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MODELOS POR REDE NEURONAL FÍSICO-INFORMADAS PARA UM
DIGITAL TWIN DE UMA UNIDADE OFFSHORE DE SEPARAÇÃO DE GASES

Pedro Ricardo Cardoso Gonçalves

Abril/2023

Orientadores: Argimiro Resende Secchi
Maurício Bezerra de Souza Júnior

Programa: Engenharia Química

A nova revolução industrial, conhecida como Indústria 4.0, têm atraído em-
presas a investir em representações digitais, ou gêmeos digitais, de seus proces-
sos reais utilizando-se dados de planta para melhor modelar, controlar e detectar
possíveis falhas de operação.

Neste trabalho foi desenvolvido um gêmeo digital de um sistema de desacid-
ificação de gás natural em plataformas offshore, por meio de separação por mem-
branas. Para modelagem matemática do sistema, foram combinadas duas abor-
dagens distintas: por via fenomenológica, com base na literatura, e por apren-
dizado de máquina, constituída de redes neuronais. O trabalho visou a junção
destas duas vertentes em duas formas de modelo híbrido, a primeira na qual
os balanços de massa e quantidade de movimento são desenvolvidos por meio
fenomenológico e amodelagemda transferência demassa através dasmembranas
foi feita via redes neuronais; e a segunda em que a rede neuronal é informada pela
física do sistema de forma a atender às leis de conservação. Como resultado prin-
cipal, ambos os modelos se mostratam bastante acurados, com erros relativos in-
feriores a 2%, e podem ser usados como uma abordagem alternativa para quando
se desconhecem os parâmetros dos equipamentos utilizados ou para facilitar a in-
clusão dos modelos em abordagens de otimização e controle, e assim contribuir
para digitalização da indústria de oleo e gás.
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April/2023
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Department: Chemical Engineering

The new industrial revolution, known as Industry 4.0, has attracted companies
to invest in digital representations, or digital twins, of their actual processes using
plant data to better model, control, and detect possible operational failures.

In this work, a digital twin of a system for deacidification of natural gas in off-
shore platforms, by membrane separation, was developed. For the mathematical
modeling of the system, two distinct approaches were combined: phenomeno-
logical, based on the literature, and machine learning, consisting of neural net-
works. The work aimed at joining these two approaches in two forms of a hy-
brid model, the first in which the mass and momentum balances are developed
by phenomenological means and the modeling of the mass transfer through the
membranes was done via neural networks; and the second in which the neural
network is informed by the physics of the system in order to meet the conserva-
tion laws. As a main result, both models have proven to be very accurate, with
relative errors lower than 2%, and can be used as an alternative approach when
the parameters of the equipment used are unknown or to facilitate the inclusion
of the models in optimization and control approaches, and thus contribute to the
digitalization of the oil and gas industry.
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Chapter 1

Introduction

1.1 Natural Gas

Natural Gas (NG) is a fossil fuel composed majorly of light-weighted hydrocar-
bons such as methane (CH4), ethane (C2H6), propane (C3H8), butane (C4H10)
and some acid gases. Acid gases are compounds that, once in water solution, act
like acid elements and lower the solution pH, for instance, carbon dioxide (CO2),
hydrogen sulfide (H2S), and nitrogen (N2) also known as sour gases or contami-
nants(LIMA and GONÇALVES, 2016; PARO, 2005).

Like petroleum, NG is formed through organicmaterial decomposition at high
temperatures and pressures over millions of years. It is not only available at off-
shore reserves but also onshore. It is most commonly found on gas reserveswhere
gas-oil rates are higher than the usual oil reserve. This form is denominated as
not-associated gas as it is found in its free form in a gas phase layer. NG can also
be found in oil reserves, in which the oil phase is the majority, or NG is dissolved
in the oil phase. This form is an associated gas reservoir (FERREIRA, 2006; PARO,
2005).

Nevertheless, NG can also be found onshore inside low-porosity rocks such
as shale, low-permeability sandstone, coal, and naturally formed NG hydrates
(COLOMER andALMEIDA, 2015). NG can also be produced through organic de-
composition using aerobic or anaerobic bacteria or coal decomposition (VIEIRA
et al., 2005). Of all oil-derived fossil fuels, NG is considered the cleaner one. That
is because NG composition is mainly composed of a lower carbon chain, so the
amount of CO2 exhausted as a combustion product is lesser than other fossil fuels
such as gasoline or diesel.

According to FERREIRA (2006) and PARO (2005), the first Brazilian NG re-
serve was discovered in 1940 in Bahia. Historical events suggest that NGwas first
used by the population between 6000 and 2000 BC in the region nowknownas Iran
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Source: adapted from BP (2022)

Figure 1.1: Gap between natural gas production and demand in Brazil.

and discovered only in 1659 in Europe. Since its discovery, Brazilian NG natural
reserves have increased. By the end of 2018, Brazil had 0.4 trillion cubic meters of
NG proven reserves and 0.2% share of all NG reserves in the world. The amount
of NG available in these reserves could last for 15 years if the production rate
were maintained stable. However, Brazil’s NG production is not auto-sufficient,
as it cannot suffice the whole country’s growing demand. Therefore, the country
still relies on LNG imports (BP, 2019, 2022). Figure 1.1 shows the Brazilian gap
between production and demand.

This gap is covered through importation mainly from Bolivia, using Brazil-
Bolivia pipelines, and by LNG sea transportation from the US, Trinidad and To-
bago, Niger, Qatar, and other countries. These five are the leading Brazil suppliers
(BP, 2019, 2022). Despite this notorious gap, Figure 1.1 shows a significant incre-
ment in NG production in the last decade. A recent study shows that Brazil is
the 27th country that most consumes NG, with average annual demand growth of
5.7% in the last decade (ANP, 2019a). This consumption increment is higher than
the optimistic growth predictions from Empresa de Pesquisa Energética (EPE) for
whole energy demand until 2030 (2.6% of average annual growth), including NG
(EPE, 2018). NG is increasing its participation in the country’s energy mix.

This enhancement in production is mainly due to new oil wells found in the
Santos Basin and Campos Basin in Brazil’s southeast area. Both fields are com-
posed majorly of pre-salt reservoirs. The operation began in 2010 and, since the
end of 2017, has been the country’s primary source of oil and gas. Nowadays,
pre-salt oil corresponds to 65% of Brazil’s total production (ANP, 2019b).

Although pre-salt reservoirs hold high quality (higher API degree) and high
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volumes of oil, these also come with loads of associated gas. For instance,
while the Gas-Oil Ratio (GOR) of a standard offshore oil field is about 150, pre-
salt reservoirs reach a GOR of 600 at the Libra field without CO2 re-injection
(ARINELLI et al., 2015). That rate makes exploration even more challenging,
which now has to deal with separating these phases, associated with higher pres-
sures from ultra-deep waters and even lower temperatures in Brazil’s pre-salt
wells (PASQUALETTE et al., 2017).

Besides, the pre-salt gas phase also contains from 50% to 80% molar of CO2

in its composition, higher than 10% to 30% molar post-salt offshore wells. Apart
from being increasingly required, NG cannot be commercialized as it is removed
from petroleum reservoirs (crude form). It needs to be treated through a gas
separation process, which is of primary economic importance in the Oil & Gas
(O&G) industry field. Without it, NG could not be commercialized as fuel and
probably would be re-injected into an oil reservoir or sold for a small price to gas
refineries. The presence of acid gases, such as CO2 and H2S, reduces its calorific
power, thus quality and market price (ATCHARIYAWUT et al., 2007).

In addition, those components also hinder process pipelines. That is because
of their corrosion properties, not to mention that they are also precursors to hy-
drate formation (a low porosity solid structure, which is a significant risk to trans-
mission lines as it can block stream flow completely)(HAMMERSCHMIDT, 1934;
POBEREZHNY et al., 2019). Furthermore, the gas separation process prevents
more CO2 is released into the atmosphere since this component leads to a list of
Greenhouse Gases (GHG) that most contribute to its intensification (IPCC, 2014).
Because of that importance, countless studies are found on enhancing CO2 and
H2S separation. However, until this work’s bibliography revisions, no study with
this purpose was found using industry 4.0 tools such as machine learning, AI,
or big data. That gap in the literature triggered the primary motivation for this
work. To propose one or more of those tools to help the oil gas industry achieve
its digital maturity.

1.2 Motivation

Due to the high Gas-Oil Ratio (GOR) and high amount of CO2 in the pre-salt
fields, new approaches to gas treatments are mandatory. Once offshore gas pro-
cessing needs to be redimensioned according to reservoir composition, this in-
cludes several gas separator modules, which is a significant concern due to phys-
ical space limitations at offshore platforms (BELTRAO et al., 2009).

The Natural Gas deacidification process is an essential step of offshore oil pro-
cessing. Its acid gases, such as carbon dioxide (CO2) and hydrogen sulfide (H2S),
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reduce natural gas heating power. That quality loss alsomeans income loss for the
industry. Besides, both compounds can cause further problems as they contribute
to hydrate formation in the transmission lines, which can cause not only pipeline
damage (MAKOGON, 2010), due to hydrate obstruction and pressure increase
but also promote pipeline corrosion (POBEREZHNY et al., 2017). Furthermore,
CO2 is pressurized back into the reservoir to improve oil extraction, boosting pro-
duction and generating more profit.

Therefore, some models once used to simulate, control and predict GN sepa-
ration must be updated. Those models that predict process transient and steady-
state operation are essential for advanced process control, real-time optimization,
and risk mitigation. Until recently, these models were purely phenomenological
and based on thermodynamic, physical, and chemical properties. These models
seek to respect the physical laws and result in detailed comprehension and how
each variable interacts. However, it has some restraints when facing nonlinearity
problems, mainly predicting and analyzingmass transportation through different
membrane fibers in a gas separation process (ASGHARI et al., 2018).

Machine learning-based models, though, could deal with this nonlinearity
with less modeling effort. These models use industry databases and attempt to
learn the relation between input and output variables using linear or nonlinear
regression. They are also called "black box" models. The most common machine
learning algorithm is the Artificial Neural Network (ANN) (ASGHARI et al.,
2018). However, as an empirical model, it is also uncertain when describing a
complex process. Furthermore, it does not take into account any thermodynamic
or physical laws. Thus, combining both models into a hybrid one can result in
a powerful approach to respect the physical laws and deal with nonlinearities
faster than phenomenological-based models, which enables more accurate real-
time control and optimization algorithms (ASGHARI et al., 2018; QUIZA et al.,
2012).

Some authors already studied machine learning advantages on O&G seg-
ments, such as: AHARI et al. (2011) used a Multi-Layer Perceptron (MLP) to
model the catalytic oxidative coupling of methane; BALABIN et al. (2015) tested
some methods to predict biodiesel properties, and ANN was one of them; PEER
et al. (2008) used an ANN to predict module gas separation permeability and the
required membrane area to process different natural gas compositions. However,
no record of a hybridmodel on a gas separation subjectwas found in the literature.

The use of machine learning, big data, AI, and digital twins are attributes of
the new digital era in the industry. Many manufacturing segments are turning
their attention to this new era to make their business more profitable and reliable.
The O&G segment has a modest digital maturity achievement, with a grade of
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4.68 points out of 10 (KANE et al., 2015). That score suggests plenty of room for
the O&G industry to explore this digital transformation.

With that motivation, this work intends to create a digital twin model for an
offshore gas separation unit using a hybrid phenomenological-artificial model to
predict mass, momentum, and energy transfer inside each membrane module
with anArtificial Neural Network (ANN) to learn and predict permeability factor
variations from each compound. That way, it will rely on thermodynamic, physi-
cal, and chemical properties while dealing with permeation nonlinearities faster.
Because of that, faster process prediction is expected, compared with purely phe-
nomenological, and also serves as a precursor for real-time optimization algo-
rithms development and predictive control.

