data science field.
Several methodologies were developed over the decades. Their general work-
flow are similar to the one presented here, in fact most of them are similar with
each other but with significant differences on the emphasis of the workflow. The
work of FAYYAD et al. (1996) is one of the first methodology studies, and fo-
cused in data mining and Knowledge Discovery in Database (KDD), which are
related fields to machine learning in which the goal is extracting information
from the dataset, not generating a model; although generating a model can be a
deliverable of the process.

The framework works as following: the first step is understanding the ap-
plication domain and the relevant prior knowledge and with those identify the
client’s KDD objective. Then, there is a data selection and sampling step, in
which the relevant data is extracted from the database forming a target dataset.
On this dataset, a data cleaning and pre-processing step is performed to remove
outliers, and treat noise and either input or eliminate missing data. The next
step is data reduction and projection, to find the best ways to represent the data
using transformations and dimensionality reduction techniques. The fifth step
is matching the goals found in the first step to an appropriate method like clas-
sification or regression. The sixth step is finding a particular algorithm(s) and
hypothesis that can be used to find the data patterns. The seventh step is the
data mining itself, followed by a interpreting mined step, in which the extracted
patterns are visualized and evaluated if they make sense. The final step is acting
on the mined knowledge, which may be generating a report, developing new
business practices or utilizing a model.

The framework presented in FAYYAD et al. (1996) introduces the interactive
and iterative nature of the methodology, with previous steps constantly being
revisited depending on the knowledge and results acquired from later steps.
All nine steps indicated in this framework are found in later ones, with differ-
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ent names or sometimes one step is fused with another. For example: Cross-
Industry Standard Process for Data Mining, presented in CHAPMAN et al.
(2000), expands the business understatement step with specific questions that
should be answered before proceeding and add an exploratory analysis before
the cleaning and pre-processing of the data. It also fuses the fifth and sixth step
from KDD methodology in a step simply called "Modeling".

Another popular framework is the Team Data Science Process, presented in
SEVERTSON et al. (2017). It is more focused on commercial applications, and
resembles an instruction manual for an analyst with a Microsoft Azure toolkit
doing a data science project than a scientific paper. It fuses the data acquisition,
selection and treatment in one step, and adds a customer acceptance step high-
lighting the importance of future maintenance and support of the data science
solution developed. It is focused in Azure infrastructure, and includes a GitHub
page with examples on how to organize documentation and code.

The methodology developed and presented in this work will be similar to the
ones presented here. The main difference is the emphasis in model analysis and
in the agreement with process knowledge. Additionally, in this methodology
operators’ and engineers’ input and feedback was always sought for and wel-
comed when available, while this kind of interaction is not as explicitly evident
in the other methodologies found in the literature.

2.3 Neural networks

Neural network (NN) is a machine learning algorithm that has the interesting
property of being an universal approximator given enough data and an appro-
priate hidden layer size (BAUGHMAN and LIU, 1995). NNs are algorithms
loosely inspired on how the human brain works. They are composed of neurons
and layers. Each neuron takes inputs, does a weighted sum of those inputs then
a function is applied to this sum, Equation 2.1. The output of the neurons in a
layer is used as input to the next layer. Neurons in parallel make a layer, 2 or
more layers in series make a neural network. A neural network with a single
layer would be equal to a generalized linear model.

v̄i = f ( ¯̄WT × x̄ + b̄i) (2.1)

ȳnn = f ( ¯̄WT × v̄i + b̄j) (2.2)

where x̄ is the input vector, ¯̄W is the weight matrix of the i-th layer, b̄i is the bias,
vi is the i-th layer output vector, f () is the function applied to the layer, ȳnn is
the NN output. An example of neural network, with 3 inputs 4 neurons in the
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Figure 2.1: Neural network example.

hidden layer, and two outputs can be seen in Figure 2.1.
The bias can also be interpreted as a neuron that is always outputing 1. The

function f () is also called an activation function. Popular activation functions
include Relu, hyperbolic tangent and sigmoid (MONTAVON et al., 2012). The
last layer is known as output layer and the previous layers are known as hidden
layers.

Relu(x) = max(0, x) (2.3)

sig(x) =
1

1 + e−x (2.4)

tanh(x) =
ex − e−x

ex + e−x = 2sig(2x)− 1 (2.5)

During training, the optimization algorithm minimizes an objective function.
In modern NN formulations any differentiable objective function can be used,
as automatic differentiation algorithms make switching between objectives easy
(BERGSTRA et al., 2010). The objective function depends on the NN purpose
and data characteristics. For regression with data containing few outliers, mean
squared error (MSE), Equation 2.6 is used, while for data with a high amount of
outliers mean absolute error, Equation 2.7 is preferred. For classification, cross
entropy, Equation 2.8, is generally chosen as it gives a probabilistic interpreta-
tion, but hinge loss, Equation 2.9, has been used to create comparisons with
Support Vector Machines (MONTAVON et al., 2012).

MSE(ŷnn, y) =
1
n
·

n

∑
i=1

((ŷnn,i − yi)
2) (2.6)

MAE(ŷnn, y) =
1
n
·

n

∑
i=1

(abs(ŷnn,i − yi)) (2.7)
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CE(ŷnn, y) =
1
n
·

n

∑
i=1

(−yi · ln(ŷnn,i)− (1 − yi) · ln(1 − ŷnn,i)) (2.8)

Hinge loss(ŷnn, y) =
1
n
·

n

∑
i=1

max(0, 1 − yi · ŷnn,i) (2.9)

There are many regularization techniques that can be added to NNs. The
most popular are weight shrinkage, dropout and noise addition. Weight shrink-
age adds a regularization term to the objective function that penalizes huge
weights, making NN’s output smoother. The main types of weight shrinkage
are L2, also known as weight decay, and L1, given by Equations 2.10 and 2.11
respectively. L2 regularization tends to make optimization better conditioned,
while L1 tends to create sparse weight matrices, which is interesting for compu-
tationally efficient implementations. Dropout consists in randomly deactivating
some neurons during training, forcing different neurons to learn similar relation-
ships in the data. Noise addition inserts uncertainty in the model, hampering
data memorization that leads to overfitting (BISHOP, 1995).

L2 = || ¯̄W||2 (2.10)

L1 = || ¯̄W||1 (2.11)

Training is done by some kind of gradient following algorithm, as the model
is differentiable. Common optimization algorithms are Broyden-Fletcher-Goldfarb-
Shanno (BFGS), Adaptive Moment Estimation (ADAM) and Stochastic Gradient
Descent (SGD). They are described in more detail in the following paragraphs.

BFGS is an optimization algorithm that uses a rank-2 matrix to update the
hessian estimate. As a quasi-Newton method it converges much faster than the
others. However, it assumes that the objective function is locally quadratic and it
takes huge steps compared to ADAM and SGD, which is not desirable as the ob-
jective surface tends to be non-smooth (FLETCHER, 1987). Keeping the inverse
hessian approximation in memory has a quadratic cost in BFGS original formu-
lation, it requires a n × n matrix. Low-memory variants store some vectors that
represent the inverse hessian approximation updates, instead of the approxima-
tion itself, making the memory requirement linear (LIU and NOCEDAL, 1989).

SGD is gradient descent applied to each training sample individually. It is
called "stochastic" because the sample being used for training is selected ran-
domly. It has two advantages: low-memory demand and each gradient update
changes considerably the error surface, making landing in a bad local minima
difficult. On the other hand, constantly changing the error surface may lead
the algorithm to not converge at all. Generally SGD is done in mini batches,
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leveraging modern hardware parallelization capabilities and smoothing the er-
ror surface (ROBBINS and MONRO, 1951).

ADAM is a gradient descent algorithm with moment that employs an adap-
tive learning rate. The learning rate is divided by the square root exponential
moving average square gradients, and the local gradient is replaced by the ex-
ponential moving average of the gradients. It is very popular as the adaptive
learning rate makes it more robust to different hyperparameters (KINGMA and
BA, 2014).

The main limitation regarding NN is that they demand a lot of quality data,
but many times this amount of data is unavailable. Another limitation of NN
is that they have too many hyperparameters, and as they become deeper those
hyperparameters become increasingly important. It is also not clear how they
affect the model, so tuning is almost a brute force effort, with the search methods
cited in Section 2.1 having to explore a wide region. Another problem is that
behavior outside training region is unpredictable.

2.4 Support vector machines

Support Vector Machine is an algorithm that seeks to construct a hyperplane
that separates two classes of data, seeking the maximum margin between classes,
as can be seen in Figure 2.2. It was originally developed in 1963 by Vladimir N.
Vapnik and Alexey Chervonenkis (HASTIE et al., 2001). It is popular due to
the kernel trick, that allows the model to efficiently map the data to a higher
dimensional space. It also has the interesting property of ignoring data points
that are already correctly classified, creating a robust classification. Its name
come from the support vectors, the data points outside the correct margin that
are used in fitting the algorithm. Equation 2.12 describes the algorithm.

ŷsvm = W̄T × x̄ + b (2.12){
x ∈ class 1, if ŷsvm ≥ 0

x ∈ class 2, otherwise

The objective function being optimized to fit the SVM is a dual objective
unconstrained function given by Equation 2.13. It has one term seeking the
separation of classes and the other seeking the size of the margin. A SVM with a
margin too wide will have many data points inside it, while a SVM too focused
in separating the classes will be sensitive to outliers. The margins’ separation
is given by the hinge loss term and the size of the margin is given by the L2
regularization term. To balance both objectives the hyperparameter λ is used. λ
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Figure 2.2: Support vector machine example, the dashed lines are the margin.

is a term for how much regularization contributes for the objective function. It
must be noted some implementations use a term C instead. This C term is for
how much the hinge loss contribute for the objective function. As can be seen in
Figure 2.3, a higher λ produced a wider margin for the same data.

min
W,b

1
n
·

n

∑
i=1

max(0, 1 − yi · (W̄T × x̄i + b)) + λ · ||W̄||2 (2.13)

Figure 2.3: Support vector machine example, more regularized and with wider
margin.

SVM fitting is rarely done by minimizing Equation 2.13 directly. Instead,
it is transformed into a constrained optimization problem by adding the slack
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variable ξi = max(0, 1 − yi · (W̄T × x̄i + b)), Equation 2.14; then is reformulated
in the Lagrangian dual form, which is a quadratic problem, Equation 2.15. In the
dual formulation, ci = 0 if the point is at the correct side of the margin. In other
words, if the data point is not a support vector it is not used in the optimization.
W can be obtained from a linear combination of the support vectors.

min
W̄,ξ,b

1
n
·

n

∑
i=1

ξi + λ · ||W̄||2

s. t. yi · (W̄T × x̄i + b) ≥ 1 − ξi

ξ ≥ 0

(2.14)

max
c

n

∑
i=1

ci −
1
2

n

∑
i=1

n

∑
i=1

yi · ci · (x̄T
i × x̄j) · yj · cj

s. t.
n

∑
i=1

ci · yi = 0

0 ≤ ci ≤
1

2 · n · λ

where W̄ =
n

∑
i=1

ci · x̄i · yi and b = ym − W̄T x̄m

(2.15)

The dual is usually solved with a specialized algorithm called sequential min-
imal optimization (SMO). It was developed in 1998 by John Platt while working
at Microsoft. While any quadratic programming algorithm works, SMO is more
efficient. SMO is based in separating the dual problem into smaller subproblems
that can be analytically solved (PLATT, 1998).

The previously mentioned kernel trick was developed in 1992 (BOSER et al.,
1992). It is based on efficiently expanding the dataset in another feature space.
The kernel trick is possible due to the (xT

i × xj) term. Suppose a ϕ(xi) expansion
and a kernel function such k(xi, xj) = ϕ(xi)

T × ϕ(xj). It is only needed to replace
it with k(xi, xj), so there is no need to actually expand the dataset, only finding
the output of the kernel function on the support vectors. Equation 2.15 becomes
Equation 2.16.
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max
c

n

∑
i=1

ci −
1
2

n

∑
i=1

n

∑
i=1

yi · ci · k(x̄i x̄j) · yj · cj

s. t.
n

∑
i=1

ci · yi = 0

0 ≤ ci ≤
1

2 · n · λ

where b = ym − [
n

∑
i=1

ci · yi · k(x̄i, x̄m)]

ŷSVM =
n

∑
i=1

ci · yi · k(x̄i, x̄) + b

(2.16)

Popular kernels include Radial Basis Functions (RBF), polynomial and sig-
moid, seen in Table 2.1. Each one of them carry additional hyperparameters that
increase how well a SVM can be tuned. γ can be interpreted as a scale parameter
and r as a bias.

Table 2.1: SVM kernels.

kernel equation hyperparameters
RBF exp(−γ||x̄i − x̄j||) γ

Polynomial (γ(x̄T
i × x̄j) + r)d γ, r, d

Sigmoid tanh(γ(x̄T
i × x̄j) + r) γ, r

SMO is slow when a large quantity of data is fitted. It scales between
O(n f eatures · n2

samples) and O(n f eatures · n3
samples) depending on the dataset. Re-

cently subgradient (SHALEV-SHWARTZ et al., 2011) or coordinate descent (JUI
HSIEH et al., 2008) methods have been gaining prominence. Subgradient meth-
ods solve the original equation and coordinate descent methods solve the dual.
They accept modifications of the objective, including squaring the hinge loss for
better behaved subgradients and L1 regularization for sparse weights and fea-
ture selection. However, neither of them are quadratic programming solvers, so
convergence is not guaranteed.

Additional strategies are necessary to apply SVM for native multiclass classi-
fication. One-vs-rest is based on using several SVMs, each classifying one class
against all others and evaluating which one is further from the hyperplane. For
k classes this method creates k classifiers. One-vs-one is based on using sev-
eral SVMs, each classifying one class against other and evaluating which class is
more commonly classified. For k classes this method creates k(k − 1)/2 classi-
fiers.

SVM can also be extended for regression using Equation 2.17. This algorithm
is also called support vector regression. The idea is minimizing the margin while
trying to keep most points inside it, given a tolerance ε. ε does not appear in
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the classification, as classification is already encoded in [-1,1], and must be set
depending on the range of the output. The model ignores the points inside the
tolerance. All other algorithm features discussed previously like the kernel trick
and optimization techniques also apply for regression.

min
W̄,ξ,b

1
n
·

n

∑
i=1

(ξi + ξ∗i ) + λ · ||W̄||2

s. t. yi − (W̄T × x̄i + b) ≤ ϵ + ξi

− yi + (W̄T × x̄i + b) ≤ ϵ + ξ∗i

ξ ≥ 0

(2.17)

2.5 Decision trees

Decision trees are algorithms that seek to separate the data using sequential
if-else conditionals, as can be seen in Figure 2.18. They are mainly designed for
classification, but can be used in regression by joining the continuous numbers
into bins. Decision trees have the advantages of being easily explainable, fast
to train and having a probabilistic interpretation. On the other hand: they are
discontinuous, more specifically: piecewise constant, and prone to overfitting
without strong regularization (HASTIE et al., 2001).

Figure 2.4: Decision tree example (author).

Each step of the tree is called a node. If there is a conditional in the node it
is called an interior node and the conditional is called split. If the conditional is
true the following node is called the left child, the false following node is called
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right child. If there is no conditional inside a node it is called a leaf and the
class corresponding to that leaf is the model output. The depth of a tree is the
maximum number of sequential splits (ROKACH and MAIMON, 2014).

Decision trees are trained by seeking the best split inside each node that
minimizes an impurity metric, according to the subset inside the node. The
two most common metrics are Gini impurity and entropy. They produce similar
results, although entropy is slightly slower due to the logarithm computation
(RAILEANU and STOFFEL, 2004), using one or the other is a matter of personal
preference.

Gini impurity is defined by the probability of a sample being randomly
drawn from the subset times the probability of the sample being incorrectly
classified. It is given by Equation 2.18. Entropy is a less straightforward concept.
It is derived from information theory and is given by Equation 2.19.

Gini impurity =
J

∑
i=1

pi ∑
k ̸=i

pk = 1 −
J

∑
i=1

p2
i (2.18)

Entropy = −
J

∑
i=1

pilog2(pi) (2.19)

where pi is the chance of a random sample from class i being drawn. Both
approaches are minimum when all data points inside a node belong to the same
class (ROKACH and MAIMON, 2014).

One interesting property of decision trees models is feature importance ex-
traction. As each node only evaluates one feature, how much the impurity is
reduced can be interpreted as how important is the feature. Unlike feature se-
lection by L1 regularization done with SVMs or generalized linear models, this
has no linear assumption and in case of colinearity it splits the relevance between
the features.

Regularization in decision trees is done mainly by restricting the tree size,
e.g., forcing the number of leaves or the depth of a tree to be below a certain
threshold, or demanding that internal nodes or a leaves contain a minimum
number of samples.

Most applications do not use regular trees by themselves, but rather forests
of trees. A forest of decision trees is the combination of several small/medium
sized decision trees, up to dozens of thousands, each trained with a modified
version of the training data. Each tree learns a different aspect of the relationship
between datasets, and may overfit to specific points, but the assemble of trees
reduces the overfitting (HASTIE et al., 2001).

There are different types of forests depending on how the training data is
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modified. The two most popular are random forests and boosting forests. Ran-
dom forests modify the training data by removing samples randomly. Features
can also be randomly removed. Later the average of the result is used to predict
the model. This procedure is called bagging or bootstrap aggregating. It is not
exclusive of decision trees but mostly used by them due to short training time.
To give an engineering analogy, it is similar to repeating a laboratory analysis
several times with different samples and take the average of results.

Boosting forests modify the data by reinforcing samples that the model gets
wrong. They can boost with either the gradient of a loss, or increasing the
sample weight. The final prediction is a combination of each individual tree.
Boosting forests are more powerful, as sequentially improving prediction even-
tually will remove any residual of the training dataset, but at the same time more
susceptible to overfitting (HASTIE et al., 2001).

A summary of each method and their advantages and disadvantages are
given in Table 2.2.

Table 2.2: Summary of each algorithm advantages and disadvantages.

Algorithm Advantages Disadvantages

Neural network

Fast evaluation
Very powerful
Continuous and
differentiable

May demand a long
time to train
Demand many data samples
Not interpretable
Strong stochastic factor

Support vector machine

Robust to classification
errors.
Straightforward
hyperparameters

Demand a long
time to train
Only interpretable in the
linear case

Decision tree and forest

Fast training and
evaluation.
Easily interpretable
Robust for single outliers

Prone to overfitting
Piecewise constant output
Regression has a tendency
to the mean
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Chapter 3

Proposed methodology

The purpose of developing a methodology is to facilitate and improve the
application of machine learning in chemical processes, with focus in monitoring
and control. It is expected that researchers produce faster and better results fol-
lowing this methodology. The potential for improvement of machine learning
solutions by adding process knowledge has been researched before (VENKATA-
SUBRAMANIAN, 2019) (JOE QIN et al., 2021), but a methodology would facili-
tate their application to new tasks and processes.

Methodology study in Machine learning is not a novelty by itself (MOHRI
et al., 2012), however chemical industry has several specific challenges like sensor
faults; tight environmental, safety and economical constraints and unstructured
manually compiled databases. There are methodology studies for chemical pro-
cesses, while more focused on more traditional statistical models (FORTUNA
et al., 2006). This work develops a methodology more suitable to machine learn-
ing, especially as the field advanced considerably in this past decade (QIN and
CHIANG, 2019).

