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ESTUDO DO EFEITO DA SEGREGAÇÃO DE FASES POR CISALHAMENTO
NA REOLOGIA DE SUSPENSÕES

Lauren Schlatter Fernandes

Março/2023

Orientadores: Paulo Laranjeira da Cunha Lage
Gabriel Gonçalves da Silva Ferreira

Programa: Engenharia Química

Suspensões estão presentes nas mais diversas aplicações industriais, como em
processos de extração de óleo e gás, produção de cosméticos, e nas indústrias ali-
mentícia e farmacêutica. Tais misturas podem apresentar comportamentos carac-
terísticos complexos durante o seu escoamento, e quando sujeitas à aplicação de uma
taxa de cisalhamento não uniforme, as partículas migram em direção às zonas de
menor taxa de cisalhamento devido à anisotropia da tensão normal das partículas.
Esse comportamento, que ocorre tipicamente no regime de Stokes, leva à segre-
gação das fases e dificulta a interpretação de dados experimentais nos processos de
caracterização reológica dessas suspensões. O presente trabalho tem o objetivo de
estudar e comparar duas das principais formas de modelagem do escoamento de sus-
pensões sob tais condições através da sua implementação e realização de simulações
fluidodinâmicas utilizando o software OpenFOAM-v7®. Uma versão aperfeiçoada
da implementação do conhecido Modelo de Balanço na Suspensão é apresentada,
trazendo uma formulação independente do referencial para a anisotropia da tensão
normal e uma nova forma de interpolação de momentum para prevenir oscilações
numéricas. O efeito da segregação de fases na caracterização reológica das suspen-
sões é avaliado utilizando os dados das simulações de forma análoga à realização do
procedimento experimental. Dessa forma, mostra-se que a caracterização de suspen-
sões como fluidos não-Newtonianos simples não é capaz de capturar o real compor-
tamento não-Newtoniano da suspensão, com resultados que dependem da geometria
utilizada no processo de caracterização, e não conseguem prever de forma acurada
o comportamento da mesma suspensão em diferentes condições e geometrias.
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Suspensions are present in many industrial applications, such as in the oil and
gas extraction, cosmetic, pharmaceutical, and food industries. These mixtures
may exhibit characteristic and complex flowing behaviors. When subject to non-
homogeneous shear, particles tend to migrate towards the regions of lower shear
rate of the flow due to the anisotropy on the particles’ normal stress. This phe-
nomenon, which is typically observed in the Stokes regime, leads to the segrega-
tion of the phases, which complicates the interpretation of experimental data on
the rheological characterization of those suspensions. The present work aimed to
study and compare two of the main available models for suspension flow account-
ing for shear-induced migration through their implementation and flow simulation
using OpenFOAM-v7®. An improved implementation of the well-known Suspen-
sion Balance Model is presented, featuring a frame-independent formulation of the
anisotropic particle stress and an improved momentum interpolation scheme that
prevents numerical oscillations. The effects of phase segregation on the rheologi-
cal characterization of suspensions were evaluated using the simulated data as the
rheometer experimental data. It was shown that the suspension’s characterization
as a simple non-Newtonian fluid cannot capture the non-Newtonian behavior ob-
served for the suspension, whose rheometric results depend on the geometry of the
rheometer, being unable to predict the suspension behavior on different conditions
and geometries.
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Chapter 1

Introduction

Suspensions consist of small solid particles suspended on a carrier fluid, which are
present in natural processes and industrial systems. The blood flowing in our veins is
a suspension, as also are the lava flowing from a volcano and the mud on landslides.
Suspensions are widely used in the pharmaceutical (delivery of drugs and DNA
molecules to specific cells or tissues using micro-devices, such as micro-needles),
cosmetic (toothpaste and cosmetic pastes in general), and civil engineering industries
(fresh concrete), and in processes such as ceramic injection molding, bio-refining,
water treatment, and many others [4–9]. In food processing, suspensions are created
when mixing water and flour, in fermentation processes and in juice (with pulp)
processing [7, 10].

Specifically, in the oil and gas industry, suspensions take part in the hydraulic
fracturing process when solid proppants are mixed with the fracking fluid in order
to prevent the fracture from closing after depressurization of the well [11]. They
also appear on oil-dominated flows due to the spontaneous formation of gas hy-
drates, which becomes especially critical as the solid material can deposit and end
up blocking the pipeline [12].

For proper designing and optimization of industrial processes involving suspen-
sion flows, it is of extreme importance to be able to accurately describe its behavior.
That is not an easy task, since many complex phenomena may take place and the
suspension flow can be dominated by different types of inter-particle and inter-phase
interactions, depending on the characteristics of the suspension and the flow con-
ditions. Characterization of the suspension itself depends on several factors: the
size, roughness, and shape of the particles, their concentration and polydispersity,
the presence of colloidal inter-particle forces, and the overall characterization of the
carrier fluid, especially its rheological properties and the relative density between
phases. The flow conditions may favor one or another mechanism of interaction,
with transition limits that depend on the suspension description.

To illustrate the different regimes and phenomena that may take place on suspen-
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Figure 1.1: Conceptual diagram for classification of the different suspension flow
regimes (on a logarithmic scale). Reproduced from COUSSOT and ANCEY [1]
with permission.

sion flow, consider the diagram of COUSSOT and ANCEY [1] in Figure 1.1, which
relates the main types of dominant interactions in a suspension to the particle con-
centration (represented by the volumetric phase fraction ϕ) and to the applied shear
rate (γ̇). It is important to emphasize that the lines on this conceptual diagram do
not represent exact limits of transition between regimes, but approximate regions.
The exact positions of the transition lines depend on a more detailed description of
each system under study.

In regime (A), the suspension flow is dominated by Brownian effects. Brow-
nian motion is the random movement of the suspended particles, which is typi-
cally most relevant for particles with characteristic sizes smaller than 1 µm [8].
Its predominance in the flow can be inferred by the value of the Péclet number
(Pe = 6πµf γ̇a

3/kT , where a is the particle radius, µf is the carrier fluid’s dynamic
viscosity, k is the Boltzmann constant and T the thermodynamic temperature),
which represents the ratio between the viscous and Brownian effects [1]. If it is
smaller than unity, then, the suspension flow is on the left side of the Pe = 1 line
of the diagram shown in Figure 1.1. Other colloidal effects can also be taken into
account if there are inter-particle and/or surface forces acting on the system, such
as the van der Waals and electrostatic forces. As a consequence of these colloidal
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forces, each particle has an equilibrium relative position that minimizes its potential
energy, associated with an energy barrier that has to be overcome in order to displace
the particles from this position. Representing the average energy barrier associated
with a mean (in time and space) potential minimum as Φ and the mean particle’s
thermal energy as kT , the dimensionless number Nr = Φ/kT is defined to evalu-
ate which effect should prevail. With the increase in the particle concentration, it
becomes harder to displace the particles away from their equilibrium position, and
as Nr reaches values above 1, the suspension flow migrates from the regime (A)
to regime (C), dominated by the colloidal interactions in which, macroscopically,
suspensions show apparent yield stresses [1].

As the shear rate increases, so does the viscous force acting on the particles. For
suspension flows in regime (A), if the increase in the shear rate leads to Pe > 1,
they transition to the regime (B), dominated by hydrodynamic effects. Similarly,
for suspensions of spherical particles flowing in regime (C) with a mean particle
distance of b, the dimensionless number Γ = 3πaµsγ̇b

2/Φ is introduced to measure
the relation between the hydrodynamic energy dissipation and the energy barrier
needed to move a particle from its equilibrium position, where µs is the suspension’s
viscosity. As the viscous force increases, the system transitions from the regime
(C) to regime (B) at Γ = 1. With further increase in the suspension velocity (and
consequently in the shear rate), the flow may achieve the turbulent regime (D), in
which inertial effects are dominant. Even though this transition limit is represented
in Figure 1.1 by the main flow’s Reynolds number (Re = ρsγ̇L

2
ch/µs, where ρs is the

suspension’s density and Lch is a characteristic length of the flow), it is more common
to describe it using the particle’s Reynolds number Rep = ρf γ̇a

2/µf (defined using
the fluid’s density and viscosity). If Rep ≪ 1, the inertial effects can be neglected
and the suspension flow in regime (B) is said to be in the Stokes regime [13–16].
Hereinafter, suspension flows are denominated as Brownian if they are in regime
(A), and as colloidal if they are in regime (C). For the lower shear rate values in
regime (B), for which Rep is still much smaller than unity, they are taken to be in
the Stokes regime.

For highly concentrated suspensions, with concentrations between a critical value
and the maximum packing fraction (represented in Figure 1.1 by ϕc and ϕm, respec-
tively), inter-particle contact interactions play the dominant role in the suspension
flow. In the diagram, shown in Figure 1.1, these are referred to as hard suspensions,
in contrast to those with concentration below ϕc, which are called soft suspensions.
For ϕ > ϕc, there are the frictional (E), lubricated (F), and collisional (G) regimes.
As the particles in a suspension flowing in regime (B) approach one another, a re-
pulsive force arises due to the thin film of fluid that separates them, in a direction
normal to the particles’ center. For the particles to collide, the force needed to
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drain the fluid between the particles has to be overcome. If no external force is
acting on the system, the viscous force in a simple shear flow is not sufficient to
overcome this threshold. Hence, particle contact is indirect and called lubricated. If
concentration increases above the critical value, the flow is controlled by the effects
of the lubricated contact, transitioning from the regime (B) to regime (F). For lower
values of the shear rate the repulsive force between particles is smaller, which favors
direct contact, especially if an additional external force such as gravity is acting on
the system. The suspension, then, flows in the frictional regime (E). The transition
between the frictional and lubricated regimes is represented by the dimensionless
number Le = µf γ̇b/Fne (where e is the particle’s surface roughness). It represents
the ratio between the repulsive force, which prevents direct contact, and Fn, which
is the sum of the viscous and external forces acting in the opposite direction of the
aforementioned repulsive force. The Le = 1 line in Figure 1.1 marks the transi-
tion between regimes (E) and (F): if Le < 1, the suspension flows in the frictional
regime, and if Le > 1, in the lubricated regime. On the other hand, for rapid flows
with higher shear rates, the kinetic energy of the particles increases and may be
sufficient to cause direct contact. This takes the suspension’s flow to the collisional
regime (G), with a transition represented in Figure 1.1 by the dimensionless number
Ba = ρpγ̇ae/µf - the ratio between the particle’s kinetic energy and the energy
dissipated when particles approach one another (ρp is the particle’s density).

In regime (B), in which inertial effects are negligible, if the suspension is flow-
ing subject to non-homogeneous shear, shear-induced migration occurs. This phe-
nomenon causes the particles to migrate towards the region of lower shear rate,
leading to segregation of the phases, and so, to non-homogeneous concentration and
local change of the apparent viscosity. It is described in detail in the following
chapters of this work. The shear-induced migration has been extensively studied,
aiming to find a complete model that accurately describes the rheological behavior
of the suspensions, because many of the aforementioned industrial applications of
suspension flows may occur in this specific regime. This particular phenomenon is,
therefore, the focus of this work.

1.1 Objectives

The main objective of this work is to evaluate the effects of phase segregation due to
non-homogeneous shear on the rheological characterization of suspensions. Specifi-
cally, discussions are restricted to non-Brownian and non-colloidal Stokesian suspen-
sions of monodispersed spherical particles on a Newtonian fluid of matching density
(i.e., a neutrally buoyant suspension). The available mathematical models that
represent particle migration and their implementations were studied and compared
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by performing computational fluid dynamics (CFD) simulations using OpenFOAM-
v7® [17] - an open source CFD software written in C++. This work shows that
simple non-Newtonian models cannot provide an accurate rheological description of
these suspensions, leading to difficulties in their experimental characterization.

1.2 Document Structure

A literature review is given in Chapter 2, outlining some of the most historically rele-
vant experimental observations of shear-induced particle migration, as also the main
modeling strategies found in the literature and their applications. The methodol-
ogy is presented in Chapter 3, giving a detailed description of the models used in
this work, as well as a conceptual description of the studied cases. The numeri-
cal procedure is presented in Chapter 4, with the implementation details, solution
algorithm, mesh generation procedure, and the description of the numerical setup
used for all performed simulations. Results and conclusions are given, respectively,
in Chapters 5 and 6.
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Chapter 2

Literature review

2.1 Earlier Experimental Studies

The study of suspension rheology dates back to EINSTEIN [18], who showed that
the mixture’s viscosity coefficient increases proportionally to the particles’ volumet-
ric phase fraction for a dilute suspension of rigid particles. A few years later, in
a correction to the previously mentioned work, he presented his famous equation
for the suspension’s viscosity as a function of the dispersed-phase volumetric frac-
tion [19], which is widely known as Einstein’s correction, yielding good results for
dilute suspensions of rigid spheres. It is still a reference for the analysis and propo-
sition of new rheological models that must retrieve Einstein’s equation when the
particles’ concentration tends to zero.

As pointed out by GADALA-MARIA and ACRIVOS [20], the earlier attempts to
measure the suspension’s viscosity showed significant scatter and low reproducibility.
By performing experiments of long duration in a Couette cell with neutrally buoyant
suspensions of monodispersed, rigid, non-Brownian particles, with a Newtonian car-
rier fluid, the authors linked the scattered and inconclusive results to an inadequate
experimental technique. It was shown that, for systems where non-hydrodynamic
contributions can be neglected, the measured torque took long periods of time to
achieve the steady state. Thus, most of the results reported so far in the litera-
ture considered data from the transient regime to predict the suspension’s viscosity.
Moreover, the time needed to stabilize the torque was inversely proportional to the
applied shear rate.

Another important observation by GADALA-MARIA and ACRIVOS [20] came
from the results of shear reversal and oscillatory shear experiments performed in
the Couette rheometer. They observed a transient response of the torque signal
upon shear reversal, in contrast to what is expected of a Newtonian fluid under the
same circumstances. They also obtained non-Newtonian responses to oscillatory
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shear, with the deviation from the expected Newtonian behavior increasing as the
solid-phase fraction increases. These observations were ascribed to a shear-induced
anisotropy in the suspension’s particle structure, which had been formerly shown to
take place only for suspensions in which non-hydrodynamic effects were present [21].

2.2 Modeling of the Migration

Stokesian Dynamics

A general method for the dynamic simulation of suspension flows was introduced
by BOSSIS and BRADY [22], used to predict the anisotropic local particles’ struc-
ture formed due to their shear-induced migration. Known as Stokesian Dynam-
ics (SD), the proposed method consists of solving Newton’s equations of motion
for all particles in the system, which interact through hydrodynamic and non-
hydrodynamic forces, along with the conservation equations for the continuous phase
flow. This strategy provides a highly detailed description of the suspension’s local
properties, making it possible to study not only the dynamics of particle migra-
tion but also a number of other phenomena. Many studies use Stokesian Dynamics
to investigate the microstructure formation, the transition between Newtonian and
non-Newtonian behavior, and the normal stress anisotropy [23–25]. However, this
modeling strategy features a significant limitation: since it solves Newton’s equa-
tions for every single particle on the system, SD simulations of large-scale complex
flows are impracticable.

Diffusive Flux Model

Reproducing the experimental study of GADALA-MARIA and ACRIVOS
[20], LEIGHTON and ACRIVOS [2] showed that the slow decrease in the torque
signal reported in the former study was due to a shear-induced particle diffusion
from regions of high shear rate towards regions of low shear rate. To illustrate the
diffusion mechanism as proposed by these authors, consider two particles in adjacent
streamlines of the suspension flow. When they move past one another, the particle’s
collision irreversibly displaces them away from their original streamlines. If there is a
variation in the collision frequency across the stream surfaces, particles will migrate
in the direction of the lower collision frequency region. Consequently, a net migration
flux is established in a direction that is normal to the shearing surface. Additionally,
a gradient of the suspension’s viscosity across the stream surfaces results in a gradi-
ent of resistance to motion, which displaces the particles’ post-collisional equilibrium
positions towards the direction of lower viscosity when compared to interaction in
the absence of a viscosity gradient, as shown in Figure 2.1. Therefore, a diffusion
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Figure 2.1: Illustration of the collision mechanism proposed by LEIGHTON and
ACRIVOS [2].

flux due to the spatial variation of concentration, and consequently, viscosity, also
arises. Each diffusive term is described by an expression proportional to a diffusion
coefficient (to be determined experimentally) and the proper scaling factors.

A diffusion equation to model the solid-phase fraction profile for the Stokes flow
of concentrated suspensions was proposed by LEIGHTON and ACRIVOS [2] and
was subsequently improved by PHILLIPS et al. [3], who developed a diffusion equa-
tion which, solved together with the suspension’s equations of motion, provides the
evolution of the solid-phase fraction field. On the formulation of PHILLIPS et al.
[3], the suspension is modeled as an effective Newtonian fluid with properties de-
pending on the local particle-phase fraction, which comes from the solution of the
particles’ diffusion equation. These authors studied the Couette flow of neutrally
buoyant suspensions of non-colloidal and non-Brownian particles with bulk solid-
phase fractions of 45%, 50%, and 55%, and for a wide range of applied shear rates
(with the angular velocity of the rotating cylinder varying from 17 to 117 rotations
per minute). The diffusion coefficients were determined to best fit the experimental
data for the most concentrated suspension, and used to predict the concentration
profiles for the suspension flows with lower bulk solid-phase fractions, comparing
the obtained results with the experimental observations. It was noticed that, as
the bulk solid-phase fraction decreases, the predicted profiles close to the rotat-
ing cylinder significantly differed from the experimental values, indicating that the
diffusion coefficients, formerly considered constants, actually depend on the local
solid-phase fraction. According to PHILLIPS et al. [3], these discrepancies may be
more pronounced in the lower solid-phase fraction regions since the long-range hy-
drodynamic interactions that have been neglected in the development of the model
can also take place and may overcome the considered short-range contributions. In
fact, LEIGHTON and ACRIVOS [2] had already stated that the diffusion coefficients
for the proposed mechanism are strongly dependent on the solid-phase fraction pro-
file and should only be considered as constants for flows with small variations of the
particles’ concentration.

The model proposed by PHILLIPS et al. [3] is known as the Diffusive Flux Model
(DFM) and its main advantage is its simplicity and ease of numerical implementa-
tion. It can be easily adapted to account for other sources of particle migration, e.g.,
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the effects of Brownian motion and gravity forces. Nevertheless, it is grounded on
the assumption that migration occurs in the direction normal to the shearing sur-
face. That is true for the viscosimetric flow on a Couette rheometer and for the flow
in a straight channel, but not for the flows in cone-and-plate and torsional parallel-
plate rheometers. Therefore, this model cannot be directly extended for general
geometries. It is important to emphasize that, as mentioned herein, the suspension
is modeled as an effective fluid with properties depending on the solid-phase fraction
- an approach called mixture model. This is an approximation that holds only for
systems with rapid relaxation and small slip velocity between the phases, i.e., when
particles reach local equilibrium in a time scale far shorter than the characteristic
time scale of the flow [5].

Some recent studies use the Diffusive Flux Model to predict particle migration
for viscosimetric flows in simple geometries. KANG and MIRBOD [4] applied the
DFM in Direct Numerical Simulation (DNS) of both Couette and channel flows to
study the effect of Brownian forces in suspension flows of neutrally buoyant colloidal
particles and the resulting shear-thinning behavior. These authors observed that, as
the contribution of Brownian forces increases, shear-induced migration from high to
low shear rate regions weakens, flattening the solid-phase fraction profiles compared
to those obtained for non-Brownian suspensions.