1.3 Objectives

Themain objective of this work is to develop a digital twin for amembrane-driven
natural gas deacidification unit to deal with processes nonlinearities and predict
process states more efficiently.

To accomplish those objectives, the following specific objectives are perse-
cuted.

• Develop a phenomenological model to describe each membrane module’s
mass, momentum, and heat transfer.

• Develop and evaluate a Multi-Layer Perceptron network to predict com-
pound permeability.

• Determine the best hybridization structure to predict the output with signif-
icant accuracy and efficiency to be implemented in real-time.

• Create and evaluate the performance of a digital twin with the best alterna-
tive model developed for the third objective.

1.4 Structure

Chapter 2 introduces a background and literature review regarding the NG
deacidification process. It begins with an overview of the NG separation pro-
cess in Section 2.1, presenting the fundamentals, objectives, and discussion re-
garding the commonly used method and their benefits, including cryogenic, ab-
sorption, and membrane-based separation processes. A brief overview regarding
the concepts of a digital twin is presented in Section 2.2. Then, Section 2.3 shows
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the phenomenological background formathematicallymodeling thesemembrane
modules regarding mass, energy, and momentum conservation. The section 2.4
presents a background regarding the MLP network structures and how they can
be integrated into this work. Finally, Section 2.5 points out this work’s innovative
level as it presents some literature published regarding these topics mentioned
above and how this work can fill some of the science’s gaps.

Chapter 3 describes a case study regarding the first objective, where a
phenomenological-based model is proposed and tested with the results avail-
able in the literature. It begins in Section 3.1, making an overview of the pro-
cess that will serve as the base for the digital-twin development. Then, in Section
3.2 some decision-making regarding each membrane module’s hypothesis, mate-
rial, and dimensions are carried out. Also, in this section, the mass, momentum,
energy, and thermodynamic models are proposed. Section 3.3 adds an assertive-
ness comparison between the proposedmodel with the ones already consolidated
in the literature. Section 3.4 summarizes the knowledge gathered regarding the
phenomenological-based model and exposes the decision-making regarding its
components.

Chapter 4 presents a case study regarding achieving the second specific ob-
jective identified in this work, where a neural network structure is proposed and
studied deeply to verify its accuracy and performance in regard to the prediction
of the permeability factors and also is used to determine the permeability fac-
tor as input for chapter 3 phenomenological-based model. Section 4.1 gives an
overview of what variables will be used, how the search for the best MLP struc-
ture will be done, and how the hybridization will undergo. Section 4.2 presents
the data treatment process and the search for the best MLP configuration to pro-
duce the finest adjustment. Section 4.3 adds an assertiveness comparison between
the results from the model of the Chapter 3 and the Neural Network-proposed
model developed and presents the results of a comparison between the results
from the model of the previous Chapter 3 and the hybridization model proposed.
Section 4.4 summarizes the knowledge gathered regarding the Hybrid Network-
Phenomenological model and exposes the decision-making regarding its usabil-
ity.

Chapter 5 intends to address the last part of the third and fourth specific objec-
tives proposed in this work, where the physic-informed neural network model is
proposed. Section 5.1 overviews how the best structure will be searched. Sec-
tion 5.2 presents the methodology used to get to the best Network configura-
tion. Section 5.3 adds an assertiveness comparison between the results from the
model of the Chapter 3 and the networkmodel proposed. Section 5.4 summarizes
the knowledge gathered regarding the network model and exposes the decision-
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making regarding its usability.
Chapter 6 presents a summary of the developments and findings from this

work, proposes the future works that could be an outcome of those findings, and
concludes the dissertation.

Appendix A presents the membrane diffusion coefficient calculation method
used. Appendix B shows the detailed backpropagation training algorithm. Ap-
pendix C shows a scaled-up figure from the real process used to create the digital
twin. Appendix D presents some thermodynamic parameters calculation strat-
egy. Finally, Appendix E presents the phenomenologic-basedmodel finite volume
discretization strategy.
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Chapter 2

Background and Literature Review

2.1 Gas Separation Processes

The gas separation process for CO2 removal is in high demand in the oil and gas
industry. Whether in the purification of natural gas or biogas or to reduce the en-
vironmental impacts caused by releasing GHG gas into the atmosphere. Besides,
the presence of carbondioxide in natural gas reduces its calorific value, thus acting
as an impurity and a highly corrosive agent to transport and storage structures.

In addition, CO2 is the gas that most causes the greenhouse effect according
to the National Oceanic and Atmospheric Administration (NOAA) database pre-
sented in the fifth assessment report of the Intergovernmental Panel on Climate
Change (IPCC) that is summarized in Table 2.1. For that reason, this process has
become of significant importance for the industry as it allows high-value-added
products with higher purity, prevents GHG emission, and enhances productivity
by removing process contaminants (ATCHARIYAWUT et al., 2007; IPCC, 2021).

Table 2.1 also shows that, besides CO2 not having much energy reflective ca-
pacity, it is the most contributor to the greenhouse effect due to its abundance
in the atmosphere, and so to the global warming (IPCC, 2021). If an offshore
platform cannot separate all CO2, NG must be treated in an onshore gas pro-
cess plant before commercialization. Not treating that gas offshore would cause
the greenhouse effect to worsen as, once onshore, excessive CO2 can no longer
be re-injected inside a gas reservoir. Also, the presence of carbon dioxide and
sulfidric acid increases the probability of hydrate formation (ATCHARIYAWUT
et al., 2007; POBEREZHNY et al., 2019), which would imply constant equipment
maintenance, as mentioned in the last Section. Besides, once the untreated gas is
onshore, the options are to purify and sell it to the gasified beverages industry or
to liberate it into the atmosphere. Eventually, this excessive CO2 will be part of
the atmosphere composition.
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Table 2.1: Atmospheric concentration and energy reflective capacity from main
GHG.

GHG Atmospheric Total energy
Concentration (ppt)1 Reflection Contribution2 (W/m2)

CO2 410 ± 0.2 (ppm) 2.156 ± 0.259
CH4 1867 ± 1 (ppb) 0.544 ± 0.109
N2O 332 ± 0.2 (ppb) 0.208 ± 0.031
CFC 822 ± 0.8 0.28
HCFC 293.2 ± 0.7 0.06
HFC 212.3 ± 0.8 0.03

Others3 178.71 0.025

Source: adapted from IPCC (2021)
1 Data from 2019.
2 Total heat reflection capabilities; or the cumulative greenhouse effect contribution.
3 Joint contributions from: sulphur hexafluoride (SF6), tetrafluormethane (CF4), esafluoroethane
(C2F6) and carbon tetrachloride (CCl4).

Studies on gas separation processes began more than a century and a half ago
when GRAHAM (1866) first studied the differences between distinct compounds
permeating through a membrane film. Since then, many other authors have pro-
posed various approaches to address gas separation processes. Some authors re-
searched gas absorption using monoethanolamine (MEA) and diethanolamine
(DEA) or their derivatives process, such as AL-BAGHLI et al. (2001), SIPÖCZ
et al. (2011) and TAHERI et al. (2016). Others, for instance, focused their research
on the membrane-based gas separation process, for example, MARZOUK et al.
(2012), CHU et al. (2019)and HASEGAWA et al. (2017). Some other authors yet,
studied gas separation through cryogenics, when compounds are separated by
differences in dew points (ANSARINASAB et al., 2017; DEBNATH et al., 2019;
EBRAHIMI and ZIABASHARHAGH, 2017).

These three separation methods are the most commonly cited in the bibliog-
raphy as efficient and economically feasible depending on what type of gas sep-
aration is dealt with, its effluent purity grade, or treated gas destination. Each
process has its vantages and disadvantages. The following sections discuss where
each one is recommended to be used.

2.1.1 Cryogenic Method

Cryogenic separation involves lowering stream temperature until the desired com-
pound reaches its dew point so it can be separated from the rest of the stream. It
demands much energy as gases usually have negative temperature dew points.
This process requires a large amount of physical space to fit all required equip-
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ment, as it depends on robust cooling systems and columns (KNAPIK et al., 2018).
Although, depending on compounds and stream properties, this process can pro-
duce streams purities near 100% and is commonly used to produce industrial oxy-
gen (O2), nitrogen (N2), and argon (Ar) (SMITH and KLOSEK, 2001).

Besides, when looking at NG component’s vapor pressure, as shown in Fig-
ure 2.1, this gives a false impression that cryogenic separation would suffice the
project’s objective. However, this method faces some issues when considering a
gas mixture due to CO2 and NGmixture properties. For instance, CO2 - CH4 and
CO2 - C2H6 interactions make liquid CO2 phase to solidify as it concentrates, hin-
dering productivity and phase separation. CO2 - C2H6 also produces an azeotrope
at -53 °C and 0.6 molar fraction of CO2, which also compromises process’ effi-
ciency (KIDNAY and PARRISH, 2006). HOLMES et al. (1983) proposed feeding
NGmixed with heavy hydrocarbon streams to avoid CO2 solidification while in a
distillation column. However, this process still relies on plenty of physical space
available and a great amount of energy.

Figure 2.1 also shows that the main compounds’ vapor pressure tends to pull
away from each other, making the separation process easier for high pressures
and high temperatures.

Source: adapted from NIST (2019)

Figure 2.1: Vapor pressure of main NG components, using Antoine equation.

A recent study regarding energetic efficiency made by KNAPIK et al. (2018)
showed that it is possible to integrate LiquefiedNatural Gas (LNG) re-gasification
and cryogenic air separation units to make NG stream reach CO2 dew point and
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that way, reduce the required energy amount. In that work, 83.7% of CO2 in a flue
gas streamwas removed using this process, which is an expressive positive result.

According to the Brazilian National Agency of Petroleum, Natural Gas, and
Biofuels (ANP), to be commercialized, NG needs to match certain specifications
regarding its calorific power, Wobbe index, minimum hydrocarbon composition,
complies with less than 3%molar of CO2 specification, and amaximum of 10ppm
of H2S (ANP, 2008).

Furthermore, offshore platform physical space availability is scarce. When
taken into consideration, it makes this cryogenic method unfeasible in practical
terms as offshore platforms do not rely on much free space for cryogenic machin-
ery (MAQSOOD et al., 2014). Figure 2.2 presents a schematic block diagram of
a sour gas cryogenic separation standard process from NG using Ryan/Holmes
process proposal (HOLMES et al., 1983), which requires a significant amount of
distillation columns and, therefore, ample space.

Source: adapted from MAQSOOD et al. (2014)

Figure 2.2: NG cryogenic separation block diagram.

Although this process seems simple to understand, its operation is more com-
plex. Distillation columns require high control systems and operate in a short gap
of temperature and pressure. To optimize efficiency, as suggested by MAQSOOD
et al. (2014), six columns would be needed, which implies six complex control
systems, making the process more prone to failure. Nevertheless, its efficiency
regarding the purity of effluents is unquestionable.
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2.1.2 Amine Absorption Method

Gas separation by absorption method uses liquid or solid compounds with a high
affinity to one or a few compounds and removes them from a vapor stream. The
most used process is the gas-liquid based, which uses an aqueous solution (usu-
ally an amine-based compound) to remove undesirable compounds. This section
discusses the commonly used amine absorption process, its benefits, its disadvan-
tages, and why it is more challenging to integrate it into an offshore platform.