The methodology being proposed is summarized in the following steps and
in Figure 3.1. The details of each step will depend on the task, dataset and the
available computational resources.

• Data treatment.

– Data reformat.

– Data quality evaluation.

– Data cleaning.

• Data analysis.

– Unsupervised analysis.

– Data selection.
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• Modeling.

– Initial models.

– Model analysis.

– Deployment-refine cycle.

• Follow-up with operators.

All of them build up from the methodologies and frameworks presented in
the previous chapter. Comparing with the KDD framework: Data reformat and
data quality evaluation are analog to the data selection and sampling step of the
KDD framework. The data cleaning step here is similar to the data cleaning and
pre-processing step in the KDD framework, although with a enhanced focus in
process data. The unsupervised analysis and Data selection steps used here are
similar to the the data reduction and projection steps of the KDD framework.

The fifth to seventh steps of the KDD framework do not have an exact and
unique correspondence, but are handled in the Deployment-refine cycle, Data
cleaning, model analysis and Data section steps. The final step of the KDD
framework, acting on the mined knowledge, here is the follow-up with operators
step.
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Figure 3.1: Flowchart of the proposed methodology. The solid lines represent
the usual steps found in the literature, the dashed lines represent the analysis

recommended in this work.
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3.1 Data treatment

The general idea is: Receive the data, in whatever format the data manage-
ment system outputs. If necessary, reformat it in such a way that less memory
is consumed, and visualization and data transfer is easier. Data reformat may
include joining different datasets, eliminating some columns, etc. Usually the
desired result is a single table. It is recommended to save the resulting dataset
in a human-readable format, like a text file or Excel spreadsheet if the dataset is
small, but saving in computer-friendly formats like binary files is also possible
to facilitate loading the data in the memory and processing.

The data reformat step is given additional importance in this methodology
compared to the other methodologies in literature because of the lessons learned
during the case studies with huge industrial datasets. Reformatting the data
was a recurring and time consuming task, so time should be allocated during
planning to account for it.

With a properly formatted dataset, an initial quality assessment can be made.
Check if all sensors have the same timestamp and if they were concatenated
properly. Check if any sensor has too many missing values or unfeasible values,
e.g., negative pressures. Ideally the data management system will have a sensor
quality descriptor, but this is not always set up. Check for noise or lack of noise.
In summary:

• Aspects to check during data quality evaluation.

– If the data is properly concatenated.

– Consistent timestamps.

– Quantity of missing data.

– Physical consistency of the data.

– Frozen/interpolated values.

– Quantity of noise.

Once the data quality is properly evaluated, some technique for data cleaning
may need to be applied: Data cleaning may mean removing sensors and data
periods too damaged to be useful, but it can also mean data imputation or noise
reduction technique. If a sensor is deemed exceptionally important for opera-
tion, like pressure in a gas phase reaction, but appears to have spent some weeks
not working, it may be better to input the data for this specific period rather than
removing it from the dataset. Particularly noisy measurements like gas flow may
need to be smoothed. Because of these details, data cleaning should be carried
steered by process knowledge.
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• Techniques for data cleaning.

– Smoothing noisy data.

– Removing sensor with too much missing values.

– Data imputation for sparse missing data.

– Outlier removal.

There are several techniques for data imputation. The simplest is replacing
the missing values for the mean of the sensor. More complex ones include lin-
ear interpolation if the missing values are not consecutive. Using the k-nearest
neighbors algorithm to correlate working sensors to the missing one is a popular
choice if the missing values are consecutive (BATISTA et al., 2002). All techniques
depend on the data missing sparsely or in a predictable manner. In chemical pro-
cesses, many missing values happen in time blocks, because for example sensor
failure, therefore inference of these missing values is nonviable.

Data treatment is an important steps in all methodologies reviewed in this
thesis, and was an essential part in all case studies with real data. Separating
data treatment in data quality evaluation and data cleaning, it became easier to
revisit and find the rationale for each step and which information could have
been lost in the data cleaning. In the data quality evaluation, the physical con-
sistency was added to the list of aspects that should be checked up because some
data in the real datasets appear to have numerical value, but the value is from a
sensor fault.

In the case of synthetic datasets, acquired from simulated processes, the pre-
vious steps are not necessary, as the stochastic nature of noise is generally known
and the data is already generated in the desired format. In a real world dataset
these steps are essential before doing any modeling work. Depending on the
size of the dataset and the available computational resources they may take a
good share of the man-hours worked, so the schedule must accommodate these
steps.

3.2 Data analysis

The objective of the unsupervised analysis is to find underlying relationships
inside the data. It usually comes to two aspects: redundant and/or irrelevant
features and different modes of operation. Some amount of redundant informa-
tion is expected, as the upstream affects the downstream and vice-versa, there-
fore many variables in an operation are correlated with each other. Depending
on the degree of collinearity between features they may cause issues in some
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models (BABALOLA and OBUBU, 2019). Recycles and control loops also con-
tribute to the correlation between features.

In modern plants many modes of operation can be found, as different prod-
ucts demand different operational conditions. These modes of production gener-
ate interesting properties on the dataset like multimodality that more traditional
statistical methods do not deal well with (JOLLIFFE and CADIMA, 2016). e.g.
PCA and correlation analysis. Creating different models for different modes
of operations is a viable strategy. For detecting different modes of operation
clustering methods can be used, like K-means, mean shift or Gaussian mixture
models with special care to analyze the behaviour of the model over time.

• For detecting feature redundancy.

– Correlation analysis.

– PCA.

• For detecting operation modes.

– K-means.

– Mean shift.

– Gaussian mixture models.

The purpose of this step is to develop knowledge for the data selection step,
and to complement previously established process knowledge. The outcome of
this step should not be seen without context. For example: Lack of correla-
tion between 2 variables that should be correlated may indicate sensor fault or
labeling error.

This step exists in the methodologies reviewed in this thesis, but with a focus
in feature reduction or sample selection. Here it was given a interpretation more
geared towards process engineering and developing a dataset understanding.
The outcomes of this step were also used for feature selection in the next step,
the results also lead to a better understanding of the processes studied.

The next step is data selection. More specifically: Which samples and features
should be used for training, test and validation. The data cleaning step gives
an initial amount of samples and features to discard. Sample selection is very
problem dependent, e.g., depending of the scope of the project, operation mode
transitions may be considered out of scope, or the most important part to be
modeled.

• Methods for feature selection.
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– Linear models with L1 regularization.

– Decision-tree based feature importance.

– Permutation based performance decrease.

– Successive training.

Feature selection must be balanced between increasing model reliability, and
removal of information. Fewer features make the system more reliable as a sen-
sor breaking will not jam it, but removing variables may also remove important
information. For feature selection there are many techniques. The previously
mentioned L1 regularization does internal feature selection. Feature importance
given by decision trees can be used to decide which features to remove.

For pure black-box models, Permutation Feature Importance, also called
mean decrease in accuracy (HAN et al., 2016), can be used to evaluate feature
importance. It consists in keeping most features constant and shuffling one
in the test dataset, then evaluating the score compared with the original test
dataset. The more important features will show a bigger performance reduc-
tion, some shuffled features may even improve performance, showing they can
be discarded.

Successive training is a family of feature selection techniques. One of them is
stepwise regression (JOHNSSON, 1992), in which several linear models are fitted
in succession, removing or adding the variables each new fitting according to a
determined metric, for example F-test. If the chosen metric is a validation score
the method is called Sequential Feature Selection.

Plain operator knowledge can also be used. It has the advantage of increasing
trustness in the model, and given sufficient regularization, it does not decrease
performance significantly. Some operator recommendations may have been dis-
carded in the unsupervised analysis due to collinearity or other phenomena.
Some recommendations are given due to sensor reliability, as some sensors are
so important to the process that there are extra measurements or constant main-
tenance checks and calibration.

Feature selection has demonstrated to be one of the central steps is develop-
ing a good model, therefore is separated in its own step on this methodology.
One issue that happened in the case studies is that some sensors may be infor-
mative, but if they receive outliers or break, the whole model breaks with them.
So fewer and reliable sensors should be selected.
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3.3 Modeling

The initial models are built on the data after all processing, and tested in a
separated environment; ideally with more recent data. Then feedback from en-
gineers and operators regarding the quality and behavior of the model should be
received and noted, whether it works as expected, or if not, what is the expected
behavior. For example: if the model oscillates too much between samples, it
may be better to remove relevant but noisy features. Another point is to analyze
the metrics. Choose one as the main metric, but keep another for better under-
standing of the results. Example: Unbalanced datasets can have high accuracy
but low F1-score, as ccan be seen in Appendix A.2, by having the model only
predict the most common class. Inference in a stable process can have a low R2

but be within the reproducibility of the lab test. A list of regression metrics can
be found is Appendix A.1.

• Metrics for regression.

– RMSE.

– R2.

– ISO/ASTM reproducibility.

• Metrics for classification.

– Accuracy.

– F1-score.

– Precision and recall.

– ROC-AUC.

This issue of metrics arose during the case studies because the industry is a
much more open environment than a laboratory or a simulation. In industry, un-
certainties in measurements and unmeasurable disturbances are commonplace.
So pursuing concepts like "95% of the explained variance" for R2 are not realistic
goals. Additionally, in the industrial case studies the operators valued metrics
they could easily interpret, like RMSE that has the same unit as the measure-
ment, or accuracy.

When possible, a model analysis is done, e.g., analyze the internal weights
to see any important pattern, check if multiple feature importance procedures
agree with each other. When the training data is sampled every hour, see how it
behaves with data from every minute. Another possible analysis is uncertainty
propagation to see how to reduce variance in an overly noisy output. If the
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model properties matches with previously known process knowledge and with
the unsupervised analysis, it assures that it will behave properly in production.
Otherwise there may be an issue in any step of the process. How to deal with
this mismatch is still being developed.

Operators do not trust models that do not follow expected behaviour (MUIR
and MORAY, 1996). Model analysis helped to build trust with the operators
by showing how the model would behave in unseen circumstance and how its
output would look like in case of a fault or outlier.

Then a refinement cycle is done until desired performance is achieved. Usu-
ally refinement consists in acquiring more data, developing new features and
hyperparameter optimization. In practice, industrial data is more complex than
simulated data, so the desired performance may not be achievable, so a "good
enough" line must be drawn.

The refinement part came from the cooperative and business side of projects
with the industrial partners. They wanted regular updates to evaluate how the
project is progressing. It was also desired by the rest of the development team
to have a model so they could develop the rest of the framework in which the
model would operate. "Good enough" line is drawn because diminishing returns
were noticed during the projects, and it was eventually necessary to move on to
the next phase of the projects.

3.4 On the implementation of the proposed method-

ology

To validate the methodology, four case studies will be used. A simulated
gas lift oil well control problem, a melt flow index (MFI) estimation problem,
an offshore oil well fault detection problem, and a dry gas seal fault detection
problem. The gas lift oil well problem was chosen because it is a control problem
with an interesting observability issue, with no measurements on the bottom of
the oil well. The 3W dataset was chosen because it is a large public dataset,
allowing for a good analysis of real industrial data without having to anonymize
the data and the results. The MFI estimation problem was chosen because it was
an industrial regression problem with well structured datasets. The dry gas seal
problem was chosen because it was an industrial classification problem with
common issues like fault overlap.

For the simulation gas lift oil well case study, Matlab and its neural network
toolbox were used. It was chosen because Matlab is well suited for dynamical
simulation and control studies, with state-of-the-art numerical integrators and
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constrained optimizers. For the industrial case studies and the offshore oil well
problem, Python was chosen because it is a very popular open-source language
(ROSSUM, 1995). Python also has good machine learning and data processing
libraries like Scikit-learn, also known as SKlearn (PEDREGOSA et al., 2011) and
Pandas (MCKINNEY, 2010). An advantage of using a single library for modeling
is faster prototyping. SKlearn was developed in such a way that it is possible
to develop and implement several different models with minimal changes in the
supporting code.

Regarding the metrics, it was expected to use well established metrics like
visual inspection for control, R2 for regression and accuracy for fault detection.
During the development of this work, metric formulation became an important
part of the workflow. Custom metrics, F1-score, pre-fault accuracy and other
metrics were evaluated to capture interesting characteristics of the models.

Physically, the models in the industrial case studies were implemented on
the data management software of the plants. Some plant data management
programs like Honeywell’s Aspen (AL-MALAH, 2016) already have compatibil-
ity with Python. The models are expected to return a floating number with a
timestamp that can be plotted over time. The simulation case study was not
implemented on a real plant, but may be used as the starting point in the imple-
mentation of a similar control scheme.

To assure actual process improvement the follow up with operators is es-
sential. They can tell how day to day operations changed with these processes
and if the model should or should not follow the changes. MFI estimation case
study can be directly evaluated as polymers with MFI out of specification are
discarded resulting in economic loss. Dry gas seal fault detection is trickier,
since faults can take months to happen. Therefore, weekly meetings with the
operators helped evaluating the model, to see if the process spent some time in
a given week at fault or not.

A current limitation of the proposed methodology is what to do if process
knowledge, unsupervised analysis and model analysis do not agree with each
other. There is no unified approach, the researcher must use their own insights
to solve them, as some examples are given on the industrial case studies. An-
other limitation is how to deal with process drift and model update. Process drift
happens in every process, and take years to be seen. A model update method-
ology is a theme worth studying. A constant retraining of the models could be
done, or look for a semi-deterministic approach, that can be updated through
traditional engineering modeling, to guide the model are possible approaches
that should be studied in future works.
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Chapter 4

Gas lift oil well control

4.1 Problem description

Gas lift oil wells (GLOW) are oil wells that use high pressure gas to improve
oil production. In these wells, natural gas is used to reduce the density of the
mixture in the tubing, lowering the pressure in the bottom hole, and increasing
the production rate of the reservoir, as can be seen in Figure 4.1.

The purpose of this case study is to develop a model predictive control (MPC)
for a gas lift oil well. The challenges of this problem are:

• unknown internal states.

• noisy measurements.

• unmeasurable disturbances.

• slugging.

• model mismatch.

Slugging occurs when the gas injection flow rate is too low. In this case the
annulus loses more gas than enters, decreasing pressure, until the pressure in the
bottom of the annulus is lower than the bottom hole pressure. Natural gas stops
flowing into the tubing and accumulates in the annulus, increasing the pressure.
The output flow also reduces and both pressure and density of the mixture in
tubing increase. When the pressure in the annulus gets higher than the bottom
hole pressure, gas resumes flowing into the tubing, generating a huge peak in
the output flow and the density of the tubing rapidly decreases. Eventually the
annulus starts losing more gas than is injected; both the pressure in the annulus
and in the tubing decreases to the point of the bottom hole pressure becomes
higher than the pressure at the annulus bottom, so the process restart (EIKREM
et al., 2004).
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Figure 4.1: Gas Lift Oil Well.

The gas lift oil well in this case is supposed to be a mature well. It is also
considered that sensors installed in the bottom of the well have broken or discal-
ibrated over the years, so those measurements do not exist or are unreliable. The
internal states are the mass of gas in the annulus, the mass of gas in the tubing
and the mass of oil in the tubing. It is not possible to directly measure any of
those states (JAHANSHAHI et al., 2012).

Sources of disturbances are the natural gas pressure in the gas source, reser-
voir pressure (Pres), productivity index (PI) and gas oil rate (GOR). The natural
gas source pressure depends on upstream processes, while the other distur-
bances are due to the inconstant nature of mature oil wells. As these distur-
bances occur in the reservoir no measurement is available.

MPC utilizes a model of the process to find the optimum set of control ac-
tions to make the process behave as desired. In this work a simplified first
principles internal model was used. MPC model assumes ideal gas, no pres-
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sure drop from friction, homogeneous oil gas mixture inside the oil well and
no disturbances, while the process model uses Peng-Robinson Equation of State
(PENG and ROBINSON, 1976) (PREoS), assumes pressure drop from friction, lin-
ear profile of liquid fraction between the bottom and the top of the column and
suffers from disturbances.

The process model comes from JAHANSHAHI et al. (2012). Which is an im-
provement of the model found in EIKREM et al. (2004). JAHANSHAHI et al.
(2012) added pressure drop calculations in the tubing, which are important as
the tube has more than 2 km, they also added a valve in the production choke,
turning a SISO problem into a MIMO problem and assumed that a gas lift valve
is responsible for the natural gas inflow, creating a variable upper limit for gas
injection, while EIKREM et al. (2004) assumed natural gas inflow as the manipu-
lated variable. The process model was improved here by changing the equation
of state from ideal gas to Peng-Robinson, as the pressure varies from 20 bar to
90 bar, a pressure in which ideal gas behavior is not a reasonable approxima-
tion. In this region at the working temperature the compressibility factor ranges
between 0.98 and 0.92 (PERRY et al., 1997). An exponential filter was used to
estimate the reservoir mass flow used in pressure drop calculations, Equation
4.4.

The other process model differential equations are based on mass balance;
Equation 4.1 describes the gas mass balance in the annulus, Equation 4.2 de-
scribes the gas mass balance in the tubing and Equation 4.3 describes the oil
mass balance in the tubing.

ṁ1 = wG,in − wG,inj (4.1)

ṁ2 = wG,res + wG,inj − wG,out (4.2)

ṁ3 = wL,res − wL,out (4.3)

ṁ4 = m4 − wres (4.4)

w are mass flow rates. Subscripts G and L mean gas and liquid flow rates
respectively, if neither are present both phases are combined. Subscripts in,
inj, res and out mean the fluid is injected into the system, is injected from the
annulus to the tubing, comes from the reservoir or is ejected from the tubing,
respectively. The equations that govern the dynamics of the oil well and the
model constants are given in Appendix B.2.
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4.2 Literature review

4.2.1 Slugging control

RIBEIRO et al. (2016) connected different wells in a network and to a three
phase separator, while adding different pressure drop calculations to EIKREM
et al. (2004) model. They controlled the process using a MPC based on a set of
linear models. They also assumed that gas injection was a manipulated vari-
able instead of the gas injection valve opening. They also tried to keep quality
specification inside the desired setpoints.

DIEHL et al. (2018) controlled a model containing a GLOW connected to a
flowline and a raiser using an NMPC. The process was modeled in OLGA while
the NMPC used a more simplified first-principles model. The states were esti-
mated with a Hybrid Extended Kalman Filter and managed to suppress slug-
ging. In a follow-up study DIEHL et al. (2019) managed to increase the oil pro-
duction of a real-life GLOW by 10% using the predictive controller BR-NMPC,
which was used in the linear option.

PEIXOTO et al. (2015) used the same process and controlled it using Ex-
tremum Seeking Control. However their work was focused on the gain inversion
caused by high gas injection flow rate and optimizing oil production. They man-
aged to find an optimum of oil production using a precompensation based on a
reduced-order dynamic model with similar behavior of the model of RIBEIRO
et al. (2016).

Regarding data-based modeling, JORDANOU et al. (2018) used a new kind
of recurrent neural network, called Echo State Network, to build an NMPC of
GLOW. They used a linearized forced response of the Echo State Network at
the current process region as the internal model of the NMPC, and managed to
control the gas lift oil well despite significant modeling errors. In a follow up
work JORDANOU et al. (2019) used a novel framework to add online learning
to the ESN and tested it to control a more complex system including 2 gas lift
oil well, a pipeline-riser and a manifold.