HERNÁNDEZ [26] developed an unsteady continuum model with an adapted
constitutive equation based on PHILLIPS et al. [3] model to account for shear-
induced particle migration and buoyancy effects. The implemented model was used
to solve the channel flow of suspensions with both Newtonian and Bingham carrier
fluids. Previously, SIQUEIRA and DE SOUZA MENDES [27] also applied the
Diffusive Flux Model to simulate the pressure-driven flow of a suspension with an
apparent yield-stress carrier fluid. However, their model was restricted to steady-
state conditions.

Suspension Balance Model

Shortly after the presentation of the Diffusive Flux Model, a novel modeling ap-
proach was introduced by NOTT and BRADY [13], called the Suspension Balance
Model (SBM). The key idea of the new model is that, since the particles evolve
according to Newton’s equations of motion just as molecules, they can be macro-
scopically described as a continuum phase, in the same way as molecular systems.
The main difference relies on the complexity of the interaction forces between the
particles that are strongly dependent on their spatial configuration. Then, instead of
writing a diffusion equation, transport equations are written for the dispersed phase
and they are coupled to the transport equations for the suspension. These equations
for the dispersed phase are obtained by averaging the instantaneous local transport
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equations, similar to the equating of molecular systems. The detailed step-by-step
of the ensemble-averaging procedure used by NOTT and BRADY [13] to formulate
their model can be found in the works of DREW and LAHEY [28] and MAZZEI
[29].

NOTT and BRADY [13] then proposed a new model for the flow of non-
Brownian suspensions of rigid particles dispersed in a Newtonian fluid. They de-
fined the dispersed-phase effective stress tensor that accounts for the presence of
non-Newtonian normal stresses and viscously generated (i.e., linear in the shear
rate) shear stress with a dependence on the solid-phase fraction through a particle
viscosity coefficient. The existence of normal stress anisotropy is acknowledged, as
observed experimentally by GADALA-MARIA and ACRIVOS [20] and HOFFMAN
[21], but it is neglected under the assumption that it doesn’t play a role in the rec-
tilinear flow chosen as the validation case. Thus, their normal stresses are isotropic.
They also considered that the normal stresses scale linearly with the shear rate, as
does the shear stress, but with a dependence on the solid-phase fraction of unknown
functional form. Finally, the suspension’s stress tensor needed to close its momen-
tum balance was taken as the sum of the individual phases’ stress tensors and so, it
is non-Newtonian.

NOTT and BRADY [13] made an important observation concerning the break-
down of the models presented so far when the shear rate vanishes. The diffusion
coefficient is taken to be linearly proportional to the shear rate and should vanish
in regions where the shear rate is zero. However, the Stokesian Dynamics simula-
tions performed by NOTT and BRADY [13] showed that there is a nonzero particle
diffusivity at these regions due to small fluctuations of the particle’s velocity on the
scale of the particle size. A more tangible consequence of this issue is the obser-
vation that, as the shear rate approaches zero at the center line of channel flows,
the SBM predicts that the solid-phase fraction should approach maximum packing,
which causes a nonphysical cusp in the solid-phase fraction profile [6], which is also
in disagreement with experimental observations and SD simulations’ results. Thus,
a non-local description of the flow is necessary. NOTT and BRADY [13] proposed a
non-local formulation based on the introduction of a new field variable, the suspen-
sion temperature, which represents a scalar measurement of the fluctuations of the
particle’s mean velocity, similar to the granular temperature from the kinetic theory
of granular flows (not to be mistaken with the suspension’s thermodynamic tem-
perature). This strategy, however, requires solving an additional transport equation
for the suspension temperature. In following works dedicated to improving the sus-
pension balance model, simpler non-local descriptions have been introduced using
algebraic expressions instead of adding a new field variable, while still effectively
eliminating the model failing at vanishing shear rate regions [6, 14, 30].
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Studying the suspension balance model for curvilinear flows of neutrally buoyant
non-colloidal particles dispersed in a Newtonian fluid, MORRIS and BOULAY [14]
significantly advanced towards a more generic form of the model. Based on previous
predictions of normal stress differences by Stokesian Dynamics simulations, MOR-
RIS and BOULAY [14] wrote the normal stresses to be compressive and scale linearly
with the shear rate, with a functional dependence on the solid-phase fraction (as
described by NOTT and BRADY [13]). Constant parameters were introduced in
the normal stress terms, whose values ensure both anisotropy and qualitative agree-
ment with experimental observations. A full description of the functional forms for
the dependency of the suspension’s shear and normal stresses on the solid-phase
fraction was also given by MORRIS and BOULAY [14], considering the previous
observations of BRADY and MORRIS [31] on the behavior of normal stresses at
the dilution limit. The resulting suspension’s viscosity was also shown to respect
Einstein’s correction [19] at these conditions. Coefficients of the model were fitted
to match the experimental data of PHILLIPS et al. [3] for the Couette flow with
intermediate bulk solid-phase fraction. Then, the model was used to predict the
solid-phase fraction distributions for the flow of the more dilute and more concen-
trated suspensions, providing a good representation of the experimental data. At
this point, the reader is reminded of the fact that the DFM predictions of PHILLIPS
et al. [3] did not show such good agreement with their own experimental data in
regions of lower concentration.

In the resulting suspension balance model, shear-induced migration appears nat-
urally, arising from the presence of the non-Newtonian normal stresses. Therefore,
it can be predicted by analyzing the model equations, while it had been imposed in
the form of an extra phenomenological equation in the diffusive flux model. Here lies
the main conceptual contrast between the two modeling approaches: the diffusive
flux model treats the suspension as a Newtonian fluid and imposes shear-induced
migration by introducing the diffusion equation, while the suspension balance model
considers the presence of non-Newtonian normal stresses, which can be mathemati-
cally shown to be responsible for the shear-induced migration. Using the formulation
of MORRIS and BOULAY [14], the SBM now accurately represents the behavior of
several viscosimetric suspension flows. It predicts migration towards the center line
for channel flows and towards the stationary cylinder in a Couette rheometer, both
in the direction normal to the shearing surface, as does the DFM. For parallel-plate
torsional flow, no migration is predicted, as observed experimentally, and for the
cone-and-plate flow, particles are correctly predicted to migrate radially outward,
away from the cone [14]. Analysis of the SBM equations for viscosimetric flows
and how the normal stresses cause the shear-induced migration can be found in the
literature [13, 14, 32], and will be partially reproduced in Chapter 3.
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Despite the advances in accurately predicting several viscosimetric flows, the
formulation of MORRIS and BOULAY [14] still features one significant limitation.
Since normal stresses are incorporated in the particles’ stress through a diagonal
tensor defined in terms of the main directions of the flow, it is a frame-dependent
model and cannot be directly applied for flows where the directions of the suspen-
sion velocity, its gradient, and vorticity do not coincide with the chosen coordinate
system. If one wishes to solve the Couette flow equations on a Cartesian coordinate
system, or the flow over a contraction/expansion, e.g., the given formulation of the
normal stress is not suitable.

The frame-dependency issue was addressed by MILLER et al. [33], who formu-
lated a two-dimensional frame-invariant form of the particles’ normal stress tensor
based on the local kinematics of the flow. A tension-compression local coordinate
system was defined in terms of the eigenvectors of the strain rate tensor and used to
map the anisotropic tensor of MORRIS and BOULAY [14] from the original coor-
dinate system to the local one. The magnitudes of the resulting tensor components
were weighted by interpolation functions that account for the local kinematic behav-
iors from pure extensional flow to solid-body rotation. MILLER et al. [33] validated
this formulation for the channel flow with a sudden contraction and for the flow
over a cavity. Despite achieving the goal of developing a frame-invariant model for
2-D flows, their formulation is quite complex and strongly dependent on the local
kinematic state [15]. A much more direct way to deal with the frame-dependency
of the anisotropic normal stresses was presented by MUNICCHI et al. [16], who
replaced the unit vectors originally used to define the anisotropic tensor with unit
vectors defined using the calculated velocity field.

After MILLER and MORRIS [6], DBOUK et al. [34] performed a series of exper-
imental measurements of the normal stress differences on the flow of a non-colloidal
and neutrally buoyant suspension. Good agreement was found among their results
and several other experimental studies in a variety of viscosimetric flows [35–40].
Comparison with the SBM formulation of MORRIS and BOULAY [14] yielded a
good fit for the particles’ normal viscosity, which introduces the normal stress de-
pendency on the solid-phase fraction, but the coefficient of the suspension’s shear
viscosity had to be re-evaluated in order to match the data. All coefficients of
the anisotropic tensor, previously considered constants, were found to be slightly
dependent on the solid-phase fraction. This experimental work was followed by a
computational study [15], in which a formulation of the suspension balance model
for monodispersed suspensions of non-Brownian particles on a Newtonian fluid, ac-
counting for buoyancy effects and the frame-invariant formulation of MILLER et al.
[33], was implemented using OpenFOAM®. The resulting solver was used to predict
the suspension flow in three different situations: initially homogeneous suspension

12



flowing in a straight channel, flow in a Couettte rheometer, and particles’ resuspen-
sion in a Couette cell starting from a settled suspension. The results present good
agreement with the experimental data and model predictions from previous studies.

Additionally, other effects have already been successfully incorporated into the
suspension balance model. MORRIS and BRADY [32] specifically studied the effects
of buoyancy by adapting the formulation of NOTT and BRADY [13] and validated
their modified model against the results of Stokesian Dynamics simulations. The
influence of Brownian motion in micro-channel flows of suspensions was studied
by GAO et al. [41] and FRANK et al. [42]. VON PFEIL et al. [43] applied the SBM
for studying the behavior of electro- and magneto-rheological suspension flows.

Frictional Model

An alternative modeling strategy was introduced by BOYER et al. [44] based on a
frictional approach derived from the theory of dry granular flows, which describes
the behavior of granular materials in the dense regime, neglecting the particles’ in-
teraction with interstitial fluid [45, 46]. These authors adapted and extended the
existing models for dry granular systems to model the stresses in a suspension of
monodispersed particles in a Newtonian fluid with isotropic particles’ normal stress.
Their model predictions agreed well with the experimental data. The Frictional
Rheology Model of BOYER et al. [44] was reviewed by LECAMPION and GARA-
GASH [47] and extended to suspension flows in the jammed state. In this particular
case, the confined suspension achieves maximum packing and the particles group
into a non-flowing plug inside the channel, with zero velocity, through which the
fluid percolates as a porous media.

Multiphase Modeling

The Diffusive, Suspension Balance, and Frictional modeling strategies presented so
far are built around the concept of treating the mixture as an effective fluid. They
are very useful to study the overall rheological behavior of the suspension. However,
as mentioned before, the effective fluid approximation only holds for systems with
small slip velocities [5]. The study of shear-induced migration is also of interest
in the field of multiphase fluid dynamics, where fluid and particles are treated as
two interpenetrating phases, and transport equations are solved for each phase.
Consequently, there is no need to limit the model’s application to systems of rapid
relaxation, and the effects of the migration are more or less relevant for the flow under
study depending on the magnitude of other phenomena occurring simultaneously.

Using a rather similar approach to the diffusive flux model in the multiphase
framework, TIWARI et al. [48] and DRIJER et al. [7] introduced the effects of
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shear-induced particle migration in the momentum conservation equations of both
phases as a driving force. Both studies focused on the application of the proposed
models to the simulation of suspension flow in membrane tubes used for nano- and
micro-filtration processes. DRIJER et al. [7] took a large step further by propos-
ing a new separation technology, in which the shear-induced migration towards the
center line of the tube is used to decrease the particle concentration near the mem-
brane walls, and, consequently, reducing cake formation and membrane fouling. Also
adapting a formerly presented concept to the two-fluid model framework, the fric-
tional model of BOYER et al. [44] was used by DONTSOV and PEIRCE [11] to
predict the steady flow of a slurry in a rock fracture, considering sedimentation due
to gravitational effects. The particle-phase stress was modified to include the terms
from the equations of MORRIS and BOULAY [14] that account for the normal stress
anisotropy.

A strategy similar to that from DONTSOV and PEIRCE [11] was given by MU-
NICCHI et al. [16]. Instead of adapting the frictional model of BOYER et al. [44]
to the two-fluid framework, as done by DONTSOV and PEIRCE [11], MUNIC-
CHI et al. [16] proceeded to merge the general model for a two-phase flow with the
suspension balance model of MORRIS and BOULAY [14]. The starting point of
their formulation is the OpenFOAM® solver twoPhaseEulerFoam, used for simu-
lating two-phase dispersed flows. The original model was modified to introduce the
equation of MORRIS and BOULAY [14] in the dispersed-phase stress tensor, which
predicts the shear-induced particle migration for Stokes flow. In doing so, the model
retains its original features allowing for compressibility of the phases, gravitational
effects, several inter-phase momentum exchange terms (lift, drag, virtual mass, etc.),
and granular pressure as part of the closure of the solid-phase stress tensor. This
two-fluid model (TFM) is, therefore, the most complete model presented so far, be-
ing able to accurately predict a wide range of phenomena, and being easily accessible
to the scientific community.

There is still an open discussion regarding the direct introduction of the parti-
cle stress tensor from the SBM into the dispersed-phase equations of the two-fluid
models. Years after the introduction of the suspension balance model, NOTT et al.
[49] reviewed the averaging procedure used to obtain the suspension and individual
phases mass and momentum balance equations, showing that the particles’ con-
tribution to the suspension stress tensor in the SBM does not coincide with the
stress tensor of the dispersed phase on a two-fluid model. In fact, the particle-phase
momentum balance should reduce to a summation of forces of both hydrodynamic
and non-hydrodynamic origins. This observation poses a dilemma: if there is no
effective stress tensor for the particle phase, shear-induced migration could not have
been successfully explained in terms of the particle stress. Both NOTT et al. [49]
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and JAMSHIDI et al. [50] dived into this problem and proposed a formulation that
writes the inter-phase forces as the divergence of tensors, forcing the appearance of a
particle-phase stress tensor. JAMSHIDI et al. [50] derived the remaining term that
should lead to the agreement with the particle stress of MORRIS and BOULAY
[14]. However, the interpretation of the resulting model seems to return to the same
form of the equations as proposed by MUNICCHI et al. [16]
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Chapter 3

Methodology

This chapter is divided into two sections: first, both models used in this work are
derived. Then, the procedure for the rheological parameters estimation using the
simulated data is presented.

3.1 Description of the Models

3.1.1 Suspension Balance Model

In this section, the suspension balance model is derived for the Stokes flow of a
suspension of neutrally buoyant, monodispersed, non-Brownian, and non-colloidal
particles. These are the conditions that apply to the flows considered in this work,
which are detailed in Section 4.3.

As mentioned earlier in this work, the condition of negligible Brownian motion
is achieved if the Péclet number is sufficiently large. This number is defined as:

Pe =
6πµf γ̇a

3

kT
(3.1)

where a is the particle radius, µf is the dynamic viscosity of the continuous phase, γ̇
is the shear rate and kT is the thermal energy [8, 15, 23, 42]. Therefore, if Pe ≫ 1,
the effects of Brownian diffusivity can be neglected when compared to the magnitude
of viscous effects. Moreover, the particle’s Reynolds number that represents the ratio
between the inertial and viscous forces should be infinitesimally small:

Rep =
ρfa

2γ̇

µf

(3.2)

where ρf is the suspending fluid density. So, if Rep ≪ 1, the flow is considered to
be in the Stokes regime and the inertial terms in the transport equations can be
neglected [13].
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Following NOTT and BRADY [13], the conservation equations for the particle
phase and for the suspension can be obtained by averaging the local and instanta-
neous mass and momentum conservation equations, which have the following general
forms:

∂ρ

∂t
+∇ · (ρu) = 0 (3.3)

ρ
Du

Dt
= ∇ · σ + b (3.4)

where ρ is the density, u is the velocity, b represents the body forces, and σ is
the stress tensor. The equations above are valid for any material point in the flow
domain at any time. The averaging process is omitted here, but it can be found in
detail in the works of DREW and LAHEY [28] and MAZZEI [29].

Particle Phase Equations

By averaging Equation 3.3 over the particles, the resulting continuity equation reads:

∂(ρpϕ)

∂t
+∇ · (ρpϕup) = 0 (3.5)

where ϕ is the dispersed-phase fraction, and the subscript p denotes a particle-
averaged property. Since the particle density ρp is constant, Equation 3.5 simplifies
to:

∂ϕ

∂t
+∇ · (ϕup) = 0. (3.6)

The particle flux Jp = ϕup is unknown and needs to be determined. However, it
is more convenient to rewrite the continuity equation in terms of the relative motion
between the suspension and the particle phase. Defining the relative migration flux
J as:

J = ϕ (up − us) (3.7)

where the subscript s indicates a suspension averaged property, and using the fact
that ∇ · us = 0, Equation 3.6 can be rewritten as:

∂ϕ

∂t
+ us · ∇ϕ = −∇ · J. (3.8)

To find an expression for J, we write the averaged momentum equation for the
particle phase:

∂ (ρpϕup)

∂t
+∇ · (ρpϕupup) = ∇ · Sp + fp + bp (3.9)
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where Sp is the effective stress tensor of the particle phase, and fp and bp are,
respectively, the inter-phase and body forces acting on the particles. Considering the
gravitational force to be the only body force acting on the system, for a suspension
of neutrally buoyant particles, bp = 0. Also, all of the inertial terms on the left-hand
side of this equation can be neglected for Stokes flow, and Equation 3.9 reduces to:

0 = ∇ · Sp + fp. (3.10)

Considering the only inter-phase force to be the drag force (fdp ), the expression for
fp was written by NOTT and BRADY [13] in terms of the slip velocity between the
particle phase and the suspension:

fp = fdp = − 9µfϕ

2a2f (ϕ)
(up − us) . (3.11)

The hindrance function f(ϕ) is the ratio between the settling velocity of the particles
in a suspension of local concentration ϕ and the Stokes settling velocity of an isolated
particle. It represents the mobility of the particles and is typically used to correct
the Stokes drag force coefficient for suspensions even in the case of neutrally buoyant
particles [14]. NOTT and BRADY [13] and MORRIS and BRADY [32] used the
expression given by PHILLIPS et al. [51] for the hindrance function, determined
from the results of several particles’ settling simulations performed using Stokesian
Dynamics. Writing the drag force in Equation 3.11 in terms of up−us is in agreement
with the usual form of the equations solved using SD, which are also written in
terms of the slip velocity between the particle phase and the suspension. In this
work, f(ϕ) is modeled according to MILLER and MORRIS [6], who also wrote the
drag force in terms of the slip velocity up −us, and adapted the hindrance function
of RICHARDSON and ZAKI [52] to ensure that migration ceases when ϕ approaches
maximum packing, which reads:

f (ϕ) =

(
1− ϕ

ϕm

)
(1− ϕ)α−1 (3.12)

with α = 4 and the maximum packing fraction set to ϕm = 0.68.
Introducing the drag force definition from Equation 3.11 into Equation 3.10, an

expression is found for the migration flux J:

0 = ∇ · Sp −
9µf

2a2f (ϕ)
ϕ (up − us) (3.13)

J =
2a2f(ϕ)

9µf

∇ · Sp. (3.14)
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Notice that, if ∇ · Sp is zero, the last equation dictates that migration ceases. Ac-
cording to Equation 3.14, it is the divergence of the particle-phase stress tensor that
causes the particle migration, which can be predicted by properly modeling Sp.