Amine absorption technology is a well-known gas separation process in many
industry segments. The first process recorded by literature is a patent made by
Bottoms in the late 1930s, which has two towers (one for absorption and another
for regeneration) for CO2, H2S, and sulfur dioxide (SO2) separation using an ab-
sorbent agent. Amine compounds are explicitly mentioned as good options for
removing acid gases. The mathematical model proposed by BOTTOMS (1930),
for instance, is still used nowadays for process simulations and studies regarding
new absorbents or optimizing their regeneration process (XUE et al., 2017).

Figure 2.3 presents a simple absorption process. The acid stream enters at the
bottom of the first column while the absorbent is loaded at the top. Both streams
contact each other on a counter-current pattern to maintain a high gradient con-
centration between both phases (gas and liquid). After that, the sweetened stream
gets out of the first column by its top while the absorbent, full of acid compounds,
is pre-heated and enters the second column by its top. On the bottom of this sec-
ond column is a heater that regenerates the absorbent. Then, the absorbent is
cooled and goes back to the first column, and starts over the process. A stream
rich in acid gases is collected on the second-column condenser at the top.
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Source: developed by the author.

Figure 2.3: Generic steam deacidification process using absorbents.

The absorption method consists of using a solvent with a great affinity to non-
desired compounds in a process stream. On NG process plants, either onshore or
offshore, to remove CO2 and H2S from NG stream, carbon-amine compounds are
well known to be reliable and efficient for reaching these goals (XUE et al., 2017).

The most common absorbents are aqueous solutions of Monoethanolamine
(MEA) and Diethanolamine (DEA) due to their higher benefit-cost ratio for the
industry. According to XUE et al. (2017), of the two compounds, MEA has the
best cost-efficient ratio, providing a good absorption efficiency with lower regen-
eration costs than DEA. Also, HUERTAS et al. (2015) studied the absorption ratio
ofMEA and concluded that aqueous solutions of 2.5wt%have better performance
regarding CO2 removal, reaching an average of 580 gCO2/kgMEA approximated.

Many other absorbents are also studied in the literature, with efficiencies rang-
ing from 85% up to 99% of CO2 removal. For instance, Piperazine (PZ), also an
amine-based compound studied by GAO et al. (2019), ROCHELLE et al. (2011)
and FREEMAN et al. (2010), which resulted in a 99% CO2 removal according to
GAO et al. (2019) work, PZ can also support temperatures up to 150 °C without
thermal degradation, has a better resistance against oxidation, and less volatility
than MEA.

Another amine-based compound alsowidely studied as an alternative toMEA
and DEA is methyl diethanolamine (MDEA), a tertiary amine compound which,
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according to KOHL and NIELSEN (1997), has lower volatility when compared to
MEA and DEA, which allows being used in higher concentrations without losses,
for instance, 60 wt%. MDEA also demands lower energy to react with CO2 and
H2S, which means that the system can operate at a lower temperature. Besides,
MDEA is an almost non-corrosive compound with a higher absorption capacity.
Its primary disadvantage, though, is that, due to absorption energy low rates, this
process occurs at an equally lower rate, so MDEA is rare to be used alone in a
process. It is usually combined with other amines, such as MEA, DEA, or PZ, to
increase absorption speed.

Figure 2.4 illustrates the molecular structure of these main compounds. It is
easy to identify that MEA, DEA, and PZ are not tertiary amines and have at least
one hydrogen bonded to nitrogen. That bound allows CO2 to react straight to the
amine compound forming carbamates, while H2S is ionized and carried away in
the aqueous solution by alkanolamine protonation. Carbamates are stable com-
pounds that carry away the CO2 (KOHL and NIELSEN, 1997). Some authors
propose a formation of an intermediary compound yet before carbamate named
zwitterion (CAPLOW, 1968; DANCKWERTS, 1979).

Source: developed by the author.

Figure 2.4: Main amines compounds molecular structures.

A generic absorptionmechanism is showed belowwhere 0 < x ≤ 3, 0 ≤ y ≤ 2,
and 0 < z. Note that for primary and secondary amines, CO2 can bond directly
to the absorber creating a carbamate. However, this does not occur for tertiary
amines, such as MDEA. In that case, all mechanism from reaction 2.1 to reaction
2.3 happens naturally, but not on reaction 2.4 as z cannot be zero.

H2S
⊕

H +
⊖

HS (2.1)
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CO2 + H2O
⊕

H +
⊖

HCO3 (2.2)

RxNHy +
⊕

H
⊕

RxNHy+1 (2.3)

RxNHz + CO2
⊖

RxNHz−1COO +
⊕

H (2.4)

For that reason, tertiary amines rely on H2S and CO2 ionization on an aqueous
solution to be carried away dissolved. This makes the absorption process slow as
deionization is not as fast as if carbamate was formed. That is why primary or
secondary amines are added to tertiary amine solutions to improve process speed
and thus its efficiency (CAPLOW, 1968; KOHL and NIELSEN, 1997).

Furthermore, some disadvantages make the absorption process unfeasible to
use in an offshore plant. According to GABELMAN and HWANG (1999), these
processes require a high investment, and operation costs are also elevated. Much
physical space is needed to fit the adsorption towers, heat exchangers, condensers,
and heaters. Also, they are very limited in operational conditions because each
tower cannot overflow, drag the aqueous solution, or form foam. If any of these
occurs, production will be compromised as well as processes efficiency and, con-
sequently, a significant loss of money will result for the offshore industry.

The next topic analyzes the gas separation process by selective membranes,
a process to avoid the disadvantages of amine scrubbing as an alternative to
CO2 capture with conventional methods. As discussed in the next section, mem-
brane permeation separation emerges as a less costly alternative regarding phys-
ical space and implementation and promotes optimum performance.

2.1.3 Membrane-based Method

Membranes are porous film-shaped structures made usually of different poly-
mers with selective capabilities. That means it allows certain compounds to pass
through its porous while blocking others when in contact with any stream. In
other words, membranes act as filters (BAKER, 2004).

The first identification of membrane properties regarding selectivity remounts
the year of 1861 when Thomas Graham published his article identifying that a
French letter paper sheet embedded with a film of a jelly made of starch could
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separate sugar from gum in an aqueous solution (GRAHAM, 1861). Five years
later, this same author studied gas penetration into a vulcanized rubber and eval-
uated its selectivity properties, marking the first paper produced to identify and
explore these structures’ properties (GRAHAM, 1866).

With the development of new structures and technological advances, mem-
branes are widely used in several areas of operation, from simple filtration and
industrial separation to medical applications such as artificial kidneys and lung
structures. This is because the pore diameter of a membrane film can vary from
100 µm at standard filtration to 3Å as in reverse osmosis processes (BAKER, 2004).

Membranes are characterized according to the type of structure: symmetric
(isotropic) or asymmetric (anisotropic). Isotropic membranes have a homoge-
neous or quasi-homogeneous distribution of pores with similar diameters. Ex-
amples of isotropic membranes are micro-porous, dense (nonporous), or elec-
trically charged. While anisotropic ones have heterogeneous structures, often
composed of layers made of different materials, but with a high mass diffu-
sive, promoting high desired substrate removal flow. The market widely chooses
them for their high performance in terms of efficiency and productivity (BAKER,
2004; MULDER, 1996). Figure 2.5 illustrates the difference between isotropic and
anisotropic. Note that isotropic membranes have symmetric porous schematics,
while anisotropic membranes do not.

Source: developed by the author.

Figure 2.5: Structure differences between isotropic and anisotropic porous
disposition.

This difference in material disposition inside the membrane gives it one of its
best properties: selectivity. That is because compounds larger than the largest
membrane pore do not percolate through the fibers, acting like a compound fil-
ter, while other compounds smaller than the largest pore are partially separated.
Also, materials with a better affinity to one compound than the others influence
separation processes.

Membrane module development for the separation process is flexible enough
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to adapt each film according to the process it will be used. It can be thick or thin
and molded in any shape: flat, cylindrical, or spiral-wound-shaped. It can also
be electrically charged or neutral and even solid or liquid. That includes metal,
polymer, zeolites, and glassy, among others. The transport method can be ac-
tive or passive, and if passive, it is proportionally driven by concentration, tem-
perature, pressure, or even electric potential gradient (MULDER, 1996; PANDEY
and CHAUHAN, 2001). Mathematically speaking, this permeation dependence
can be described according to Equation 2.5, where a flux of mass, energy, or mo-
mentum (JG) is proportional to a driving force (dXG/dyG) weighted by a coeffi-
cient called phenomenological coefficient (AG).XG is the state variable which the
flux evaluation is needed and yG the physical space which that occurs (MULDER,
1996).

JG = −AG
dXG

dyG
(2.5)

Regarding gas separation for natural gas, cellulose acetate or polyimide mem-
branes are generally used in these processes (HE and HÄGG, 2011). However,
several studies of membranes based on carbon fibers and inorganic membranes
based on zeolites are gaining notoriety among researchers (CHU et al., 2019;
HASEGAWA et al., 2017; HE and HÄGG, 2011). Commercially, only cellulose ac-
etate and polyamides are widely used in several companies worldwide. Market
leaders are Honeywell UOP with Separex™ and Cynara-NATCO with cellulose
triacetate technology (CHU et al., 2019).

Using membranes is a less costly alternative regarding physical space, im-
plementation, and optimum performance. However, this process is subject to
CH4 load loss, does not have optimal performance for low feed pressure, and is
not an efficient solution for the removal of H2S (BHIDE et al., 1998). Typically,
membranes used for gas separation have high density, tiny pore diameter, and
anisotropic structure to increase systems productivity (BAKER, 2004).

However, not only materials make a difference regarding productivity. The
gaseous separation systems structure greatly influences systems performance, es-
pecially when productivity is the leading business driving force. Therefore, an
optimized structure must be used to promote an excellent benefit-cost ratio. Lit-
erature reports that structures that used to be installed on offshore gas treatment
are generally hollow-fiber or spiral wound structures. These module’s charac-
teristics maximize the contact area between the feed stream and membranes in
a short physical space and allow easy maintenance and operation (CHU et al.,
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2019; HE and HÄGG, 2011). Figure 2.6 and Figure 2.7 show the characteristics
of hollow-fiber membranes and spiral-wound modules, based on OKUBO et al.
(2018) patent, respectively.

Source: developed by the author.

Figure 2.6: Structure of a hollow-fiber module.

Source: developed by the author.

Figure 2.7: Structure of a spiral wound module.

Hollow-fiber membrane modules presented in Figure 2.6 present a struc-
ture quite similar to a heat exchanger, though the tubes are replaced by hollow
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cylindrical-shaped membranes instead. The permeation process is also like en-
ergy transport, as material permeation happens radially from the membrane’s ex-
ternal layer toward its internal cavity. Hollow-fibermembranes have an advantage
over spiral-wound as each cylindrical structure can be easily replaced by another,
if it stops operating or its lifecycle ends.

Spiral-wound membranes, though, as shown in Figure 2.7, have different ap-
proaches regarding the structure. Unlike hollow fiber, a spiral wound consists
of a few dual-layer membrane sheets wrapped in a hollow tube between spac-
ers. There is a path in which the permeate flows towards the hollow metal tube
of each membrane sheet layer, where it leaves the module. Mass transfer is also
radial. However, sour gas feed is made in axial form frommodule entrance to exit.

For that reason, regarding this process’s physical effects, the diffusion of com-
pounds on dense and anisotropic membranes has to be done by a driving force
that promotes compound passage from one membrane side to another, selectivity
though is given by membrane type or affinity to compounds as already discussed
before. In the case of diffusion, these driving forces are the presence of gradients,
that is, pressure, concentration, or chemical potential differences between the feed
stream and permeate stream.

Regarding gas separation, concentration differences, or more specifically, par-
tial pressure differences, due to the gas phase, are the driving force that makes
compound permeation. Normally a gas separation happens at high pressures and
flows by a very selective surface to the compounds whose objective is to separate
(BAKER, 2004).