DIAS et al. (2019) also tested an Echo State Network for this process, but
focused on prediction, trying to evaluate if the model can predict the topside
measurements over longer time periods and at different process regions. They
evaluated the stability of the Echo State Network in making longer time predic-
tion, indicating the model would be useful in applications that demand a longer
prediction horizon like RTO.

GEREVINI et al. (2018) used an NMPC formulated using the local lineariza-
tion of the process model and an Extended Kalman Filter as state estimator to

32



control both a GLOW and a raiser. They showed that disturbances can per-
manently destabilize the process and the Extended Kalman filter control helps
compensate for it.

KRISHNAMOORTHY et al. (2016) used CasADI to model the process and
to optimize two GLOW connected through a manifold under uncertainty. While
not dealing with control itself it demonstrates the importance of the unmeasured
disturbances down the oil well, more specifically the deviation of Gas-Oil ratio.

The purpose of the new modeling is to create a pair of mismatched models
with different degrees of complexity and different estimated parameters, as real
life processes tend to be more complex than the models derived from them
and suffer from dynamically inaccurate parameter estimation and process drift.
Many of the previous works cited here used OLGA simulator for that, but it is
a proprietary software that researchers may not be able to access. Other works
either used linearized models in the MPC or a Machine learning based model.

4.2.2 State estimation

The parameters being estimated are Kinj, PI and Pres and GOR. Geometric
parameters are known. To control the process, the internal NMPC model is
integrated; for this integration an estimate of the internal states is needed. To
estimate them a neural network was trained on the available sensor data and the
estimated internal states obtained during parameter estimation.

In the first iteration, an optimization problem was solved to estimate the
model parameters. More specifically, minimization of the mean squared error
between the measurements and the integrated NMPC model. Parameter esti-
mation is given by Equation 4.5. As the sensors have different scales they were
normalized using the variance. The constraint yest = g(par) means that the esti-
mated data comes from the integration of the NMPC model which is a function
of the parameters.

min
par

1
S · T

·
T

∑
i=1

S

∑
j=1

(yest
i,j − yi,j)

2

var(ymeas
j )

s. t. yest = g(par)

(4.5)

This optimization problem is considerably time expensive to solve. In the
second iteration a parameter estimation based on the Extended Kalman Filter
(EKF) was used. The EKF is better explained on the next subsection.
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4.2.3 Extended Kalman Filter

Extended Kalman filter is an algorithm that uses measurements to estimate
the state of a nonlinear system (WELCH and BISHOP, 1995). The Extended
Kalman Filter has several formulations, the one used here is called Hybrid Ex-
tended Kalman Filter as it uses a continuous model and discrete measurements.
The formulation of the EKF is given in Appendix B.4.

Extended Kalman filters can also be used for parameter estimation (SIMON,
2006). First an augmented state vector is created by concatenating a parameter
vector and rewriting Equation B.36 as Equation 4.6.

[
ẋ
ṗ

]
=

[
f (x, u, t) + q

qp

]
(4.6)

where qp is a small artificial noise to allow the parameter vector p to move. In
this formulation the parameters are not exactly assumed constant but are treated
as a variable taking a random walk. It should be noted that this parameter
estimation is dynamic and the parameters may not converge to a stable solution
if the process is unstable. It also gives additional degrees of freedom to the EKF,
which allows it to reduce the measurements and modeling errors by adjusting
the parameters even if they are supposed to be stationary.

The disadvantages of EKF is that the model may diverge if the process is
incorrectly modeled and that tuning is difficult. There are several strategies for
tuning an EKF (SALAU et al., 2009) but there are no universal standards, with
some authors even suggesting trial and error (SIMON, 2006). It may also diverge
if the process is too nonlinear between the updates (JULIER and UHLMANN,
2004). For the GLOW model specifically, near and during slugging the discontin-
uous functions make the Jacobians matrix ill-conditioned, leading to numerical
issues during estimation.

The motivation for replacing the EKF for a NN is that the NN encodes pre-
vious information while the EKF uses mostly the local information about the
process. So regions were the EKF does not work well can be interpolated by the
NN.

4.2.4 Nonlinear Model Predictive Control

The NMPC formulation is given by Equation 4.7 (RAWLINGS et al., 2017).
It minimizes the error given by the term (ysp

k − yk), and contains a penalty for
control action, ∆u, to reduce sudden movement of the manipulated variables.
The manipulated variables are restricted from 0 to 1 and the increments of the
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control actions are bounded. In this problem yk and ysp
k are a 2-element column

vector, and so is uk.

min
u

Hp

∑
i=1

(ysp
i − yi)

T × γ × (ysp
i − yi) + ∆uT

i × ϕ × ∆ui + ∆yT
i × λ × ∆yi

s. t. y = g(x, u, d)

0 < u < 1

∆umin
i < ui < umax

i

∆ui = 0, i > Hc

(4.7)

The outputs estimated by the NMPC model are given by y = g(x, u, d) + e,
where x is the internal state of the model, here a 3-element column vector. e
is a zero order corrector to reduce the process-NMPC model mismatch given
by the difference between the current measurement ymeas

0 and the measurements
estimated by the model, y0. d is the NMPC model measured disturbance, Pgs,
which is a scalar.

γ and ϕ are weights to balance the setpoint error and the manipulated vari-
able movement terms, respectively, of the objective function. Hp is the prediction
horizon and Hc is the control horizon.

In this work the manipulated variables are the oil outlet valve and gas inlet
valves, and the controlled variables are the gas inlet flow rate and oil outlet flow
rate. They are all coupled, as the flows depend on the pressure balance which
in turn is dependent on the internal states.

The proposed methodology for the creation of the state estimator is summa-
rized in Figure 4.2. In this work a factorial design of experiments was used to
run a series of step changes, but a train of random excitations or any other meth-
ods can be used to generate the data. In real life this process can be replaced
with historical data. Once the data is generated, parameter estimation is run to
fit the model to the data.

The internal states generated with the optimal estimated parameters for all
input data are stored for further usage in the neural network training. A combi-
nation of the data and knowledge about the simplified model is used to evaluate
which sensors would be relevant, since multivariate data-based models work
better when irrelevant or redundant inputs are removed. In this study, correla-
tion analysis was used for data-based selection, but any feature selection method
can be used. For exemplification, feature selection by L1 regularization and ran-
dom forest feature importance was also performed. Once the estimated internal
states and the selected sensor data are available, a neural network is fit to the
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Figure 4.2: Flowchart of the proposed methodology for creating the state
estimator.

Part of the methodology is data selection. The NMPC model parameter esti-
mation and NN fitting would have worked much smoother if the slugging region
were ignored. However one of the NMPC’s task is to minimize slugging. NN
cannot be expected to extrapolate well, therefore this data must be included. NN
was chosen mainly due to evaluation speed and continuous output, as NMPC
has a time constraint for computing the control actions in real time and should
have a smooth response.

4.3 Materials and methods

The NMPC and well models were implemented in MatLab 2018a using the
CasADI V. 3.5.5 framework (ANDERSSON et al., 2019). CasADI is an automatic
differentiation framework that includes numerical integration support and C-
file generation. CasADI allowed for easy generation of the relevant Jacobians for
the process integration, Extended Kalman Filter, including Equations B.38 and
B.39 and objective functions and for the generation of mex-files that significantly
increased the speed of the simulation.

The process model was integrated with Matlab’s solver ode15s, as the pro-
cess model is stiff in the slugging region, and the NMPC model was integrated
with CasADI’s RK4 integrator, as the RK4 integrator allows for automatic differ-
entiation. The optimization problem was solved with Matlab’s fmincon solver.
The parameter estimation was done in the first iteration by optimization and in
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the second iteration by the method described on the EKF section. Feedforward
Neural Networks were implement using Matlab’s Neural Network toolbox.

The data used in the model training and parameter estimation was generated
by applying several step changes on the manipulated variables and allowing the
process to run for 4 hours before the next step. The step changes were selected
by 4-level factorial design as 0.88, 0.64, 0.40 and 0.17. The simulations ran for 2
hours when the process was on a stable region and for 6 hours during slugging.
A total of 48 hours of the simulated process data was collected. Random Gaus-
sian noise was applied to the data, with zero mean and standard deviation of
0.05 kg/m3 for density measurements, 0.02 MPa for the pressure measurements,
0.001 kg/s for gas flow measurements, and 0.01 kg/s for oil flow measurements.
This noise is also present in the control tests. The step changes are in Appendix
B.2, Table B.2.

The data was sampled from the step changes experiments in 5 seconds inter-
vals, later downsampled to 40 seconds. No analysis of sensor overall cleanliness
was done because the data is simulated data. Data reformat was also unneces-
sary as the model already outputs the data in a tabular easy to read format with
constant intervals.

For the parameter estimation the variables were scaled to improve conver-
gence and numerical stability. The initial point was randomly selected but cen-
tered around GOR = 4.4 × 10−3, Pres = 17 MPa, Kinj = 2.5 cm2 and PI = 10
kg/(MPa s). GOR initial point was given by subtracting all gas injected from all
gas leaving the well, and dividing by the total oil production, all the other points
were randomly selected. In the first iteration the optimization algorithm was
Nelder-Meads simplex (NELDER and MEAD, 1965). For the second iteration
the parameters final values were given by the median of the values calculated
by the augmented EKF.

4.4 Results

4.4.1 Parameter estimation

The results of the parameter estimation are shown on Table 4.1. The results
shown for the first iteration are the best of five trials. To know how much the
noise and model mismatch affect the parameter estimation a new estimation
starting from the known parameters was performed, and the results presented
in the last row of Table 4.1. In a noiseless and perfectly matched system the op-
timization would not move from the starting point. However it can be seen that
while the estimation from known parameters was better than the best found by
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randomized starting points, it still deviated significantly from the model. They
also deviated in the same direction, with PI and Pres lower than the known
parameters but Kinj and GOR higher than known parameters. The parameter
estimation given by the EKF had a better agreement with the known parameters
compared with the optimization. The inverse relationship between Pres and PI
is also seen in the EKF estimation. In general the EKF estimation was faster,
however it was less stable, specially during slugging, in which the discontinu-
ities of the model make matrices Hk and F ill-conditioned, therefore making
(Hk P̃k HT

k + R)−1 numerically unstable.

Table 4.1: Parameter estimation results.

Parameter GOR Pres PI Kinj

Unit 10-3 MPa mg/(Pa· s) 10-4

Known parameters 0 16 2.47 1.4
Parameter estimation

starting from known parameters
1.3 15.36 2.59 1.34

Estimated parameters, first iteration 5.82 14.45 3.29 1.2
Estimated parameters, second iteration 2.812 17.019 2.143 1.390

The stability of the operational region was investigated in terms of valves
opening, in order to the determine where slugging occurs, as can bee seen in
Figure 4.3. It happens mainly when the gas lift valve opening is below 0.31 in
both models. This agrees with the results presented by JAHANSHAHI et al.
(2012), however in their paper the stability region was given in terms of gas inlet
flow rate and oil output flow rate. There is some divergence when the higher the
oil outlet valve opening is but it is at most a difference of 0.02 of gas inlet valve
opening. In terms of the flow rates, the difference is more pronounced, with the
NMPC model predicting slugging at a higher oil outlet flow rate for the same
gas inlet flow rate.
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Figure 4.3: GLOW stability region.

One interesting analysis made possible by the EKF estimation is to see how
the parameter estimation change over time. As can be seen in Figure 4.4, the
estimation of Pres depends on the current steady state of GLOW, while Kinj is
mostly consistent when there is no slugging. This is a good result, since while
Pres can present some variation over time, Kinj should be constant. However as
one can see in Figure 4.5 the estimation varies strongly during slugging. This is
expected due to the instability of the system and is a good highlight on why care
should be taken in modeling a parameter as a variable taking a random walk.
The median value found in Figures 4.4 and 4.5 is the numerical value found in
Table 4.1.

Figure 4.4: Parameter estimation results for the GLOW in stable condition.
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Figure 4.5: Parameter estimation results for the GLOW during slugging.

4.4.2 Modeling

In order to prepare the dataset for neural network training, process knowl-
edge from the NMPC model supported by unsupervised analysis was used. The
unsupervised analysis in this case was correlation coefficient matrix, seen in Fig-
ure 4.6. The idea is to check which variables are the most correlated with both
m2 and m3, while not being correlated between each other. For example: Pgs
has no correlation with either internal state, so it is not used. wG, in has strong
correlation with the internal states, so it is used.

It was known from the NMPC model that the pressure at the top and mass
flow ratio between oil and gas were relevant, however αgt was not shown to be
much relevant. Additionally gas source pressure only affects ρab, so both were
removed. Total output flow is very close to the oil output flow, so the former
was removed. The selected features were:

• wG,in

• wL,out

• Ptt

• Pat

• u2

• ρG,ab

• ρmix,t

How to do feature selection with L1 regularization and random forests is also
shown here for illustration purposes. Although they are not used in this case
study, they are used in other case studies. The general idea is that the results
should agree, even though each method carries different assumptions.
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Figure 4.6: Correlation coefficient of the dataset.

In L1 regularization feature selection, a simple linear model with L1 regular-
ization is fitted to the data using K-fold. The resulting weights at each folder are
saved. It is plotted whether a weight is zero or not, as seen in Figure 4.7. Ideally
each fold should agree with the others, so straight vertical lines are expected.
This does not always happen for two reasons. 1) The model deals with colinear-
ity by erasing one of the colinear features, which one depends on feature scale
and initialization of the model. 2) A relevant variable in one fold may not be
important in another due to distribution shift.
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Figure 4.7: Plot for feature selection with L1 regularization.

In random forest feature selection, a random forest is fitted to the data using
again K-fold. The resulting feature importances at each folder is saved. Then
the mean of the feature importances is plotted, as seen in Figure 4.8. Plotting
the error bar is optional but it is a good measure to see how accurate is the
feature selection. The error bar in this case is given by the standard deviation of
the feature importances. Ideally the error bar should be much smaller than the
mean feature importance.
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Figure 4.8: Feature selection using random forest.

Regarding the NN, training was successful, with a correlation coefficient of
89% in the first iteration and 93% in the second iteration, as can be seen in
Figures 4.9 and 4.10. Most of the noise is due to slugging, where the internal
states estimation becomes worst. Without slugging R2 increases to 99.6%. Data
based modeling is as good as the available data. Given the data during slugging
is an inaccurate estimation, it is expected that the NN will not achieve a great
inference capability. Table B.4 contains NN hyperparameters, while the NMPC
setup is given in Table B.3, both found in Appendix B.3.
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Figure 4.9: NN training results, first iteration.
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Figure 4.10: NN training results, second iteration.

4.4.3 Control test, first iteration

As can be seen in Figure 4.11, the servo test began at 2.5 hour to check if the
system can inhibit slugging and achieve a stable initial state. The process was
kept around the setpoints beforehand. The MPC achieves that with punctual
injections of natural gas, both setpoints can not coexist. When the gas inlet flow
setpoint increased the punctual injections decreased in intensity and the MPC
reduced the opening of the oil production valve, as can be seen in Figure 4.12.
When the oil setpoint increased, the NMPC could not follow most of the gas
inlet setpoint and both the punctual injections and the gas injection mean were
increased.
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Figure 4.11: Process response to setpoint changes.

Figure 4.12: NMPC response to setpoint changes.
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As can be seen in Figure 4.13, the process responded well to unmeasured
disturbances. When Pres decreased from 16 to 15 MPa the NMPC increased the
gas injections. when PI increased from 2.47 to 3.00 mg/(s·Pa) the gas injections
decreased and the output flow valve opening was reduced to compensate for the
increased productivity, as can be seen in Figure 4.14.

Figure 4.13: Process response to unmeasurable disturbances.
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Figure 4.14: MPC response to unmeasurable disturbances.

As can be seen in Figure 4.15, the MPC was solved inside the sampling time,
indicating that the model can be used for actual control. The objective function
value varied in several orders of magnitude, so it was plotted in log scale.

Figure 4.15: MPC solving time and objective function value.
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4.4.4 Control test, second iteration

Extra control tests were added in the second control test: First a new NMPC,
with perfect observability, was added to evaluate the NMPC response irrespec-
tive of the state estimator effectiveness, and a test using the EKF as the state
estimator.

NMPC setup is given by Table B.3. The number of finite elements is a pa-
rameter of the CasADI’s RK4 integrator. As it does not have an adaptive step
size like RK45 the number of the steps must be informed to the integrator. The
number of finite elements carries a trade-off between accuracy and computa-
tional cost, and the smallest number whose accuracy was on the same level as
the process noise was selected.

As can be seen in Figure 4.16, the process was kept on the oil outlet flow
rate setpoint in all cases of the NMPC using the perfect model. It achieved
stability by doing small additional injections in the slugging rejection region. It
also correctly predicted the increase of gas injection to follow the oil output flow
rate setpoint increase. In Figure 4.18, it slightly increased gas injection to deal
with the lower reservoir pressure, and momentously decreased oil production
and increased gas injection to compensate for higher productivity index.

Figure 4.16: Process response to the setpoint changes using the controller a
with perfect model.
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Figure 4.17: Setpoint changes using the controller a with perfect model.

Figure 4.18: Process response to disturbances using the controller with a perfect
model. Pres reduced between 8.3h and 10h; PI increased between 10.8h and

12.5h.
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Figure 4.19: Control action to the disturbances using the controller with a
perfect model. Pres reduced between 8.3h and 10h; PI increased between 10.8h

and 12.5h.

The parameters for the NMPC using the state estimators and mismatched
model are given in Table B.5. As can be seen in Figure 4.20, the EKF took 9
minutes to stabilize. Afterwards, it had a small persistent offset of around 0.53
kg/s in the oil production setpoint and 0.048 kg/s in the gas injection setpoint.
However, it managed to reduce the oil production offsets during the setpoint
changes. The controller using the NN as state estimator, did not present an
offset in the gas injection. However, during slugging rejection it had the same
offset as the EKF estimator, albeit less noisy. The solution found for the oil
production setpoint change was much more noisy than the previous solutions.
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Figure 4.20: Process response to setpoint changes.

Figure 4.21: Manipulated variables response to setpoint changes.
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As can be seen in Figure 4.22, the NMPC using both state estimators found a
similar solution for the reservoir pressure reduction. However, the NMPC using
EKF as a state estimator could not deal with the increased PI disturbance and
suffered from slugging. The NMPC using NN as a state estimator did manage to
avoid slugging during PI increase, albeit the oil production was not kept around
the setpoint.

Figure 4.22: Process response to disturbances. Pres reduced between 8.3h and
10h, PI increased between 10.8h and 12.5h.
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Figure 4.23: Process response to disturbances. Pres reduced between 8.3h and
10h, PI increased between 10.8h and 12.5h.

As there are other control strategies to compare the controller to, visual in-
spection is not enough anymore. So it was decided to use a numerical metric,
RMSE. A summary of the results can be seen in Table 4.2. In general the neu-
ral network NMPC was better than the EKF NMPC in keeping the gas injection
around the setpoint, and successfully avoided slugging during the increased PI
disturbance. However, it performed worst in keeping the oil production at the
appropriate rate during the setpoint changes, where the EKF NMPC managed
to significantly reduce the offset. Neither of them managed to remove the off-
set between the setpoint during slugging rejection, both predicting the system
would suffer from slugging if the production was increased.
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Table 4.2: Summary of the control experiments results, RMSE.