The mass and momentum conservation equations for the particle phase are now
coupled by introducing the definition of J from Equation 3.14 into Equation 3.8,
yielding the final form of the particle-phase continuity equation:

∂ϕ

∂t
+ us · ∇ϕ = − 2a2

9µf

∇ · [f (ϕ)∇ · Sp] . (3.15)

It is still necessary to provide a closure model for the particle-phase stress ten-
sor Sp. The first model proposed by NOTT and BRADY [13] assumes a viscous
response:

Sp = ppI+ 2µpEs + χ (3.16)

where pp is the particle pressure, I is the identity matrix and µp is called the particle-
phase shear viscosity, introducing a dependence of the shear stress on the particle-
phase fraction. Normal stress anisotropy is accounted for by the term χ, but it is
neglected by the authors under the assumption that it does not play a role in the
rectilinear flows under analysis in their work. Es is the rate of strain tensor, defined
generally as:

Ei =
1

2

[
∇ui + (∇ui)

T
]
, i = s, f, p (3.17)

where the subscript f indicates a continuous-phase (hereinafter referred to as fluid)
averaged property, and the shear rate is defined by γ̇ =

√
2Es : Es.

MORRIS and BOULAY [14] proposed a formulation of the normal stress tensor
which accounts for the effects of anisotropy:

Sp = 2µpEs − µnγ̇Q (3.18)

where µn is a function of ϕ called the particle-phase normal stress viscosity, intro-
ducing the dependence of the normal stress on the particle-phase fraction. Tensor
Q is the normal stress tensor that introduces the anisotropy in Sp, being diagonal
with respect to the directions 1, 2, and 3 of a viscosimetric flow, where 1 stands for
the direction of the flow, 2 for the direction of the velocity gradient and 3 for the
vorticity vector direction. It is defined by a 3× 3 matrix:

Q =

λ1 0 0

0 λ2 0

0 0 λ3

 . (3.19)
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The constant coefficients λ1 = 1.0, λ2 = 0.8 and λ3 = 0.5 were defined by MOR-
RIS and BOULAY [14] in a way that ensures both anisotropy and agreement with
experimental and Stokesian Dynamics simulations data. The resulting suspension
normal stresses are taken to be compressive, i.e., Ss,11, Ss,22, Ss,33 < 0, and respect
the relation |Ss,11| > |Ss,22| > |Ss,33|, as observed by YURKOVETSKY [25].

In terms of unit vectors, represented by ê, the anisotropic tensor can also be
written as:

Q = λ1ê1ê1 + λ2ê2ê2 + λ3ê3ê3. (3.20)

From the definition of Q, it is clear that the directions of the coordinate system
chosen to write the model equations should coincide with the directions of ê1, ê2
and ê3. For Couette flow, in a cylindrical coordinate system, directions (1, 2, 3) are
(θ, r, z). Therefore, in this case, |Ss,θθ| > |Ss,rr| > |Ss,zz| can be achieved by simply
shifting the position of the coefficients in the diagonal of tensor Q, as done by MOR-
RIS and BOULAY [14] when analyzing the model predictions for this geometry. If
one wishes to solve the Couette flow equations using a Cartesian coordinate system
or the flow over a contraction/expansion, e.g., the current formulation of the nor-
mal stress is not suitable. It is, therefore, a frame-dependent model that cannot be
directly applied to a generic flow.

To deal with the frame-dependency of the anisotropic tensor, MILLER et al.
[33] formulated a two-dimensional frame-invariant form of the suspension normal
stress based on the local kinematics of the flow. Since it is not the strategy adopted
in this work, it won’t be described here and detailed information can be found in
their original work [33]. A more direct formulation was presented by MUNICCHI
et al. [16] for the two-fluid model, which replaces the unit vectors from the original
definition of Q in Equation 3.20 with unit vectors defined using the velocity field of
the particle phase,

ê1 =
up

||up||
, ê3 =

∇× up

||∇ × up||
, ê2 = ê1 × ê3. (3.21)

Notice that the local coordinate system as defined by Equation 3.21 is left-
handed. For a Couette flow with positive (anti-clockwise) rotation of the inner
cylinder, this equation yields ê1 = êθ, ê3 = êz and ê2 = êθ × êz = êr. Adapting
the idea presented in Equation 3.21, the unit vectors can be defined in terms of the
suspension velocity:

ê1 =
us

||us||
, ê3 =

∇× us

||∇ × us||
, ê2 = ê1 × ê3. (3.22)

For viscosimetric flows where directions (1, 2, 3) are constant with respect to the
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cylindrical or spherical coordinate system, the anisotropic tensor Q can be written in
Cartesian coordinates using a geometric coordinate system transformation. Consider
the Couette flow with positive rotation of the inner cylinder. In the steady state,
us = us,θ(r)êθ, and the anisotropic tensor Q written in cylindrical coordinates is:

Q = λ1êθêθ + λ2êrêr + λ3êzêz. (3.23)

Using the relations between Cartesian and cylindrical unit vectors:

êr = cos θêx + sin θêy, êθ = − sin θêx + cos θêy (3.24)

where θ = arctan(y/x), tensor Q in Cartesian coordinates for the Couette flow is:

Q =
(
λ1 sin

2 θ + λ2 cos
2 θ

)
êxêx +

(
λ2 sin

2 θ + λ1 cos
2 θ

)
êyêy

+ cos θ sin θ (λ2 − λ1) êxêy + cos θ sin θ (λ2 − λ1) êyêx + λ3êzêz.
(3.25)

A full description of the functional forms for the solid-phase fraction dependency
of the suspension stress is given by MORRIS and BOULAY [14]:

µp

µf

= 2.5ϕ

(
1− ϕ

ϕm

)−1

+Ks

(
1− ϕm

ϕ

)−2

(3.26)

µn

µf

= Kn

(
1− ϕm

ϕ

)−2

(3.27)

with constant coefficients Ks = 0.1 and Kn = 0.75. It should be noticed that
both MORRIS and BOULAY [14] and DBOUK et al. [15] gave the µp expression
with typographical errors. Equation 3.26 is the same used by INKSON et al. [53]
and MILLER and MORRIS [6], and it is the correct form as it retrieves the simplified
Einstein’s relation for dilute suspensions when ϕ → 0 [19].

Suspension Equations

The application of the averaging procedure to Equations 3.3 and 3.4 over all the
suspension volume yields:

∂ρs
∂t

+∇ · (ρsus) = 0 (3.28)

∂ (ρsus)

∂t
+∇ · (ρsusus) = ∇ · Ss. (3.29)

For a constant ρs, and considering Stokes flow, they simplify to:

∇ · us = 0 (3.30)
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Figure 3.1: Fully-developed flow on a linear channel.

∇ · Ss = 0. (3.31)

The stress tensor of the suspension is given by the sum of the stress tensors for
the solid and fluid phases, i.e., Ss = Sp + Sf . For a Newtonian continuous phase:

Sf = −pI+ 2µfEs. (3.32)

Combining with the particle-phase stress tensor of MORRIS and BOULAY [14]
(Equation 3.18) the resulting suspension stress is:

Ss = −pI+ 2µsEs − µnγ̇Q (3.33)

with the suspension’s viscosity defined as µs = µp + µf . Therefore, Equation 3.31
can be rewritten as:

∇ · (−pI+ 2µsEs − µnγ̇Q) = 0. (3.34)

The role of the normal stresses in particle migration can be easily illustrated
for the channel flow. Consider the fully-developed steady-state Stokes flow of a
suspension in a 2-D channel, according to Figure 3.1, and the Cartesian and local
coordinate systems (the latter defined by Equation 3.22). The suspension’s velocity
profile is described as us = us,x(y)êx in Cartesian coordinates and, using xi to
represent the coordinate in the direction of êi, as us = us,x1(x2)ê1 in the local
coordinate system.

The suspension’s momentum conservation, (Eq. 3.31) on the x2-direction is:

(∇ · Ss)x2
=

∂Ss,12

∂x1

+
∂Ss,22

∂x2

= 0. (3.35)

For the fully-developed flow, there is no dependence on the x-coordinate, and since
x1 = x, ∀x, the first term on the right-hand side of the last equation vanishes.
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Therefore:
(∇ · Ss)x2

=
∂Ss,22

∂x2

= 0. (3.36)

Using the definition of the suspension stress from Equation 3.33:

Ss,22 = −µn(ϕ)γ̇Q22 = −µn(ϕ)γ̇λ2 (3.37)

and replacing it into Equation 3.36, the suspension’s momentum equation in the
x2-direction is:

(∇ · Ss)x2
= − ∂

∂x2

[µn(ϕ)γ̇λ2] = 0 (3.38)

which leads to:
µn(ϕ)γ̇λ2 = cte, ∀x2. (3.39)

With x2 = y for y < 0 and x2 = −y for y > 0, Equation 3.39 dictates that
µn(ϕ)γ̇λ2 should be constant with respect to the y-coordinate. If γ̇ varies with y

with a maximum value at the walls and a minimum value at the center line of the
channel, there should be a non-uniform solid-phase fraction profile that provides a
variation of µn(ϕ) contrary to the changes of the shear rate in order to respect the
condition given by Equation 3.39. Since µn(ϕ) is a monotonically increasing function
of ϕ, that is achieved if ϕ presents its maximum value at the center line of the channel
and its minimum value at the walls. It is clear, then, that the shear-induced particle
migration is closely related to the normal stress.

Non-local Formulation

To account for the non-local effects described in the previous chapter, NOTT and
BRADY [13] remodeled the particle’s normal stresses as a function of the suspension
temperature Ts, which represents the fluctuations on the mean velocity of the parti-
cles. The addition of this new field variable requires solving an additional transport
equation. Since this concept does not take part in the final model used in this work,
modeling of the suspension temperature is omitted here and the reader is referred
to the original work of NOTT and BRADY [13] for more information.

The formulation followed in this work is the one proposed by MILLER and
MORRIS [6], based on the introduction of an effective shear rate (γ̇eff ), that consists
of adding a non-local correction to the currently calculated shear rate:

γ̇eff = γ̇ + γ̇nl, γ̇nl = ϵus,max (3.40)

where γ̇nl is the non-local correction, ϵ is the parameter that carries the relation
between the particle size and the flow length scale, and us,max is the maximum value
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of the suspension velocity. For Couette flow ϵ = 0 and for channel flow ϵ = a/L2
ch,

where Lch is the characteristic length of the flow. Hence, a small constant value is
added to the shear rate, which does not distort the shape of the shear rate profile
and still guarantees that the shear rate is non-zero everywhere. The local shear rate
is replaced with its effective value in Equation 3.34, so, for simplicity, the subscript
eff is dropped hereinafter.

3.1.2 Two-Fluid Model

The equations for the two-fluid model can be obtained in a very similar way to
those for the mixture model. In contrast to the procedure adopted in the previous
section, equations for the TFM will not be restricted to the particular conditions of
the studied cases, except for the assumption of a negligible contribution of Brownian
motion. The main goal was to obtain the model given by MUNICCHI et al. [16], with
a full description of the multiphase flow, which is then compared to the simplified
suspension balance model.

Continuity Equations

Averaging of the continuity equation for the particle phase yields essentially the
same equation obtained for the SBM. Hence, it is repeated here, keeping its general
form:

∂ (ρpϕ)

∂t
+∇ · (ρpϕup) = 0. (3.5)

Since the two-fluid model solves for up, there is no need to write the flux ϕup in
terms of the relative velocity.

Averaging Equation 3.3 over the volume of the continuous phase yields the fluid
continuity equation:

∂ [(1− ϕ) ρf ]

∂t
+∇ · [(1− ϕ) ρfuf ] = 0. (3.41)

Momentum Equations

An equation identical to 3.9 is obtained for the particle-phase momentum conserva-
tion. It is repeated here, without neglecting any contribution from inertial terms or
compressibility effects:

∂ (ρpϕup)

∂t
+∇ · (ρpϕupup) = ∇ · Sp + fp + bp. (3.9)

Averaging of Equation 3.4 over the continuous phase volume yields the fluid
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momentum equation:

∂ [(1− ϕ) ρfuf ]

∂t
+∇ · [(1− ϕ) ρfufuf ] = ∇ · Sf − fp + bf . (3.42)

Notice that the term fp, representing the interaction force between the phases,
appears in the momentum equations for both phases with opposite signs. This inter-
phase force is now the combination of every possible source of momentum transfer
between the phases, such as the drag, lift, and virtual mass forces. Since the only
interaction considered in this work is the drag force, the formulation of the other
types of interactions is not addressed here. The numerical solver allows for the
inclusion of other interaction terms, but they were not used in any of the performed
simulations.

For the two-fluid models, the drag force is typically written in terms of the slip
velocity between the phases, i.e., up − uf . As also pointed out by DONTSOV and
PEIRCE [11], in order to use an expression for the drag force with the TFM that
is compatible with the hindrance function and drag force definitions in the SBM,
Equation 3.11 needs to be rewritten using the relation up − us = (1− ϕ) (up − uf ):

fdp = − 9µf

2a2f(ϕ)
ϕ (1− ϕ) (up − uf ) (3.43)

fdp = −β (up − uf ) , β =
9µf

2a2f(ϕ)
ϕ (1− ϕ) . (3.44)

Equations 3.11 and 3.44 are compatible due to the (1−ϕ) factor that appears in the
drag coefficient β. However, MUNICCHI et al. [16] wrote the drag force expression
as:

fdp =
9µfϕ

2d2f(ϕ)
(up − uf ) (3.45)

with the hindrance function given by Equation 3.12 and using α = 4. The authors
did not address the change in the definition of the slip velocity used in the drag force
equation. Therefore, the expression used by MUNICCHI et al. [16] corresponds to a
value of α = 5 in the suspension balance model used by MILLER and MORRIS [6],
and not α = 4 as recommended by the authors. Thus, to use the same expression
with both models, the value of α = 4 is considered in this work along with Equa-
tions 3.12 and 3.44, corresponding to a value of α = 3 for the hindrance function
coefficient in Equation 3.45 as defined by MUNICCHI et al. [16]. Moreover, the ex-
pression given in Equation 3.45 is wrong, since it is written in terms of the particles
diameter d instead of the particle radius, without applying any conversion factor. In
the present work, the numerical code provided by MUNICCHI et al. [16] (available
on https://github.com/fmuni/twoFluidsNBSuspensionFoam) was used to assess
the two-fluid model, and this error was also identified in the numerical code, which
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was fixed before performing any of the reported simulations.
MUNICCHI et al. [16] also included another source of interaction between phases

called generalized buoyancy, here represented by f bp , and given by:

f bp = ϕ∇ · (τf − pI)− (1− ϕ)∇pp (3.46)

where p is the shared pressure that satisfies the pressure equation, defined by p =

pf + pp, and the deviatoric stress tensor τf defined generally by:

τi = 2µiEi −
2

3
µi (∇ · ui) I, i = f, p. (3.47)

Then, the inter-phase force is the sum of two contributions, fp = fdp + f bp . To
better understand the role of this buoyancy force, the right-hand side of the fluid’s
momentum conservation equation is written here exactly as it is defined in the
original paper of MUNICCHI et al. [16]:

RHS =−∇ · (pI− τf )− ϕ∇ · (τf − pI) + (1− ϕ)∇pp − fdp − bf (3.48)

which can also be written as:

RHS = (1− ϕ)∇ · τf − (1− ϕ)∇p+ (1− ϕ)∇pp − fdp − bf . (3.49)

Looking at the right-hand side of the particle-phase momentum conservation
equation:

RHS = ∇ · Sp + ϕ∇ · (τf − pI)− (1− ϕ)∇pp + fdp + bp

= ∇ · Sp − ϕ∇p+ ϕ∇ · τf − (1− ϕ)∇pp + fdp + bp.
(3.50)

The momentum conservation equations for both phases (Equations 3.49 and 3.50)
share a term related to the particle pressure, (1− ϕ)∇pp, which appears with
opposite signs and is modeled as a function of the granular temperature. This
particle pressure contribution was disregarded for all performed simulations. The
interaction term ϕ∇ · τf also appears in Equations 3.49 and 3.50 with opposite
signs. Equations 30 and 31 of MUNICCHI et al. [16], which show the semi-
discrete momentum conservation equations for both phases, do not agree with
the implementation of the corresponding semi-discrete equations in the numerical
solver (https://github.com/fmuni/twoFluidsNBSuspensionFoam). Hence, both
(1− ϕ)∇pp and ϕ∇ · τf terms were disregarded from this point forward, and the
only part of the buoyancy force f bp considered was −ϕ∇p.
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Considering the above remarks, the employed expressions for the momentum
conservation equations for the particle’s and fluid phases are, respectively:

∂ (ρpϕup)

∂t
+∇ · (ρpϕupup) = ∇ · Sp − ϕ∇p+ fdp + bp (3.51)

∂ [(1− ϕ) ρfuf ]

∂t
+∇ · [(1− ϕ) ρfufuf ] = ∇ · Sf − (1− ϕ)∇p− fdp + bf . (3.52)

The only body forces accounted for are the gravitational forces:

bf = (1− ϕ) ρfg, bp = ϕρpg. (3.53)

The particle-phase stress tensor Sp is:

Sp = 2µpEp +

(
κp −

2

3
µp

)
(∇ · up) I− µnγ̇Q (3.54)

where κp is the bulk viscosity from Newton’s law of viscosity [54]. For the first two
terms on the right-hand side of Equation 3.54, the original model of MUNICCHI
et al. [16] also includes contributions that depend on the granular temperature.
Since these contributions can be neglected for the applications studied in this work,
the corresponding terms were not included for all performed simulations and are
not addressed here. The value of the bulk viscosity, which is proportional to ϕ2d

√
Θ

(with Θ being the granular temperature), can be neglected in comparison to µp.
Thus, the particle-phase stress tensor becomes:

Sp = 2µpEp −
2

3
µp (∇ · up) I− µnγ̇Q. (3.55)

Writing the frame-invariant formulation of the anisotropic tensor Q according
to MUNICCHI et al. [16]:

ê1 =
up

||up||
, ê3 =

∇× up

||∇ × up||
, ê2 = ê1 × ê3. (3.56)

For a Newtonian fluid phase, the stress tensor is written as:

Sf = τf = 2µfEf −
2

3
µf (∇ · uf ) I. (3.57)
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3.2 Rheological Parameters Estimation

In this section, it is shown how the simulations using the suspension balance model
and the two-fluid model are used as a computational experiment.

Several simulations of the suspension flow on a Couette cell were performed
using both models, with the rotating speed of the inner cylinder varying from 0.5 to
48 rps. The wide range of rotation velocities was chosen to cover the typical range
of applied shear rates in Couette rheometers with suspensions and emulsions [55–
58]. The highest velocities considered in this work extrapolate the shear rate range
observed in the mentioned studies.