With the knowledge of partial pressure gradient between membrane sides, it
is not difficult to recognize that another important deterministic factor for pro-
cess performance is the permeate flow pressure. This stream will pass through
the membrane removing compounds that have diffused through its pores to an
appropriate treatment unit. This flow may be arranged in two different ways: in
the same direction as the feed stream (co-current process), where partial pres-
sure gradient becomes lower as sour gas flows inside each module, or it may be
crossing in the opposite direction from the feed flow (counter-current process),
where partial pressure gradient increases as feed percolate through membrane
length (BAKER, 2004; CHU et al., 2019; GABELMAN and HWANG, 1999; HE and
HÄGG, 2011; MULDER, 1996; PAN, 1986; XUE et al., 2017).

For anisotropic and dense membranes, Equation 2.5 changes to the following
Equation 2.6 form, where ki is the permeability of component i through a mem-
brane sheet thickness (h) under a gradient of partial pressure (pi).

Ji = −ki
dpi

dh
(2.6)
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Table 2.2: selectivity of different membrane compounds.

Polymer PCO2/PCH4 selectivity
Polytrimethylsilylpropane 2.0

Silicone Rubber 3.4
Natural Rubber 4.6
Polystyrene 8.5
Nylon 6 11.2

Poly(Vinyl Chloride) 15.1
Polycarbonate 26.7
Polysulfone 30.0

Polyethyleneterephtalate 31.6
Cellulose acetate 31.0
Poly(ether imide) 45.0
Poly(ether sulfone) 50.0

Polyimide 64.0
Source: MULDER (1996).

Equation 2.6 development can be found in Appendix A.
Regarding permeability, it is good to punctuate this parameter as the most im-

portant one when considering gas separation using membranes. That is because
nonporous dense membranes use selectivity instead of pore diameter as a barrier
for larger compounds. Selectivity is another parameter derived frompermeability
relations intrinsic to each membrane’s material. Selectivity denotes how an com-
pound can cross a membrane sheet, preferably more than others. In other words,
it is a ratio of the compound’s permeability defined in Equation 2.7 (AARON and
TSOURIS, 2005; MULDER, 1996).

αP =
ki

k j
(2.7)

To illustrate the importance of knowing the selectivity of a membrane, Table
2.2 shows how the CO2/CH4 selectivity can change regarding its material.

One significant advantage for offshore platforms and Floating Production Stor-
age and Offloading (FPSO) ship regarding the membrane-based process is their
compact structure. Unlike the other processesmentioned before, membrane sepa-
ration requires not onemodule but a series ofmodules to achieveNG selling speci-
fications. Still, because of its compact structure, it only needs a little physical space
on a platform or an FPSO (AARON and TSOURIS, 2005; DALANE et al., 2017).
Another significant advantage is its simplicity of operation. Just a few valves and
compressors complete the scheme and are used to control feed pressure to ensure
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Table 2.3: Separex UOP membrane benchmarks around the globe.

Location CO2 feed molar % CO2 production molar %
Kandanwari - Pakistan 12 <3
Quadipur - Pakistan 6.5 <2

Mexico 93 <5
Salam - Egypt 12 <3
Tarek - Egypt 6 <3
Texas - USA 60 Not specified
Indonesia 40 20
Thailand 34 12
Malaysia 45 6

Source: CNOP et al. (2007).

that the pressure gradient does not go higher or lower than specified to operate.
In general, it does not need heaters, condensers, or a robust temperature control
unit, as shown in Figure 2.8 in a simple process design structure. In specific cases,
it requires special treatment such as feed temperature control (ECHT and SINGH,
2008).

Source: developed by the author.

Figure 2.8: Gas separation process scheme.

Furthermore, membrane-based separation can achieve excellent efficiency in
the field, as shown in Table 2.3 regarding a case study usingUOPSeparexmodules
around the globe. These numbers show that membrane-based separator modules
can be flexible enough to deal with high concentrations of CO2 and meet interna-
tional natural gas commercialization standards.

Another advantage is the simplicity of replacing the membrane sheet when
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needed, rather than if it is blown up or at the end of its lifespan, without stopping
the whole process. Also, it does not need to be regenerated unless it is clogged
by water or another impurity that is not treated before (KIDNAY and PARRISH,
2006).

This brings forth a few disadvantages of membrane-based gas separation. The
first one is that watermust be removed from the feed as it can clog or even dissolve
a fewmembrane compositions, so crude NGmust pass through a molecular sieve
before separation to address this issue (KIDNAY and PARRISH, 2006). Besides,
one module alone cannot reach the regulation’s specifications. For that reason, a
series/parallel structure is needed. Furthermore, the permeability/selectivity re-
lation is inversely proportional, which means high selective membranes have low
permeability while higher permeable ones do not have good selectivity (AARON
and TSOURIS, 2005).

In addition, some polymers may be severely affected by high pressure CO2 as
they can plasticize. As a result, permeation capabilities are compromised, and
membrane lifespan is critically reduced. That is why not every dense, anisotropic
polymer can be used (CHIOU et al., 1985). A glassymembrane, for instance, needs
CO2 to enhance its permeation properties. However, once conditioned, it can no
longer return to its original form. The CO2 changes its characteristics permanently
(CHIOU and PAUL, 1987).

When using membranes, not only CO2 is separated, but also a few hydrocar-
bons are lost fromNG. That amount depends onmany factors, such as membrane
density, structure, length, and operational pressure gradient. Thus, the mem-
brane process does not have the removal efficiency of an absorptive or cryogenic
process. However, recycling can minimize this feed loss, not extinguish it. Fur-
thermore, for all the pros and cons, themembrane process has a better benefit-cost
ratio than other technologies (AARON and TSOURIS, 2005)

2.2 Digital Twin Concepts

TheDigital Twin (DT) concept is attributed toMichael Grieves at theUniversity of
Michigan in 2003, according to GRIEVES (2014). At that time, Grieves referenced
DT as a digital copy of an actual manufacturing process, just like a computational
mirror. However, depending on the application, there needed to be more tech-
nological advances and a richness of information regarding the actual process to
generate a reliable digital twin, as it could not represent the physical process at
that time. In the chemical industry, this concept was known many years earlier,
with applications in process monitoring, model predictive control, and real-time
optimization, for instance.
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Since then, many advances in instrumentation, software development, and a
higher amount of data have become available, so DT has becomemore representa-
tive incrementally. Nowadays, lightweight models, such as Artificial Neural Net-
works (ANN), has fast numerical processing capabilities, and, consequently, can
simulate complex processes and their behaviors in real time. As a result, those
advances make it possible to simulate, control, and even predict process behavior
and operations from the most diverse manufacturing segment(GRIEVES, 2014).

With advances in the industry and recent developments in information tech-
nology, such as the Internet of Things (IoT), Big Data, and Artificial Intelligence
(AI), integration between physical and digital environments has become even
close. Brand new possibilities are available to explore, such as Manufacture, Oil
& Gas, Medical, and Transportation, among other industries (TAO et al., 2019).

That integration is creating a new era of industry, namely Industry 4.0, or the
Industrial Internet. These are how highly integrated digital-physical industries
are being called. This new approach has allowed processes to be monitored in
real-time 24/7, which means better control systems coordination, and even en-
hanced predictive control management. Digital twin, in other words, is a digital
mirror of an actual process that can analyze a massive amount of data, evaluate,
optimize a process, predict results or system tendency and even actuate on a con-
trol system (TAO et al., 2019).

According to KAGERMANN et al. (2013), it all began in 2011 when the term
4th industrial revolution emerged. In a German press release, it was said that an
era of Cyber-Physical Systems would, not only strengthen the national industry
but also drive new developments globally.

Figure 2.9 shows the industry’s evolution from the steam revolution in 1784
until today with remote analyzers, controllers, and artificial intelligence.
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Source: developed by the author.

Figure 2.9: The evolution of industrial eras.

Due to its young age, there are few pieces of research regarding digital twin
applications in the literature regarding the O&G industry. However, some in-
dustries around the globe are known to be selling Digital Twin solutions to O&G
companies, like the Norwegian FutureOn with its FieldTwin® and the British 2H
Offshore with its Riser System Digital Twin services, for instance, (FUTUREON,
2020) (2H OFFSHORE, 2020).

KANE et al. (2015) conducted research on different employees, and how they
see their company dealing with the industry 4.0 tools and their competition
against other companies. This research resulted that the O&G industry was in its
infancy regarding digital maturity, achieving a grade of 4.68 out of 10, where 10 is
a fully mature industry, with a fewmetrics inside the bottom five of all companies
researched. That study pointed out that there is a significant gap for improvement
regarding O&G industry 4.0 turnover.

2.2.1 Building a Digital Twin

Asmentioned above, aDigital Twin relies on an actual process or equipment. That
said, the first step to creating a digital twin is to collect enough data from a phys-
ical process. That can be achieved by installing an appropriate and well-located
amount of sensors to measure key input and output variables, and if the process
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is affected by the environment, its surroundings also must be monitored in this
process. The next step is to create communication between the industry ground
and the digital environment. That must include reliable communication, includ-
ing edge processing, security, and storage to keep all that data updated and saved
in safe and easy-to-get cloud storage. After that, the process must be modeled just
as it is in the field, using a software environment that can read and understand all
that data that is constantly kept and saved (LU et al., 2019).

Keep in mind that this digital model must be able to analyze all that data,
and its parameters are adjusted to achieve a maximal similarity to physical pro-
cess responses, just analyzing all its inputs and delivering its outputs in a graphic
or table and the differences between the real-process responses to it predicted
through the DT. That way, the DT can be trained to indicate if this difference is
a normal process variation or if some failure is occurring. That gives one last,
but not only, characteristic of a DT, which is a warning system when the physical
process presents deviations more significant than usual, alerting its controller to
verify what is happening on the field (DEON et al., 2022; LU et al., 2019).

SomeDT is also used as an actuator once it is attached to the control systemand
its P&ID is well modeled; DT can also be trained to mitigate process deviations
or failures. It can control a valve or even shut down the entire system in a critical
emergency, acting as a predictive controller and detecting a failure sooner than it
used to. Furthermore, with a digital model, optimizing algorithms can be used to
improve real process productivity and performance (PARROTT andWARSHAW,
2017).

Additionally, it is easy to see that, in a 4th industrial revolution era, DT is a cru-
cial tool to achieve better performance,monitoring, and safety processes through a
product lifespan. KENDER et al. (2021) developed a digital twin-based approach
for a cryogenic flexible Air Separation Unit (ASU). Themodel proposed used the-
oretical mass, energy, and momentum transport balances. The proposed DT in-
cludes a highly detailed dynamic virtual model of the ASU, which can be con-
nected to historical or real-time plant data. The study justifies the high modeling
effort through a detailed analysis of the shutdown scenario. The ASU’s high de-
gree of integration creates hazardous situations, such as low vacuum conditions
in the SC, that may not be detected without simulation studies.

LIN et al. (2021) proposed a 3-dimensional digital twinmodel for particle trac-
ing in a hollow-fiber ultra-filtration process using theoretical mass and momen-
tum transport balances, and also analyzing pore patterns from membrane cav-
ities. The study investigated the particle capture mechanism in detail through
particle tracing imaging and analysis. the authors concluded that the simulation
method presented a high level of accuracy, efficiency, and detailed information
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involving the filtration mechanism, which is challenging to obtain through exper-
iments. Through the combination of image analysis and multi-scale simulation,
the study established a platform to evaluate membrane performance with high
reliability and efficiency.