Gas injection error Oil production error

Perfect EKF NN Perfect EKF NN

Slugging rejection 0.0643 0.129 0.0784 0.617 1.78 1.57
Gas inlet sp change 0.00401 0.0379 0.00612 0.0154 0.188 0.693
Oil outlet sp change 0.326 0.347 0.349 0.0570 0.162 0.354
Pres reduction 0.102 0.107 0.0748 0.0569 0.246 0.401
PI increase 0.230 0.765 0.366 0.413 10.7 2.34

The results of this work were published in the paper "Development of a
Nonlinear Model Predictive Control for Stabilization of a Gas-Lift Oil Well" (RO-
JAS SOARES et al., 2022).

4.5 Summary on how the proposed methodology was

used

The methodology proposed in Figure 3.1 was used to align process knowl-
edge with the data analysis, allowing for an effective feature selection that was
used in both the internal state estimation and the process control. It also helped
to pursue a substantial control improvement through the "Get more data" loop,
in which new data was generated using a different and faster state estimation
technique that used more sensor information, therefore being more information
rich data.

It also inspired two new control strategies, which provided more clarity about
the effectiveness of the control strategy using NN. This new controls strategies
also led to a review of the employed metrics as visual inspection was not enough
and numerical metrics were required.
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Chapter 5

Oil well fault detection

5.1 Problem description

There is an increasing demand for better safety and productivity in offshore
oil wells. The open seas are harsh environments and faults, even if they are
rare, can cause significant damage. Operational failure in oil wells may lead
to productivity loss, environmental disasters and damage to the equipment. It
is important to have an abnormal event management system in place to warn
the operators that a fault is happening or about to happen, and which fault is
happening.

To allow for more studies on the area, Petrobras released the 3W dataset, de-
scribed in VARGAS et al. (2019). The main objective in this dataset is to detect the
faults and their transients in the process in a timely manner, although it allows
for other types of studies, like rare abnormal event detection, data treatment and
selection, etc. The dataset includes 8 types of faults and is still being augmented,
with regular updates.

In the present case study, machine learning models will be used to detect the
faults in the 3W dataset. These models are expected to warn operators about
issues in the process and help them to mitigate and solve those issues.

Figure 5.1 illustrates the process.
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Figure 5.1: Offshore oil well illustration.

5.2 Literature review

There are some works using this dataset which will be discussed below.
MELO et al. (2022) did an overview of this and other benchmark datasets

and models relevant to chemical engineering. They made an exploratory data
analysis of the dataset, and confirmed some results found regarding, albeit with
a different methodology, the overly interpolated periods and process drift of
each well over time.

MARINS et al. (2021) used the first four standardized moments of each sen-
sor, plus the maximum, minimum and the three quartiles, extracted every 50
seconds. They did not perform data cleaning or missing value imputation, but
used a PCA to reduce the number of features. For data separation they used a
train/test separation of 70/30%, and for validation used 5-fold cross-validation
with the data separated by instance. They used random forest for classifying the
status of the process. The work focused on accuracy and proposed three setups
for fault detection: the first classifying between normal and faulty operation, the
second classifying all classes in a one-vs-rest style, and the third using the native
multiclass classification procedure from random forest classifier. They achieved
an overall 94% accuracy, despite the accuracy of the real cases being significantly
lower, ranging from 0% for fault 8 to 95.4% for fault 4, with a median of 86.0%.
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CARVALHO et al. (2021) removed the features referent to the gas lift, which is
not always used since the wells are naturally flowing. They extracted the max-
imum, minimum, median, mean and variance, with a sliding window of 900
seconds, and they removed the missing values, but kept the outliers. For valida-
tion they used 2 strategies: one with random cross-validation of all concatenated
data, and another separating the data per well. They focused in flow instability,
class 4 of the dataset. For the more realist second strategy, they achieved 67.16%
and 68.06% macro F1-score and for accuracy: 87.42% and 81.62%.

DO NASCIMENTO et al. (2021) used time delayed stacked autoencoders to
reduce the dimensionality of the dataset before feeding it to two anomaly de-
tection models: isolation forests and one-class support vector machines. They
interpolated the missing values and standardized the data. They used only nor-
mal condition samples for training and tested against faults and other normal
conditions. They achieved F1-scores ranging between 73.30% for fault 7 and
99.39% for fault 2. They did not report any results for faults 3 and 4.

TURAN and JÄSCHKE (2021) also used several statistics for feature genera-
tion along with their changes and the coefficients of a polynomial model, with
the time window being treated as an hyperparameter that is later optimized.
They did not find feature selection to improve the results, but this may be due
to overfitting and data leakage as they did not separated the data in a time con-
scious manner. They achieved an overall F1-score in the test data ranging from
49% for fault 2 and 95% for fault 4, with a macro average of 85%. Accuracy
ranged from 60% for fault 2 to 98% for fault 1.

5.3 Materials and methods

In this thesis, the 3W oil well dataset, described in VARGAS et al. (2019), was
used. The dataset is comprised of 9 folders containing csv files regarding normal
operation and 8 types of fault. Those files contain information from 21 offshore
oil wells. The data can be either real data, simulated data generated by OLGA
simulator or hand drawn by experienced operators. The data is sampled every
second.

There are 5 sensors in every well. One in the Permanent Downhole Gauge
(PDG), two at the Temperature and Pressure Transducer (TPT) and two at the
Production Choke (PCK). There are no consistent flowrate, phase or composition
measurements.

• Pressure at the PDG (P-PDG).

• Pressure at the TPT (P-TPT).
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• Temperature at the TPT (T-TPT).

• Pressure upstream of the PCK (P-MON-CKP).

• Temperature downstream of the PCK (T-JUS-CKP).

If gas lift is being used, there are 3 additional sensors, that will not be used
here since they spend most of their time with Not a Number value.

• Pressure downstream of the gas lift (P-JUS-CKGL).

• Temperature downstream of the gas lift (T-JUS-CKGL).

• Flowrate of the gas lift (QGL).

For metrics, F1-score, precision and recall were used according to the guide-
lines proposed by VARGAS et al. (2019). Accuracy will also be reported as it is
an easy to interpret metric in classification problems and is used in other papers
about the 3W dataset. Precision is defined as the amount of positive samples
classified as positive divided by the amount of samples classified as positive,
Equation 5.1. In this case positive stands for the occurrence of a fault. Recall is
defined as the amount of positive samples classified as positive divided by all
positive samples, Equation 5.2. F1-score is the harmonic mean between precision
and recall, Equation 5.3. Accuracy is the percentage of samples the model classi-
fies right, Equation 5.4. Accuracy and F1-score will be reported in the main text
while precision and recall will be reported in Appendix C.2. In the following
equations, true refers to correct classification, false refers to incorrectly classifi-
cation. e.g., a false negative means a sample incorrectly classified as negative.

Precision =
true positive

true positive + f alse negative
(5.1)

Recall =
true positive

true positive + f alse positive
(5.2)

F1-score =
2

recall−1 + precision−1 (5.3)

Accuracy =
true positive + true negative

all samples
(5.4)

5.4 Results

5.4.1 Data formatting

The data comes in 9 folders depending on the type of fault it studies. Each
folder contains CSV files with 2 to 5 hours of sensor data sampled every second.
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It also contains a class label.
To facilitate the analysis the data was downsampled to 30 seconds. 30 sec-

onds was chosen because the original paper informed that the fastest fault, spu-
rious closure of DHSV, may need only a 5 minutes window to be observed, so
the sampling time was chosen as one tenth of that. The data was concatenated
into a single CSV file. It was added information about from which folder, file
and well the data belongs, as well as the data origin, whether it was hand drawn,
simulated or from a real well. This reduced the dataset size from 4.78 GB to 166
MB.

The hand drawn pressure data was given in bar, so they were converted
to Pa in accordance with the other pressure measurements in the consolidated
dataset. They were not used in the end, but future studies wanting to use this
part of the dataset should be aware of this unit conversion, as most open source
data manipulation tools do not have automatic unit conversion.

5.4.2 Data quality evaluation

The sensors in harsher conditions are expected to be less reliable, while the
ones at the surface are probably the most reliable since they can receive regular
maintenance. This poses the order from less to more reliable: P-PDG; P-TPT and
T-TPT; P-MON-CKP and T-JUS-CKP.

Looking for sensors with valid information showed that P-TPT and T-TPT are
the most reliable sensors. However, for a more in-depth analysis a second deriva-
tive test was applied. All data in this dataset is interpolated, due to the behavior
of the system that extracted the dataset and the historian. However, long-term
interpolation may imply communication issues or gaps in the historian. Real-
life data has noise, which will be magnified if the numerical second derivative
is taken, while linearly interpolated or constant data will have a zero second
derivative. A numerical second-order approximation of the second derivative
over 60 seconds is given by Equation 5.5, using in this case h = 30s. This analy-
sis showed that many P-TPT or T-TPT values were interpolated for more than 1
minute, as can be seen in Table 5.1. The samples where invalid and interpolated
values appear can be seen in Figures 5.2 and 5.3, respectively. An example of
overly interpolated data is shown in Figure C.1.

f ′′(x) ≈ f (x + h)− 2 f (x) + f (x − h)
h2 (5.5)
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Table 5.1: Percentage of invalid (offline) or interpolated values per sensor.

Sensor % offline % interpolated
P-PDG 63.85% 14.38%
P-TPT 0.45% 32.32%
T-TPT 0.45% 25.5%
P-MON-CKP 8.04% 8.90%
T-JUS-CKP 12.11% 13.72%

Figure 5.2: Occurance of invalid values.

Figure 5.3: Occurance of interpolated values.

Another aspect that should be brought to attention is a low amount of regular
condition data in wells 9 to 20. Wells 14 and 18 have no normal condition data,
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well 19 has only 3 minutes of normal condition. This diminishes how the models
can be tested as they can not be tested properly for false positives. Also any well-
dependent normalization will carry higher uncertainty. Table 5.2 shows which
wells have no valid values for each sensors.

Table 5.2: Wells in which a certain sensor has no normal values.

Sensor Wells with no normal sample
P-PDG 1, 2, 4, 5, 9, 13, 14, 18 and 19
P-TPT 14, 18, 19
T-TPT 14, 18, 19
P-MON-CKP 8, 11, 13, 14 and 18
T-JUS-CKP 3, 8, 11, 12, 13, 14, 18, 19, 20 and 21

Looking per folder in Table 5.3, it can be seen that most of them do not
have enough samples of P-PDG, which is expected given the previous analysis.
Folder 2 has many missing values for P-MON-CKP and T-JUS-CKP. Folder 8 has
plenty of missing values from all sensors but P-MON-CKP, therefore it will not
be analyzed in this work.

Table 5.3: Percentage of invalid sensors per folder.

Folder 0 1 2 3 4 5 6 7 8

P-PDG 69.83% 34.56% 29.76% 3.25% 62.18% 0.00% 100.00% 100.00% 56.22%

P-TPT 0.03% 0.00% 0.38% 0.09% 0.02% 2.15% 0.00% 0.12% 56.18%

T-TPT 0.03% 0.00% 0.38% 0.09% 0.03% 2.15% 0.00% 0.12% 56.18%

P-MON-CKP 10.13% 0.00% 75.80% 0.09% 0.02% 0.00% 0.00% 0.12% 0.00%

T-JUS-CKP 14.78% 0.00% 86.67% 0.12% 0.03% 0.00% 0.00% 0.12% 100.00%

5.4.3 Feature engineering

Three forms of first principle flow estimation were designed, two based on
pressure difference and one based on temperature difference. Assuming neg-
ligible height difference between the TPT and the PDG, and considering the
pressure drop comes from the Downhole Safety Valve (DHSV), as can be seen in
Figure 5.1, and that it can be modeled as a regular valve.

Q̃p1 ∝
√

P-PDG − P-TPT (5.6)

where Q̃p1 is the estimated flowrate. It should be noticed that DHSV opening
is assumed constant, which is not true, as there is a closure fault for this valve.
If the DHSV is closed, P-PDG is expected to increase, while P-TPT would de-
crease, making the flow estimation increase, while the true flow is negligible.
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The second pressure equation considers the Bernoulli equation, based on the
pressure difference between P-TPT and P-MON-CKP. The height difference
cannot be considered negligible, so a term considering the pressure loss due to
gravitational effect is added. This term should be different from well to well and
may change over time, but here it is assumed constant, given the overall lack of
information about the wells.

Q̃p2 ∝
√

P-TPT − P-MON-CKP − ρ · g · z (5.7)

where Q̃p2 is the estimated flowrate, ρ is the fluid density, g is the gravity con-
stant and z is the height. Simulated data gives an estimation of ρ · g · z. As there
are some simulated faults that stop oil production like fault 2, taking Q̃p2 = 0
and find the smallest value of P-TPT − P-MON-CKP, this gives an estimation
for ρ · g · z. The value found was 1.1 MPa in the simulated data, which will be
used here. For the real data, the smallest value is 2.3 MPa, but it is unclear if the
flow had really stopped.

The temperature difference equation is given assuming the pipeline to the
PCK exchanges heat (W) only with the sea and thermodynamic effects, as gas
expansion are negligible, Equation 5.9. Modeling this pipeline as a heat ex-
changer using the log mean temperature difference, results in Equation 5.8.

LMTD =
(T-TPT − Tsubsea)− (T-JUS-CKP − Tseasur f ace)

log(T-TPT − Tsubsea)− log(T-JUS-CKP − Tseasur f ace)
(5.8)

W = Cp · Qt · (T-TPT − T-JUS-CKP) = UA · LMTD (5.9)

rearranging it becomes Equation 5.10:

Q̃t ∝
LMTD

(T-TPT − T-JUS-CKP)
(5.10)

where Q̃t is the estimated flowrate, W is the exchanged heat, Cp is the fluid heat
capacity, Tsubsea is the temperature under the sea and Tseasur f ace is the temperature
at the sea surface. UA is the overall heat transfer coefficient and LMTD is the
logarithmic mean of the temperature difference. Again, Tsubsea and Tseasur f ace can
be inferred from the simulated data. Assuming that when the flow is stopped
T-TPT converges to Tsubsea, the value found is 2.97 ◦C, similarly for Tseasur f ace

and T-JUS-CKP, the value found is 24.1 ◦C. This equation does not account for
fluid chilling due to gas expansion or liquid evaporation at lower pressures.
One issue with this estimation is that in case of strong flow decrease, T-TPT
cools faster than T-JUS-CKP, making the denominator become to negative and
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making Q̃t looks like it went to infinity then inverted signal.
These equations are oversimplifications of the process, have no appropriate

unit due to the lack of proportionality constants, are dependent on well ge-
ometry and oil composition. If flowrate could be inferred with these simple
equations, oil well flow estimation would not be such an active field of research,
but those transformations may carry some information about the system’s state,
so they were added and it was later determined whether they carry relevant
information for the models.

One issue of these equations is that they need more than one sensor, and
a broken sensor may invalidate these new features. As was shown in the data
quality analysis, sensor failure is a common issue. Another strategy was to use
the derivative of the sensors, to see the direction where the system is moving.
They are expected to be relevant for flow instability detection. The derivatives
were taken using a Savitsky-Golay (SAVITZKY and GOLAY, 1964) filter of order
1 to smooth the measurement noise.

5.4.4 Unsupervised analysis

The first analysis was a descriptive analysis of the normal condition. It was
clear that each well had a different operational condition, as can be seen in Figure
5.4, and the operational condition changed overtime. In the wells with more data
samples it was clear the normal operational condition varied overtime. While
operational drift is an expected result, the magnitude of the variance indicates
that normalization must be flexible for each well and each point in time. So any
system developed for well monitoring must be able to be updated over time. In
this work it was decided to only update the normalization. It should be noticed
that in an eventual deployment of this system the operator must keep a record
of what is a normal condition for the well.
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Figure 5.4: Density estimation of P-TPT values.

Correlation analysis was done to the variables, both within each well and in
the overall normal condition data. Correlation analysis is sensitive to outliers so
it should be performed with care for abnormal condition data. The correlation
analysis was done to both the real data and simulated data. Interesting diver-
gences occur: in the real data P-TPT and T-TPT are weakly negatively correlated,
while in the simulated data they are strongly positively correlated. In the simu-
lated data T-TPT and T-JUS-CKP are strongly correlated as expected but not in
the real data. The correlation analysis also show that since P-PDG and P-TPT
are strongly correlated, they likely carry similar information; demonstrating that
P-PDG, the less reliable measurement, can be removed without much loss of in-
formation. Another thing that should be noted is that Q̃p2 has little correlation
with either Q̃p1 and Q̃t in the simulation data. Since they are trying to estimate
the same thing they were expected to be correlated. This indicates that Q̃p2 may
be an ill-engineered feature.
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(a) Correlation matrix, real data.

(b) Correlation matrix, simulated data.

Figure 5.5: Correlation matrices for real (a) and simulated data (b).

Reading the concatenated csv files, and reviewing the raw files to make sure
an error was not done during concatenation, faults 3 and 4 have no real transition
data, while fault 7 have only one real example of consistent fault state, the other
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real examples being transient state.

5.4.5 Data selection

Finally, the data select is chosen as following: It was used simulated and
real data for training and validation and real data for testing. Although there is
a version 1.1.1 of the dataset available as of June 2023, the 1.0.0 version of the
dataset was used in this work. The features P-PDG and Q̃p1 were not used since
P-PDG is too unreliable. Even in folders where P-PDG is present it is likely that
it will stop working in the future, invalidating the model. In the first iteration
all variables but P-PDG and Q̃p1 were included. In the second iteration, the
knowledge created in the first iteration was applied to select some features. In
the third iteration, the first derivative was added and passed through feature
selection. For further feature selection, it was used both the feature importance
given by the random forest, and the permutation importance. The permutation
importance is defined as: if a feature is scrambled during prediction, how much
does the accuracy decreases in response. If a feature is more important, the
bigger will be the decrease. This is better explained in Appendix A.3.

For the test dataset, the data of some wells were hold out, to simulate the
model being used against a never-seen-before well. The models were validated
using a grouped K-fold scheme, where the data is divided in 4 hours blocks, to
reduce data leakage from future data, and then tested with the held out data.
The wells whose data were held out are summarized in Table 5.4. The main
metric to be reported is F1-score, per suggestion of the original 3W dataset paper,
but accuracy is also reported. Precision and recall are reported in Appendix
C.2. The mathematical formulation of F1-score, precision and recall is given in
Appendix A.2.

Table 5.4: Held out well data.

Fault Held out well

1 1
2 10
3 1
4 7
5 15
6 2
7 1
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5.4.6 The development iterations

In the first iteration the dataset was constructed with process knowledge,
data cleaning, and feature engineering, trained with data analysis based feature
selection. Then the second cycle was done using machine learning based fea-
ture selection, both with feature importance given by the Random Forest and
permutation based. It also adds a per well normalization scheme. The third
step included the addition of sensor derivatives and tests of their relevance. The
final step was hyperparameter optimization and model selection; as it is the
most time consuming, it was done last. The results in Table 5.5 are the results
for the first and last iteration, with the intermediate results being displayed in
Appendix C.2.

Table 5.5: Results of the methodology application, validation data.