The simulations’ results provide the full description of the suspension behavior
inside the gap as predicted by the models. These results are compared to the ones
that would be obtained in a classic rheometric experiment. Typically, to measure
the rheological properties of a suspension, it is assumed to be homogeneous and to
follow a chosen rheological model (Newtonian or non-Newtonian). The parameters
of this rheological model are then estimated from the torque measurements at the
rotating cylinder, by fitting the data to an analytical solution for the flow. If the fit
is inadequate, another model can be selected and this procedure repeated. The goal
is to verify if the rheological model that explains the experimental data obtained by
typical rheometry experiments actually provides an accurate rheological description
of the suspension. The procedure is as follows:

1. Analytical solutions for the homogeneous flow of a power-law fluid are devel-
oped for both Couette and straight channel flows;

2. A batch of CFD simulations is performed for the Couette flow using both
the SBM and TFM at several shear rates and for different gap sizes using
OpenFOAM®;

3. The resulting torque at the rotating cylinder, calculated from the simulated
velocity fields, is used to estimate the parameters of the power-law model using
the analytical solution for the Couette flow found in Step 1;

4. A second batch of simulations is performed for the flow of the same suspension
in straight channels with different channel widths and mean velocities;

5. The model parameters obtained in Step 3 are used to estimate the pressure
drops for the fully-developed section of the channel flows;

6. The pressure drops estimated in Step 5 are compared to the simulated values
obtained using the TFM for the same channel flow conditions;
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Figure 3.2: Couette rheometer geometry used to obtain the analytical solution for
a power-law fluid.

7. The simulated pressure drops are also used to estimate the power-law model
parameters, which are compared to their values estimated in Step 3.

3.2.1 Analytical Solutions

Consider the incompressible two-dimensional Stokes flow of a homogeneous power-
law fluid on a cylindrical Couette cell, as shown in Figure 3.2. The inner cylinder
of radius Ri rotates at an angular velocity ω, while the outer cylinder of radius
Ro is stationary. The total length L of the cylinder is considered to be sufficient
to neglect end effects. The effects of gravity are disregarded as the particles are
neutrally buoyant.

The deviatoric stress tensor of a power-law fluid is given by [54]:

τ = 2mγ̇n−1E (3.58)

where m and n are the two model parameters to be determined from the simulations.
If n = 1, Equation 3.58 reduces to the Newtonian model. Hence, m = µ.

The detailed procedure to obtain the analytical solution is given in Appendix A.
The final equation for the z-component of the torque at the inner cylinder is:

Tz

L

∣∣∣∣
r=Ri

= −2πm

(
2ω

n

)n (
R−2/n

o −R
−2/n
i

)−n

. (3.59)

For the channel flow, consider again the incompressible two-dimensional Stokes
flow of the same homogeneous power-law fluid at the steady state, flowing in a
channel with half-width H, as represented in Figure 3.3. Fluid enters the channel
with a mean velocity u and, neglecting the effects of gravity, the developed flow will
be symmetric with respect to the center line at y = 0. The goal of this analysis is
to determine an expression for the pressure drop between the x-normal surfaces of
the control volume represented in Figure 3.3.

Again, the detailed procedure is detailed in Appendix A. The final expression
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Figure 3.3: Straight 2-D channel geometry used to obtain the analytical solution for
a power-law fluid.

for the fluid velocity is:

ux(y) =
n

n+ 1

[
1

m

(
−∆P

∆L

)]1/n [
H1+1/n − y1+1/n

]
. (3.60)

Using the volumetric flow rate (Q) to find a relation between the pressure drop and
the mean velocity of the flow:

u =
Q

2Hw
=

n

2n+ 1

[
1

m

(
−∆P

∆L

)]1/n
H1+1/n. (3.61)
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Chapter 4

Numerical Procedure

The set of coupled non-linear partial differential equations of the models presented
in the previous chapter are solved using OpenFOAM-v7®, an open-source CFD
package written in C++ that uses the finite volume method to solve field equations.
This chapter is organized as follows: Section 4.1 presents the discretization of the
models and the solution algorithms implemented in OpenFOAM®; the methodology
for the grid convergence analysis is presented in Section 4.2; the studied cases and
generated meshes are described in Section 4.3; the description of the simulations’
setup used for all models and cases is given in Section 4.4

4.1 Implementation of the Models

4.1.1 Original Suspension Balance Model Implementation

The starting point of this work is the OpenFOAM® solver available at https:

//openfoamwiki.net/index.php/Contrib/SbmFoam. It is a partial implementation
of the model described in the work of DBOUK et al. [15], since it features the frame-
dependent formulation of the anisotropic tensor Q according to Equation 3.20, with
the unit vectors being those of the Cartesian coordinate system. The user can define
if directions 1, 2, and 3 will coincide with x, y, or z by changing the order of the
parameters when setting up the simulation, but they must always coincide with the
Cartesian directions. It is, therefore, a frame-dependent solver that needs adaptation
in order to be applied to generic flows.

The SBM solver includes the transport equations 3.15, 3.30 and 3.31, and the
closure models described in Equations 3.18 and 3.33 for the particle-phase and sus-
pension stress tensors, respectively. The particles’ normal viscosity is given by Equa-
tion 3.27 with Kn = 0.75. However, the particles’ shear viscosity is not modeled as
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Equation 3.26. Instead, it employs:

µp

µf

=

(
1

1− ϕ/ϕm

)2

− 1. (4.1)

Since the SBM solver is for incompressible flows, from now on, the pressure is
referred to as p∗ = p/ρ and the viscosities as ν = µ/ρ.

Velocity Equation

The suspension’s momentum conservation given by Equation 3.31 is written as:

−∇2 (νsus)−∇ ·
[
νs (∇us)

T
]
+∇ · (νnγ̇Q) = −∇p∗. (4.2)

Following the finite volume discretization procedure as described in JASAK [59],
let M be the coefficient matrix of the linear system Mus = B obtained by the
partial discretization of Equation 4.2 where B is the vector of source terms. With
an implicit treatment of the Laplacian term in Equation 4.2, discretization of its
left-hand side leads to the semi-discrete momentum equation:

Aus −H = −∇p∗ (4.3)

where A is the diagonal part of M. Matrix H is defined by:

H = (A−M)us + B (4.4)

Then, rewriting Equation 4.3, the suspension velocity reads:

us =
H
A

− ∇p∗

A
. (4.5)

Volumetric Flux

The volumetric flux at a given cell face is defined by:

φi = ui,cf ·Acf , i = s, f, p (4.6)

where Acf = An̂ is a vector with magnitude equal to the cell’s surface area A in
the direction of its normal unit vector n̂. From now on, the subscript cf will always
refer to the value of a property at the cell face, obtained from linear interpolation of
the known values at the neighboring cell centers. Combining Equations 4.5 and 4.6,
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the suspension’s volumetric flux φs is written as:

φs =

[(
H
A

)
cf

− ∇cfp
∗

Acf

]
·Acf (4.7)

where ∇cf represents the evaluation of the gradient at the cell faces using the values
of the variable at the neighboring cell centers.

Pressure Equation

Discretization of the suspension’s continuity equation (Eq. 3.30) using the finite
volume method requires that:

∇ · φs = 0 (4.8)

so, replacing the resulting expression for φs from Equation 4.7:

∇ ·

[(
H
A

)
cf

·Acf

]
= ∇ ·

[(
∇cfp

∗

Acf

)
·Acf

]
(4.9)

where the Laplacian of the pressure on the right-hand side is discretized implicitly
and the remaining terms are evaluated explicitly.

Phase Fraction Equation

The resulting continuity equation for the particles is repeated here for clarity:

∂ϕ

∂t
+∇ · (ϕus) = − 2a2

9µf

∇ · [f (ϕ)∇ · Sp] . (4.10)

The above equation is solved by evaluating ϕ on the left-hand side implicitly, and
the remaining terms explicitly.

Solution Algorithm

Equations 4.3, 4.9 and 4.10 are solved following the algorithm described in Figure 4.1.
The quantities nNonOrthogonalCorrectors and nCorrectors are, respectively, the
number of iterations for the non-orthogonal correction loop and for the pressure-
velocity coupling loop, which are chosen by the user in the simulation setup. For
a generic property ε, the superscripts (n) and (o) indicate its value taken on the
current or the previous time step, respectively. Notice that the time derivative does
not appear on the velocity equation, consequently, both velocity and pressure are
stationary. The time derivative appears only in the phase-fraction equation, hence,
it is a pseudo-transient solver. This allows us to increase the time step according to
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Start

Compute the viscosities, stress tensors and J

Solve Equation 4.3 for us

Solve Equation 4.9 for p∗

Update the flux (Equation 4.7)

cNonOrth = nNonOrthogonalCorrectors ?

Correct velocity (Equation 4.5)

cCorr = nCorrectors ?

Solve Equation 4.10 for ϕ

t = tFinal ?

End

ε(n) −→ ε(o)

t = t+∆t

cCorr = 1

cNonOrth = 0

Yes

Yes

Yes

No
cNonOrth++

No

No
cCorr++

Figure 4.1: Solution algorithm for the original SBM solver (sbm1Foam).

the variations of ϕ between consecutive time steps to accelerate the run and reach
the steady state solution faster.

4.1.2 Improvement of the Suspension Balance Model

Starting from the original solver described in Section 4.1.1, three main improvements
were implemented: (i) the particles’ shear viscosity model is altered from Equa-
tion 4.1 to Equation 3.26; (ii) the frame-invariant formulation of the anisotropic
tensor Q is implemented by redefining the unit vectors of Equation 3.20 as de-
scribed in Equation 3.22; and (iii) since the formulation from the item (ii) generates
numerical oscillations in the solid-phase fraction field, an improved momentum in-
terpolation scheme was implemented.

To separate the effects of each improvement on the solver and further compare
their results, four different solvers were created. From now on, the original SBM
solver is referred to as sbm1Foam, with the frame-dependent tensor Q and parti-
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cles’ shear viscosity modeled according to Equation 4.1. Solver sbm2Foam is Solver
sbm1Foam but replacing Equation 4.1 with Equation 3.26. Solver sbm3Foam imple-
ments the frame-independent Q calculation using Equation 3.22 and solver sbm4Foam
is similar to Solver sbm3Foam but uses the improved momentum interpolation scheme
described next.

Velocity Equation

Following MUNICCHI et al. [16], the term ∇ · (νnγ̇Q) in Equation 4.2 is split into
two contributions:

∇ · (νnγ̇Q) = γ̇

(
dνn
dϕ

)
(∇ϕ) ·Q+ νn∇ · (γ̇Q) . (4.11)

Then, Equation 4.2 can be written as:

−∇2 (νsus)−∇ ·
[
νs (∇us)

T
]
+ νn∇ · (γ̇Q) = −∇p∗ − γ̇

(
dνn
dϕ

)
(∇ϕ) ·Q. (4.12)

With the Laplacian term in Equation 4.12 being treated implicitly, discretization of
its left-hand size provides the semi-discrete momentum equation:

Aus −H = −∇p∗ − γ̇

(
dνn
dϕ

)
(∇ϕ) ·Q (4.13)

and the suspension’s velocity is:

us =

(
H
A

)
− ∇p∗

A
− 1

A
γ̇

(
dνn
dϕ

)
(∇ϕ) ·Q. (4.14)

Volumetric Flux

The suspension’s volumetric flux evaluated at the cell faces, defined by Equation 4.6,
is now calculated by:

φs =

[(
H
A

)
cf

− ∇cfp
∗

Acf

− 1

Acf

(
γ̇
dνn
dϕ

)
cf

(∇cfϕ) · (Q)cf

]
·Acf . (4.15)

Pressure Equation

Again, discretization of the suspension’s continuity equation using the finite volume
method requires that the divergence of the volumetric flux is zero (Equation 4.8).
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So, from Equation 4.15:

∇ ·

[(
H
A

)
cf

·Acf −
1

Acf

(
γ̇
dνn
dϕ

)
cf

(∇cfϕ) · (Q)cf ·Acf

]

= ∇ ·
[(

∇cfp
∗

Acf

)
·Acf

] (4.16)

where the Laplacian of the pressure on the right-hand side is treated implicitly and
the remaining terms are treated explicitly.

Phase Fraction Equation

The equation for the solid-phase fraction is repeated here to complete the model:

∂ϕ

∂t
+∇ · (ϕus) = −2a2

9νf
∇ · [f (ϕ)∇ · Sp] (4.10)

where ϕ on the left-hand side is treated implicitly and the remaining terms on the
right-hand side, explicitly.

Solution Algorithm

The solution algorithm for the improved SBM implementation is shown in Figure 4.2.
The solution of the equation for the solid-phase fraction (Equation 4.10) was brought
to the beginning of the time step so the current value of the phase fraction is used
to solve the velocity and pressure equations, as is also done in the solver for the
two-fluid model, described in the next section.

4.1.3 Implementation of the Multiphase Model

The starting point of the implementation of the two-fluid model is the
twoFluidsNBSuspensionFoam OpenFOAM® solver available at https://github.

com/fmuni/twoFluidsNBSuspensionFoam, related to the work of MUNICCHI et al.
[16]. To develop the twoFluidsNBSuspensionFoam solver, these authors extended
the twoPhaseEulerFoam solver available on OpenFOAM’s® library to include the
effects of the anisotropic stress tensor into the dispersed-phase equations. The im-
plementation also features the face-based formulation of the momentum equations
which is used in this work. Even though there is little documentation available on
the face-based formulation, the main steps of the implementation are illustrated in
the remainder of this section. The resulting solver is referred to as tfmFoam here-
inafter. Its difference to the twoFluidsNBSuspensionFoam code provided by [16] is
just the correction of the drag force coefficient, as mentioned in Chapter 3.

36

https://github.com/fmuni/twoFluidsNBSuspensionFoam
https://github.com/fmuni/twoFluidsNBSuspensionFoam


Start

Update Q (Equations 3.20 and 3.22)

Compute the viscosities, stress tensor terms, and J

Solve Equation 4.10 for ϕ

Solve Equation 4.13 for us

Solve Equation 4.16 for p∗

Update the flux (Equation 4.15)
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t = tFinal ?
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Figure 4.2: Solution algorithm for the improved SBM solver (sbm4Foam).
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Momentum Equations

Consider both phases’ momentum conservation equations (Eqs. 3.51 and 3.52),
which are rewritten without the gravitational force terms, since these have been
disregarded in all simulations, and in a form more suitable for the semi-discretization
procedure. For the fluid phase:

LHS = − (1− ϕ)∇p+ β (up − uf ) (4.17)

with the left-hand side given by:

LHS =
∂ [(1− ϕ) ρfuf ]

∂t
+∇ · [(1− ϕ) ρfufuf ]−∇2 (µfuf )

−∇ ·
[
µf (∇uf )

T − 2

3
µf (∇ · uf ) I

] (4.18)

and for the particle phase:

∂ (ρpϕup)

∂t
+∇ · (ρpϕupup)−∇ · Sp = −ϕ∇p− β (up − uf ) . (4.19)

Using the definition of the particle-phase stress tensor from Equation 3.55 and split-
ting the term ∇ · (µnγ̇Q) into the two contributions proposed by MUNICCHI et al.
[16]:

∇ · (µnγ̇Q) = γ̇

(
dµn

dϕ

)
(∇ϕ) ·Q+ µn∇ · (γ̇Q) (4.20)

the particle’s momentum conservation from Equation 4.19 is written as:

LHS = −ϕ∇p− β (up − uf )− γ̇

(
dµn

dϕ

)
(∇ϕ) ·Q (4.21)

where the left-hand side is given by:

LHS =
∂ (ρpϕup)

∂t
+∇ · (ρpϕupup)−∇2 (µpup)

−∇ ·
[
µp (∇up)

T − 2

3
µp (∇ · up) I

]
+ µn∇ · (γ̇Q) .

(4.22)

The linear systems arising from the discretization of the left-hand side of Equa-
tions 4.17 and 4.21 (which are given by Equations 4.18 and 4.22, respectively) are:

Miui = Bi, i = f, p (4.23)

where Mi is the coefficient matrix and Bi is the vector of source terms. With the
implicit treatment of the terms in the first lines of Equations 4.18 and 4.22, the
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semi-discrete momentum conservation equations for the fluid and particle phases
are, respectively:

Afuf = Hf − (1− ϕ)∇p+ β (up − uf ) (4.24)

Apup = Hp − ϕ∇p− γ̇

(
dµn

dϕ

)
(∇ϕ) ·Q− β (up − uf ) . (4.25)

Matrices Af and Ap are defined as the diagonal parts of Mf and Mp, respectively.
Hf and Hp are defined by:

Hi = (Ai −Mi)ui + Bi, i = f, p. (4.26)

Then, the phase velocities read:

uf =
Hf

Af

− 1

Af

[(1− ϕ)∇p+ β (up − uf )] (4.27)

up =
Hp

Ap

− 1

Ap

[
ϕ∇p− γ̇

(
dµn

dϕ

)
(∇ϕ) ·Q− β (up − uf )

]
. (4.28)

Notice that both phase momentum equations are coupled by the term that cor-
responds to the drag force. Using the partial elimination algorithm to deal with
the momentum equations coupling [60], and rearranging the semi-discrete Equa-
tions 4.27 and 4.28 to isolate each phase velocity:

uf =
Hf

Af + β
− (1− ϕ)

Af + β
∇p+

β

Af + β
up (4.29)

up =
Hp

Ap + β
− ϕ

Ap + β
∇p− γ̇

Ap + β

(
dµn

dϕ

)
(∇ϕ) ·Q+

β

Ap + β
uf . (4.30)

By defining the coefficients:

Λf =
1

Af + β
, Λp =

1

Ap + β
(4.31)

the equations can be written as:

uf = ΛfHf − Λf (1− ϕ)∇p+ Λfβup (4.32)

up = ΛpHp − Λpϕ∇p− Λpγ̇

(
dµn

dϕ

)
(∇ϕ) ·Q+ Λpβuf . (4.33)

Now, introducing the expression from Equation 4.33 into Equation 4.24, we have:

Afuf = Hf − (1− ϕ)∇p− βuf

+ βΛp

[
Hp − ϕ∇p− γ̇

(
dµn

dϕ

)
(∇ϕ) ·Q+ βuf

]
.

(4.34)
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Introducing uf from Equation 4.32 into Equation 4.25, we get:

Apup = Hp − ϕ∇p− γ̇

(
dµn

dϕ

)
(∇ϕ) ·Q− βup

+ βΛf [Hf − (1− ϕ)∇p+ βup] .

(4.35)

To rearrange the last two equations and isolate uf and up, new coefficients are
defined:

ξf =
1

Af + β − β2Λp

, ξp =
1

Ap + β − β2Λf

. (4.36)

Thus, using these coefficients, Equations 4.34 and 4.35 reduce to:

uf = ξf

{
Hf + ΛpβHp − [(1− ϕ) + Λpβϕ]∇p− Λpγ̇

(
dµn

dϕ

)
(∇ϕ) ·Q

}
(4.37)

up = ξp

{
Hp + βΛfHf − [ϕ+ (1− ϕ) βΛf ]∇p− γ̇

(
dµn

dϕ

)
(∇ϕ) ·Q

}
. (4.38)

Volumetric Fluxes

Applying the definition given by Equation 4.6, the volumetric fluxes of both phases
are determined by:

φf = ξf

{
(Hf + ΛpβHp)cf −

[
Λpγ̇

(
dµn

dϕ

)
(∇ϕ) ·Q

]
cf

− [(1− ϕ) + Λpβϕ]cf (∇p)cf

}
·Acf

(4.39)

φp = ξp

{
(Hp + βΛfHf )cf −

[
γ̇

(
dµn

dϕ

)
(∇ϕ) ·Q

]
cf

− [ϕ+ (1− ϕ) βΛf ]cf (∇p)cf

}
·Acf .