However, despite the growing interest in digital twin technology, there has
been no research found on the development of a digital twin for an offshore
hollow-fiber membrane-based gas separation unit that would use both theoretical
equations andmachine-learning-basedmodels. Because of that, this work focuses
on building a Digital Twin from an actual process of an offshore NG deacidifica-
tion system using different models, comparing its performance to contribute to
the O&G industry.

The next section show a background and how a membrane-based gas separa-
tion module can be modeled using 2 different approaches:

• Purely phenomenological model

• Purely artificial neural network (Black Box) model

2.3 Membrane Phenomenological Model

As previously discussed, gas separation through dense and anisotropic mem-
branes is governed by the concentration gradient of the desired compounds be-
tween the sides of the membrane. In gaseous systems, it is common to represent
this gradient as a function in terms of partial pressure. With a model in hand, it
is possible to evaluate some properties, predict state variables tendency, separate
system optimal design, predict maintenance costs, design control systems, and
predict possible operational problems (CHU et al., 2019).

As discussed in Section 2.1.3, there are two most common membrane mod-
ule designs in offshore O&G industries: hollow-fiber-shaped and spiral-wound-
shaped modules. In this research, an FPSO operated by SBM Offshore dataset,
which uses Cynara’s Natco® hollow fiber membranes made with cellulose ac-
etate, was studied (SBM OFFSHORE, 2013). In the next section, phenomenologi-
cal models of this system are presented in detail.

2.3.1 Hollow-Fiber model

Hollow-fiber membrane modeling was studied in detail by PAN (1986) under
high pressures. According to the study, the model was a uni-dimensional mass
balance and used the Hagen-Poiseuille equation to describe pressure permeate
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stream pressure drop. Thework of PAN (1986) added significant value to hollow-
fiber membrane studies, serving as the basis for many subsequent works. For in-
stance, KOVVALI et al. (1994) based their studies on the model proposed by PAN
(1986) to study the performance of another numerical solvingmethod. CHOWD-
HURY et al. (2005), based on PAN (1986) models but using Wilke’s method for
nonpolar gases to calculate the mixture viscosity, and solved the continuity equa-
tions using finite differences algorithm. Furthermore, CHU et al. (2019) also used
the PAN (1986) approach and the Hagen-Poiseuille equation for predicting shell-
side pressure drop. They studied the effects of packing factors on mass and mo-
mentum balances.

Hollow-Fibermembranemodels are the ones thatmost vary due to their higher
flexibility to process configurations. Permeation can flow parallel or cross-flow
from the feed. Besides, if parallel, permeate can flow co-current or counter-
current. The same variation is possible by feeding the sour gas from the shell or
tube sides. In total, at least six different configurations influence phenomenolog-
ical model development (MARRIOTT and SØRENSEN, 2003). For that reason,
this work focuses on the process commonly found in the offshore O&G industry,
which does not use permeate cross flow, only parallel. This reduces possibilities
up to 4 different configurations that are similar to each other (CHU et al., 2019).

Based on studies from PAN (1986), MARRIOTT and SØRENSEN (2003),CHU
et al. (2019), HE et al. (2017), COKER et al. (1999), WHITAKER (1977), BIRD et al.
(2004), COKER et al. (1998) and many others, it is reasonable to consider the fol-
lowing hypothesis for the hollow-fiber model:

• The membrane module arrangement is the hollow-fiber type with feed on
the shell side and permeates flow on the tube side, as shown in Figure 2.10;

• Permeates configuration is counter-current;

• Although the co-current flow is not perfectly established near eachmodule’s
header, radial mass change due to this contribution is negligible, when con-
sidering the process as a whole, and can be disregarded;

• Membranes are perfect. All of them have the same pore distribution, mean
pore size, and thickness (h) throughout the length;

• Both sour and permeate gas have constant diffusion coefficients for all their
components;

• Membranes do not deform under pressure or temperature differences;

• Gases does not condensate in any of the module’s side flow.
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Mass balance model
.
According to BIRD et al. (2004), the following equation can describe the equa-

tion of continuity for a multi-component mixture and constant diffusive coeffi-
cient:

∂ci

∂t
+ (∇ · cis) = DABs

i ∇2ci (2.8)

In which, DABs
i ∇2ci is the diffusive term according to Fick’s law of diffu-

sion, DABs
i is the ith shell side component diffusion coefficient for binary mixture,

(∇ · cis) is the advective term related to velocity pattern inside each fiber gap.
Considering two dimensionalmodel and cylindrical coordinates, Equation 2.8 can
be rewritten into Equation 2.9:
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∂t
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(2.9)

Furthermore, for a hollow-fiber module, it is convenient to establish a single
fiber mass, momentum, and heat balance and then extrapolate for N number of
fibers in a module, as shown in Figure 2.10

Source: developed by the author.

Figure 2.10: Co-current hollow-fiber module representation.

where u and v are sour gas and permeate flow speed vector, respectively, Xi and
Yi are shell side and tube side ith component molar fraction, Di and Do are single
hollow fiber inside and outside diameter, respectively, and the difference between
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them is the membrane thickness represented by h. Also, L is accounted for the
total hollow fiber membrane total length.

Besides, a mass flux through a membrane film is given by Equation 2.6 from
Section 2.1.3 that relates molar flux through a membrane sheet as locally propor-
tional to compoundpermeability and its partial pressure (pi) gradient throughout
membrane thickness (h).

Ji = −ki
dpi

dh
(2.10)

For which, extrapolating to N membranes of Ao and Vo outside area and vol-
ume, respectively, and constant membrane thickness (h) gives the global molar
flux equation for a single module as shown in Equation 2.11.

Ji = −NAoki

Voh
(

PxXi − PyYi
) (2.11)

where Px is shell side pressure, Py is tube side pressure and Ao and Vo are given
by the following equations:

Ao = πDoL (2.12)

Vo =
πD2

o L
4

(2.13)

Besides, since it is a gaseous system susceptible to pressure influence, an equa-
tion of state is also required to connectmolar concentration and its partial pressure
value. For that, the Peng-Robinson equation of state can be used, due to its accu-
racy for hydrocarbon mixtures, and is represented by Equation 2.14 (PENG and
ROBINSON, 1976).
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where Pi is ith pure component vapor pressure, T stands for temperature, R is
the universal gas factor, Vi is the ith component volume, Tc

i stands for ith compo-
nent critical temperature, Pc

i is the ith component critical pressure, Tr
i stands for

ith component reduced temperature, ωi is PITZER et al. (1955) acentric factor for
ith component and Psat

i is the ith component saturation pressure.
.
Momentum balance model
.
According to BIRD et al. (2004), a general equation of motion applies to the

system and is shown in Equation 2.15.

∂ (ρs)
∂t

= − [∇ · ρss]−∇P + µ∇2s + ρgt (2.15)

where [∇ · ρss] is the convectivemomentumflux rate per volume from feed across
membrane sheet, ∇P + µ∇2s is the molecular transport momentum rate per vol-
ume, and ρgt is the momentum increment rate per volume due to an external
force, here represented as an increment due to gravitational forces. In two dimen-
sion cylindrical coordinates, the following equations for the momentum balance
model consider constant viscosity (µ) (BIRD et al., 2004).

• Axial direction

∂ (ρmsz)
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∂z
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− ∂P
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∂
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(
r
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∂2sz

∂z2

]
(2.16)
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• Radial direction

∂ (ρmsr)

∂t
= −
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∂
(
ρms2

r
)

∂r
+

∂ (ρmszsr)

∂z

]
∂P
∂r

+ µ

[
∂

∂r

(
1
r

∂rsr

∂r

)
+

∂2sr

∂z2

]
(2.17)

where:

ρm =
Nc

∑
i=1

ci (2.18)

Many studies, though, go further into considering a few other terms disposable.
PAN (1986), for instance, assumes that concentration polarization does not sub-
stantially affect model balance and that the axial modeling is sufficient to describe
the system. The author considered the steady-state model and pressure drop in-
side each module cavity following the Hagen-Poiseuille equation, presented in
Equation 2.19.

∂P
∂z

= −128RTµvz

πD4NP
(2.19)

For the counter-current parallel model, though, as described by Figure 2.11,
the integration method still considers z varying from 0 to L. However, permeate
speed will assume negative values rather than a co-current process (MARRIOTT
and SØRENSEN, 2003).

Source: developed by the author.

Figure 2.11: Counter-current hollow-fiber module representation.

Energy balance model
.
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According to WHITAKER (1977), a general energy balance equation can be
described by the Equation 2.20.

ρcp

(
∂T
∂t

+ s∇T
)
= −∇(K∇T) + Tβ

(
∂P
∂t

+ s∇P
)
+∇s : ϵ + Φ (2.20)

where the energy flux variation through time and space is proportional to energy
flux per unity volume due to conduction (∇(k∇T)), the rate of reversible work
per unity volume (Tβ DP

Dt ) and viscous dissipation (irreversible work) per unity
volume (∇s : ϵ), which is always positive as it stands for irreversible work, and
heat generation or consume per unity volume (Φ) (WHITAKER, 1977). The vis-
cous dissipation (∇s : ϵ), for Newtonian fluids, and isobaric thermal expansion
coefficient (β), are described accordingly to Equations 2.21 and 2.22, respectively:

∇s : ϵ = 2µ

[(
∂sr

∂r

)2

+

(
∂sz

∂z

)2
]
+

µ

r2

(
∂sr

∂z

)2

+ µ

(
∂sr

∂z
+

∂sz

∂r

)2

(2.21)

β = −1
ρ

(
∂ρ

∂T

)
P

(2.22)

Furthermore, for the consumption of heat equation (Φ), the hollow-fibermem-
brane module has a similar structure to shell-tube heat exchanger. The Logarith-
micMeanTemperatureDifference (LMTD)model can be used to predict heat flow
from shell-side to bore-side for single fiber, which, according to BIRD et al. (2004),
COKER et al. (1999) and WHITAKER (1977) can be described by Equation 2.23.

Φ = Qmem =
U0Am

Vm


(

Ts
f − Tt

f

)
−
(
Ts

i − Tt
i
)

ln
(

Ts
f −Tt

f

Ts
i −Tt

i

)
 (2.23)

where Ts
f and Ts

i are shell side final and initial flow temperature values, Tt
f and Tt

i
are tube side final and initial flow temperature values, respectively, and U0 is the
overall heat transfer coefficient throughmembrane thickness. The totalmembrane
area and volume are Am and Vm, respectively. It can be described according to
Equation 2.24 (COKER et al., 1999):

U0 =

[
1
ht

(
D0

Di

)
+

D0

2Kw
ln
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D0

Di

)
+

1
hs

]−1

(2.24)
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where hs and ht are shells and tube heat transfer coefficients, respectively, and Kw

is the hollow fiber thermal conductivity coefficient.

2.4 Artificial Neural Network

2.4.1 Neural Cell structures and model

Biological neural Cells constitute three significant structures: dendrites, cell body,
and axon. Each has a specific function: dendrites are receptors of the electric trig-
ger from another neural cell in a process known as synapses. The cell body, for
instance, translates this trigger into neural impulses, which is the information that
the cell will pass forth to another neural cell through its axon structure until its
terminals (HAYKIN, 2001; KOVÁCS, 1996). A biological cell structure is demon-
strated in Figure 2.12.

This process begins when a series of neural impulses are transferred from one
cell to another through neurotransmitters that provoke a change in electrical po-
tential next to cell dendrites. These potential changes can be exciting or inhibitory.
If a releasing threshold is achieved, all those triggers combined produce an ac-
tion potential where the information is analyzed and codified into a frequency
of pulses that is transferred through the axon to another synaptic area. Another
piece of information passes on to another dendrite. The process starts all over
again (KOVÁCS, 1996).

Source: developed by the author.