First iteration Last Iteration

Fault Accuracy F1-score Accuracy F1-score

1 85.65% 95.34% 95.89% 99.69%
2 99.44% 95.32% 99.83% 99.63%
3 99.85% 99.81% 99.87% 99.83%
4 94.91% 89.56% 97.61% 94.29%
5 72.02% 98.43% 98.20% 99.62%
6 74.86% 96.03% 92.48% 99.69%
7 99.85% 97.55% 99.76% 95.47%

The relevant features are described in Table 5.6 along with the best type of
model found. In 6 models the inferred flowrates were deemed important, in-
dicating the process knowledge based on feature engineering was relevant. 6
models used the derivatives, referred here by the suffix "_der" after the sensor
name. The relevant features were selected by analyzing which sensors displayed
low feature importances according to both Random Forest and Permutation fea-
ture importances. For example: As can be seen in Figures 5.6a and 5.6b, P-TPT
and Qp2 were deemed not relevant for the fault 7 classifier, so they were ex-
cluded. The best type of model was chosen by cross-validation with random
search.

68



Table 5.6: Relevant features and best model for each fault.

Fault Relevant features Best model

1
P-TPT, T-TPT, Qp2, P-TPT_der,

T-TPT_der, P-MON-CKP_der, T-JUS-CKP_der
GB

2 P-TPT, T-TPT,P-TPT_der, T-TPT_der RF
3 P-MON-CKP,T-TPT, Qt, P-TPT_der, T-JUS-CKP_der GB
4 P-TPT, P-MON-CKP, T-TPT, Qp2, P-TPT_der GB
5 P-MON-CKP,T-JUS-CKP, Qp2,P-TPT_der, P-MON-CKP_der GB

6
P-MON-CKP, T-JUS-CKP, Qp2,

P-MON-CKP_der, T-JUS-CKP_der
GB

7 P-MON-CKP, T-TPT, T-JUS-CKP, Qt MLP

The features and permutation importances, given for each fold, were collect
and their mean plotted, along with a small error bar equal to their standard de-
viation. Examples of such plots are Figures 5.6a and 5.6b, for fault 7. It can be
seen that the Random forest feature importance always attribute some impor-
tance to a feature due to bootstrapping, while for the Permutation importance
the decrease can be zero or even negative. They generally agree, with some
details of difference. For example, in the permutation importance T-TPT was
the most important feature, while in the Random Forest feature importance T-
JUS-CKP and Qt were the most important. One aspect that should be noticed
is that permutation importance has more variance than the Random Forest fea-
ture importance, due to being a differential measure and being calculated on the
validation dataset, in which the model was not trained on.
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(a) Feature importances.
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(b) Permutation importances.

Figure 5.6: Feature importance for the random forest (a) and permutation
importances (b).

The test dataset was left for last on purpose to avoid data leakage, and not
analyzed until the final iteration. In a real industrial project, the real time process
could be used as the test dataset. As can be seen in Table 5.7, there are unusual
results, like in the results of the last iteration model of fault 1 and first iteration
model for fault 7, both which have high accuracy but low F1-score. This is due
to the unbalanced nature of the dataset. There are much more normal condition
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data than fault data, so a model that predicts only normal condition has high
accuracy and low F1-score, which happened in the aforementioned cases.

In summary, for faults 2 to 6 the methodology provided a significant improve-
ment, for fault 7 there were small improvements as this fault were hard to predict
on the first iteration, and there were a decrease on performance in fault 1. In this
case the suggestion is to roll back the first model. Overall, the results were bet-
ter than CARVALHO et al. (2021) for fault 4, achieving a 22.19% improvement.
Compared to MARINS et al. (2021) better results for faults 2 (2.95% improve-
ment), 5 (11.5% improvement) and 6 (28.5% improvement) were achieved. The
methodology created a median improvement of 13.25% in accuracy and 44.23%
in F1-score.

Table 5.7: Results of the methodology application, test data.

First iteration Last Iteration Improvement

Fault Accuracy F1-score Accuracy F1-score Accuracy F1-score
1 98.81% 83.03% 97.08% 32.84% -1.73% -50.19%
2 24.52% 38.13% 91.75% 86.34% 67.23% 48.21%
3 3.98% 3.83% 17.23% 54.40% 13.25% 50.57%
4 0.00% 0.00% 93.04% 90.25% 93.04% 90.25%
5 68.34% 48.12% 94.80% 92.35% 26.46% 44.23%
6 94.25% 46.16% 99.49% 80.58% 5.24% 34.42%
7 97.75% 32.95% 97.76% 32.96% 0.01% 0.01%

5.4.7 Model analysis

Here model analysis is performed in a more explicit manner, as it is essential
for the methodology, and should be included in any presentation and reports
whenever the product is delivered or demonstrated for stakeholders.

It was expected that Faults 6 and 7, quick restriction and scaling at the PCK
respectively, to have relevant sensors at the PCK. In fact the model for fault 6
uses only sensors at the PCK and a flow estimation. However, feature selection
for Fault 7 also found T-TPT to be relevant. This is probably because scaling is a
factor of the fluid temperature over the whole pipeline, therefore information on
its temperature on the beginning of the pipeline is important. A similar analysis
could be done about fault 2 if the sensors on the surface worked, but as seen
in Table 5.3, they spend most of their time at fault, so P-TPT and T-TPT were
chosen based solely on their availability.

Some derivatives and a flow inference were used for faults 3 and 4, severe
slugging and flow instability, respectively. This is also expected as both are
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sudden phenomena related to the flowrate, causing fast shifts in the readings
therefore generating strong derivatives.

Analyzing the behavior of the classifier over time on the test dataset (illus-
trated in Fig. 5.6 for fault 6), which would be similar to a real-time scenario,
it can be seen that in the last iteration the model notices the shift to transient
state quickly, and starts to shift to predict fault state around 26 minutes before
the transition occurs, but only steadily predicted the fault 20 minutes after it
occurred. These time frames match the evaluation window Petrobras operators
use to detect fault 6, of around 15 minutes.

Taking a look at the probabilities, it can be seen that the probabilities for
normal condition shift fast, while the probabilities of transition and fault states
are smoother, which makes sense since the confusion are mostly between them.
The last model has the confidence in its prediction steadily increased with time,
while the first iteration model shows a steady probability estimation.
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Figure 5.7: Example on how prediction works for fault 6.
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Taking a look at the partial dependence plot for the derivative of P-TPT,
Figure 5.8, more extreme values of the derivative leads to a higher chance of
the process being classified as fault 4. This matches engineering knowledge,
as flow instability would lead to data with higher fluctuations, therefore bigger
derivatives.
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Figure 5.8: Example on how P-TPT_der affects the model for fault 4.

5.5 Summary on how the proposed methodology was

used

The methodology was used to continuously create new features, and validat-
ing their utility both by modeling analysis and rationalizing their choice in terms
of expected fault behavior. Features focused on dynamic behavior were used to
encode time-dependent information on the dataset in a way not previously seen
in the literature. Rationalizing the feature choice would also facilitate model ac-
ceptance in an industrial project using the models. Better results were achieved
in the test dataset than MARINS et al. (2021) for faults 2 (2.95% improvement),
5 (11.5% improvement) and 6 (28.5% improvement). Improved outcomes were
also obtained in comparison to the results of CARVALHO et al. (2021) for the F1-
score of fault 4, while the difference may be due to different dataset treatment
choices.

The methodology application was limited due to lack of access to a special-
ist or operator in the process to help guide and validate it, since the process
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knowledge available was limited to general engineering knowledge and infor-
mation about the unique features of the wells was unavailable. This matter will
be addressed in the industrial case studies.
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Chapter 6

Low density polyethylene
production

6.1 Problem description

Low Density Polyethylene (LDPE) is a thermoplastic polymer produced through
the polymerization of ethylene. It has a density between 0.917 and 0.930 g/cm3

and is more branched than high density polyethylene (HDPE) . It was the first
polymer industrially manufactured in 1933. Its lower density is due to branch-
ing, on about 2% of the carbon atoms, which increases the volume occupied by
the molecule. It is used in applications that require flexibility but not strength
like films and some containers (SAUTER et al., 2017).

The most important rheological characteristics of the polymer are melt flow
index (MFI) and density. MFI measures how easy the polymer flows and is
important in extrusion processes. It is correlated with viscosity and molecular
weight, higher MFI implies lower viscosity and branching, and lower molecular
weight.

In order to measure MFI, a sample of the polymer is heated beyond its melt-
ing point and forced to flow through a capillary tube using a piston under a
specified weight. The method is described in the standards ASTM D1238 and
ISO 1133 (ISO 1133-1:2011). The measurement precision depends on the poly-
mer and MFI being measured, but stays around 3-8 %. The purpose of this work
is to develop a soft sensor for MFI from reactor variables, particularly online
measurements. This soft sensor will help operators to keep the product under
the desired specifications and reduce product loss.
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6.2 Literature review

Polyethylene polymerization in this and other high pressure processes are
described by the following reactions (ZHOU et al., 2001).

Initiator decomposition
R – O – O – R −−→ 2 R – O · (Reaction 4.1)

Chain initiation
R – O · + CH2 –– CH2 −−→ R – O – CH2 – CH2 · (Reaction 4.2)

Propagation
R – O – (CH2)n – CH2 · + H2C –– CH2 −−→ R – O – (CH2)n+2 – CH2 · (Reaction 4.3)

Chain transfer to monomer
R – O – (CH2)n – CH2 · +H2C –– CH2 −−→ CH2 –– CH – (CH2)n+1 – CH –– CH2 +R – O – CH2 – CH2 ·
(Reaction 4.4)

Combination termination
R – O – (CH2)n – CH2 · + R – O – (CH2)k – CH2 · −−→ R – O – (CH2)n+k+2 – O – R (Re-
action 4.5)

Disproportionation termination
R – O – (CH2)n – CH2 · + R – O – (CH2)k – CH2 · −−→ R – O – (CH2)n – 1 – CH –– CH2 +
R – O – (CH2)k – CH3 (Reaction 4.6)

The reaction starts with the initiator decomposition, Reaction 4.1, in this case
an organic peroxide. The decomposition creates two free radicals, which then
attack the ethylene double bond, attaching themselves to the ethylene and trans-
ferring the radical to a carbon atom, Reaction 4.2. This is the beginning of the
chain, that then attacks another ethylene molecule to grow, Reaction 4.3.

Sometimes the chain transfer to a monomer, terminating a chain and begin-
ning other, Reaction 4.4. The polymerization terminates when two chains attack
each other, forming either one long chain; a combination termination, Reaction
4.5; or forming two chains, one with a saturated carbons and another with an
unsaturated bond, Reaction 4.6.

There are many works trying to estimate MFI in an industrial setting. How-
ever, there is no uniform numeric metric in these works, although visual in-
spection is popular for obvious reasons. In fact, during this case study custom
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metrics were developed as will be seen in subsection 6.4.2.
HO LEE et al. (2008) estimate MFI of a HDPE plant from a dynamic empir-

ical model to reduce transition time. Model accuracy was evaluated by visual
inspection and by integrated squared error. The main features used are reactants
concentration and temperature.

FARSANG et al. (2015) used dynamic PCA to estimate MFI from a polypropy-
lene plant. They started with 22 variables but reduced them to 8 principal com-
ponents. They also evaluated model accuracy by visual inspection. LIU et al.
(2017) employed local gaussian process regression, and obtained relative error
between 10-12 %. They did not specify exactly which variables were used but
they included reactor pressure, temperature, liquid level, and catalyst flow rate.

FEIL et al. (2004) present a semi-mechanistic modeling approach where neu-
ral networks describe the polymerization along with DAEs. Again the paper
used visual inspection to evaluate the model.

The subject of this case study is an LDPE autoclave process, owned and oper-
ated by Braskem. Fresh ethylene is supplied to the plant and compressed along
with ethylene from the extruder feeding vase by the primary compressor. Af-
ter the first compressor, recycled ethylene from the high pressure separator is
added to the stream along with the modifiers if necessary. The secondary com-
pressor then compresses the ethylene stream until the desired reactor pressure.
The stream is injected through 4 feeding valves in reactor 1 and 1 feeding valve
in reactor 2 (HAM and RHEE, 1996).

Organic peroxides are the catalysts of this reaction. They are injected in 3
levels in the first reactor and 2 levels in the second reactor. Peroxide injection
controls the reaction temperature, as polymerization is strongly exothermic and
there is no cooling in the reactor, only in the streams between the reactors. The
reactors also have thick walls to stand the high pressures of the process, so they
are considered adiabatic.

Liquid polyethylene and non-reacted ethylene go through a pressure-reducing
valve, a cooling heat exchanger and into the high-pressure separator. Most of
the non-reacted ethylene is separated there. Conversion is around 20% in each
pass. The ethylene goes to the recycle stream and reenters the process between
the first and second compressors (MOEN et al., 1999).

The bottom stream of the separator is cooled and sent to the extrusion feed-
ing vase, were further ethylene is removed, recompressed and returned to the
process before the first compressor, as mentioned before. The extruder granu-
lates the polymer, that is then cooled, bagged and stored. The LDPE used for
MFI measurement is sampled just after the extruder. The process is shown in
Figure 6.1.
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Figure 6.1: LDPE process flowchart.
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The process has a residence time in the order of minutes, however the varying
recycle streams and multiphase nature of the reaction make exact estimation
difficult. Overall, the process dynamic takes around 40 minutes according to the
plant documentation.

There are 2 major sources of uncertainty on the MFI data: the MFI sampling
time and the extruder. The dataset was inconsistent, in some samples the poly-
mer was received in the laboratory before it was sampled or at the same time.
The difference between timestamps is usually not much, around 5-10 minutes,
but as the process residence time was in the order of minutes this uncertainty
affected the model. Other source of uncertainty is the extrusion. Extrusion
changes the MFI, sometimes strongly (DING et al., 2022). It was assumed that
whatever change in MFI caused by the extruder was consistent.

6.3 Materials and methods

Data processing, models, visualizations and analysis used in this work were
done in Python. All implemented models were developed using Scikit-learn
(PEDREGOSA et al., 2011).

MFI is measured every 2 hours, however due to the dynamics and residence
times previously mentioned there are probably fluctuations in the MFI that are
not sampled. The process already has a rough MFI estimate using the extruder
electrical current. For LDPE with higher MFI, less power is required by the ex-
truder to pass the polymer and the extruder current decreases. However, this
estimate is qualitative and does not allow for automatic control during produc-
tion. MFI control is done by modifier addition, propene or butene depending
on the grade. A chromatographer measures butene and propene concentration
along with ethane, propane and CO2. The chromatographer has a 10 minutes
delay and its measurements may not be reliable, as it needs regular recalibration.

Sensor data was sampled from the database every minute from 2012 to 2017,
with gaps due to plant shutdown. During most of 2018 the plant operated un-
der undesirable conditions so no data from this period is available. The initial
dataset has 1.8 million samples. The dataset consists of sensors the operators
believe to be related to MFI, even if only slightly. The measurements selected
were: 5 concentrations; 5 peroxide flows, recycle flow, modifier flow, two pres-
sures from the first reactor, 1 from the second reactor; 18 reactor temperatures
corresponding to the zones of each reactor, 9 for each reactor; 4 temperatures re-
garding interreactor cooling; temperature at the cooler before the high pressure
separator, and 5 miscellaneous measurements regarding compressor operation
and plant productivity. There were also 9 sensors related to the extruder, includ-
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ing extruder current and several temperatures.
The total number of reactor measurements is 43, some highly correlated with

each other, especially the temperatures. Measurements outside sensor limits
were removed. There were no direct measurements of total ethylene inflow but
it can be inferred from the compressor measurements.

MFI data was extracted from another database. MFI dataset was created by
manual annotation by the lab technicians. Besides MFI, the following data was
also included: the grade being produced, the time in which the polymer was
sampled from the extruder outlet, the time in which the lab received the sample,
and upper and lower bound for the grade MFI.

6.4 Results

6.4.1 Data treatment and analysis

Data was received in several text files each containing one sensor. Data re-
format was merging the sensor datasets and treating them. Correlating sensor
data to the lab analysis was a later task. First step of data treatment was re-
moving points with a bad status reading. Second step was removing periods
were the process was shut down. These periods can be identified by a produc-
tivity tag, a reliable tag that measures the polyethylene output. Third step was
removing outliers and above/below 3 standard deviations from the mean. This
latter treatment was reversed, as the multimodal nature of the process put many
points from less frequent grades outside of the range, as can be seen in Figure
6.2. Given that the association between the grade being produced and sensor
data was done in a later step, it was not possible to do this outlier removal per
grade. Note that the figures have no scale, as the data is anonymized per the
company request.
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Figure 6.2: Good points that would be removed.

For data cleaning of the lab analysis, first data points with duplicated times-
tamps were removed. Per operator suggestion, sampling timestamp was chosen
as the most reliable timestamp. Later the data points whose MFI was signif-
icantly higher or lower than the specified grade were removed. According to
operators those points were likely measurement errors.

Another treatment regarded the evaluation of grade differences, to check if
the green polymer rheological properties are different from regular polymer.
The operators expected that the green polymer would be different, but process
knowledge indicated that they should not be, as the only difference was the
source of ethylene, and the ethylene used for polymerization is a high-purity
one. Therefore they are expected to be similar.

Statistical analysis, specifically t-tests and effect size, showed that they are
not, which was expected from a chemical engineering perspective as the ethy-
lene used in polymerization is high purity with practically only some occasional
ethane as impurity. These tests are better explained in Appendix A.4. The only
grade pairs with a statistically relevant t-test, grades 1 and 2; 3 and 4, had low
effect size. The basic statistical analysis can be seen in Table 6.1. Note that those
values are not the actual MFI but an anonymised transformation.

A mean and delay analysis was done to merge both datasets with diferent
sampling times and with a delay with each other. The idea was: fit a simple
overfitting resistant non-linear regression model, where the inputs are the data
sampled with a delay of L minutes and smoothed by taking a mean of the pre-
vious M minutes. This procedure is inspired by linear delay finding algorithms,
for example the one implemented in MatLab (MATLAB) system identification
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Table 6.1: Grades characteristics.

Grade Number
of samples MFI mean MFI standard

deviation Modifier Green T-test
p-value effect size

1 9190 0.165 0.012 Propene No 0.00% 0.22
2 2123 0.169 0.011 Propene Yes —– —–
3 1240 0.167 0.027 Propene No 2.04% 0.2
4 71 0.171 0.013 Propene Yes —– —–
5 83 0.174 0.039 Propene Yes —– —–
6 932 0.0593 0.011 —– No —- —–
7 215 0.0326 0.0098 Butene No 13.01% 0.16
8 74 0.031 0.007 Butene Yes —– —-
9 492 0.830 0.077 —– No 80.68% 0.06
10 15 0.825 0.078 —– Yes —– —-
11 386 0.590 0.052 Butene No 60.39% 0.21
12 5 0.601 0.047 Butene Yes —– —-

toolbox. The result of this analysis is a matrix L × M. Then the test error was
plotted against L and against M. The best delay and mean is chosen as the one
having the smaller root mean squared error. Several models were evaluated but
a small random forest, max depth of 4 levels and 50 trees, was chosen due to
overfitting resistance and non linear behaviour.

An example of this analysis can be seen in Figures 6.3 and 6.4. In those
figures the RMSE of the model fitted from the data sampled at each delay and
mean windows, resulting in several points for the same time. Ideally a good
result is indicated by a low RMSE between higher RMSEs. This analysis can also
be visualized in a heatmap, Figure 6.5. In general delay is more significant in
the analysis than mean window. The main purpose of the mean window is to
smooth the data and to encode information about the whole window, so minute
fluctuations do not affect the model.
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Figure 6.3: Best delay analysis, grade 4.