(4.40)

Pressure Equation

For an incompressible suspension, the finite volume method requires the divergence
of the total volumetric flux in each cell to be zero (Equation 4.8). In terms of the
individual phases’ fluxes, Equation 4.8 can be written as:

∇ · φs = ∇ · [ϕφp + (1− ϕ)φf ] = 0. (4.41)

To simplify Equations 4.39 and 4.40, the terms on the right-hand side of their
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first lines are grouped into φ0
f and φ0

p:

φ0
f = ξf

{
(Hf + ΛpβHp)cf −

[
Λpγ̇

(
dµn

dϕ

)
(∇ϕ) ·Q

]
cf

}
·Acf (4.42)

φ0
p = ξp

{
(Hp + βΛfHf )cf −

[
γ̇

(
dµn

dϕ

)
(∇ϕ) ·Q

]
cf

}
·Acf . (4.43)

Then, Equations 4.39 and 4.40 are rewritten as:

φf = φ0
f − ξf [(1− ϕ) + Λpβϕ]cf (∇p)cf ·Acf (4.44)

φp = φ0
p − ξp [ϕ+ (1− ϕ) βΛf ]cf (∇p)cf ·Acf . (4.45)

Introducing the phases’ fluxes expressions from Equations 4.44 and 4.45 into
Equation 4.41, we obtain:

∇ ·
[
ϕφ0

p + (1− ϕ)φ0
f

]
= ∇·

{
ϕξp [ϕ+ (1− ϕ) βΛf ]cf (∇p)cf ·Acf

+(1− ϕ) ξf [(1− ϕ) + Λpβϕ]cf (∇p)cf ·Acf

}
.

(4.46)

Rearranging the last expression, the Poisson equation for the pressure is obtained:

∇ ·
[
ϕφ0

p + (1− ϕ)φ0
f

]
= ∇·

{[
ϕξp (ϕ+ βΛf − ϕβΛf )cf

+ ξf (1− ϕ) (1− ϕ+ Λpβϕ)cf

]
(∇p)cf ·Acf

}
.

(4.47)

Phase Fraction Equation

As seen before, the particle-phase continuity equation is given by:

∂ (ρpϕ)

∂t
+∇ · (ρpϕup) = 0 (3.5)

which can be written in terms of the volumetric flux at the cell faces as:

∂ (ρpϕ)

∂t
+∇ ·

[
(ρpϕ)cf φp

]
= 0. (4.48)

Equation 4.40 can be rewritten as:

φp = φ∗
p − ξp

[
γ̇

(
dµn

dϕ

)
(∇ϕ) ·Q

]
cf

·Acf (4.49)

where

φ∗
p = ξp

{
(Hp + βΛfHf )cf − [ϕ+ (1− ϕ) βΛf ]cf (∇p)cf

}
·Acf . (4.50)
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Using Equation 4.49, we can write Equation 4.48 in the following form:

∂ (ρpϕ)

∂t
+∇ ·

[
(ρpϕ)cf φ

∗
p

]
= ∇ ·

{
(ρpϕ)cf ξp

[
γ̇

(
dµn

dϕ

)
(∇ϕ) ·Q

]
cf

·Acf

}
. (4.51)

Evaluating the term on the right-hand side of the last equation explicitly can
cause instabilities, especially when the solid-phase fraction approaches maximum
packing and dµn/dϕ increases. MUNICCHI et al. [16] proposed a splitting of the
anisotropic tensor into two contributions:

Q = tr (Q) I+Qdev (4.52)

where
Qdev = Q− tr (Q) I. (4.53)

Replacing the expression from Equation 4.52 into Equation 4.51, its right-hand side
becomes:

RHS = ∇ ·

{
(ρpϕ)cf ξp

[
γ̇

(
dµn

dϕ

)
(∇ϕ) tr (Q)

]
cf

·Acf

+(ρpϕ)cf ξp

[
γ̇

(
dµn

dϕ

)
(∇ϕ) ·Qdev

]
cf

·Acf

}
.

(4.54)

in which ϕ from the first term on the right-hand side of Equation 4.54 is evaluated
implicitly, and the last term explicitly. Both formulations, with this implicit treat-
ment of the term in Equation 4.54 or the explicit treatment of the right-hand side
of Equation 4.51 are implemented in the tfmFoam solver and the user can choose
at the beginning of the simulation which one will be used. MUNICCHI et al. [16]
recommended the usage of the explicit formulation to preserve the hyperbolicity of
the equation unless severe stability issues are being faced. Notice that the value
of ∇ϕ is always needed to solve this equation, for both formulations. Therefore,
its value shall be specified as a boundary condition for ϕ. When using the im-
plicit formulation, the values of ∇ϕ contribute to the diagonal coefficients of the
discretization matrix, posing a stronger dependence of the solution on its value and
on its respective boundary condition.

Solution Algorithm

The model is solved using the PIMPLE algorithm for pressure-velocity coupling.
Equations are solved sequentially according to the algorithm described in Figure 4.3.
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(∇ϕ) ·Q ·Acf

Evaluate the explicit terms in Equation 4.47

Solve Equation 4.47 for p

Update the fluxes (Equations 4.39 and 4.40)
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Figure 4.3: Solution algorithm for the two-fluid solver (tfmFoam).
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4.1.4 Calculation of the Torque

To calculate the torque applied to the inner cylinder for the Couette flow throughout
the simulations, applications compatible with each model were implemented, which
compute the torque components. For a given surface S with area A, the application
calculates the relative distance to the center of rotation (represented by the position
vector r) and applies the torque definition:

T =

∫
S

r× (n̂ · Ss) dA. (4.55)

4.2 Grid Convergence Analysis

For each studied geometry, hexahedral structured meshes were generated using
OpenFOAM’s® blockMesh utility. To ensure that mesh-independent results were
obtained, simulations using both models are performed for three meshes with differ-
ent refinements: the coarsest mesh is identified with subscript m1, the intermediate
with m2, and the finest with m3. The method described in CELIK et al. [61] was
used to estimate the observed order of accuracy, which is used to determine the error
and uncertainty due to spatial discretization following PHILLIPS and ROY [62].

A representative grid spacing h is defined for a generic two-dimensional mesh by:

hi =

[
1

N

N∑
j=1

Aj

] 1
2

, i = m1,m2,m3 (4.56)

where N is the total number of cells of the given mesh and Aj is the area of the
j th cell. Hence, hm1 > hm2 > hm3. The refinement ratio between two consecutive
meshes is defined as a function of the grid spacing:

r12 =
hm1

hm2

, r23 =
hm2

hm3

. (4.57)

For a generic variable field ε, the observed order of accuracy p̂ can be calculated
by:

p̂ =
1

ln(r23)

∣∣∣∣ln ∣∣∣∣εm1 − εm2

εm2 − εm3

∣∣∣∣+ g(p̂)

∣∣∣∣ (4.58)

where

g(p̂) = ln

[
rp̂23 − s(ε)

rp̂12 − s(ε)

]
(4.59)
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and
s(ε) = sign

(
εm1 − εm2

εm2 − εm3

)
. (4.60)

The order of accuracy is calculated pointwise along a radial line for the Couette
flow and along a vertical line for the channel flow. Equations 4.58 to 4.60 are solved
iteratively according to the following algorithm:

1 p̂(o) = 2

2 res = 1

3 while res < 10−8 do
4 Calculate s (Equation 4.60)
5 Calculate g(p̂(o)) (Equation 4.59)
6 Calculate p̂(n) using g(p̂(o)) (Equation 4.58)
7 res = p̂(n) − p̂(o)

8 p̂(n) = p̂(n)+p̂(o)

2

9 end

To determine the global order of accuracy on a given mesh following PHILLIPS
and ROY [62], each value of the observed order of accuracy is limited between
0.05 and the formal order of the numerical scheme used. The chosen discretization
methods are further described in Section 4.4 and are formally of second order. Hence:

p̂OR = min (max (0.05, p̂) , p̂formal) , p̂formal = 2. (4.61)

Then, the global order of accuracy p̂glb is taken as the average of p̂OR along the
line. After determining the global order of accuracy, the relative error (E) and
uncertainty (U) on the determination of ε on meshes m2 and m3 are estimated by,
respectively:

Em3(p̂glb) =

∣∣∣∣∣∣ εm3 − εm2

εm3

(
r
p̂glb
23 − 1

)
∣∣∣∣∣∣ , Em2(p̂glb) =

∣∣∣∣∣∣ εm2 − εm1

εm2

(
r
p̂glb
12 − 1

)
∣∣∣∣∣∣ (4.62)

Ui = 1.25Ei, i = m2,m3. (4.63)
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Table 4.1: Description of the Couette geometries.

Geometry Ri (cm) Ro (cm) l (cm) Ri/l
A 0.64 2.38 1.74 0.368
B 1.28 3.02 1.74 0.736
C 1.28 4.76 3.48 0.368

4.3 Studied Cases

4.3.1 Couette Rheometer

The described solvers are used to simulate the suspension flow in a wide-gap Couette
cell, as shown in Figure 3.2 (repeated below). The experimental study of PHILLIPS
et al. [3] is reproduced, with a suspension of polymethyl methacrylate (PMMA)
particles with radius a = 337.5 µm and density ρp = 1182 kg/m3 dispersed in a
Newtonian oil. The oil viscosity is µf = 9.45 Pa.s and the density is adjusted to
match those of the particles. The suspension fills the gap between the two concen-
tric cylinders of radii Ri = 0.64 cm and Ro = 2.38 cm, the outer cylinder being
stationary and the inner cylinder rotating with an angular velocity varying from
0.5 to 48 rps. The simulations start from a homogeneous suspension with a bulk
solid-phase fraction of ϕb = 0.55, and particles migrate as the inner cylinder starts
spinning. Once the solid-phase fraction and torque at the inner cylinder reach the
steady state, the simulation is stopped.

Figure 3.2: Couette rheometer geometry used to obtain the analytical solution for
a power-law fluid.

Additionally, the flow of the same suspension was also simulated in other Cou-
ette geometries with different values of cylinder radii and gap size (l), as shown in
Table 4.1, with A corresponding to the same geometry of the experimental study
of PHILLIPS et al. [3]. The inner cylinder radius of geometry B is twice the one
from geometry A, and the outer cylinder radius was adjusted so they present the
same gap size. In geometry C, both cylinder radii and the gap size are twice the
ones of geometry A.
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Figure 4.4: Intermediate one-dimensional mesh (m2) created to test the frame-
dependent solvers.

Table 4.2: Description of the one-dimensional created meshes for the Couette case.

Mesh ID N
CT-A-m1-w 20
CT-A-m2-w 28
CT-A-m3-w 40

Mesh Generation

Since solvers sbm1Foam and sbm2Foam are frame-dependent, a set of one-dimensional
meshes was generated, as exemplified in Figure 4.4. Then, the unit vectors ê1 and ê2

coincide with êy and êx, respectively. All the one-dimensional meshes were created
with a cell opening of 1o and are listed in Table 4.2. The grid convergence analy-
sis was performed with the results obtained using solver sbm1Foam and a rotating
velocity of the inner cylinder of 1 rps.

For the Couette flow in geometry A in two dimensions, two sets of grids were
created: the first set of three meshes with uniform refinement in both radial and
angular directions, and a second set of three meshes with non-uniform refinement in
the radial direction, with increased grading in the regions close to the boundaries.
Figure 4.5 shows a 90-degree section of the intermediate meshes of both sets, being
the grids symmetric with respect to the angular direction. Since increasing the
refinement close to the outer cylinder also increases the mesh skewness, a higher
number of divisions in the angular direction had to be used for the non-uniform mesh
when compared to the respective uniform grid. For the non-uniform grids, the grid
convergence analysis was carried out using the results from simulations with both
sbm4Foam and tfmFoam, with a rotating velocity of the inner cylinder of 4 rps. For
the uniform grid, the procedure was applied only using solver sbm4Foam and the same
cylinder rotation. For geometries B and C, one set of uniformly refined meshes was
created and the grid convergence analysis performed only using the sbm4Foam solver
with inner cylinder rotation of 16 rps. All of the two-dimensional generated grids
for the Couette flow study are identified in Table 4.3, with nr and nθ representing
the number of divisions in the radial and angular directions, respectively, resulting
in a total of N cells for each grid. The maximum observed values for the non-
orthogonality and skewness in each mesh are also reported in Table 4.3
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(a) (b)

Figure 4.5: Intermediate m2 meshes of the Couette geometry A used for the grid
convergence analysis with (a) constant refinement on the radial direction and (b)
grading close to the cylinder boundaries.

Table 4.3: Description of the two-dimensional meshes created for the Couette flows.

Mesh ID1 Geometry nr nθ N
Maximum Maximum

non-orthogonality skewness
CT-A-m1-u A 20 92 1840 6.81× 10−5 0.056
CT-A-m2-u A 28 128 3584 6.89× 10−5 0.041
CT-A-m3-u A 40 180 7200 6.93× 10−5 0.030
CT-A-m1-nu A 20 100 2000 6.84× 10−5 0.077
CT-A-m2-nu A 28 140 3290 6.90× 10−5 0.055
CT-A-m3-nu A 40 200 8000 7.09× 10−5 0.039
CT-B-m1-u B 28 128 3584 1.55× 10−4 0.054
CT-B-m2-u B 40 180 7200 1.57× 10−4 0.040
CT-B-m3-u B 56 256 14336 1.58× 10−4 0.027
CT-C-m1-u C 40 180 7200 6.90× 10−5 0.030
CT-C-m2-u C 56 256 14336 6.95× 10−5 0.021
CT-C-m3-u C 80 360 28800 6.99× 10−5 0.015
1 The identifiers -u and -nu at the end of the mesh ID indicate a uniformly

or non-uniformly refined mesh, respectively.
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Table 4.4: Description of the linear channel geometries.

Geometry H (m) d/H L (m) Lmin

A 0.004 0.169 12 0.13
B 0.008 0.084 24 1.03
C 0.01 0.068 36 2.00
D 0.02 0.034 36 16.02

4.3.2 Linear Channel

The flow of the same suspension considered for the Couette rheometer simulations
(described in Section 4.3.1) is simulated in four different straight channel geometries,
outlined in Table 4.4, with mean velocities u = 0.02, 0.2 and 2 m/s. Combinations
of the mean velocity and channel width are chosen to achieve values of shear rate in
the same range obtained in the Couette flow simulations. The minimum length of
the channel necessary to achieve a fully-developed flow is estimated following NOTT
and BRADY [13]:

Lmin ≈ H

24d(ϕb)

(
H

a

)2

(4.64)

where d(ϕb) represents the dependence of the shear-induced diffusion on the bulk
solid-phase fraction, given by [15]:

d(ϕb) =
1

3
ϕ2
b

(
1 +

1

2
e8.8ϕb

)
. (4.65)

Since it is an estimate and it may take several transition lengths to achieve the fully-
developed flow [13], the calculated values of Lmin were used only as a guideline. The
actual lengths of the channels were chosen to be over one order of magnitude greater
than the minimum length to ensure that the developed state is achieved, with an
exception for geometry D, in which L ≈ 2Lmin, due to a large number of cells
necessary for the computational grid.

Mesh Generation

For the 2-D channel, only one set of three grids was created for each geometry.
Since the meshes are orthogonal and with no skewness, no refinement was applied
to the regions close to the boundaries. All generated meshes for the 2-D channel
simulations are described in Table 4.5, in which nx and ny stand for the number of
divisions in the flow and transversal directions, respectively, and N the total number
of grid cells. The grid convergence analysis was performed for each geometry using
the results of simulations with the mean suspension velocity of u = 2 m/s.
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Table 4.5: Description of all meshes generated for the 2-D channel flows.

Mesh ID L (m) H (m) nx ny N
LC-m1-A 12 0.004 240 8 1920
LC-m2-A 12 0.004 360 12 4320
LC-m3-A 12 0.004 480 16 7680
LC-m1-B 24 0.008 480 16 7680
LC-m2-B 24 0.008 720 24 17280
LC-m3-B 24 0.008 960 32 30720
LC-m1-C 36 0.01 720 20 14400
LC-m2-C 36 0.01 1080 30 32400
LC-m3-C 36 0.01 1440 40 57600
LC-m1-D 36 0.02 720 40 28800
LC-m2-D 36 0.02 1080 60 64800
LC-m3-D 36 0.02 1440 80 115200

Table 4.6: Discretization schemes used with both models (entries of the fvSchemes
dictionary).

Setup I Setup II
Gradient Linear Skew Corrected Linear
Surface Normal Gradient Corrected Corrected
Laplacian Linear Corrected Linear Corrected
Divergent (default) Linear Skew Corrected Linear
∇ · (φu) Limited Linear 1 Skew Corrected Limited Linear 1
∇ · (φϕ) Limited Linear 1 Skew Corrected Limited Linear 1
Interpolation Linear Skew Corrected Linear
d/dt Euler Euler

4.4 Numerical Setup

The equations presented in Section 4.1 are discretized following the schemes pre-
sented in Table 4.6, given in the fvSchemes dictionary. The limited linear 1 scheme
includes a limiter between the upwind scheme (in regions with high gradient vari-
ations) and the linear scheme, for which the coefficient value equal to 1 imposes
the strongest limiting. For both models, two sets of numerical schemes were tested:
setup I, without any correction for skewness, and setup II, which applies the skew-
ness correction for the non-orthogonal mesh of the Couette flow in the cylindrical
geometry. Since there is no skewness on the 2-D channel grids, setup I was used
for all simulations of this flow. Detailed information on each of the discretization
methods listed in Table 4.6 can be found in the literature [59, 63].

In OpenFOAM®, the description of the numerical methods used to solve the
linear systems that arise from the discretization of the transport equations is given in
the fvSolution dictionary. At the beginning of the solution of a given linear system,
the initial residual is calculated as the normalized absolute difference between the left
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Table 4.7: Numerical methods used to solve the linear systems (entries of the
fvSolutions dictionary), their absolute and relative tolerances.

ϕ p (Pa), p∗ (m2/s2) us (m/s)
Linear solver PBiCG PCG PCG
Pre-conditioner DILU DIC DIC
Absolute tolerance 10−9 10−10 10−9

Relative tolerance 0 0.01 0.01
Final relative tolerance1 - 0 0
1 Relative tolerance for the final non-orthogonal correction

and right-hand sides of the equation. Then, the linear system is solved iteratively
until either the absolute residual falls below the specified tolerance or until the
ratio between the current and the initial residuals falls below the specified relative
tolerance [64]. The Preconditioned Bi-Conjugate Gradient method (PBiCG) was
chosen to solve the system for the solid-phase fraction, and the Preconditioned
Conjugate Gradient method (PCG) for the pressure and the suspension velocity
when using the SBM. Since the tfmFoam solver does not solve linear systems for uf

and up, it does not require the specification of a linear solver for these variables.
The key idea of the PBiCG and PCG methods is to transform the solution of the
linear system into a minimization problem, which is solved iteratively until the given
convergence criteria are satisfied. To increase the convergence rate, the coefficient
matrix is approximated by a new matrix that shall be easily invertible and with a
smaller condition number (ratio between its maximum and minimum eigenvalues)
in a process called pre-conditioning [65]. For the solid-phase fraction, the Diagonal
ILU factorization (DILU) was used in the pre-conditioning, and for the pressure and
suspension velocity, the Diagonal Incomplete Cholesky factorization (DIC). More
details about those numerical methods and the aforementioned pre-conditioners can
be found in the literature [63, 65]. Once the initial residuals for the solution of all
linear systems already satisfy the convergence criteria, the steady state has been
achieved. Then, simulations are stopped and their results are analyzed. A summary
of the methods used for all simulations and their convergence criteria are listed in
Table 4.7.