Figure 2.12: Biological neural cell structure

An artificial neural cell work quite similarly to a biological cell. The main idea
is a structure capable of receiving a series of inputs and translating them into an
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output or series of outputs. Broadly in the neural networks model, an artificial
neural network tries to predict a system or process answer by analyzing its inputs
and their relation with each output variable (KOVÁCS, 1996).

According to KOVÁCS (1996), a biological neural cell has a maximum axon
frequency according to the Equation 2.25, which is a relation between the resting
period (Tr) after a pulsing period (Tp). However, to achieve the maximum puls-
ing frequency, a crescent dendrite depolarization is directly related to the inputs’
frequency and characteristics.

fmax =
1

tr + tp
(2.25)

The relationship between dendrite depolarization due to inputs and axon
pulse frequency is similar to a first-order equation. It can be described as a
weighted input combination in Equation 2.26 (KOVÁCS, 1996).

g(t) = φ

(∫
t

N

∑
i=1

wi(t)xi(t)dt

)
(2.26)

where w is the weight of input value x from ith inputs, and g(t) is the mean fre-
quency of axon pulses under a certain amount of time t. That axon frequency is
the neural cell’s answer related to the inputs received during that period. Addi-
tionally, as mentioned before, there is a maximum frequency that each cell’s axon
is capable of producing, which has a first-order-equation shape, as described in
Equation 2.26. φ(ψ(t)) denominated as activation function, which needs to have
the same profile behavior as the relationship between pulse frequency and cell
depolarization (HAYKIN, 2001; KOVÁCS, 1996).

That activation function can be modeled through a variety of different func-
tions. However, the most commonly found in the literature are sigmoid func-
tions, such as logistics or hyperbolic tangent functions, linear functions, or stair
functions. They are mathematically described according to Equations 2.27 to 2.30,
and their profiles can be visually compared in Figure 2.13.

φ(ψ) =

{
1 if ψ ≥ 0;
0 if ψ < 0.

(Stair) (2.27)
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Source: developed by the author.

Figure 2.13: Activation function profiles comparison

φ(ψ) = aψ (Ramp) (2.28)

φ(ψ) =
1

1 + exp(−bψ)
(Logistics) (2.29)

φ(ψ) = tanh (γψ) =
1 − exp(−γψ)

1 + exp(−γψ)
(Hyperbolic tangent) (2.30)

However, in an actual process, time is considered discreet due to monitoring
limitations. For that reason, only an instant evaluation is done. At that instant,
a specific neural output (yk) is evaluated from limited pulse inputs (xk). That
way, Equation 2.26 loses its time dependency and can be rewritten as described in
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Equation 2.28 (HAYKIN, 2001).

yk = φ

(
N

∑
i=1

wixi

)
= φ

(
wTx

)
(2.31)

where "yk" is the kth neural cell output according to weighted inputs combina-
tion. Furthermore, HAYKIN (2001) proposes an existence of a bias parameter(bk)
which is nothing less than a linear operator that enhances or depletes the liquid
neural input linear combination (u) from kth neural cell. In mathematical terms,
a bias can be integrated into Equation 2.31, which turns out the following:

yk = φ

(
N

∑
i=1

wixi + bk

)
(2.32)

Or yet, it can be assumed that bias is another weight from a unitary input and
incorporated as a dendrite input as illustrated in Figure 2.14

Source: adapted from HAYKIN (2001).

Figure 2.14: Artificial neural cell structure.

Furthermore, this is a neural cell model using only equations. This neural
cell model has been nominated perceptron and was first proposed by MCCUL-
LOCH and PITTS (1943) with their Boolean model, and updated by ROSEN-
BLATT (1958) as the first model to learn with a teacher, which will be shown
later in this work.

However, the biological neural cell does not work alone. There are approxi-
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mately 100 billion neurons only in the brain (VON BARTHELD et al., 2016). That
amount is connected in a complex network capable of reading, analyzing, think-
ing, retaining information, and responding correctly to all the exterior world stim-
uli. That is how ANN raised the interest to work with, as it can be a precursor of
complex AI machinery (HAYKIN, 2001).

2.4.2 Advantages of Neural Network

To understand a neural network, we need to look more closely at how our brain
processes all received information. According to HAYKIN (2001) a human brain
can organize its 100 billion neural cells into processing highly complex informa-
tion in a non-linear way or even in parallel processing. In the early years of born,
a human brain can create its own rules regarding all the inputs received (vision,
smell, taste, and feel are examples of inputs). These rules are usually denomi-
nated experiences. Once it experiences an input, the human brain starts to learn
and understand its surroundings and adapt to them.

The artificial neural network structure is quite similar to a biological brain.
One neural cell is relatively inefficient. For that reason, to achieve a good perfor-
mance, an ANN is composed of some neural cells, as presented in Section 2.4.1,
intertwined and connected to other similar structures in a distributed-parallel-
nonlinear processing unit capable of learning, adapting, and storage knowl-
edge from a series of environment experience. That learning process consists of
changing synaptic weight and neural cell bias to best adapt its objective to each
ANN stimulus (HAYKIN, 2001). In other words, an ANN structure is a high-
performance adaptive processing unit (ALEKSANDER and MORTON, 1990).

An ANN can be non-linear or linear, depending on how each neural cell is
modeled. A non-linear ANN means that this model can learn and understand
non-linearity between inputs, outputs, or among them, which means that a non-
linear ANNcan be applied to a variety of cases. Besides, this characteristic enables
another benefit from ANN. For instance, if there is a process in which the relation
between inputs and output is not very clear in the literature, or even phenomeno-
logical models do not fit the data. ANN can map between inputs and outputs by
"studying" the input-output relation, creating a functional black-box model that
fits the process’s data (HAYKIN, 2001).

Also, ANN can always be retrained to follow process modifications as time
goes by. In other words, an ANN can be designed to adapt its synaptic weights at
a real-time rate. Another robust ANN quality provides robustness to the model.
Besides, each time a different input reaches the first neural cell’s dendrites, this
information is passed by the whole network as each neural cell is connected in
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one way or another (HAYKIN, 2001).
Another essential benefit of ANN is its parallel-processing characteristic

makes it computationally fast. This enables their use for very-large-scale inte-
gration (VLSI), which, according to MEAD (1989), is a powerful tool to analyze
actual complex behaviors.

However, only some things are pro. There are a couple of cons: ANN could
fail or even could not correctly describe what is happening. One of them is that
a significant amount of data is needed to train an ANN, which relies on process
instrumentation and data storage, and not all processes have the amount of data
required to implement ANN. Another negative characteristic of ANN is that a
data-based model does not rely on physical laws, only the interaction between
input and output data, which is also called the black-box model. This is likely
to be troublesome if one wishes to understand the process mechanisms further
(ASGHARI et al., 2018).

To overcome the lack of data many studies are using data augmentation tech-
niques. This methodology is used to oversample a dataset by generating new and
diverse examples based on the existing data. It is commonly used in machine
learning and deep learning applications to overcome the problem of imbalanced
datasets, where the number of samples in one class ismuch smaller than the other,
orwhen the total data amount is not enough tomake amodel learn properly about
the variables’ relation. By applying data augmentation, the model is trained on a
larger and more diverse dataset, which can improve its ability to generalize and
recognize patterns in the data. Data augmentation can involve various techniques
such as rotating, flipping, zooming, and adding noise to the original data to cre-
ate new samples that are still representative of the original data (DING et al., 2023;
MIKOŁAJCZYK and GROCHOWSKI, 2018).

2.4.3 ANN training process

An ANN model’s primordial and most crucial step is the learning phase, which
consists of evaluation andweight adaptation to improve themodel’s performance.
Much information regarding the exciting process needs to be available and con-
stantly updated. This is because an ANN needs to analyze process inputs and
adapt its synaptic weights to approach its results to actual process results. Fur-
thermore, ANN weight optimization is called the learning phase, which is not
unique. Different structure ANNs has their learning process. Studies regarding
learning algorithms have been made since McCulloch developed the first neural
cell model in 1943. In this section, some essential learning algorithms will be pre-
sented. Each one has its advantages and differs mainly in how a synaptic weight
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is modified (HAYKIN, 2001).
The first learning algorithmwasproposed byHEBB (1949), whoproposed that

a highly complex neural network learning behavior could be reduced to a local
learning process. In this study, synaptic performance depended on a correlation
function between inputs and outputs, and for that, a local error evaluation should
suffice the network’s learning procedure. Hebb’s learning proposal is described
on Equations 2.33 to 2.35.

wnew
ki = wold

ki + ∆wki (2.33)

where ∆wki is a function of inputs and outputs:

∆wki = F(yk, xki) (2.34)

As example of correlation function we have:

∆wki = η (rk − yk) xki (2.35)

where η is the learning rate, it modifies as the learning process advances. This
parameterwas deeply studied andmodified throughout the years, and it is further
discussed later in Section 2.4.4

Another simpler learning algorithm is Error Correction Learning, which is an
adaptation ofHebb’s postulate proposed byWIDROWandHOFF (1960) and con-
sists of the Least-Mean-Square (LMS) theorem, which proposes another error sig-
nal output type. That signal triggers the adapting algorithm, which modifies the
synaptic weights and bias from the kth neural cell.

The adjustment is directed towards minimizing an objective function de-
scribed by Equation 2.37 as the Widrow-Hoff LMS algorithm. The error signal
can be described as Equation 2.36, and to illustrate that mechanism, Figure 2.15
demonstrates how the process is done. In other words, what an error correc-
tion learning algorithm does is add a logical evaluation between actual data and
predicted exit and, depending on its performance, proposes a correction on the
synaptic weights, which, according toWIDROWandHOFF (1960), is determined
by Equation 2.38 and is identified as Widrow-Hoff law or Delta law (HAYKIN,
2001) (KOVÁCS, 1996).
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Source: adapted from HAYKIN (2001).

Figure 2.15: Error-correction-based artificial neural cell structure.

ek(t) =
N

∑
i=1

||rk(t)− yk(t)|| (2.36)

Obj(t) =
1
N

e2
k(t) (2.37)

∆wki(t) = ηek(t)xi(t) (2.38)

By the end of this process, each synaptic weight can be described as a function of
an initial estimation plus the delta provided byWidrow-Hoff law, as Equation 2.39
describes. In computational terms, Equation 2.39 can be rewritten in a discreet
time using zeta transformation, and the result is demonstrated in Equation 2.40
where ζ−1 is a unit delay operator.

wki(t + 1) = wki(t) + ∆wki(t) (2.39)

wkn(ζ) = ζ−1 [wki(ζ + 1)] (2.40)

In the next section, the present work will demonstrate how to model and how
a Multi-Layer Perceptron (MLP) network works. There are many other network
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structures in the literature. However, as this work will focus on MLP networks,
an explanation of fundamentals will be equally specific.

2.4.4 Multi-Layer-Perceptron Network

A multi-layer perceptron network consists of perceptron-model neural cells con-
nected with another series of neural cells and organized in a layer-shaped struc-
ture. In this ANN structure, a neural cell layer response generates an input signal
for another neural layer, providing inputs for the ones that came forward. In other
words, an MLP network consists of an initial perceptron layer that receives pro-
cess input signals. Then this layer responds and feeds another perceptron’s layer,
which feeds another and another until the last perceptron layer responds to the
desired variable. The signal always propagates in one direction (forward). That
is why this process is called a feedforward network. (HAYKIN, 2001; KOVÁCS,
1996).

Figure 2.16 illustrates a structure of an MLP network. Each network node cor-
responds to a perceptron structure described in Figure 2.14 from Section 2.4.1.

Figure 2.16: Multi-Layer Perceptron Network Scheme

Source: adapted from HAYKIN (2001).