Figure 6.4: Best mean analysis, grade 4.
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Figure 6.5: Heatmap used in mean and delay analysis.

6.4.2 Modeling

The initial proposal was to use one model for all grades. Unexpectedly, this
model worked apparently really well, with R2 of 92%. However, further exam-
ination revealed it learned only the general grade recipe, and did not learn the
important smaller scale fluctuations of MFI, as can be seen in Figures 6.6 and
6.7. Therefore, it was decided to separate the grades, and make a model for each
grade.

Figure 6.6: Initial model, single model for all grades, scatter plot.
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Figure 6.7: Initial model, single model for all grades, vs time.

Due to that, emerged the necessity of a grade classification model, that de-
cides which model to use at any given moment. Most grades have unique op-
erational conditions, which was also the reason why the initial model managed
to easily learn each grade mean MFI. This result also meant the mean and delay
analysis had to be redone, this time for each grade separately.

An issue created by the separation was data imbalance. Some grades had too
few samples to correctly model its behavior. All green grades and their regular
correspondent were joined to generate more data, and similar grades were also
joined together. These new groups are called family.

The classification model was a decision tree, chosen because it was very inter-
pretable and operational confirmation was desired. The fitted tree was dissected
and its rules were similar to what operators used. However the decision tree was
not able to separate families 1, 2 and 3, so these families were joined to make a
new family. The final family grouping can be seen in Table 6.2.

Table 6.2: Families characteristics.

Family Number of samples MFI mean MFI standard deviation Modifier
1 12707 0.165 0.01 Propene
2 932 0.0593 0.01 ——-
3 289 0.0321 0.009 Butene
4 510 0.831 0.07 ——-
5 391 0.590 0.05 Butene
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Unsupervised correlation on each family individually analysis showed some
collinear features, especially some reactor temperatures. Collinearity can con-
fuse some machine learning models. To remove this redundancy the means
between the variables were used, if they were intensive property, or the sum of
them if they were extensive properties.

Common feature transformations from chemical engineering domain knowl-
edge were found to be not relevant, like log of concentration, log of MFI or
inverse of temperatures. This was because as each variable were kept under a
small controlled region, the non linear transformation were not really distinct
from linear univariate transformations, so they were reversed during data nor-
malization.

Feature selection was done by random forest feature importance. This method
was chosen because the relationship between the variables and MFI is strongly
non-linear. It did not revealed any distinctly relevant feature. Although it re-
vealed some features constantly being among the most relevant, like recycle flow
and modifier concentration.

A conflict between process knowledge, operators and the data is that the
feature selection deemed the reactor pressure irrelevant. A high pressure gas-
phase reaction should be influenced by the pressure according to both operators
and theoretical knowledge. Analyzing the pressure data, Figure 6.8, it was no-
ticed that the reactor pressure is so important that it is tightly controlled in the
plant, with punctual variations only up to 0.2%. Therefore, there is not enough
variation for the model to identify the effect of the pressure on the process.
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Figure 6.8: Reactor pressure.
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Before going back to the regression, metrics need to be discussed. three main
metrics were used: R2, RMSE and "accuracy", all discussed in Appendix A.1. R2

is the preferred among the statisticians, as it has nice properties, like being inter-
pretable as explained variance and insensitive to linear transformations. Besides
it compensates for shifts in variance, that is a common occurrence in the dataset.

The operators preferred RMSE, given by Equation A.3 because it had the
same unit as MFI, therefore it was easier to understand. After some discussion
it was also suggested by the operators to use "accuracy", Equation A.4, which
expresses how often the model agrees with the analysis withing measurement
error (ME) . This "accuracy" is used in quotes here because it is not really an
accuracy in the statistical sense, as can be seen in Appendix A.2. This metric
also was what inspired the trial of support vector regressor, as it aligns with the
regression definition of the hinge loss and ignores the points that are already
correctly estimated. It should be noticed that as a new metric, a baseline should
be constructed to evaluate the results. It was chosen to create a baseline based
on a "dumb" model. This dumb model is defined as: a model whose output is
just the mean of the train data.

Trend metrics were tested, to see if the models at least agrees with the MFI
change direction even if it cannot predict the value directly, like Equation A.5.
These metrics were very sensitive to noise due to being a difference based metric,
so they were not used. Hence, only R2 and "accuracy" will be presented.

All implemented models were developed using Scikit-learn, also known as
SKLearn (PEDREGOSA et al., 2011). Generally developing their own models is
not recommended by industry as it increases billable hours and delays deliveries
for an effort that may not translate in a better product. Besides using libraries fa-
cilitates documentation and troubleshooting in future developments. However,
the importance of studying the documentation and open issues of the chosen
library is important and should be stressed for quality assurance.

The initial models were neural networks. They were chosen because a con-
tinuous non-linear behavior. They worked well in validation, as can be seen in
Figure 6.9a, but presented an unexpected behavior in production. Note that in
all scatter plots the red lines are the confidence intervals used for the "accuracy"
calculation.

Support Vector regressor also showed bad results initially, but it was because
SKlearn implementation had a scale parameter that was not clear in documenta-
tion. After this was fixed, the SVM had a result similar to neural network. Note
in Figure 6.9b a couple of points lay in a line near the middle of the estimated
MFI. It is a common behaviour in SVMs with RBF kernel. When outliers appear,
even if in only one feature, the kernels tend to zero and the model output tends
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to the mean with a loss of variance.
Gradient boosting forest of decision trees was less inclined than the other

models in Figure 6.9c due to a return to the mean behavior. This behavior may
lead the model to miss some of the peaks and valleys that can cause product
loss.

The numerical results for validation can be seen in Tables 6.3 and 6.4. No
model was consistently better for every grade, and results varied considerably
between grades.

(a) Initial model, grade 1, NN. (b) Initial model, grade 1, SVM.

(c) Initial model, grade 1, gradient boosted
forest.

Figure 6.9: Initial models, grade 1, scatter plots for validation.

Between receiving the data and testing some issues occurred in the plant so
sensors started behaving differently from the historical dataset. That can be seen
more strongly in Figure 6.10b where the RBF kernels are mostly zeroed and the
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Table 6.3: Results, validation, R2.

Grade NN SVM Gradient boosted forest
All grades 92.5 % —— ——–

1 39.7% 33.5% 43.7%
2 1.64% 43.2% 30.2%
3 -407% 41.8% 39.7%
4 -149% 9.15% 11.3%
5 -27.8% 17.9% 17.8%

Table 6.4: Results, validation, "accuracy".

Grade Baseline "acccuracy" NN SVM Gradient boosted forest
All grades — 56.7 % —— ———–

1 76.55% 39.7% 33.5% 90.1%
2 57.99% 72.2% 77.6% 73.7%
3 62.06% 50.5% 81.7% 73.3%
4 54.60% 46.8% 66.0% 67.0%
5 51.77% 60.0% 62.5% 60.9%

model tends to the mean.
For NN, outliers do not have an expected behaviour unless strongly devi-

ating from the training dataset, so while the model follows the general trend
sometimes, it still misses many points and trends, as can be seen in Figure 6.10a.

Gradient boosted forests were the best models in testing. They are more
resistant to outliers as no variables interact directly with one another. They also
have a more clear behavior regarding outliers. If one variable goes beyond the
training range it affects the model as if it were in the extreme limits, no matter
how far it goes.

The numerical results for testing can be seen in Tables 6.5 and 6.6. Every met-
ric for every grade was worst than validation. Gradient boosted forests showed
the best metrics because it is more resistant to outliers.

89



(a) Initial model, grade 1, NN.

(b) Initial model, grade 1, SVR.

(c) Initial model, grade 1, gradient boosted forest.

Figure 6.10: True vs estimated MFI over time for testing.
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(a) Initial model, grade 1, NN. (b) Initial model, grade 1, SVR.

(c) Initial model, grade 1, gradient boosted
forest.

Figure 6.11: True vs estimated MFI scatter plot for testing.

Table 6.5: Results, test, R2.

Grade NN SVM Gradient boosted forest
1 -122% 10.5% 23.5%
2 -177% -1.31% 1.40%
3 -8.93% -7.12% 8.30%
4 -487% -1.76% -0.869%
5 -399% -3.04% 15.8%

Table 6.6: Results, test, "accuracy".

Grade Baseline "accuracy" NN SVM Gradient boosted forest
1 69.28% 41.8% 72.9% 74.9%
2 30.85% 24.4% 49.6% 53.4%
3 58.62% 74.6% 72.9% 74.5%
4 67.50% 40.0% 64.0% 62.7%
5 86.03% 38.6% 63.5% 68.2%

Finally, The model chosen to represent the process was Gradient boosted
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forests. All further tests and refinements was done with Gradient boosted forests
only.

6.4.3 Second iteration

After discussing the results with the stakeholders, they were convinced to al-
low the addition of the extrusion measurements to the model, creating another
model for better predictive capabilities. Additionally, with one model chosen, a
hyperparameter optimization could be performed, since it demands more com-
putational time. The results can be seen in Table 6.7 and Figures 6.12 and 6.13.

Table 6.7: Second iteration results.

Reactor+extruder model Refined reactor Model

Grade Accuracy R2 Accuracy R2

1 94.94% 57.91% 92.45% 37.66%
2 86.39% 49.37% 84.57% 36.09%
3 86.90% 50.33% 82.76% 36.86%
4 82.65% 36.48% 83.16% 15.20%
5 80.51% 33.88% 77.95% 19.36%
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Figure 6.12: Refined reactor model.
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Figure 6.13: Refined reactor-extruder model.

6.4.4 Model analysis

A partial dependence plot was built to see if the model follow the expected
behaviour. As can be seen in Figure 6.14, the model projects the expected be-
haviour for extruder current. The higher the extruder current, the lower the MFI
is, since lower MFI makes it harder for the polymer to flow through the extruder,
therefore requiring a higher current.
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Figure 6.14: Partial dependence of extruder current.

Another thing that should be analyzed is how the operators will see the
model output, since the MFI data was sampled at around every 2 hours but
sensor data is sampled every minute. The model output per minute was plotted
along with the True MFI, Figure 6.15. It can be seen that there are fluctuations
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between MFI samples, and sometimes the model even predicts an MFI increase
before it happens. This agrees with process knowledge, as the reactor dynamics
have a residence time smaller than the MFI sample time, and creates a suggestion
of a higher MFI testing frequency.

Model inference in real time
Estimated MFI
True MFI

Figure 6.15: Model behavior in real time data.

6.5 Summary on how the proposed methodology was

used

The methodology was useful to solve conflicts between engineering knowl-
edge, data analysis and expert knowledge, enhancing the trust operators had on
the models. It also allowed a successful persuasion of the stakeholders to change
the project specifications, allowing for the development a more accurate Reac-
tor+extruder model. The creation of custom metrics taking account the inherent
uncertainty of the measurements made the improvements and capabilities of the
models more pronounced.

Demonstrating how the model would behave in response to changes in im-
portant variables showed the model will behave as expected based on engineer-
ing knowledge, reducing concerns about incorrect inferences caused by extrap-
olation and outliers. It also helped perceive potential limitations of the model
and dataset, proposing solutions for them.
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Chapter 7

Dry gas seal system fault detection

7.1 Problem description

Seals are used to reduce loss of process gas on compressors and other turbo-
machinery. Dry gas seals were created due to the need of simpler and safer seals
than wet seal systems that were commonly used (STANLEY, 2002).

There are many dry gas seal configurations. The most common are tandem,
but single seals are also used. Single seals consist of a rotating ring and a sta-
tionary ring. A seal gas, typically higher pressure process gas or nitrogen, is
fed to the seal. This gas is used to keep the rings from contacting each other
(FORSTHOFFER, 2017).

The process in this case study is an offshore CO2 compressor for gas reinjec-
tion. It raises the pressure of the gas produced in the platform to a high pressure
and reinjects the gas in the offshore oil well, increasing production and reduc-
ing greenhouse effect gas emission. There can be several issues in the gas seal,
which leads to process gas loss. In this case, resulting in a more dangerous and
ecologically harmful operation. The objective of this work is to find a way to
warn operators about the faults, if possible before they take place. Addition-
ally it should identify which fault is happening and which sensors the operators
should look at to notice those faults.

7.2 Literature review

Here the operation of the dry gas seal is described. During operation part
of the seal gas flow into the process through a labyrinth and part flows into
the seal. The geometry of the rotating ring generates a lifting force creating a
gap between the two rings while seal gas is flowing. The gap is around a 3-5
µm, and is monitored through axial displacement sensors. Springs help keeping
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the stationary ring in place and improve response to motor axial movement
(FORSTHOFFER, 2017).

The seal gas is then vented through the primary vent, usually to a flare. If
a tandem (double) seal is used, a separation gas, usually nitrogen or filtered
air, is vented into the secondary seal. While in the first seal part of the gas
flows into the process, part of the separation gas flows to the primary vent
and part to the secondary vent. From the secondary vent the separation gas
either goes to the flare or to the atmosphere. Figure 7.1 is a simplified drawing
of a single seal configuration. The seal works with very tight gaps between
the components, so both gases must be filtered and dried before entering the
system(FORSTHOFFER, 2017).

Figure 7.1: Single seal configuration.

Minimizing process gas leakage is the purpose of seals. Even though some
gas leaks by design, the gap is small compared to most sealing technology so
the leakage rate should be reasonably small. When the compressor is not op-
erating the springs make the two rings contact and bring the leakage to almost
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zero. Measuring leakage rate is difficult due to dependency on several hard to
measure variables like gas properties and seal physical properties, so differential
pressure is used as a proxy of the leakage rate.

This type of seal is preferred by the petrochemical industry as it works well
at high pressures and high speeds due to being non-contacting.

There can be many problems with its operation, mainly when something
other than gas enters the seal. DAY and ALLISON (2016) classified the faults in
4 types: supply contamination, process contamination, lube oil contamination
and geometry/installation problems.

Supply contamination happens when something other than seal gas enters
the seal. It can be caused by seal gas condensation, filter failure or build-up,
among other causes. Seal gas condensation happens due to the Joule-Thompson
effect and seal gas supply must be heated to avoid condensation. Filter fail-
ure may cause particles to pass to the seal, and it can be detected by the filter
differential pressure (DAY and ALLISON, 2016).

Process contamination is when solids from the gas being compressed enters
the seal. It usually happens when seal gas supply flow is insufficient. It is
common in sour gas processes, as sulphur builds up in the seal faces (DAY and
ALLISON, 2016).

Lube oil contamination occurs when oil from the bearings enter the seal. It
can happen when lube oil flow is too high or separation gas pressure is too
low. DAY and ALLISON (2016) recommend operating on the upper limit of the
separation gas pressure to avoid lube oil contamination.

Geometry/installation problems happen during start-up and are quickly de-
tected. They usually happen when the seal is not installed with all the necessary
components like bolts or labyrinth snap rings. Another common cause is too
long drive pin, which restrict axial movement.

Other non-fatal faults can happen in the process like unbalanced supply flow
between the drive and non drive ends of the compressor, high separation gas
flow, and compressed gas leakage into the seal system. While these faults are
not critical they should be fixed to avoid further problems.

The most important sensors for dry seal gas system control and monitor-
ing are vent differential pressure, seal and separation gas supply flow, leakage
pressure to the vent, vibration and axial displacement measurements. The dif-
ferential pressures are used to estimate gas flow, and are substantially noisy.
Vibration and axial displacement measurements come in pairs, and each pair
are expected to be correlated.

As far as the author is aware, there are no published industrial data-driven
studies for dry gas seal system fault detection and diagnosis. DAY and ALLI-
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SON (2016) collected and analyzed reports from seal faults given by companies,
but did not analyze any sensors nor tried to do any predictive work. TOWSY-
FYAN et al. (2018) used acoustic emission to investigate faults in an experimental
dry gas seal. They generated faults in the dry gas seal and evaluated if acoustic
emission could differentiate between healthy and faulty regimes. They achieved
satisfactory result and a clear visual separation between fault and normal states,
but did not report any numerical metric. FORSTHOFFER (2017) reports some
industrial faults on dry gas seals, along with their causes and corrective mea-
sures undertook by operators, but did not statistically analyze the data from the
sensors.

The compression system in this case study injects CO2 in an offshore oil well.
It has two compressor trains running in parallel, while one operates the other is
kept on reserve. Each compressor train has 2 stages, a high and a low pressure
stage. Between each compressor there are a heat exchanger and a knock-out
drum to remove any condensed water.

The seals are in the compressor drive end and the non drive end of each
stage. There are a total of 4 seals. It should be noted that the compressor system
never really stops, but passes through some standby periods for maintenance.
Full stop may lead to permanent damage to the equipment, as the shaft bends
over its own weight.

The data was collected from a historian and sampled every minute. Some of
the compressor faster dynamics may be lost, but it is not expected to influence
the model efficiency, as the operators would not be able to counter faster faults
while they occur anyway. The sensors include compressor sensors like outlet gas
pressure and temperature and knocked out drum level; and gas supply flows,
seal pressure and differential pressure at the vent. There were also some sensors
from the flare, like a CO2 concentration analyzer. The datasets contained a total
of 50 sensors and around 300,000 samples.

7.3 Materials and methods

A total of six datasets were received, each concerning one fault of the gas
seal system. From these 6 sets, 4 datasets belonged to train B and 2 belonged
to train A. Some of the datasets were overlapping, meaning that more than one
type of fault happened at the same time. The occurrence of simultaneous faults
is common in industrial processes, as one issue may lead to or trigger another.

It was not clear when exactly the faults started, as all datasets start at mid-
night, so it was acquired extra 3 days of operation before the previously assumed
midnight. Even then it was not clear when the fault began, especially the time
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of the day. Still, this data was labeled as prefault and detecting this prefault was
tested.

The data is described in Tables 7.1 and 7.2. Events 3 and 4 overlap with each
other. This dataset is balanced between normal and fault conditions. This is
not usual for fault detection processes. Usually normal condition eclipse faulty
conditions, like in the 3W dataset. This is expected as plants should spend
more time working fine than with a fault. Normal condition operation data was
chosen by operators.

Table 7.1: Fault events.

Event Train Fault Fault starts at day Fault ends at day
1 A Seal gas unbalance 0 14
2 A Seal gas unbalance 617 632
3 B Seal gas unbalance 97 115
4 B High vent diff. pressure 110 125
5 B Seal gas unbalance 193 208
6 B Seal gas unbalance 345 360

Table 7.2: Samples per train.

Train Normal Fault Prefault
A 47159 43098 6863
B 71157 82883 12684

One limitation of the system developed for train A was lack of fault diversity.
There is only one type of fault in the dataset, so there is a good chance of the
model only learning one fault and ignoring other problems. This is also a risk at
train B, while not that high as there are two types of fault. Also, as there is only
one type of fault in train A there will be no diagnosis analysis.

A potential solution is outlier detection, where the model learns the normal
condition and says whether the process is normal or not. Not normal does not
indicate fault, as it may correspond to a new operation condition or a test run,
but indicates a region of the data operators may take a look at. This procedure
was later suggested to the stakeholders, and becomes the second iteration of the
methodology.