To evaluate the methods proposed by MUNICCHI et al. [16] for solving the
solid-phase fraction equation, as presented in Section 4.1, both implicit and explicit
treatments of the terms associated with the particle-phase normal stress divergence
were tested. From now on, setups using the implicit formulation of Equation 4.54
will be referred to as setup A, and those using the explicit formulation given by
Equation 4.51 as setup B. For instance, simulations with the two-fluid model using
skewness correction in the discretization schemes and the implicit formulation for the
solid-phase fraction equation are identified as setup II-A. The implicit formulation is

51



Table 4.8: Initial and boundary conditions used for the 2-D channel flow simulations.

ϕ ui (m/s) p (Pa)
Initial Condition 0.55 u 0

Inlet 0.55 u Zero gradient
Outlet Zero gradient Zero gradient 0
Walls Zero gradient No slip Zero gradient

Table 4.9: Initial and boundary conditions used for the Couette flow simulations.

ϕ ui (m/s) p (Pa), p∗ (m2/s2)
Initial Condition 0.55 0 0
Outer Cylinder Zero gradient No slip Zero gradient
Inner Cylinder Zero gradient ωRi Zero gradient

only available for the two-fluid model: the suspension balance model always treats
the normal stress divergence explicitly and, therefore, its simulations always used
the setup B.

The initial and boundary conditions for each variable the model solves for are
given in the dictionaries stored in directory 0. They are listed in Tables 4.8 and 4.9
for the Couette flows and 2-D channel flows, respectively. Additionally, for the
Couette flow simulations using the one-dimensional meshes, the OpenFOAM’s®

wedge boundary condition for axy-symmetric problems was applied at the θ-normal
surfaces.
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Chapter 5

Results and Discussion

5.1 Grid Convergence Analysis

The procedure for the grid convergence analysis (described in Section 4.2) was ap-
plied for all created geometries. The estimated uncertainty in the calculation of
the solid-phase fraction for the intermediate grids for each study is presented in
Table 5.1, along with the observed order of accuracy. Convergence results on the
intermediate grids were considered satisfactory. Thus, the other studies were per-
formed using the intermediate meshes.

Table 5.1: Results of the grid convergence analysis in the determination of the solid-
phase fraction field on the intermediate grids.

Geometry Solver Uncertainty Order of
accuracy

Couette A (1-D) sbm1Foam 0.46% 1.87
Couette A (2-D, uniform refinement) sbm4Foam 0.43% 1.68
Couette A (2-D, non-uniform refinement) sbm4Foam 0.54% 1.85
Couette A (2-D, non-uniform refinement) tfmFoam 0.73% 1.69
Couette B sbm4Foam 0.15% 1.72
Couette C sbm4Foam 0.23% 1.68
Linear Channel A tfmFoam 0.96% 2.00
Linear Channel B tfmFoam 0.34% 1.54
Linear Channel C tfmFoam 0.17% 1.56
Linear Channel D tfmFoam 0.11% 1.94

Additionally, the grid convergence analysis was also applied to estimate the un-
certainty in the calculation of the torque at the inner cylinder for the Couette flows.
The uncertainties estimated for the intermediate grids and the observed order of
accuracy are shown in Table 5.2. The determined values for the uncertainty are
further used in the estimation of the rheological parameters.
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Table 5.2: Result of the grid convergence analysis in the determination of the torque
on the inner cylinder for the Couette flows.

Geometry Solver Uncertainty Order of
accuracy

Couette A (2-D, uniform refinement) sbm4Foam 2.43% 2.00
Couette A (2-D, non-uniform refinement) tfmFoam 2.15% 2.00
Couette B sbm4Foam 2.34% 2.00
Couette C sbm4Foam 2.56% 2.00

5.2 SBM Implementation Improvement

Figure 5.1 shows the predicted dispersed-phase fraction radial profiles after 200 and
12000 revolutions of the inner cylinder for the simulations with the different SBM
solvers - the radial coordinate is made dimensionless using ζ = (r −Ri)/(Ro −Ri).
The experimental data of PHILLIPS et al. [3], acquired using the non-invasive nu-
clear magnetic resonance (NMR) method, are plotted for comparison. Both data
sets at 200 revolutions and 12000 revolutions were obtained by averaging the results
of eighth cycles of image acquisition, yielding a signal-to-noise ratio of 20 dB. Con-
sidering the signal-to-noise ratio as the minimum standard deviation in the NMR
imaging process, the estimated minimum experimental error, without accounting for
other sources of experimental error, was of 2%. In agreement with the information
provided in the literature [3], the results presented in this work were confirmed to
be at the steady state after 12000 revolutions of the inner cylinder.

As can be observed in Figure 5.1, the particles migrate towards the stationary
cylinder, where the shear rate is minimum, achieving values close to the maximum
packing fraction and resulting in a high viscosity region. The suspension’s viscosity
radial profiles calculated with the different models implemented in solvers sbm1Foam
and sbm2Foam are shown in Figure 5.2 for the same instants than the dispersed-phase
fraction. After 200 revolutions of the inner cylinder (Figure 5.2a) the viscosity
calculated by the original solver is significantly greater than the one calculated
with the MORRIS and BOULAY [14] model. At the steady state (Figure 5.2b),
the viscosity calculated by the sbm1Foam solver diverges, as the phase fraction is
close to the maximum packing fraction - the suspension viscosity equation used
in this solver, µs = (1 − ϕ/ϕm)

−2, is expected to present this problem since µs

increases quadratically with the phase fraction and exhibits a singularity at ϕ = ϕm.
The expression implemented in solver sbm2Foam prevents this quadratic divergence,
which in turn prevents the overestimation of the solid-phase fraction at the vicinity
of the outer cylinder, leading to a steady-state phase-fraction profile with better
agreement with the experimental data. The particles in this specific region are close
to achieving what is known as a jammed state, creating a non-flowing plug inside
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Figure 5.1: Dispersed-phase fraction radial profiles obtained with the different ver-
sions of the suspension balance model solver (sbm1Foam, sbm2Foam, sbm3Foam,
sbm4Foam) and experimental data of PHILLIPS et al. [3] after (a) 200 revolutions
and (b) 12000 revolutions of the inner cylinder.
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Figure 5.2: Radial profile of the suspension’s shear viscosity obtained using solvers
sbm1Foam and sbm2Foam after (a) 200 revolutions of the inner cylinder and (b) 12000
revolutions (steady state).
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Figure 5.3: Comparison of the angular component of the suspension velocity ob-
tained with solvers sbm1Foam and sbm2Foam at the steady state (12000 revolutions).

the rheometer [37]. Consequently, as the suspension’s viscosity increases, its velocity
drops to near zero, as shown in Figure 5.3. The analytical solution of the steady-
state angular velocity profile for a Newtonian fluid is also plotted in Figure 5.3 for
comparison. Notice that the presence of the particles and the consequent increase
in viscosity poses a resistance to the suspension’s motion, diminishing the velocity
when compared to a pure Newtonian fluid.

Figure 5.1 also shows that the implementation of the frame-invariant formula-
tion of the anisotropic stress in sbm3Foam introduces numerical oscillations in the
solid-phase fraction field, especially close to the external boundary. Using the im-
proved momentum interpolation from solver sbm4Foam eliminates these oscillations,
providing exactly the same dispersed-phase fraction profile obtained by using solver
sbm2Foam. This result was expected, since all the model equations are the same ex-
cept for the definition of the unit vectors from the anisotropic tensor. The fact that
solvers sbm2Foam and sbm4Foam predict the same solid-phase fraction profile verified
the generalization of the anisotropic stress computation using the local coordinate
system defined in Equation 3.21. In order to interpret the Cartesian components of
tensor Q, Table 5.3 shows their expected values based on Equation 3.25 for some
limiting values of θ and their maximum and minimum values (all remaining com-
ponents that are not listed in this table are null at these conditions). With λ1 = 1

andλ2 = 0.8, the component Qxx varies between 0.8 at y = 0 (θ = 0, π) and 1.0

at x = 0 (θ = ±π/2); the Qyy varies between 0.8 at x = 0 (θ = ±π/2) and 1.0
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Table 5.3: Expected values of the non-zero components of the anisotropic tensor Q
on Cartesian coordinates for the Couette flow.

Qxx Qxy, Qyx Qyy Qzz

θ −→ (0, π)+ λ2 0+ λ1 λ3

θ −→ (0, π)− λ2 0− λ1 λ3

θ −→ ±(π/2)+ λ1 0+ λ2 λ3

θ −→ ±(π/2)− λ1 0− λ2 λ3

Maximum λ1 (λ1 − λ2)/2 λ1 λ3

Minimum λ2 (λ2 − λ1)/2 λ2 λ3

at y = 0 (θ = 0, π); Qxy varies between −0.1 and 0.1, with maximum values at
θ = 3π/4 and −π/4, and minimum values at π/4 and −3π/4. The values obtained
with solver sbm4Foam are presented in Figure 5.4 and are shown to agree with the
expected values.

5.3 Flow on a Couette Rheometer

5.3.1 Influence of the Simulation Setup

Boundary Condition

Choosing the implicit or explicit formulation for the solid-phase fraction equation
with the two-fluid model has an impact on the boundary conditions applied to
this equation. As mentioned before, with the implicit formulation, the gradient
boundary condition specified for ϕ is more strongly imposed when compared to
the explicit formulation. The steady-state solid-phase fraction profiles are shown
in Figure 5.5 for both formulations of the TFM, and for the SBM with its explicit
formulation. Near the inner boundary, simulations with the different models using
the explicit formulation provide different values of ϕ at the wall, but with similar
behavior, including its radial derivative as it approaches the inner cylinder wall. For
the implicit formulation, the zero normal gradient boundary condition is seen to
affect the behavior of the radial phase-fraction profile close to the inner cylinder,
which visibly approaches the boundary with a null derivative. Since this boundary
condition has no physical meaning for the modeled phenomena and influences the
results mainly in the same region where the torque is being calculated, the explicit
formulation will be used hereinafter.
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Figure 5.4: Cartesian components (a) Qxx, (b) Qyy, and (c) Qxy of the anisotropic
tensor Q obtained with solver sbm4Foam using the frame-invariant formulation.
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Figure 5.5: Comparison of the dispersed-phase fraction profiles obtained for the
Couette flow in geometry A, using the implicit and explicit treatments of the normal
stress terms in the particle’s continuity equation.

Skewness Correction

To analyze the influence of mesh skewness on the results of the simulations, numer-
ical schemes with and without skewness corrections (setups II and I, respectively)
were tested on meshes with both uniform and non-uniform radial refinement, with
the same rotating velocity of the inner cylinder (ω = 4 rps) and the explicit formula-
tion for the phase-fraction equation (Equation 4.51). Figure 5.6 presents the results
of these simulations with the suspension balance model. Figure 5.6-a compares the
results for the grids with uniform and non-uniform refinement in the radial direc-
tion. No difference is observed in these results due to the refinement close to the
boundaries. Therefore, all the next simulations with the SBM were performed using
the uniform grid. Results for the simulations using setups I and II on the uniform
mesh are presented in Figure 5.6-b, showing that the skewness correction did not
provide any influence on them. Thus, all the next simulations with the SBM were
carried out using setup I-B, without the application of the skewness correction.

The comparison of the results for simulations using the two-fluid model with both
setups provides a curious result, shown in Figure 5.7. Setup I-B, without skewness
correction, provided a result very similar to the one previously obtained with the
suspension balance model, plotted again for comparison. However, the skewness
correction used in setup II-B significantly changed the results of the dispersed-phase
fraction profile near the boundary regions, with less agreement with the experimen-
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Figure 5.6: Influence of (a) grading and (b) skewness correction on the steady-state
solid-phase fraction profiles obtained with the suspension balance model (sbm4Foam)
for the Couette flow in geometry A. Results in (a) used setup I-B.
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Figure 5.7: Influence of the skewness correction on the dispersed-phase fraction
profiles predicted by the two-fluid model (tfmFoam) for the Couette flow in geometry
A.
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Figure 5.8: Influence of the skewness correction on the particle-phase angular veloc-
ity predicted by the two-fluid model (tfmFoam) for the Couette flow in geometry A.

tal data. Another change was also observed in the particle-phase angular velocity
profile, as shown in Figure 5.8.

It seems that the skewness correction, when applied to multiple velocity fields,
acts as a source of numerical error in the simulation. To avoid this behavior, no
skewness correction was used to obtain the results presented hereinafter with any of
the models. This OpenFOAM® feature needs to be more deeply investigated in or-
der to understand the observed behavior and, perhaps, improve its implementation.

Computational Cost

The simulations with setup I-B (explicit treatment of the normal stress divergence
and no skewness correction) and cylinder rotation varying from 0.5 to 48 rps were
performed using both solvers on the three considered Couette geometries (listed in
Table 4.1). The results for geometry A and ω = 1 rps were selected to compare the
computation cost of solvers sbm4Foam and tfmFoam. They were performed in serial
runs using an Intel® CoreTM i7-7800X CPU @ 3.50GHz (6 cores, 16 Gb RAM),
with total execution time needed for the simulations to achieve the steady state of
1.6 hours with the SBM and 43.1 hours with the TFM. This significant difference
is due to the different strategies adopted regarding the time step: for the two-fluid
solver, the explicit formulation of the anisotropic stress (Equation 4.51) may cause
instabilities when the maximum packing fraction is approached. If these instabilities
occur, the Courant number must be reduced by reducing the time step - stable results
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Table 5.4: Values of the time step used with the sbm4Foam solver for the simulation
with ω = 1 rps and the respective maximum Courant numbers.

Range (revolutions) ∆t (s) Maximum Courant
0 to 20 0.005 0.55

21 to 100 0.01 1.1
101 to 1000 0.05 5.3
1001 to 2000 0.1 10.7
2001 to 5000 0.5 53.8
5001 to 12000 1.0 107.5

were obtained using a time step of ∆t = 0.005 s, kept constant during the whole
run, yielding a maximum Courant number of Co = 0.65. This instability problem
is not faced by the suspension balance model, which allows increasing the time step
to accelerate the run. The values of the time steps used for the simulation with the
sbm4Foam solver and the corresponding maximum Courant numbers are reported in
Table 5.4.

5.3.2 Estimation of Rheological Parameters

Using setup I-B, simulations varying the inner cylinder rotation from 0.5 to 48 rps

were performed for geometry A to estimate the suspension’s power-law model pa-
rameters. Regardless of the rotational speed of the inner cylinder, all simulations
performed with each model provided exactly the same steady-state results for the
solid-phase fraction profile and dimensionless velocity. This independence of the
steady-state dispersed-phase fraction on the rotational speed is proven by dimen-
sional analysis of both models, detailed in Appendix B, and was observed experi-
mentally by PHILLIPS et al. [3]. This observation suggests a Newtonian behavior
of the suspension, with no dependence of the developed dispersed-phase fraction
profile and, consequently, of the viscosity, on the applied shear rate. The minimum
and maximum values of the solid-phase fraction are observed, respectively, at the
boundaries of the inner and outer cylinders, being listed in Table 5.5. The shear rate
values at the inner cylinder surface, represented by γ̇w, and the particle’s Reynolds
number are shown in Table 5.6 for all simulations.

The steady-state radial profiles for the dispersed-phase fraction obtained with
both models are compared to the experimental data and to the predicted values
from the semi-analytical solution of the suspension balance model [14] in Figure 5.9.
Considering the 2% minimum experimental error for the data of PHILLIPS et al.
[3] and the estimated grid uncertainties, both models provide results statistically
equivalent to the experimental data only in the outer half of the gap. The SBM and
TFM simulations give different results close to the inner cylinder up until ζ ≈ 0.3.
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Table 5.5: Mean values and standard deviation of the steady-state dispersed-phase
fraction and the uncertainty on its determination obtained from the Couette flow
simulations in geometry A with different cylinder rotations.

r = Ri r = Ro

SBM TFM SBM TFM

ϕ
Mean 0.2975 0.2829 0.6403 0.6386
Std. deviation 0.38× 10−5 17.4× 10−5 0.21× 10−5 25.3× 10−5

Um2
Mean 0.0013 0.0021 0.0027 0.0046
Std. Deviation 0.16× 10−7 12.6× 10−7 0.09× 10−7 18.4× 10−7

Table 5.6: Shear rate at the inner cylinder for the Couette flow simulations in
geometry A at the steady-state.

γ̇w (1/s) Rep
ω (rps) SBM TFM SBM TFM

0.5 10.22 10.72 1.46× 10−4 1.53× 10−4

1.0 20.43 21.39 2.91× 10−4 3.05× 10−4

2.0 40.86 42.80 5.82× 10−4 6.10× 10−4

3.0 61.29 64.18 8.73× 10−4 9.14× 10−4

4.0 81.72 85.58 1.16× 10−3 1.22× 10−3

8.0 163.45 171.14 2.33× 10−3 2.44× 10−3

16.0 326.89 342.42 4.66× 10−3 4.88× 10−3

48.0 980.69 1026.77 1.40× 10−2 1.46× 10−2

Both models predicted dispersed-phase fraction radial profiles that are statistically
equivalent to the semi-analytical solution of MORRIS and BOULAY [14]. Despite
the lack of consensus on how to introduce the normal stresses responsible for shear-
induced migration on the multiphase framework, as discussed in the literature review
based on the papers of NOTT et al. [49] and JAMSHIDI et al. [50], the formula-
tion of MUNICCHI et al. [16] successfully captures the essential behavior of the
suspension and provides results that agree well with the suspension balance model.

Parameters m and n from Equation 3.59 are determined using the orthogonal
distance regression (ODR) using as the uncertainty in the torque values the grid
uncertainty given in Table 5.2. Since the rotating velocity ω is imposed for each
simulation, no error was considered for this variable. The calculated values for the
torque at the inner cylinder for each simulation are plotted in Figure 5.10 along with
the fitted curves using Equation 3.59. Notice that the difference between the torque
calculated using these both models increases with the rotational speed of the inner
cylinder.

The fitted parameters of the power-law model (Equation 3.59) are shown in Ta-
ble 5.7. Despite the presence of normal stress anisotropy being a non-Newtonian
feature of the suspension under study, the fitted behavior is of a typically Newtonian
fluid with n = 1. Thus, parameter m can and shall be from now on referred to as the
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Figure 5.9: Radial profiles of the dispersed-phase fraction at the steady state ob-
tained for the Couette flow simulations in geometry A, and the literature experi-
mental and semi-analytical solution data.
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Figure 5.10: z-component of the torque at the inner cylinder calculated from the
Couette flow simulations in geometry A with the sbm4Foam and tfmFoam solvers.
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Table 5.7: Estimates for the rheological parameters of the power-law model using
the simulated results from the Couette flows in geometry A with the sbm4Foam and
tfmFoam solvers.