Figure 2.16 illustrates that each synaptic input weights each neural cell node
from the next layer. Under the same logic, Womn means that the nth neural cell
input signal from mth layer has a specific weight for the subsequent layers Oth

neural cell node. Furthermore, there goes until the last node layer gives ANN’s
response. Keep inmind that output signals and layer’s neural cells amount do not
need to match ("O" does not strictly have to have the same dimension as "n4").
Even layers do not need to have the same neural cell number.
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• The Backpropagation Algorithm

As mentioned in Section 2.4.3, every ANN has its learning method. MLP net-
work learning process is a mix of those three learning algorithms mentioned in
this work. MLP uses an error backpropagation, commonly known as the Backprop-
agation algorithm only, which is an adaptation from Hebb’s, Widrow-Hoff, and
Rosenblatt algorithms studied and published by RUMELHART and MCCLEL-
LAND (1986).

The backpropagation algorithm uses the same principles from Equations 2.36
and 2.37, with few differences. The only "visible layer" is the last one, so the er-
ror measure can only be calculated at this specific point. Then the main idea is to
adjust synaptic weights from theMLP network from end to the beginning accord-
ing to the LMS algorithm, which says that a synaptic weight correction ∆wmj(t),
where wmj(t) is the mth exit layer’s neural cell synaptic weight from an jth previ-
ous layer neural cell response of tth interaction time, is proportional to objective’s
function gradient described by ∂Obj(t)/∂wmj(t).

Rewriting all the equations that describe an MLP network model gives the
Equations 2.41 to 2.43 below.

∂Obj(t)
∂wmj(t)

= −em(t)φ′
m (um(t)) yj(t) (2.41)

∆wmj(t) = ηδm(t)yj(t) (2.42)

This method δ is a local gradient that directs those synaptic weights correction,
which in this case can be written as:

δm(t) = −em(t)φ′
m (um(t)) (2.43)

Moreover, this is a backpropagation weight update algorithm idea considering
that the mth layer is the exit layer. Furthermore, for an immediate exit previous
layer "j", that j = m − 1 layer, the Equation 2.43 can be rewritten into Equations
2.45.

em(t) = ||rm(t)− φm(um(t))|| (2.44)

δj(t) = φ′
j(uj(t))

m

∑ δm(t)wmj(t) (2.45)
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where the weight correction ∆wj(j−1)(t) keeps subjected to the delta law, which is
described by Equation 2.46.

{
∆wj(j−1)(t)

}
=

{
Learning Rate

η

}
.

{
Local gradient

δj(t)

}
.


j-1 cell input

signal
y(j−1)(t)


(2.46)

This gives the following prior-exit layer weight correction algorithm:

∆wj(j−1)(t) = ηφ′
j
(
uj(t)

) [ m

∑ δm(t)wmj(t)
]

y(j−1)(t) (2.47)

Equations 2.41 to 2.45 and 2.47 detailed development can be found in the Ap-
pendix B. The Learning rate parameter plays a vital role in finding the gradient
minimum and can be determined through different approaches. For instance,
RUMELHART and MCCLELLAND (1986) proposed a fixed step (steepest de-
scent) towards finding the negative gradient. However, DE SOUZA JÚNIOR
(1993) showed that pursuing the optimum value using fixed steps is inefficient
due to difficulties in choosing a fixed step that is not too large that overshoots the
variable’s optimum values or too small that hinders the method’s convergence,
especially near the optimum value.

To minimize the overshoot and oscillation possibilities, thus not giving up on
convergence speed, MCCLELLAND and RUMELHART (1988) proposed a modi-
fication on the backpropagation algorithm to include amomentum term described
by Equation 2.48. where ε is themomentum constant that correlates the past weight
changes on the new values.

∆wnew
mj (t) = ηδm(t)yj(t) + ε∆wold

mj (t) = −η∇Obj(wmj) + ε∆wold
mj (t) (2.48)

However, according to DE SOUZA JÚNIOR (1993) and LEONARD and
KRAMER (1990), this method may not be enough to minimize the oscillation
due to the fixed learning rate, and the use of fixed momentum parameters may
also cause a lack of assertiveness as the algorithm may cycle the optimal point.
LEONARD and KRAMER (1990) proposed a conjugate line search with gradient
descent in both directions which η is updated using a line search algorithm and ε
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is updated according to Equation 2.49 for the q + 1th interaction.

ε =
∇Obj(wq+1)

T∇Obj(wq+1)

∇Obj(wq)T∇Obj(wq)

wq+1 = wq + ηsq

sq+1 = −∇Obj(wq+1) + εsq

s0 = −∇Obj(w0)

(2.49)

Recently, somemixedmethods started attracting attention to parameter optimiza-
tion. They use a combination of the stochastic objective function and evaluate its
gradient behavior such as Adam (Adaptive Moment Estimation) algorithm pro-
posed by KINGMA and BA (2015), which does a stochastic optimization using
only first-order gradients and calculates adaptive learning rates according to the
first and second moment gradients. Stochastic gradient-based algorithms are of-
ten used on deep learning applications where the input instances are high di-
mensioned or online learning is required (DUCHI et al., 2011; KINGMA and BA,
2015). Another algorithm that has recently been attracting attention is the Adap-
tive Gradient Algorithm (AdaGrad) developed by DUCHI et al. (2011), which is
considered as being an adaptive sub-gradient method that takes into account the
function profile from previous interactions to adapt the learning rate. For that
reason, many computational packages, such as Keras for Python or OptimLib for
C++, choose to use these methods to solve their weight and bias optimization
problems.

2.5 Physics-Informed Neural Networks

In this study, a Physics-InformedNeural Network (PINN)model is also proposed
to monitor the membrane separation process without relying solely on data. At
the beginning of 2019, an innovative data-driven approach usingNeuralNetworks
was developed by RAISSI et al. (2019). The authors have developed a neural
network-based structure capable of solving data-driven problems while consid-
ering the governing laws by which the problem is bounded. The supervised-
learning algorithmwas called Physics-InformedNeuralNetwork and is capable of
learning not only the data behavior over a specific operating region but also the re-
lationship that each output variable related to each other. This is possible because
PINNs are trained using data, residuals from model equations, and boundary
conditions.

PINNs was developed to enhance the machine-learning-problems solution
process to a level in which their physical laws should be respected, as close as
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possible, regardless of the data behavior. Complex non-linear problems, such as
fluid dynamics, will no longer need to be deeply tested for inconsistent results that
violate mass or heat transfer principles. RAISSI et al. (2019) affirmed and showed
how useful and accurate the PINN approach solves partial non-linear differential
equations. They also used them for parameter inference, which comes in handy
when dealing with processes without further knowledge of equipment parame-
ters.

2.5.1 PINNs Structure and Logic

The first developed PINN structure was similar to an MLP structure elucidated
previously in Section 2.4.4. However, the target data used for training does not
consist solely of data. As output, a PINN is set to return the data, the residuals
from the governing equations, and the boundary conditions. This also enhances
the amount of information a PINN can provide, thus avoiding the black-box char-
acteristics.

Figure 2.17 illustrates how the PINN is structured. At first, a neural network
takes time-dependent or shape-dependent input values and predicts every sub-
stantial value. In Figure 2.17, the NNmodel is used to predict the Boundary Con-
ditions, and governing equation residuals, and data, next anMSE algorithm, such
as the one illustrated in Section 2.4.3, can be used to calculate a simple or weighted
MSE that will be used for the training algorithm (such as ADAM backpropaga-
tion) that updates the NNweights and biases, and the results are validated again
until the end of the training process.

Source: developed by the author.

Figure 2.17: PINN scheme.
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The most common network used for PINNs are the MLP networks discussed
previously in Section 2.4.4 (CARVALHO and BRAGA, 2022). Since the NN
weights and biases update are a function of weighted individual loss functions, a
great variety of configurations are possible, which enables the PINN approach
to be used for many different problems, for instance: thermodynamics (CAR-
VALHO and BRAGA, 2022), medicine (SAHLI COSTABAL et al., 2020), electric
and electronic (NELLIKKATH and CHATZIVASILEIADIS, 2022), Civil Engineer-
ing(GOKHALE et al., 2022) andO&Gfield (FRANKLIN et al., 2022;MUDUNURU
et al., 2020; QUEIROZ et al., 2021).

According to the developer, RAISSI et al. (2019), the PINN algorithm has
higher sensitivity to data and residual deviation. For that reason, there is no stan-
dardized approach to treat the data prior to or after, even for solving the same
problem. Also, a learning algorithm is susceptible to the loss function proposed
by the developer. Training sessions for the PINN are the same exposed in Section
2.4.3 and 2.4.4 with only the difference of the objective function gradients calcula-
tion.

2.6 Literature Review

As alreadymentioned in Chapter 1 and the last sections, the present work intends
to create a digital twin from an offshore gas deacidification unit while studying a
new approachmixing phenomenological and data-drivenmodels to respect phys-
ical laws while being faster enough to be implemented on real-time monitoring
software. The proposed idea is to mix physical laws and data-driven structures
to search for the best approach by using the data available to estimate the com-
pound’s permeability while relying on finite-volume phenomenological models
to determine the other variables; resulting in a PINN structure capable of deter-
mining every variable for every discretization step in the digital-twin that could
be faster and reliable enough.

To ensure that those approaches had never been used in the literature, a search
using the most renowned research repository was used to verify this authenticity,
such as Elsevier, Wiley Online Library, ACS Publications, Web of Science, and
Google Scholar. As a result, similar research was found, but they had yet to use
a hybrid model to create a digital twin from an existing process. This makes the
presentwork the first of it until the date of its publication. Some similarworks had
though modeled the NG/CO2 deacidification process using different approaches,
as presented in the following:

PAN (1986) studied a high pressurized system of hollow-fiber membrane
module for H2, CO2 and H2S separation. The author considered an isotherm
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model with a constant permeability coefficient. It was the first study to consider
the permeate flowpressure build-up calculation using theHagen-Poiseuille equa-
tion. Shell side pressure drop was still neglected. PAN (1986) also considered
a steady-state process with plug flow on both sides (shell and tube). Because of
that, a one-dimensional (axial) mass andmomentum balance were used tomodel
the problem, which was solved by an interactive shooting method. The author
also validated the model using experimental data.

COKER et al. (1999) used a similar approach as PAN (1986) for a multi-
component simulator for hollow-fiber membrane modules. However, it also in-
cluded an energy balance model and more components from natural gas treat-
ment. This study elaborated a pure phenomenological model where shell side
pressure drop was neglected, and tube side pressure build-up was described by
the Hagen-Poiseuille equation. Both flows were assumed to be in a plug-flow
pattern and a steady-state process. The mathematical model used WHITAKER
(1977) thermal energy balance for gas and used finite differences to solve the
equations. The authors also used the Redlich-Kwong equation of state to predict
gas mixture properties and neglected conductive heat transfer compared to the
axial advective term. The objective was to evaluate the differences that the per-
meability coefficient suffered once membrane temperature changes on a variety
of CO2 and CH4 gas mixtures. The authors concluded that temperature signif-
icantly changes the compound permeability coefficient associated with thermal
gas expansion. COKER et al. (1999) did not validate their model with any exper-
imental data; their work was to show the differences in permeability parameters
whether considering temperature variation or not.

MARRIOTT (2001) and MARRIOTT and SØRENSEN (2003) evaluated many
phenomenological models for hollow-fiber and spiral-wound membrane mod-
els for gas separation. In some cases, the authors considered mass, momentum,
and energy balances and solved their equations using the orthogonal collocation
method and finite-compounds method. Unlike the previously mentioned works,
the authors also considered pressure drop on both module sides. However, this
model challenge was to predict diffusion and dispersion coefficients amongmany
other parameters such as permeability variation, fluid thermal conductivity, iso-
baric thermal expansion, and membrane fiber thermal conductivity. This model
can be tricky if it does not consider some of these parameters from the literature.
The authors validated their model using the data from PAN (1986) work.