The datasets were joined according to the compression trains, creating one
consolidated dataset for each train. Redundant data points were excluded, along
with points with bad values, with strings instead of numbers. Moments with
constant sensor values were also removed, as they are caused by communication
failure between platform and server.

The first analysis was visual inspection. It showed a huge amount of out-
liers. Those outliers affected most variables at the same time and were recurrent,
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indicating an actual physical disturbance on the process and not on instrumen-
tation. After discussion with operators it was discovered that these outliers
corresponded to standby periods. Standby periods are when the compressor is
slowed down for maintenance and check-ups. They are easy to identify as the
compressor’s output pressure goes down below a threshold. After this clarifica-
tion the standby periods were removed from the dataset.

Figure 7.2: Outlier example.

Unsupervised analysis showed some expected correlations: the vibration sen-
sors are very correlated between vertical and horizontal measurements, so are
the axial displacement sensors. It is good to confirm expected results, it can re-
veal flaws on the data, like mislabeled tags or improperly installed equipment.
Some miscalibrated sensors were found, reported and removed. The operators
later issued a maintenance request for those sensors.

Disregarding domain knowledge, neither vibration nor vibration variance
showed any relevant information about the faults. It was also expected that flare
CO2 concentration would be important, as it would indicate process gas leakage,
but it did not appear in any feature importance method. The knockout drums
level alarms are theoretically important, as liquid entering the seal is a source of
problems. However, the measurements were too noisy to produce any insight
and filtering them did not improve the signal, therefore they were removed.

For process monitoring a good property a model should have is continuous
output, and it was explicitly requested by the stakeholders. Classification is dis-
crete, but seeing the model progression over time allows operators to see the
process status in real time instead of waiting for the result to change. The two
main continuous outputs are probability or distance, depending on the model
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used. Probability is restricted to [0,1] while distance has no restriction (in prac-
tice regularization keeps the values from going too far from [-1, 1]). Models
that output probability can be transformed to a distance output using the logit
transform, given by Equation 7.1.

logit(p) = log(
p

1 − p
) (7.1)

The metrics used here were accuracy and ROC-AUC, both described in Ap-
pendix A.2.

7.4 Results

For feature relevance a SVM with L1 regularization was done. It was chosen
because seal operation transitions were fast and well separated, as can be seen in
Figure 7.3, indicating a margin method would be a good fit. Besides, linear SVM
is easily interpretable and the distance of the hyperplane may be understood as
a "health measurement", helping to warn operator whether the system is close to
a fault. L1 regularization was chosen for feature selection. The model is trained
in a one-vs-rest scheme.

These characteristics would also suggest a tree based model, but one charac-
teristic desired is continuous output, to evaluate if the model is approaching a
fault, and if so, which sensors are showing it.

Figure 7.3: Differential pressure fast transition.

Ideally an event would have been separated to use as test and validation, but

101



there are few events on the dataset, so validation was done using blocks with 2
days of data. One issue on fault detection and diagnosis testing is that a fault
might take months to happen, and it is hard to say if the model works on real
time.

Validation produced good results in train A for fault/normal detection, as
showed by Figure 7.4. However it was not able to detect the difference between
fault and pre-fault. This indicates that fault prevention may not be an useful
application of this model.

Figure 7.4: Fault detection results, train A.

The SVM with L1 regularization managed to remove most variables, keeping
8 relevant variables. Mostly one seal gas supply flowrate and leakage pressure.
This conflicts with some domain knowledge, the other supply flowrate should
also be important. This account on how L1 regularization deals with collinearity,
by removing one of the collinear features, in this case the other supply flowrate.

For train B the results were similar as showed by Figure 7.5. However the
system experienced more difficulty detecting prefault. In this case L1 regular-
ization did not remove most variables, keeping around 30 features. This can be
due to more fault variety leading to more information necessary to the model
properly classify the faults.
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Figure 7.5: Fault detection results, train B.

For train B fault diagnosis, to compensate for the moments when the fault
overlaps a new fault class were created, called "both". Again the model was not
able to differentiate prefault from the faults. However, the model was able to
differentiate between faults with a good degree of accuracy, even in the case of
the both class, as can be seen in Figure 7.6. Overall accuracy was 86.4%

Figure 7.6: Fault diagnosis results, train B.

Visualizing the real time model output was one of the desired properties of
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Table 7.3: Fault classification results.

ROC-AUC F1 score
Train Accuracy Normal Fault Normal Fault

A 95.9% 99.9% 97.1% 99.3% 95.7%
B 88.8% 99.9% 94.7% 99.0% 89.1%

the model. To do so the hyperplane distance from the normal-vs-rest model is
plotted against time. Distance from the hyperplane is adimensional, but it can
be interpreted as a "health" measurement. In Figure 7.7, between both periods
there is a standby moment and later the compressor returns, after a couple of
hours the model output crosses the zero line and the model starts classifying it
as normal operation

Figure 7.7: SVM output for fault detection, train B.

7.5 Second iteration

Over the development of the first iteration, as a better insight of the process
and dataset was achieved, an unexpected demand became clear: the current
dataset alone was insufficient to train a suitable monitoring system, as the exist-
ing faults in the dataset and normal periods were insufficient to gather a proper
understanding of the process, as they likely did not explore a good part of the
possible feature space. A form of detecting new faults became necessary. There-
fore, the second iteration focus on dataset construction, normal/fault labeling
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and interpretable abnormal event detection and diagnosis.

7.5.1 Interpretable abnormal event detection

A feature of the desired abnormal event detection is to inform which sensors
should be investigated exactly. The compression system is complex, it is difficult
for an operator to look at all 50 possible variables at the same time. Therefore, the
algorithm used is detection by Mahalanobis distance. Mahalanobis distance is
a multivariable extension of the z-score normalization. It allows to evaluate not
only if the process leaves a current known "normal behavior region", but which
sensors lead it to leave this region. It is explained more in-depth in Appendix
A.5.

A central point in the Mahalanobis distance calculation is the covariance ma-
trix estimation. Covariance estimation through the usual sample estimation ap-
proach is susceptible to outliers, which is undesirable in an abnormal event
detection task. There are several approaches for robust covariance matrix esti-
mation, based in either sample selection approaches, that is, removing samples
there are likely to be an outlier following some metric; or shrinkage, which is
a form of regularization that makes the smallest and biggest eigenvalues of the
covariance matrix closer to each other, making it better conditioned.

The algorithm used for covariance estimation was Minimum Covariance De-
terminant (MCD) (ROUSSEEUW and DRIESSEN, 1999), better explained in Ap-
pendix A.6. Visual inspection was used for outlier detection, with a percentile
based approach for automation of the process and to facilitate identification.
Given the nature of MCD it will always describe some points as highly above
a certain percentile, so the detection process can not be fully automatized, so
visual inspection is the better approach. An example of detection of abnormal
event is Figure 7.8. Note that the y-axis is in log scale. This method of abnor-
mal event detection is not robust to changes in operational points, which are
common in this process.
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Figure 7.8: Outlier detection with Mahalanobis distance.

For outlier diagnosis an example is given in Figure 7.9. it can be seen that
sensor 2 presents little deviation, sensor 1 presents some deviation and sensor 3
presents a strong deviation. So it would be reported for the operator to look for
sensor 3.
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Fault identification
Sensor 1
Sensor 2
Sensor 3

Figure 7.9: Outlier diagnosis with Mahalanobis distance.

7.5.2 Dataset labeling

To make a compilation of the operational points it was used a clustering
method: Gaussian mixture model. This model fits the data to several clusters,
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modeled as Gaussian distributions with individual mean and variance. There is
a similarity to the Mahalanobis distance, and it was chosen to keep both tech-
niques’ results consistent. In theory it could also be used for abnormal condition
detection, but underwhelming experimental results coupled with a lack of inter-
pretability made the Mahalanobis distance preferable.

The clustering was also used to reduce the workload of the operators looking
for a fault. If the outlier was classified as a previously known normal cluster
with high likelihood they would be disregarded for inspection, since they are
likely just the same operational point. If they were a previously classified fault
cluster with high likelihood, the points would be classified as that fault, with
the operators informing if the decision was correct. Figure 7.10 is an example
of process monitoring using the clustering as an extra visual layer. If cluster 2
was a previously known example, they would be classified accordingly to the
previous designation.
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Figure 7.10: Outlier detection with clustering.

All the described monitoring received operator feedback. The process results
were summarized in a weekly report and operators looked at the process to see
if it was at fault or not. Later those points were classified as normal or a fault. A
new fault was discovered during this process, along with new instances of high
vent differential pressure fault.
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7.6 Model analysis

In theory, the log likelihood given by the Gaussian Mixture could be used
for outlier detection. A low log likelihood mean that the sample is far from any
cluster, as seen in Figure 7.11. However the issue is the identified outliers usually
only had a punctual decrease and soon returned to regular log-likelihood values.
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Figure 7.11: Outlier detection with Gaussian mixture models.

Another analysis performed was to see the clusters transitions over time. If
the Gaussian mixture has too many clusters it may attribute 2 or more clusters to
the same operational condition. Visually, it can be seen as the model constantly
switching between 2 or more, as can be seen in Figure 7.12. When this happen
the model is retrained with less clusters, using the previous model as an initial
guess, with one of the clusters being alternated removed.
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Figure 7.12: Example of improperly tuned clustering.

7.7 Summary on how the proposed methodology was

used

The methodology summarized in Figure 3.1 was used to improve the dataset
initially given through the "Get more data" loop. Prefault samples were extracted
and concatenated to the dataset as the need for fault detection before the actual
fault happening is necessary for a good fault detection system. The methodol-
ogy was also used to better visualize how the model behaves during the fault
transitions.

Finally, the proposed methodology was used to critically assess the dataset
and reevaluate the capabilities of a tool that could be build with it. The whole
task was reconsidered given the dataset characteristics and the demands passed
from the operators through consistent meetings and feedback, resulting in a new
data collection, labeling and classification process. The current framework is in-
stalled in the industry partner servers. Human interaction and process knowl-
edge were essential for building a solution that meets the needs of the stake-
holders involved in this project.

109



Chapter 8

Conclusions

The purpose of this work is to propose an iterative methodology for applying
machine learning in chemical process, with constant refining and reevaluation
of the development processes, guided by data analysis and process knowledge
for improved results and acceptability. In order to develop and demonstrate
this methodology, four cases studies were used: one control problem with sim-
ulated data, one using the public 3W dataset and two using private datasets
given by industry partners. In this thesis it was demonstrated how to apply this
methodology and how it improves the results and acceptability of the solutions
developed.

In the first case study, control of a gas lift oil well, issues of observability,
data generation and process control were explored. The data generation was
weaved into an already existing NMPC methodology, smoothly integrating ma-
chine learning with traditional modeling and control. Control with NN as the
state estimator was better than control with an EKF as state estimator for all
gas injection setpoint tasks. It had more difficulty with oil production setpoint
tasks. However, it managed to stave off slugging during PI increase while the
EKF control did not.

The methodology was used to align process knowledge with the data analy-
sis, allowing for an effective feature selection that was used in both the internal
state estimation and the process control. It also helped to pursue a substantial
control improvement through the "Get more data" loop. The new data, gener-
ated using a different and faster state estimation technique, used more sensor
information, therefore being a more information rich data.

In the second case study, oil well fault detection with the 3W dataset, a com-
prehensive exploratory data analysis was done to gather a better understanding
of the dataset, help setup the train, validation and test split, and to develop
a cursory data selection. Novelty feature engineering techniques were devel-
oped to increase the dataset dimensionality. These extra features were evalu-
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ated both with feature selection techniques and in terms of how logically they
could be used to explain the faults. Further model analysis showed how they
would work on a real-time application. The methodology generated substantial
improvements in 5 of the 7 models, with median improvements of 44.23% for
F1-score and 13.25% for the accuracy. The results were an improvement over
previously found results on the literature.

The methodology encompassed the generation of new features while assess-
ing their value through both modeling analysis and process knowledge analysis.
The selected features enabled the incorporation of temporal information into the
dataset. Furthermore, explicating the rationale behind feature selection as the
methodology recommends would serve to enhance the model adoption within
industrial projects that leverage these models.

In the third case study, MFI estimation from online sensor data, insightful
data analysis was used to clear conflicts between operators, process knowledge
and statistical analysis, increasing the number of samples in each grade and
making a more explainable feature selection. Meetings with the operators helped
develop new metrics better suited for their needs. Overall, the operators were
satisfied with the results, that achieved agreement with the lab analysis within
the measurement error up to 92.45% of the time. The models are currently
running on their plants and helping guiding the operator’s decisions.

The methodology was instrumental in resolving discrepancies among engi-
neering, data analysis, and expert perspectives, thereby improving operators’
confidence in the model. Additionally, it facilitated the persuasion of stakehold-
ers to modify project specifications, leading to the creation of the Extruder+react-
or model. By designing tailored metrics, the capabilities of the models became
more evident. Model analysis presenting the model’s responsiveness to alter-
ations in relevant variables demonstrated its alignment with established engi-
neering knowledge, easing doubts stemming from inputing new never-seen-
before data. The methodology also aided in identifying potential model and
dataset constraints, offering potential solutions to them.

Finally, in the fault detection problem in the gas seal system, a successful
fault detection application was developed, including a health measurement for
the process. This initial solution achieved up to 95.9% accuracy. However an
in-depth analysis showed that the current dataset was insufficient to ensure a
proper machine learning model, so a complete review of the task was performed.
A framework for dataset building and annotation was developed, centered in
explainable abnormal event detection and using clusterization, to help facilitate
the assignment. The explainable abnormal event detection helped operators to
find regions where there may have been a fault, and which sensors to look at
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to evaluate if the period was at fault or not. Clusterization was used to catalog
different normal and sometimes faulty conditions.

The methodology was applied to enhance the original dataset by incorporat-
ing prefault samples. It was further utilized to offer insights into the model’s
behavior during fault transitions. Moreover, the methodology played an impor-
tant role in subjecting the dataset to a more rigorous evaluation, leading to a
reassessment of the feasible applications of models generated using the dataset.
The entire task was reevaluated in light of dataset attributes and operator re-
quirements, culminating in the development of a novel framework for data col-
lection, labeling, and classification. Human interaction and process expertise
played an essential role in devising a solution that properly addressed the needs
of both operators and engineers.

Overall, the methodology successfully guided the application of machine
learning in the case studies and managed to improve the results and the products
generated, especially increasing the acceptability of the processes’ operators.

The author expects this work will help future chemical engineers going into
the data science field to improve their projects. There are still some aspects of
machine learning development that this methodology could explore, like model
update methodology to deal with process drift. Model update is a tough subject
to approach, even in traditional modeling frameworks. Processes, feedstock and
product specifications change all the time, and a method to adapt the model
without having to redo the whole identification project is desired by the industry.
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Appendix A

Statistical techniques

A.1 Regression metrics

All regression metrics are given in terms of error, the difference between the
model output ŷi and the data point yi, Equation A.1.

errori = yi − ŷi (A.1)

R2 = 1 − ∑n
i=0 error2

i
∑n

i=0 (yi − E(t))2 (A.2)

RMSE =

√
∑n

i=0 error2
i

n
(A.3)

Accuracy =
∑n

i=0 |errori| < ME
n

(A.4)

Trend accuracy =
∑n

i=1 ((ŷi − ŷi−1) · (yi − yi−1) > 0)
n

(A.5)

R2 can be negative if the sum of the error squared is bigger than the target’s
variance. The result that R2 is always positive is true only for when it stands
for the correlation coefficient squared. For linear regression, when analyzing
the output of the training dataset, the metric R2 and the correlation coefficient
squared are the same.

A.2 Classification metrics

Visualization of results is important for communication. The most common
form of visualization in classification tasks is confusion matrix. It is a matrix
in which the rows are the true data class and the columns the model predicted
class. A confusion matrix displaying good results has most elements in the di-
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agonal, as the model agrees mostly with the data. In unbalanced datasets the
confusion matrix is better presented normalized by the number of class mem-
bers. A sample confusion matrix is given in Figure A.1.

Figure A.1: Confusion matrix example.

Another important aspect is numerical metrics. To facilitate understanding
the equations will be given in terms of the squares used in confusion matrix
example. The most common and straightforward metric is accuracy: how many
samples the model gets right, Equation A.6. But for fault detection and diagnosis
other information about the model are also of interest. Precision and recall
are important too. In this context, precision is how many detected true faults
are relative to all detected faults, Equation A.7; recall is how many detected
true faults are relative to all true faults, Equation A.8. To combine both metrics
usually a metric called F1-score is used. F1-score is the harmonic mean between
precision and recall, Equation A.9.

Accuracy =
I + IV

I + I I + I I I + IV
(A.6)

Precision =
I

I + I I I
(A.7)

Recall =
I

I + I I
(A.8)

F1 =
2

precision−1 + recall−1 (A.9)

Another common metric is receiver operating characteristic, area under curve
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(ROC-AUC). ROC is a plot where the horizontal axis is the true positive rate
and the vertical axis the false positive rate, and the data points are sampled at
different detection thresholds. This plot shows how the true and false positive
rates are dependent on the threshold limits and if the detection thresholds can
be moved to prioritize false alarms or false negatives. To reduce the number of
plots, the area of the ROC curve is usually reported. The best area possible is 1,
a random classifier would give an area of 0.5.

These metrics are designed for binary classification, except accuracy. As the
classification is run in a one-vs-rest scheme, they will be evaluated for normal
and fault conditions.

A.3 Permutation importance

Permutation importance was first proposed by BREIMAN (2001) and devel-
oped in terms of Random Forests. First the baseline accuracy or whatever metric
is desired is calculated using the test/validation dataset. Afterwards one vari-
able is shuffled randomly and the desired metric is recalculated. This procedure
is repeated for every feature on the dataset. The permutation importance is
given by the reduction of the metric evaluated. More important features create
a more prominent decrease. Since the random shuffling adds a stochastic fac-
tor, the procedure has a relatively high variance and can be repeated n times to
evaluate the range of importance values. Compared to Random Forest feature
importance, it has the advantages of having less bias to cardinality and less over-
fitting since it uses data not seen by the model. It also may return a negative or
zero importance, while Random Forest feature importance always return some
importance to a variable.

A.4 Statistical tests

T-test is a statistical test used to examine if the mean of a population is statis-
tically different from another. In this test the null hypothesis is that the mean of
the populations is the same, and the alternative hypothesis is that those means
are different. The test is calculated with Equations A.10 and A.11.

t =
(µ1 − µ2)

s ·
√

1
n1

+ 1
n2

(A.10)

s =

√
(n1 − 1) · var1 + (n2 − 1) · var2

n1 + n2 − 2
(A.11)
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Where t is the t statistic, µ are the means of the populations, var is the variance
and n are the amount of samples in each population. The t-statistic is assumed
to come from Student’s t-distribution of degree of freedom = n1 + n2 − 2, and if
its value is below the threshold for statistical significance the null hypothesis is
rejected.

It should be noticed that not rejecting the null hypothesis is different than
accepting the null hypothesis. But since the purpose of the test is to make an
argument towards the stakeholders of the project, a well-known and established
statistical test is preferable than a more complex approach. To give a better
statistical significance to the T-test an effect size measurement was used among
the group, specifically Cohen’s d. Effect size is explained in SAWILOWSKY
(2009), but generally 0.2 is considered low effect size, 0.5 is considered a medium
effect size and 0.8 is considered a high effect size. The Cohen’s d is calculated
with Equation A.12.

d =
(µ1 − µ2)

s
(A.12)

Where d is Cohen’s d. Subscripts 1 and 2 denote the population with the biggest
and the smallest means respectively. Cohen’s d is similar to t-test, with the
only difference being the

√
1

n1
+ 1

n2
term. When there are too much samples this

term makes the test reject the null hypothesis even when the difference between
means are negligible.