SBM TFM
n 1.00± 1.9× 10−5 1.00± 0.95× 10−5

m (Pa.s) 33.95± 0.009 29.33± 0.41
ϕcalc 0.382 0.355

apparent dynamic viscosity of the suspension. Using the results obtained with both
models, different values of the apparent viscosity are estimated, with a higher value
obtained from the suspension balance model simulations. Moreover, it should be
noted that the values of the suspension’s apparent viscosity are significantly greater
than the viscosity of the pure fluid phase, µf = 9.45 Pa.s, and they do not match the
suspension’s viscosity values calculated using Equation 3.26 for the particles’ shear
viscosity neither using the value of the simulated dispersed-phase fraction at the in-
ner cylinder surface nor the bulk solid-phase fraction. The dispersed-phase fraction
values for which the estimated apparent viscosities correspond to the predictions of
Equation 3.26 are also shown in Table 5.7 as ϕcalc. This contradictory conclusion
shows that, considering simple non-Newtonian models such as the power-law, the
apparent viscosity determined experimentally does not match the actual local sus-
pension viscosity close to the inner cylinder nor the viscosity of the suspension if it
was homogeneous, according to the viscosity model of MORRIS and BOULAY [14].

Geometry Dependence of the Power-Law Parameters

After the determination of the model parameters using the Couette rheometer A, the
remaining simulations for geometries B and C were performed using the sbm4Foam

solver to investigate the dependence on the rheometer geometry of the segregation
profiles and, consequently, of the estimated rheological parameters. The dispersed-
phase fraction radial profiles obtained from simulations in geometries A, B and C are
shown in Figure 5.11, with the simulated values of ϕ at the cylinder walls reported
in Table 5.8 along with the uncertainty on their determination. The simulated
phase-fraction profiles from geometries A and C are equivalent, while for geometry
B less segregation of the phases is observed. The suspension’s angular velocity
radial profiles are presented in Figure 5.12, which shows the impact of the different
segregation profiles on the suspension’s velocity. It is seen also for the radial velocity
profile that simulations in geometries A and C provide results that are equivalent.
These observations show that the similarity of the flows is dictated by the ratio
between the inner cylinder and the gap size, Ri/l , which is the same for geometries
A and C.
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Figure 5.11: Radial profiles of the dispersed-phase fraction at the steady state ob-
tained for the Couette flow simulations in different geometries using the sbm4Foam
solver.
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Table 5.8: Mean values and standard deviation of the steady-state dispersed-phase
fraction and the uncertainty on its determination obtained from the Couette flow
simulations in geometries B and C with different cylinder rotations. Simulations
were performed using the sbm4Foam solver.

B C
r = Ri r = Ro r = Ri r = Ro

ϕ
Mean 0.4004 0.6210 0.2965 0.6382

Std. Deviation 6.76× 10−4 2.77× 10−4 1.53× 10−4 1.62× 10−4

Um2
Mean 0.0107 0.0132 0.0076 0.0163

Std. Deviation 0.16× 10−6 6.48× 10−6 3.91× 10−6 4.14× 10−6

The calculated values for the torque at the inner cylinder are presented in Fig-
ure 5.13 for geometries A, B, and C. Repeating the procedure to estimate the power-
law parameters from Equation 3.59 using ODR with the results from simulations
in geometries B and C provides the values shown in Table 5.9. The corresponding
values of ϕcalc are also reported in this table, which are calculated using the ap-
parent suspension viscosities m to determine the particle-phase shear viscosity and,
then, determine the corresponding phase-fraction value using Equation 3.26. The
previously obtained results for geometry A using the sbm4Foam solver are repeated
for comparison. A value of n = 1 is estimated with the results from simulations in
all geometries, representing a Newtonian behavior of the suspension. The estimated
apparent viscosities, on the other hand, are all statistically different. For simula-
tions in geometries A and C, which provided the same values of ϕ at the cylinder
walls, the estimated values differ only by 1.87%. Results from the flow simula-
tions in geometry B provided a greater value of the suspension’s apparent viscosity,
as expected since the dispersed-phase fraction at the inner cylinder wall was also
greater than the simulated values for geometries A and C. Therefore, the estimation
of rheological parameters depends on the size of the rheometer and the associated
segregation profile. Despite the independence of the dispersed-phase fraction pro-
files on the imposed shear-rate and of the estimation of a n = 1 parameter for the
power-law model, the geometry dependence represents a non-Newtonian behavior.
Hence, for suspension under the same flow conditions considered in this work with
dominance of the viscous effects and may exhibit shear-induced migration, the ex-
perimental measurement of the suspension’s viscosity and the data interpretation
are not straightforward since significantly different results may be obtained using
different rheometers.
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Figure 5.13: z-component of the torque at the inner cylinder calculated from the
Couette flow simulations with the sbm4Foam solver in different geometries.

Table 5.9: Estimates for the rheological parameters of the power-law model using
the simulated results from the Couette flows in geometries A, B, and C with the
sbm4Foam solver.

A B C
n 1.00± 1.9× 10−5 1.00± 0.49× 10−4 1.00± 2.1× 10−4

m (Pa.s) 33.95± 0.009 56.04± 3.829 34.59± 0.10
ϕcalc 0.382 0.473 0.398

5.4 Channel Flow

Simulations for all considered linear channel geometries (listed in Table 4.4) were
performed using the tfmFoam solver, using the same suspension employed in the anal-
ysis of the Couette flow. To confirm if a fully-developed flow regime was achieved,
the dispersed-phase fraction and the x-component of the suspension’s velocity were
evaluated along the center line of the channel, as shown in Figures 5.14 and 5.15,
respectively. It is shown that only the simulation performed in geometry D did not
achieve a fully-developed state. According to the estimated minimum lengths (see
Table 4.4), this is the geometry for which the actual channel length was shorter,
with L ≈ 2Lmin, due to the significant increase in the computational cost of the
simulations. Therefore, the remaining analysis considers only the simulations in
geometries A, B, and C.

Results for the minimum and maximum values of the dispersed-phase fraction are
presented in Table 5.10. Regardless of the mean velocity of the flow, the same steady-
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Table 5.10: Minimum and maximum values of the dispersed-phase fraction and wall
shear rate obtained for the 2-D channel simulations.

Geometry u (m/s) ϕmin ϕmax γ̇w (1/s) Rep
A 2 0.450 0.617 1926.3 2.74× 10−2

A 0.2 0.450 0.617 192.6 2.74× 10−3

A 0.02 0.450 0.617 19.3 2.74× 10−4

B 2 0.435 0.632 974.2 1.39× 10−2

B 0.2 0.435 0.632 97.4 1.39× 10−3

B 0.02 0.435 0.632 9.7 1.39× 10−4

C 2 0.431 0.636 779.5 1.11× 10−2

state dispersed-phase fraction vertical profile is predicted for a given geometry. Thus,
for the flow simulations in geometries A and B, the three maximum and minimum
reported values of ϕ are identical. This independence of the results on the velocity
boundary condition had already been observed for the Couette flow simulations and
explained by dimensional analysis of both models. Once this behavior was confirmed
for the 2-D channel in geometries A and B, the following simulations in geometries C
and D were performed for only one value of the mean velocity (results from geometry
D are not included in Table 5.10 since they were disregarded from this analysis). The
values for the shear rate at the walls are also presented in Table 5.10 as γ̇w: they are
within the same range of shear rates imposed on the Couette flow simulations used
to estimate the power-law model parameters (reported in Table 5.6); the resulting
particle’s Reynolds number are also reported in Table 5.10.

The steady-state dispersed-phase fraction profiles obtained for the different ge-
ometries are plotted in Figure 5.16 along a vertical line located at the fully-developed
section of the channels. As can also be observed from the ϕmin and ϕmax values in
Table 5.10, Figure 5.16 shows that the dispersed-phase fraction cross-sectional pro-
files are geometry dependent. As the channel width increases from geometry A to
C, so does the segregation. This important observation shows that, even for similar
geometries, different rheological responses may be observed for the flow of a given
suspension, as was previously observed also for the Couette flows. The different
dispersed-phase fraction profiles lead to different velocity profiles, as seen in Fig-
ure 5.17. Since the width difference between B and C is inferior to that between A
and B (4 mm versus 2 mm), the differences in the solid-phase fraction and veloc-
ity profiles, particularly for the latter, in Figures 5.16 and 5.17, are quite small for
geometries B and C.

Table 5.11 shows the pressure drop in the fully-developed section of the channels
calculated by two different procedures. The pressure drop values estimated using
Equation 3.61 and the power-law parameters listed in Table 5.7 regarding the two-
fluid model estimates are called (−∆P/∆L)calc, whereas the values obtained from
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Figure 5.16: Vertical profile of the steady-state dispersed-phase fraction for the 2-D
channel flows in geometries A, B, and C.
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Table 5.11: Comparison of the estimated and simulated values of the pressure drop
in the linear channel simulations with geometries A, B, and C. The estimated pres-
sure drops consider the power-law coefficients obtained from the simulations of the
Couette flow in geometry A using the tfmFoam solver.

Geometry u (m/s)
(
−∆P

∆L

)
calc

(Pa/m)
(
−∆P

∆L

)
sim

(Pa/m) Rel. Dif. (%)
A 2 1.10× 107 1.88× 107 41.52
A 0.2 1.10× 106 1.88× 106 41.52
A 0.02 1.10× 105 1.88× 105 41.52
B 2 2.75× 106 4.41× 106 37.63
B 0.2 2.75× 105 4.41× 105 37.63
B 0.02 2.75× 104 4.41× 104 37.63
C 2 1.76× 106 2.78× 106 36.64

Table 5.12: Comparison of the estimated and simulated values of the pressure drop
in the linear channel simulations with geometries A, B, and C. The estimated pres-
sure drops consider the power-law coefficients obtained from the simulations of the
Couette flow in geometry B using the sbm4Foam solver.

Geometry u (m/s)
(
−∆P

∆L

)
calc

(Pa/m)
(
−∆P

∆L

)
sim

(Pa/m) Rel. Dif. (%)
A 2 2.10× 107 1.88× 107 11.73
A 0.2 2.10× 106 1.88× 106 11.73
A 0.02 2.10× 105 1.88× 105 11.73
B 2 5.25× 106 4.41× 106 19.15
B 0.2 5.25× 105 4.41× 105 19.15
B 0.02 5.25× 104 4.41× 104 19.15
C 2 3.36× 106 2.78× 106 21.06

the 2-D channel flow simulations are reported as (−∆P/∆L)sim for comparison,
followed by their relative differences. The actual pressure drops measured with the
channel flow simulations’ results are higher than those predicted using the analytical
solution and estimated parameters, with differences varying from 36% to 41%. Since
the simulations of the Couette flow in geometry B using the sbm4Foam solver pro-
vided a significantly different estimation of the suspension’s apparent viscosity, the
comparisons made in Table 5.11 were repeated, using the value of m corresponding
to the estimates from this geometry. The calculated pressure drops are shown in
Table 5.12, along with the relative difference to the simulated values. The difference
between the estimated and the simulated values decreased significantly, varying from
11% to 21%.

Additionally, the observed values of (−∆P/∆L)sim from Table 5.11 are used in
Equation 3.61 with n = 1 to determine the corresponding suspension’s apparent
viscosity, which is in turn used to calculate the particle-phase shear viscosity µp =

µs − µf together with Equation 3.26 to determine the corresponding value of the
dispersed-phase fraction. These corresponding values are reported in Table 5.13 as,
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Table 5.13: Estimated apparent viscosity and corresponding solid-phase fraction
calculated with the linear channel simulations’ results for geometries A, B, and C.

Geometry u (m/s) mcalc (Pa.s) ϕcalc

A 2 50.16 0.470
A 0.2 50.16 0.470
A 0.02 50.16 0.470
B 2 47.03 0.441
B 0.2 47.03 0.441
B 0.02 47.03 0.441
C 2 46.29 0.423

respectively, mcalc and ϕcalc. The apparent viscosities mcalc decrease from geometry
A to C, with the increase in particle segregation, with values that are higher than
those estimated with the Couette flow simulations in geometries A and C but are
lower than the one from geometry B (see Table 5.9). By comparing the values of
the dispersed-phase fraction at the inner Couette cylinder and the channel walls,
we see that even if the segregation profile obtained for the channel flows presented
the same maximum and minimum values of ϕ than any of the considered Couette
geometries, the estimated apparent viscosities using Equation 3.59 and 3.61 would
not be the same.
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Chapter 6

Conclusions

The present work focused on studying the effects of the shear-induced migration in
dense suspension flows of non-colloidal, non-Brownian, and neutrally buoyant rigid
spheres dispersed in a Newtonian fluid, flowing in the Stokes regime. The Cou-
ette and 2-D straight channel flows were simulated using the open-source software
OpenFOAM-v7®.

An improved implementation of the suspension balance model is presented and
will be made available to the scientific community after the publication of its re-
sults. The improved solver uses the model of MORRIS and BOULAY [14] for the
suspension’s shear viscosity, which provides more accurate results than the viscosity
model implemented in the original solver. It features a frame-independent formula-
tion of the anisotropic particle-phase stress tensor, which can be used to simulate
three-dimensional flows in generic geometries regardless of the main directions of
the flow. An improved momentum interpolation scheme is included to eliminate
numerical oscillations in the simulated dispersed-phase fraction field.

An implementation of the two-fluid model accounting for shear-induced particle
migration is presented and compared to the improved implementation of the suspen-
sion balance model through a series of simulations of suspension flows in a Couette
cell. Both models are shown to be qualitatively compatible, with slightly different
results in the inner region of the Couette cell gap. Therefore, for situations in which
the SBM assumptions are valid and the interest is to obtain the steady state re-
sults, there is an advantage on using this simplified solver (sbm4Foam) instead of the
complete and more computationally demanding TFM solver (tfmFoam).

By using the Couette simulations’ results in different geometries as input for the
rheological characterization of the suspension similarly to the experimental proce-
dure, it was shown that, even though the suspension behaves as a Newtonian fluid
regarding the dependence of the viscosity with the shear rate, its viscosity depends
on the geometry of the rheometer used on the characterization procedure, which is
intrinsically a non-Newtonian characteristic. Therefore, the classical procedure of
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assuming a simple non-Newtonian model (in this case, of a power-law fluid) and
fitting the experimental data to the analytical solution does not provide an accurate
description of the suspension. Flow simulations in different 2-D straight channels
showed that the rheological characterization of the suspension obtained mimicking
classic rheometry experiments is not sufficient to accurately predict the suspension
flow in different flow conditions and confirmed the dependency of the estimated
rheological parameters on the flow geometry.

6.1 Future Work Suggestions

Considering the results obtained in this work, future work is needed to better un-
derstand to what extent the shear-induced migration interferes with the results of
the experimental characterization procedure of suspensions. Both presented models
can be extended to include other effects besides the shear-induced migration, such
as those due to Brownian motion, buoyancy, and polydispersity. The latter has to
be carefully considered since the behavior of different-sized particles can be con-
trolled by different types of interaction (e.g., Brownian motion may be dominant for
finer particles and shear-induced migration for the larger ones). Then, the resulting
solvers can be used to analyze the influence of each phenomenon on the suspen-
sion flow and simulate different conditions, including the experimental procedure in
smaller rheometers.
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Appendix A

Development of the Analytical
Solutions

A.1 Couette Rheometer

Consider again the flow described in Section 3.2.1: the incompressible two-
dimensional Stokes flow of a homogeneous power-law fluid on a horizontal cylindrical
Couette cell. Figure 3.2 is repeated here for clarity. The inner cylinder of radius Ri

rotates at an angular velocity ω, while the outer cylinder of radius Ro is stationary.
The total length L of the cylinder is considered to be sufficient to neglect end effects.

Figure 3.2: Couette rheometer geometry used to obtain the analytical solution for
a power-law fluid.

If the effects of gravity are neglected, the flow is symmetric with respect to the
angular coordinate, i.e., no field variable depends on θ and the velocity u can be
written as:

u = uθ(r)êθ. (A.1)

From the definition of a power-law fluid [54]:

τ = 2mγ̇n−1E (A.2)
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where m and n are the two coefficients of the model to be determined from the
simulations. If n = 1, Equation A.2 reduces to the Newtonian model and m = µ.

To determine the strain rate tensor E, first we need to find the expression for
∇u:

∇u =
duθ

dr
êrêθ −

uθ

r
êθêr. (A.3)

Then:

E =
1

2

[
(∇u) + (∇u)T

]
=

1

2

[(
duθ

dr
êrêθ −

uθ

r
êθêr

)
+

(
duθ

dr
êθêr −

uθ

r
êrêθ

)]
=

1

2

[(
duθ

dr
− uθ

r

)
êrêθ +

(
duθ

dr
− uθ

r

)
êθêr

]
.

(A.4)

Recognizing on the expression above that Erθ = Eθr, we can simplify the expression
for the strain rate tensor:

E = Erθêrêθ + Erθêθêr (A.5)

where
Erθ =

1

2
r
d

dr

(uθ

r

)
. (A.6)

The shear rate is given by:

γ̇ =
√
2E : E

=
√

2 (EθrErθ + ErθEθr)

=
√
4E2

rθ

= 2 |Erθ | .

(A.7)

Knowing that duθ/dr < 0, we can write:

γ̇ = −2Erθ . (A.8)

Replacing the expressions for the strain rate tensor and for the shear rate in
Equation A.2 yields:

τ = 2m (−2Erθ)
n−1 [Erθêrêθ + Erθêθêr]

= m

[
−r

d

dr

(uθ

r

)]n−1

×
[
r
d

dr

(uθ

r

)
êrêθ + r

d

dr

(uθ

r

)
êθêr

]
.

(A.9)

Then:
τ = τrθêrêθ + τθrêθêr (A.10)
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where
τrθ = τθr = −m

[
−r

d

dr

(uθ

r

)]n
. (A.11)

The radial component of the momentum equation for the steady-state flow is:

− ρ
[uθ(r)]

2

r
= −dp

dr
. (A.12)

Thus:

p(r) = ρ

∫ Ro

Ri

[uθ(r)]
2

r
dr. (A.13)

Once the velocity field is known, the integral in the latest equation can be solved to
find an expression for the pressure field.

The angular component of the momentum equation for the steady-state flow
simplifies to:

0 =
1

r2
d

dr

(
r2τrθ

)
=
dτrθ
dr

+
2τrθ
r

.

(A.14)

Replacing the expression found for τrθ, Equation A.14 can be written as:

0 = r
d

dr

[
−r

d

dr

(uθ

r

)]n
+ 2

[
−r

d

dr

(uθ

r

)
.

]n
(A.15)

Applying the following change of variable to solve the differential equation:

Γ = −r
d

dr

(uθ

r

)
. (A.16)

Thus, Equation A.15 in terms of Γ reads:

0 =r
d

dr
(Γn) + 2Γn

=rnΓn−1dΓ

dr
+ 2Γn

(A.17)

or, as Γ ̸= 0:

0 =
rn

Γ

dΓ

dr
+ 2. (A.18)

Separating and integrating the latest expression leads to the solution of the
differential equation for Γ:

Γ(r) = Br−2/n. (A.19)
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The solution for uθ(r) is found from the solution of Γ:

Br−2/n = −r
d

dr

(uθ

r

)
(A.20)

uθ(r) = Cr +
B

2
nr1−2/n (A.21)

where B and C are the integration constants.
For a stationary outer cylinder, the no-slip condition is applied at r = Ro,

uθ|r=Ro
= 0 = CRo +

B

2
nR1−2/n

o (A.22)

providing the expression for constant C:

C = −Bn

2
R−2/n

o . (A.23)

Substituting C into the solution of uθ(r):

uθ(r) =
Bn

2

[
r1−2/n − rR−2/n

o

]
. (A.24)

If the inner cylinder is rotating with angular velocity ω, the second boundary
condition, at r = Ri, yields:

uθ|r=Ri
= ωRi =

Bn

2

[
R

1−2/n
i −RiR

−2/n
o

]
. (A.25)

Hence, the following expression is found for constant B:

B = −2ω

n

[
R−2/n

o −R
−2/n
i

]−1

(A.26)

and the final expression for the velocity is:

uθ(r) = ωr
1− (r/Ro)

−2/n

1−
(

Ri

Ro

)−2/n
. (A.27)

The torque over a given surface is given by:

T =

∫
S

r× (n̂ · S) dA. (A.28)

where n̂ is the surface’s unit normal vector and r is the position vector relative to
the center of rotation. At the inner cylinder, the normal unit vector is n̂ = êr. The
position vector, with the center of rotation at the origin of the cylindrical coordinate
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system, and the differential surface area with constant radius are, respectively:

r = rêr + êz (A.29)

dA = 2πrdzdθ. (A.30)

The stress tensor S is defined by:

S = −pI+ τ . (A.31)

Therefore, the argument inside the integral in Equation A.28 is:

r× (n̂ · S) = (rêr + êz)× [êr · (−pI+ τ )]

= (rêr + êz)× (−pêr + τrθêθ)

= rτrθêz − pzêθ − zτrθêr.

(A.32)

Integrating the expression for the torque at the inner cylinder:

T =

∫ L/2

−L/2

2πRi

(
Ri τrθ|r=Ri

− pzêθ − z τrθ|r=Ri
êr
)
dz

= 2πRi

[
Riz τrθ|r=Ri

êz −
pz2

2
êθ −

τrθ|r=Ri
z2

2
êr

]z=L/2

z=−L/2

.

(A.33)

The last two terms on the right-hand side of the equation evaluated at z = −L/2

and z = L/2 cancel out. Then, the resulting expression for the torque is:

T = 2πR2
iL τrθ|r=Ri

êz. (A.34)

Substituting the expression found for Γ (Equation A.20) into the expression for
τrθ (Equation A.11):

τrθ|r=Ri
=−m (Γ)n

= −m
(
BR

−2/n
i

)n

= −m

R2
i

[
2ω

n

(
R

−2/n
i −R−2/n

o

)−1
]n

.

(A.35)

Then, the z-component of the torque at the inner cylinder is:

Tz

L

∣∣∣∣
r=Ri

= −2πm

(
2ω

n

)n (
R−2/n

o −R
−2/n
i

)−n

. (A.36)

88



A.2 Channel Flow

For the channel flow, Figure 3.3 and the flow conditions are also repeated for clarity:
consider the incompressible two-dimensional Stokes flow at the steady state of the
same homogeneous power-law fluid as described before, flowing in a channel with
half-width H, as represented in Figure 3.3. Fluid enters the channel with a mean
velocity u and, neglecting the effects of gravity, the developed flow will be symmetric
with respect to the center line at y = 0. The goal of this analysis is to determine an
expression for the pressure drop ∆P between the x-normal surfaces of the control
volume represented in Figure 3.3.

Figure 3.3: Straight 2-D channel geometry used to obtain the analytical solution
for a power-law fluid.

For the fully-developed flow, velocity depends only on the y coordinate:

u = ux(y)êx (A.37)

and its gradient is:

∇u =
dux

dy
êyêx. (A.38)

Thus, the rate of strain tensor is:

E =
1

2

[
dux

dy
êyêx +

dux

dy
êxêy

]
(A.39)

with components:

Exy = Eyx =
1

2

dux

dy
(A.40)

and the shear rate:

γ̇ =
√
2 (ExyEyx + EyxExy)

=
√

4E2
xy

= 2 |Exy| .

(A.41)
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Since dux/dy ≤ 0 for y ∈ [0, H], the solution was developed for this half of the
channel, where:

γ̇ = −2Exy. (A.42)

Tensor τ is now given by:

τ = 2mγ̇n−1E

= 2m

(
−dux

dy

)n−1

× 1

2

[
dux

dy
êyêx +

dux

dy
êxêy

]
= τxyêxêy + τyxêyêx

(A.43)

where:
τxy = τyx = −m

(
−dux

dy

)n

. (A.44)

The momentum equation for the y direction is:

0 =
∂p

∂y
− ∂τxy

∂x
. (A.45)

Since τxy depends only on y, the second term on the expression above is zero. Then,
pressure is constant with respect to y.

The momentum equation for the x direction is:

0 =
dp

dx
− dτyx

dy
. (A.46)

Integrating the latest equation over an element volume dV = dxdydz at a generic
position y yields:

0 =

∫ w

0

∫ ∆L

0

∫ y

0

dp

dx
dydxdz −

∫ w

0

∫ ∆L

0

∫ y

0

dτyx
dy

dydxdz

=

∫ ∆L

0

dp

dx
ywdx−

∫ y

0

dτyx
dy

∆Lwdy

= yw∆P − w∆L
[
τyx|y − τyx|y=0

]
.

(A.47)

With dux/dy = 0 at the center line, the above expression reduces to:

τyx =

(
∆P

∆L

)
y. (A.48)

Substituting Equation A.48 into Equation A.44, an expression for the velocity is
obtained: (

∆P

∆L

)
y = −m

(
−dux

dy

)n

. (A.49)
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Separation and integration of the differential equation lead to:[
1

m

(
−∆P

∆L

)]1/n ∫
y1/ndy = −

∫
dux (A.50)

ux(y) = B − ny1+1/n

n+ 1

[
1

m

(
−∆P

∆L

)]1/n
. (A.51)

Applying the no-slip condition at the upper wall of the channel:

ux|y=H = 0 = B − nH1+1/n

n+ 1

[
1

m

(
−∆P

∆L

)]1/n
(A.52)

gives:

B =
nH1+1/n

n+ 1

[
1

m

(
−∆P

∆L

)]1/n
. (A.53)

Then, the final expression for the velocity is:

ux(y) =
n

n+ 1

[
1

m

(
−∆P

∆L

)]1/n [
H1+1/n − y1+1/n

]
. (A.54)

A relation between the pressure drop and the mean velocity of the flow (u) can
be found by, first, calculating the volumetric flow rate through an arbitrary section
of the channel normal to the flow direction:

Q =

∫
A

(n̂ · u) dA. (A.55)

The normal unit vector is n̂ = êx and the differential surface area element is dA =

wdy. Then, considering that the flow is symmetric with respect to the center line
at y = 0, the volumetric flow rate is:

Q =

∫ H

−H

uxwdy

= 2w

∫ H

0

n

n+ 1

[
1

m

(
−∆P

∆L

)]1/n [
H1+1/n − y1+1/n

]
dy

=
2wn

2n+ 1

[
1

m

(
−∆P

∆L

)]1/n
H2+1/n.

(A.56)

Finally, in terms of the mean velocity:

u =
Q

2Hw
=

n

2n+ 1

[
1

m

(
−∆P

∆L

)]1/n
H1+1/n. (A.57)
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Appendix B

Dimensional Analysis of the
Suspension Flow in a Couette Cell

In order to perform the dimensional analysis, the following length and velocity scales
were considered:

l = Ro −Ri , v = 2πωRi. (B.1)

Then, the following dimensionless variables are defined:

τ =
v

l
t , p̌ =

pl

µfv
, ǔ =

u

v
(B.2)

ř =
r

l
, θ̌ = θ , ž =

z

l
. (B.3)

B.1 Suspension Balance Model

Starting from the suspension’s continuity equation (Equation 3.30), we have:

0 = ∇ · us

=
1

l
∇̌ · (v ǔs)

= ∇̌ · ǔs

(B.4)

and for the suspension’s momentum equation (Equation 3.34):

0 = ∇ · (−pI+ 2µsEs − µnγ̇Q) . (B.5)

Writing the rate of strain tensor in terms of the dimensionless variables, for
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i = s, f, p:

Ei =
1

2

[
(∇ui) + (∇ui)

T
]

=
1

2

[v
l

(
∇̌ǔi

)
+

v

l

(
∇̌ǔi

)T]
=

v

l
Ěi

(B.6)

and the shear rate is:

γ̇ = 2
√

Es : Es

= 2

√(v
l

)2 (
Ěs : Ěs

)
=

v

l
γ̌.

(B.7)

Substituting the expressions for the rate of strain tensor and shear rate from
Equations B.6 and B.7, respectively, into Equation B.5:

0 =
1

l
∇̌ ·

(
−v

l
µf p̌I+ 2µs

v

l
Ěs − µn

v

l
γ̌Q

)
= ∇̌ ·

(
−µf p̌I+ 2µsĚs − µnγ̌Q

)
.

(B.8)

Dividing both sides of the last equation by the fluid’s viscosity and defining a rel-
ative viscosity η ≡ µ/µf , we have the final form of the suspension’s dimensionless
momentum equation:

0 = ∇̌ ·
(
−p̌I+ 2ηsĚs − ηnγ̌Q

)
. (B.9)

Before carrying on to the analysis of the particle-phase continuity equation,
Equation 3.15 is written as:

∂ϕ

∂t
+ us · (∇ϕ) = −∇ · [M∇ · Sp] (B.10)

with M = 2a2f(ϕ)/9µf . For its left-hand side, we have:

∂ϕ

∂t
+ us · (∇ϕ) =

v

l

∂ϕ

∂τ
+ v ǔs ·

(
1

l
∇̌ϕ

)
=

v

l

[
∂ϕ

∂τ
+ ǔs ·

(
∇̌ϕ

)]
.

(B.11)

Using relations B.6 and B.7 on the right-hand side of Equation B.10, with the
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definition of the particle-phase stress tensor given by Equation 3.18:

∇ · [M∇ · Sp] =
1

l
∇̌ ·

{
M

l
∇̌ ·

[v
l

(
2µpĚs − µnγ̌Q

)]}
=

v

l3
∇̌ ·

[
M∇̌ ·

(
2µpĚs − µnγ̌Q

)]
.

(B.12)

Then, replacing the expressions for both left and right-hand sides into Equation B.10
gives:

v

l

[
∂ϕ

∂τ
+ ǔs ·

(
∇̌ϕ

)]
= − v

l3
∇̌ ·

[
M∇̌ ·

(
2µpĚs − µnγ̌Q

)]
(B.13)

∂ϕ

∂τ
+ ǔs ·

(
∇̌ϕ

)
= − 1

l2
∇̌ ·

[
2a2f(ϕ)

9µf

∇̌ ·
(
2µpĚs − µnγ̌Q

)]
(B.14)

and the final form of the dimensionless particle-phase continuity is:

∂ϕ

∂τ
+ ǔs ·

(
∇̌ϕ

)
= −2

9

(a
l

)2

∇̌ ·
[
f(ϕ)∇̌ · Šp

]
(B.15)

where
Šp = 2ηpĚs − ηnγ̌Q. (B.16)

There are two dimensionless groups in Equation B.15 that affect the dynamics
of this equation: τ and a/l . Since the ratio a/l is fixed for the simulated conditions
described in Section 4.3.1, the dynamic behavior of the dispersed-phase fraction is
dictated by τ . At the steady state, we have:

ǔs ·
(
∇̌ϕ

)
= −2

9

a2

l2
∇̌ ·

[
f(ϕ)∇̌ · Šp

]
. (B.17)

But ǔs and ∇̌ϕ are orthogonal, leading to:

0 = ∇̌ · Šp. (B.18)

Therefore, the steady-state solid-phase fraction profile is completely independent of
the cylinder rotation velocity ω.

If we compare two scenarios with the same suspension being sheared in the same
rheometer, but with different rotation velocities of the inner cylinder, both sharing
the same steady-state profile of ϕ at the same instant τ , we have:

τ1 = τ2 −→
(v
l
t
)
1
=

(v
l
t
)
2

−→ 2πω1Ri

l
t1 =

2πω2Ri

l
t2 (B.19)

ω1t1 = ω2t2 (B.20)

which means that the same solid-phase fraction profile is achieved after the same
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number of revolutions of the inner cylinder, regardless of its rotational speed.
Finally, applying the dimensional analysis to the boundary conditions for the

suspension velocity:

us|r=Ri
= 2πωRi −→ ǔs|ř=0 =

2πωRi

v
= 1 (B.21)

us|r=Ro = 0 −→ ǔs|ř=1 = 0. (B.22)

Also, for the zero normal gradient boundary condition for the solid-phase frac-
tion:

∂ϕ

∂r
= 0 −→ ∂ϕ

∂ř
= 0 (B.23)

and for the pressure:
∂p

∂r
= 0 −→ ∂p̌

∂ř
= 0 (B.24)

No dependence on any parameter of the flow, either geometrical or experimental,
appears in the boundary conditions.

B.2 Two-Fluid Model

To start the analysis of the two-fluid model, the continuity equations for both phases
(Equations 3.5 and 3.41) are written as:

∂

∂t
(ρiϕi) +∇ · (ρiϕiui) = 0, i = p, f (B.25)

where ϕp ≡ ϕ and ϕf = 1− ϕ. If both phases are incompressible:

0 =
∂ϕi

∂t
+∇ · (ϕiui)

=
v

l

∂ϕi

∂τ
+

v

l
∇̌ · (ϕiǔi)

=
∂ϕi

∂τ
+ ∇̌ · (ϕiǔi) .

(B.26)

Unlike what was seen for the SBM, there is no other dimensionless group besides
τ that could affect the dynamics of the phase fraction equations. Thus, the dynamic
behavior is only controlled by τ , and, again, the steady-state profile of the dispersed-
phase fraction is independent of the rotation velocity of the inner cylinder.

Moving on to the momentum conservation equation for the particle phase (Equa-
tion 3.9) and disregarding the body forces, we have:

∂ (ρpϕup)

∂t
+∇ · (ρpϕupup) = ∇ · Sp + fp. (B.27)
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For constant ρp, we can write the first term on the left-hand side as:

∂

∂t
(ρpϕup) =

v

l

∂

∂τ
(vρpϕǔp)

=
v 2ρp
l

∂

∂τ
(ϕǔp)

(B.28)

and the second term as:

∇ · (ρpϕupup) =
1

l
∇̌ ·

[
v 2ρpϕǔpǔp

]
=

v 2ρp
l

∇̌ · (ϕǔpǔp) .

(B.29)

Using expression 3.55 for the particle-phase stress tensor, the first term on the
right-hand side is:

∇ · Sp = ∇ ·
[
2µpEp −

2

3
µp (∇ · up) I− µnγ̇Q

]
(B.30)

and using relations B.6 and B.7, we can write:

∇ · Sp =
1

l
∇̌ ·

[
2
v

l
µpĚp −

2

3
µp

v

l

(
∇̌ · ǔp

)
I− v

l
µnγ̌Q

]
=

v

l2
∇̌ ·

[
2µpĚp −

2

3
µp

(
∇̌ · ǔp

)
I− µnγ̌Q

]
.

(B.31)

Considering the drag force to be the only interaction force between phases, Equa-
tion 3.44 can be written as:

fp =
9µfϕ

2a2f(ϕ)
(up − uf )

=
9µfϕv

2a2f̂(ϕ)
(ǔp − ǔf )

(B.32)

where f̂(ϕ) = f(ϕ)/(1−ϕ) with f(ϕ) defined by Equation 3.12. Thus, Equation B.27
reads:

v 2ρp
l

[
∂

∂τ
(ϕǔp) + ∇̌ · (ϕǔpǔp)

]
=
v

l2
∇̌ ·

[
2µpĚp −

2

3
µp

(
∇̌ · ǔp

)
I− µnγ̌Q

]
+

9µfϕv

2a2f̂(ϕ)
(ǔp − ǔf ) .

(B.33)

Multiplying both sides of the last equation by l2/µfv and defining Re∗ = ρpvl/µf ,
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we have:

Re∗
[
∂

∂τ
(ϕǔp) + ∇̌ · (ϕǔpǔp)

]
=

1

µf

∇̌ ·
[
2µpĚp −

2

3
µp

(
∇̌ · ǔp

)
I− µnγ̌Q

]
+

9ϕl2

2a2f̂(ϕ)
(ǔp − ǔf ) .

(B.34)

Recalling the definition of η ≡ µ/µf , the last equation is further simplified to:

Re∗
[
∂

∂τ
(ϕǔp) + ∇̌ · (ϕǔpǔp)

]
=∇̌ ·

[
2ηpĚp −

2

3
ηp

(
∇̌ · ǔp

)
I− ηnγ̌Q

]
+

9ϕl2

2a2f̂(ϕ)
(ǔp − ǔf )

(B.35)

Finally, the dynamics of the particle momentum equation is seen to be propor-
tional to τ/Re∗. Comparing it to the dynamics of the particle-phase continuity
equation, which is proportional to τ :

τ × τ

Re∗
−→ v t

l
× µf t

ρpl2
(B.36)

Hence, if v/l ≫ µf/ρsl
2, the dynamics of the flow is controlled by the dispersed-

phase continuity equation, being dependent on τ and, consequently, on ω. Other-
wise, if v/l ≪ µf/ρsl

2, it is controlled by the momentum conservation equation,
being proportional to τ/Re∗ and independent from ω. When the dynamics is con-
trolled by τ , the relation ω1t1 = ω2t2 obtained from Equation B.19 for the SBM is
also valid.

At the steady state:

Re∗
[
∇̌ · (ϕǔpǔp)

]
=∇̌ ·

[
2ηpĚp −

2

3
ηp

(
∇̌ · ǔp

)
I− µnγ̌Q

]
+

9ϕl2

2a2f̂(ϕ)
(ǔp − ǔf ) .

(B.37)

The term inside the brackets on the left-hand side is:

∇̌ · (ϕǔpǔp) = ϕǔp · ∇̌ǔp + ǔp∇̌ · (ϕǔp) . (B.38)

Since ǔp · ∇̌ǔp = 0 for the Couette flow and, from Equation B.26 at the steady state,
∇̌ · (ϕǔp) = 0, the left-hand side of Equation B.37 vanishes. Thus, it reduces to:

0 = ∇̌ ·
[
2ηpĚp −

2

3
ηp

(
∇̌ · ǔp

)
I− µnγ̌Q

]
+

9ϕ

2f̂(ϕ)

(
l

a

)2

(ǔp − ǔf ) . (B.39)
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Consequently, the steady state depends only on the ratio a/l and ϕ. Since a/l is
constant and the steady-state profile of ϕ is independent of ω, then, the steady-state
for the dimensionless velocity ǔp is also independent of ω.

The dimensional analysis of the continuity and momentum conservation equa-
tions for the fluid phase is analogous and leads to similar conclusions. The procedure
used in the analysis of the SBM boundary conditions can be followed by replacing
the suspension’s velocity with the phases’ velocities, leading to the same conclusion
of independence from any other dimensionless parameter.
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