A.5 Mahalanobis distance

Mahalanobis distance, Equation A.14, is a multivariable extension of the z-
score normalization, Equation A.13. Instead of the standard deviation σ, it uses
the covariance matrix Σ; and instead of using scalar algebra, it uses matrix op-
erations.

z =
x − µ

σ
(A.13)

z =
√
(x̄ − µ̄)T · ¯̄Σ−1 · (x̄ − µ̄) (A.14)

Just like z-score is related to Student’s t distribution, Mahalanobis distance
is related to Hotelling’s t-squared distribution. It is possible to determine a p-
value of a data point belonging to a given gaussian multivariate distribution as
the null hypothesis, but since it depends of a normality assumption it was not
used. Visual inspection was preferred instead. Which sensors contribute the
most for the Mahalanobis distance can be given through Equation A.15.
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D̄ = ¯̄Σ−1 · (x̄ − µ̄) (A.15)

where D is a deviation vector.

A.6 Robust covariance estimation

Covariance matrix is a statistic sensitive to outliers. In a outlier detection
task this is an important issue, so robust covariance estimators were required
for the test. The algorithm used, minimum determinant covariance estimator, is
based on the idea that it should be found n "good" samples in the data, where
n is a hyperparameter. It is called minimum determinant covariance because
the method consistently produces a covariance with a smaller determinant. The
determinant can be interpreted as the "volume" of a matrix, and a covariance
estimated without outliers would tend to be smaller.

The algorithm works as following: First n samples are selected randomly
from the dataset, their mean and covariance are estimated and with those the
Mahalanobis distances of all samples is calculated. The samples are ordered
from the smallest to highest mahalanobis distance, and the first n samples are
selected. With those n samples new Mahalanobis distances are calculated. This
process iterates until convergence.

n should be chosen with care. Too few samples and the covariance matrix
may be singular, with determinant equal zero and the algorithm may not con-
verge.

A.7 Gaussian mixture models

Gaussian mixture model is a probabilistic model supposing that the data
comes from a combination of Gaussian distributions. It was not designed in
principle for clusterization, but the means it calculates can be interpreted as the
centers of the clusters. In fact GMMs can be interpreted as K-means clusteriza-
tion with a covariance estimate.

The log-likelihood of each sample in the GMM is given by

l(x̄|θ) =
K

∑
i=1

log(wi · N(x̄|µ̄i, ¯̄Σi)) (A.16)

where l(x̄|θ) is the log likelihood given sample x̄ and parameters θ. K is the
number of clusters, wi is the weight of each cluster in the mixture and N(x|µi, Σi)
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is the multivariate normal probability function of sample x̄ given mean µi and
covariance matrix ¯̄Σi. The further x̄ is from the mean the smaller is the log like-
lihood. This log-likelihood calculation comes with an assumption of normality,
so it should not be used to make probabilistic assertions over the dataset, as no
real process is Gaussian.
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Appendix B

GLOW control

B.1 Additional images

Regarding open-loop simulation, using the parameters found and the same
step changes as the data generated for parameter estimation, we can better see
the differences between the NMPC and the well model, as shown in Figure B.1.
In the region without slugging, there is a near constant offset in the gas mass in
the annulus. This is due to the Peng-Robinson equation of state, that has lower
compressibility factor at the pressure ranges in the annulus and, therefore, can
hold more gas.

The high variations in the annulus after 20 hours appears to be slugging,
however it is only a stronger step response as after the step change the system
converges to a stable solution.
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Figure B.1: Comparison between NMPC and GLOW model in an open loop
simulation without slugging.

In the slugging region, depicted in Figure B.2, we start to see more differ-
ences. During slugging, we see the increase in m1 due to the interruption of
the gas flow into the tubing and its rapid reduction after the pressure increases
enough to pass to the tubing, since the gas inlet flow is low. On the tubing side,
m2 also increases momentarily when the gas flow restarts but rapidly decreases
when the gas flow is interrupted, while m3 quickly decreases when gas flow is
resumed since it lowers the density of the mixture, increasing oil production,
but accumulates when gas flow is interrupted.

The slugging period is much lower in the NMPC model, this is due to the
lower pressure in the tubing bottom than in the GLOW model. This happens
both due to the lack of pressure drop equations in the NMPC model and due to
the higher estimated GOR.
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Figure B.2: Comparison between NMPC and GLOW model in an open loop
simulation. during slugging.

Figures B.3 and B.4 show how the tuned EKF predicts the internal states
of the well. The estimated gas in the annulus has an almost constant offset
due to the difference between equations of state. In the tubing it has more
difficulty in regions with both more gas and oil as it increases the pressure
and makes the ideal gas assumption of the NMPC model less valid. It also
overshoots considerably during the step changes at time = 8h and 16h. The
NMPC model predicts well these step changes but the changes are too steep,
making the linearization of the EKF to fail in giving an accurate representation.
After 20h, however, the estimation is bad when the GLOW is filling up with oil.
Similarly to what can be seen in Figure B.1, the NMPC model predict the well
filling up to end sooner and at lower mass than well model calculates.
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Figure B.3: Comparison between the states estimated by the EKF and the well
model states, no slugging.

As we can see in Figure B.4 the EKF predicts the gas entering the annulus
earlier than it actually does. It makes sense as the NMPC predicts a shorter
slugging period. Overall, the states estimated by the EKF match reasonably well
with the well model states given the model mismatch.
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Figure B.4: Comparison between the states estimated by the EKF and the well
model states, slugging.

B.2 Equations and constants

In these equations PREoS,P is used to calculate pressure given temperature
molar volume and PREoS,V to calculate molar volume given pressure and tem-
perature. In both cases molar volume is given in terms of density. There is
only gas inside the annulus, so the pressure at top of the annulus is given by
Peng-Robinson equation:

Pat = PREoS,P(Ta,
MGVa

m1
) (B.1)

and pressure at bottom is given by pressure at the top plus the gas weight:

Pab = Pat +
m1gLa

Va
(B.2)
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At this point gas density is:

ρG,ab = MG/PREoS,V(Ta, Pab) (B.3)

The density of the gas into the annulus is:

ρG,in = MG/PREoS,V(Ta, Pgs) (B.4)

Thus, gas mass flow into the annulus is:

wG,in = Kgsu2

√
ρG,inmax(Pgs − Pat, 0) (B.5)

The gas density at the tubing top is:

ρG,t =
m2

Vt + SbhLbh − m3/ρL
(B.6)

The pressure at the top is given by PREoS

Ptt = PREoS,P(Tt,
MG

ρG,t
) (B.7)

The average density inside the tubing:

ρ̄mix =
m2 + m3 − ρLSbhLbh

Vt
(B.8)

The average liquid volume fraction inside tubing:

ᾱmix =
m2 + m3 − ρLSbhLbh

Vt
(B.9)

The gas mass fraction at bottom of the tubing is:

αm
G,b =

GOR
GOR + 1

(B.10)

The pressure drop due to friction is needed to determine bottom-hole pres-
sure, which is needed to determine the gas injection rate which is used to calcu-
late the pressure drop. This part would turn the ordinary differential equation
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system into a differential algebraic equation system. To keep it an ordinary dif-
ferential equation system JAHANSHAHI et al. (2012) assumed a constant mean
inlet flow rate, here inlet flow rate is replaced by an exponential filter of previous
inlet flow rates, Equation 4.4. This change slightly increases the stiffness of the
system.

The average superficial velocity of liquid phase in tubing:

Ūsl,t =
4(1 − αm

G,b) · m4

ρLπD2
t

(B.11)

The average superficial velocity of gas phase in tubing:

Ūsg,t =
4(wG,in − αm

G,b) · m4

ρG,tπD2
t

(B.12)

The average mixture velocity in tubing:

Ūm,t = Ūm
sl,t + Ūm

sg,t (B.13)

The Reynolds number of flow in tubing:

Ret =
ρ̄mixŪm,tDt

µ
(B.14)

An explicit approximation of the Colebrook-White equation proposed by
HAALAND (1983) is used as the friction factor in the tubing:

1√
λt

= −1.8log10[(
ϵ/Dt

3.7
)1.1 +

6.9
Ret

] (B.15)

The pressure loss due to friction:

Ft =
αLλtρ̄mixŪ2

m,tLt

2Dt
(B.16)

The pressure at bottom of the tubing where gas is injected from the annulus:

Ptb = Ptt + ρ̄mixgLt + Ft (B.17)
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The mass flow rate of gas injected into tubing:

wG,inj = Kinj

√
ρG,abmax(Pab − Ptb, 0) (B.18)

The liquid velocity at bottom-hole:

Ūl,b =
m4

ρLSbh
(B.19)

The Reynolds number of flow at bottom-hole:

Reb =
ρLŪl,bDb

µ
(B.20)

The friction factor at bottom-hole:

1√
λb

= −1.8log10[(
ϵ/Db

3.7
)1.1 +

6.9
Reb

] (B.21)

The pressure loss due to friction from bottom-hole to injection point:

Fb =
λbρLŪ2

l,bLbh
2Db

(B.22)

The pressure at bottom-hole:

Pbh = Ptb + ρLgLbh + Fb (B.23)

The mass flow rate from reservoir to tubing:

wres = PImax(Pres − Pbh, 0) (B.24)

The mass flow rate of liquid from reservoir to tubing:

wL,res = (1 − αm
G,b)wres (B.25)

The mass flow rate of gas from reservoir to the well:

wG,res = (αm
G,b)wres (B.26)
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The density of gas at bottom of tubing:

ρG,tb =
MG

PREoS,V(Tt, Ptb)
(B.27)

The liquid volume fraction at bottom of tubing:

αL,b =
wL,resρG,tb

wL,resρG,tb + (wGinj + wG,res)ρL
(B.28)

Here a liquid volume fraction assumption is used to estimate liquid volume
fraction at top of the tubing:

αL,t = max(min(2ᾱL − αL,b, 0), 1) (B.29)

From the previous assumption mixture density at top of the tubing is:

ρmix,t = αL,tρL + (1 − αL,t)ρG,t (B.30)

The mass flow rate of mixture from production valve:

wout = Kpru1

√
ρmix,tmax(Ptt − P0) (B.31)

The volumetric flow rate of production valve:

Qout =
wout

ρmix,t
(B.32)

The gas mass fraction at top of tubing:

αm
G,t =

(1 − αL,t)ρG,t

αL,tρL + (1 − αL,t)ρG,t
(B.33)

The mass flow rate of outlet gas from tubing:

wG,out = αm
G,twout (B.34)
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Table B.2: Step changes on the process applied for data generation.

Period (h) u1 u2 Period (h) u1 u2
0-2 0.88 0.88 16-18 0.88 0.40
2-4 0.64 0.88 18-20 0.64 0.40
4-6 0.40 0.88 20-22 0.40 0.40
6-8 0.17 0.88 22-24 0.17 0.40
8-10 0.88 0.64 24-30 0.88 0.17
10-12 0.64 0.64 30-36 0.64 0.17
12-14 0.40 0.64 36-42 0.40 0.17
14-16 0.17 0.64 42-48 0.17 0.17

The mass flow rate of outlet liquid from tubing:

wL,out = (1 − αm
G,t)wout (B.35)

The process constants are given in the Table B.1:

Table B.1: Model parameters.

Symbol Description value unit
R Universal gas constant 8314 J/(kmol · K)
g Gravity 9.81 m/s2

µ Viscosity 3.64 · 10-3 Pa·s
ρL Oil density 760 kg/m3

MG Natural gas molecular weight 16.7 gr
Ta Annulus temperature 348 K
Va Annulus volume 64.34 m3

La Annulus length 2048 m
Pgs Gas source pressure 140 bar
Vt Tubing volume 25.03 m3

Sbh Cross sectional area below injection point 0.0314 m2

Lbh Length below injection point 75 m
Tt Tubing temperature 369.4 K

GOR Gas oil ratio 0 -
Pres Reservoir pressure 160 bar
Dt Tubing diameter 0.134 m
Lt Tubing length 2048 m
PI Productivity index 2.47 · 10-6 kg/(s·Pa)

Kgs Gas inlet valve constant 9.98 · 10-5 -
Kinj Injection valve constant 1.40 · 10-4 -
Kpr Production valve constant 2.90 · 10-3 -
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B.3 Relevant data

Table B.3: MPC parameters.

Parameter value
Discretization interval 10s

Control horizon 8
Prediction horizon 8

γ [5 for gas input flow, 6 for oil output flow]
φ [1,1]
λ [1,1]

Algorithm Sequential Quadratic Programming
Max iterations 15

U tolerance 10-3

Function tolerance 10-3

Table B.4: NN hyperparameters.

Parameter value
Number of neurons 6
Training algorithm BFGS

L2 regularization term 10-3

Train/test/validation split 30/35/35

Table B.5: EKF and NN state estimator NMPC parameters.

Parameter value
Sampling time 40s

Number of finite elements 57
Control horizon 5

Prediction horizon 12
γ [1 for gas input flow rate, 5 for oil output flow rate]
φ [1,1]

Max iterations 35
u tolerance 10-3

Objective function tolerance 10-3

B.4 Extended Kalman Filter equations

Assuming there is a nonlinear dynamic system that follows the Equations
B.36 and B.37.

ẋ = f (x, u, t) + q (B.36)

yk = h(xk, u) + r (B.37)
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where f () is a nonlinear function that depends on the state x and control action
u. h is a function that relates the state and control action to the measurements y.
q is a random Gaussian noise, with zero mean and covariance matrix Q, while r
is a random Gaussian noise, with zero mean and covariance matrix R.

Additionally, the Jacobian matrices are given by Equations B.38 and B.39.

F =
∂ f
∂x

∣∣∣
x̂,u

(B.38)

Hk =
∂h
∂x

∣∣∣
x̂k,uk

(B.39)

The filter works in two stages. A prediction stage, Equations B.40 and B.41
and a correction stage, Equations B.42 to B.44.

Prediction:

x̃k = x̂k−1 +
∫ k

k−1
f (x̂, u, τ) dτ (B.40)

P̃k = P̂k−1 +
∫ k

k−1
FP̂ + P̂FT + Q dτ (B.41)

Correction:

ek = zk − h(x̃k, uk) (B.42)

Kk = P̃k HT
k (Hk P̃k HT

k + R)−1 (B.43)

x̂k = x̃k + Kk ek (B.44)

P̂k = (I − Kk Hk) P̃k (B.45)

where P is the states covariance matrix, z is the measurements, and e the error
between the measurements and what the measurements should be given the
predicted states. Kk is the Kalman gain. Variables with tilde are predicted and
variables with hat are corrected.

While Q and R are given by the covariance of the Gaussian noise on the
formulation, in practice they are treated as tuning parameters (SIMON, 2006). A
smaller Q reflects more trust in the model while a smaller R means more trust
in the measurements (SALAU et al., 2009).
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Appendix C

Oil well fault detection

C.1 Additional images

Figure C.1 shows an example of a sensor with overly interpolated data. In
this case T-JUS-CKP.
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Figure C.1: Example of file with overly interpolated sensor.

Figure C.2 shows how the estimated flowrates behave on simulated data.
They follow the same general direction, and Q̃p1 agrees more with Q̃t than with
Q̃p2.
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Figure C.2: Example of flowrate estimation with sensors.

C.2 Intermediate results of the iterations

The result of every step in the iterative process is summarized in Table C.1
for the validation dataset and in Table C.2 for the test dataset.
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Iteration 0 1

Fault Accuracy F1-score Precision Recall Accuracy F1-score Precision Recall

1 85.65% 95.34% 91.59% 99.41% 86.09% 98.57% 99.75% 97.41%
2 99.63% 87.03% 77.57% 99.12% 98.80% 98.20% 97.03% 99.40%
3 100.00% 100.00% 100.00% 100.00% 93.72% 94.76% 90.61% 99.32%
4 94.91% 89.59% 81.82% 98.98% 95.49% 89.51% 87.56% 91.55%
5 99.61% 95.73% 93.08% 98.53% 84.47% 99.43% 99.54% 99.33%
6 99.95% 0.00% 0.00% 0.00% 76.84% 99.21% 100.00% 98.44%
7 99.85% 97.55% 97.18% 97.92% 99.37% 94.60% 90.71% 98.85%

Iteration 2 3

Fault Accuracy F1-score Precision Recall Accuracy F1-score Precision Recall

1 90.46% 98.74% 99.89% 97.61% 95.89% 99.69% 99.80% 99.58%
2 99.80% 98.92% 98.12% 99.74% 99.83% 99.63% 99.66% 99.60%
3 97.14% 97.45% 99.20% 95.75% 99.87% 99.83% 99.76% 99.83%
4 94.81% 87.45% 88.94% 86.01% 97.61% 94.29% 94.77% 93.82%
5 96.50% 99.35% 99.71% 98.99% 98.20% 99.62% 99.66% 99.59%
6 90.67% 99.25% 100.00% 98.52% 92.48% 99.69% 99.97% 99.42%
7 99.37% 94.61% 90.71% 98.85% 99.76% 95.47% 95.43% 95.52%

Table C.1: Results for each iteration of the methodology, validation dataset.
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Iteration 0 1

Fault Accuracy F1-score Precision Recall Accuracy F1-score Precision Recall

1 98.81% 83.03% 86.64% 80.09% 97.08% 32.84% 32.36% 33.33%
2 24.52% 38.13% 39.37% 36.98% 82.66% 76.35% 84.68% 69.50%
3 3.98% 3.83% 1.99% 50.00% 3.98% 3.83% 1.99% 50.00%
4 0.00% 0.00% 0.00% 0.00% 9.88% 8.99% 5.30% 29.79%
5 68.34% 48.12% 41.68% 58.98% 75.15% 77.88% 74.25% 81.88%
6 94.25% 46.16% 41.45% 52.07% 75.06% 78.22% 90.94% 68.63%
7 97.75% 32.95% 32.59% 33.33% 36.20% 38.99% 34.44% 44.93%

Iteration 2 3

Fault Accuracy F1-score Precision Recall Accuracy F1-score Precision Recall

1 97.00% 32.86% 32.33% 33.33% 97.08% 32.84% 32.36% 33.33%
2 93.33% 89.25% 88.09% 90.55% 91.75% 86.34% 85.80% 87.43%
3 4.71% 51.03% 52.03% 50.06% 17.23% 54.40% 52.13% 54.63%
4 16.70% 14.31% 8.35% 50.00% 93.04% 90.25% 85.30% 95.82%
5 82.17% 75.57% 74.17% 77.02% 94.80% 92.35% 93.29% 92.60%
6 99.49% 79.74% 94.65% 70.78% 99.49% 80.58% 96.33% 69.26%
7 36.21% 38.99% 34.44% 44.93% 97.76% 32.96% 32.59% 33.33%

Table C.2: Results for each iteration of the methodology, test dataset.
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Appendix D

LDPE production

D.1 Additional images

In this Appendix there are images that helped during the steps of the project
analysis. They are here for future reference.

Figure D.1: Confusion matrix of the grade detector.
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Figure D.2: Correlation matrix of the process sensors.
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