The work of CHOWDHURY et al. (2005) was based on PAN (1986) model for
hollow-fiber membranes, but using variable viscosity modeling. Gas mixture vis-
cosity was calculated using Wilke’s method for nonpolar gases and used compo-
nent viscosity calculation as a temperature-dependent function. Their model was
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validated with PAN (1986), SIDHOUM et al. (1988) and HARAYA et al. (1986)
experimental data. Furthermore, the authors eliminated the required pressure
initial guess required by the PAN (1986) model and incorporated their solution
routine intoAspenPlusTM as a usefulmodel for further optimization and economic
evaluation studies involving membrane separation for gases.

SHAHSAVAND and CHENAR (2007) study compared the ability of two dif-
ferent neural networks (Radial Basis Function - RBF, and MLP) with a multipur-
pose software for parameter estimation and equation solver (Table Curve ®) to
predict the permeances and separation factors of hollow fiber membranes. Two
experimental datasets were used to train the networks for separating CO2 from
CH4, for the experimentation, both membrane types were used: polyimide-based
and poly-phenylene-based. Both RBF and MLP networks outperformed the TC
software. As result, the predictions of MLP networks were found to be highly
influenced by the initial values of synaptic weights, which could result in over-
fitting, particularly when there was noise in the data. Conversely, RBF networks,
when combined with suitable isotropic spread and regularization parameters,
had the ability to effectively eliminate noise and detect the real underlying hyper-
surfaces that may be obscured by noisy data sets.

PEER et al. (2008) proposed a different approach to model a hollow-fiber nat-
ural gas separation process. The authors used an Artificial Neural Network to
predict module gas separation and the required membrane area to process differ-
ent natural gas compositions. The authors modeled an MLP Network with two
hidden layers with 5 and 4 perceptrons, respectively, three inputs not described
by the authors and one output (retentate composition or membrane selectivity).
They used hyperbolic tangent as an activation function, the Levenberg-Marquardt
backpropagation training method with a mix of experimental data and the ones
found in the literature. TheirANNmodelwas validatedusingCOKER et al. (1998)
data. However, besides the conclusion that the ANN model can predict selectiv-
ity and retentate composition well, it has a strong possibility that their model is
overfitted to their experimental data, that is because there are only a few experi-
mental points over a limited operation region which, hardly their approach and
MLP network structure can be applied to an actual steady-state gas separation
process.

JUNG et al. (2010) developed and compared twomodels for CO2 separation in
hollow-fiber membrane modules: an explicit model based on mass balances and
an MLP back-propagation neural networks model. Experimental data obtained
from a single-stage module with recycle were used to validate the explicit model
and train the MLP network. As result, the authors presented a small discrepancy
between theoretical and computational model results. Finally, the authors con-
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cluded that the proposed models could effectively be used in the analysis and
operation of gas separation processes using hollow-fiber membranes.

AHMAD et al. (2012) proposed implementing an isothermic phenomenologi-
cal two-dimensional cross-flow hollow-fiber CO2/CH4 separation unit model and
implemented into Aspen HysysTM for further optimization and economic stud-
ies. Furthermore, the study focused on simulating many different gas separation
process configurations to evaluate the best configuration for CO2 removal. Their
model was validated with PAN (1986) and QI and HENSON (1998) experimen-
tal data on NG separation, which is odd, as PAN (1986) work relies on parallel
permeation. In contrast, QI and HENSON (1998) studied an optimized config-
uration for a spiral-wound natural gas separation unit. They concluded that the
gas processing cost is minimal when two modules are arranged in series in which
the second permeate is recycled into the first feed flow.

LOCK et al. (2015) studied a CO2 capture system from natural gas using a
phenomenological model from different hollow-fiber membrane configurations.
Shell side pressure variations were neglected, the plug-flow pattern was assumed
on bothmodule sides, theHagen-Poiseuille equation for permeate pressure build-
up was used, and the isothermic pattern was applied. The authors considered a
radial cross-flow pattern for membrane gas diffusion and solved the equations
using finite radial differences for co-current, counter-current, and cross-flow con-
figurations. The authors’ main idea was to compare the separation performance
among these configurations and also do an economic evaluation once incorpo-
rated into Aspen HysysTM. The study concluded that the counter-current pat-
tern has a slightly higher performance than the cross-flow pattern, and both have
much higher than the co-current separation pattern. The authors also noted that
the most economical configuration does not always have the highest separation
output. That is because different patterns require different auxiliary machinery,
which impacts the gas processing cost.

CHU et al. (2019) used a similar approach as PAN (1986) did for an isothermic
multi-component simulator for hollow-fibermembranesmodules natural gas sep-
aration unit. However, it was also considered a pressure drop model for the shell
side. This study elaborated a pure phenomenologicalmodelwhere shell side pres-
sure drop and tube side pressure build-upwere described by theHagen-Poiseuille
equation using hydraulic diameter concepts. Both flows were assumed to be in
steady-state and as a plug-flow pattern. The authors introduced dimensionless
variables to help the numerical algorithm and proposed an orthogonal collocation
method. They also considered two different configuration patterns (co-current
and counter-current). They implemented the model in MATLAB® and named
as Mollocator, which was validated using an in-house membrane model, which
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was validated using experimental data. The authors’ main idea was to develop
another approach for the hollow-fiber membrane model. However, they could
have explained how the counter-current process was evaluated, and the Hagen-
Poiseuille equation viscosity parameter value was not found in their work. They
concluded that for higher packing factors, shell side pressure drop can signifi-
cantly affect gas separation but needed to specify how higher it can be for not to
influence much.

ULLAH et al. (2019) developed different silica-based membranes by coating
silica solution into alumina-based support. They proposed a neural network ap-
proach for evaluating the effects of a silica-solution dip-coating time, inlet pres-
sure, and inlet flow rate into different alumina-support structures to evaluate the
permeability and selectivity factors, in pursuit of enhancing CO2/CH4 gas sepa-
ration process. The authors used MLP neural network model with a backprop-
agation algorithm to predict the permeability factors using experimental data of
pressure, inlet flow rate, and coating time as input variables. The predicted results
fromdeMLP showed strong reliability, validity, and applicability. The accuracy of
the predicted data regression was verified by achieving high levels of agreement
with R2 values of 0.999 for CO2 and 0.998 for CH4. The trained neural network
had mean absolute deviation errors of 10-6. Also, the authors found an optimum
alumina coating time to maximize the CO2/CH4 selectivity on silica membranes
and concluded that the synthesized silica membrane was promising for CO2/CH4

separation under certain operating conditions.
NASIR et al. (2022) synthesized different types of membranes (polymeric,

amine-based, and filler) and proposed a neural network approach for evaluating
the permeance and selectivity factors for a binary mixture of CO2/CH4 gas sep-
aration process. The authors used MLP neural network model with backpropa-
gation algorithm to predict the permeance factors and CO2/CH4 selectivity using
experimental data of pressure, and membrane material concentration (wt%) as
input variables. The MLP model was found to be flexible enough to be used for
several outputs using only one MLP model. The accuracy of the predicted data
regression was verified by achieving high levels of agreement with overall R2 val-
ues higher than 0.96 and with an average relative error of 6.1% for CO2, 4.2% for
CH4 permeances and 3.2% for CO2/CH4 selectivity. The authors also concluded
that gas permeance was found to decrease as the pressure increased, attributed to
the glassy nature of the polymer. Conversely, an increase in amine concentration
resulted in an increase in CO2 permeance due to its affinity with amine-based
membranes. Furthermore, the authors suggested that pressure and amine con-
centrations are the predominant variables affecting gas permeability in facilitated
transport mixed matrix membranes.
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In the natural gas sweetening field, several primary studies have been con-
ducted. However, as of February 2023, no research has been found that employs
a hybrid ANN and phenomenological approach or a PINN structure. Instead,
many phenomenological approaches have been used, and only a few have uti-
lized a black-box model, primarily to forecast permeability and selectivity factors.
While neural networks have been employed to optimizemembrane-based gas sep-
aration processes, no study has utilized them to predict the separation process and
compare different approaches. This reinforces the innovative characteristic of the
present work and its high contribution to the literature.

The next chapter of this work will present a case study aimed at modeling an
existing and operational process to achieve the first and second specific objectives
of this study.
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Chapter 3

Phenomenological model

3.1 Introduction

To derive a model for an actual gas separation unit, a detailed process flow dia-
gram is required to determine what equipment and how many of each one are
necessary. Also, it is imperative to know some key process inputs such as gas mo-
lar flowrate or velocity, feed temperature, pressure, and critical compound com-
positions. Besides, a real process generally has non-operating-parallel-ordered
units, which are used while the other is under maintenance or had to be stopped
operating for any other reason. That other unit must also be modeled accordingly
to its components and equipment specifications.

This work is going to consider an FPSO gas separation configuration that is
operating in Brazilian southwest oil fields whose process diagram is as shown by
Figure 3.1. On that flow scheme, it can be seen three major parallel-organized
gas separation units named "TREM" which are composed of 3 main separation
structures each, the first with 3 membrane modules, the second with 4 membrane
modules, and the third with 4 more membrane modules each. Also, Figure 3.1
shows 2 TREMs with open valves (green-colored), and the third TREM has all its
valves closed (red-colored). The third TREM is the spare one. This FPSO always
operates as shown in Figure 3.1: 2 TREMs operatingwhile 1 is undermaintenance.
It can also be seen that the flow is a counter-current pattern on all modules. Be-
sides, at the first modules, an inlet permeate flow also does not exist. Everything
that flows into the permeate flowline comes exclusively from the feed stream. A
larger copy from Figure 3.1 can be found in Appendix C for detailed evaluation.
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Source: developed by the author.

Figure 3.1: A real FPSO gas separation process diagram.

3.2 Methodology

In this chapter, a phenomenological model is proposed for the process described
by Figure 3.1, whichmimics the one running the separation data used in thiswork.
Depending on themodel performance, another study regardingmodel dimension
and accuracy ismade to verify if dimension reduction should apply, thus lowering
computational costs and model agility.

To achieve this work’s first objective, model validation, some variables were
considered constants and gathered from literature and shown as its methodol-
ogy is developed. The algorithms were developed using Python programming
language at Jupyter Notebook compiler.

3.2.1 Hollow fiber modules model and discretization

As mentioned in the last chapter, the model is proposed to consider the following
hypothesis, which makes sense to the actual gas separation unit structure.

Hypothesis 1 (H1). All membrane modules are identical, with identical membrane
sheets. All of them have the same pore distribution, mean pore size, thickness, same pack-
ing factor and do not deform under pressure or temperature differences;
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Hypothesis 2 (H2). The Peng-Robinson Equation of State describes the real gas mixture
of CO2 and CH4;

Hypothesis 3 (H3). Radial temperature, mass, and momentum variation is considered
uniform;

Hypothesis 4 (H4). Steady-state operation.

Hypothesis 5 (H5). Specific calorific capacity (Cp), thermal conductivity (k), and iso-
baric thermal expansion factor (β) are considered constant.

Hypothesis 6 (H6). Gases do not condensate in any of the module’s side flows;

Hypothesis 7 (H7). The module is adiabatic;

Hypothesis 8 (H8). Reversible work and viscous dissipation are expected to be small
even for a non-ideal gas mixture so that these terms can be neglected.

Hypothesis 9 (H9). Energy balance will not be considered. Instead, a constant temper-
ature from the output flow from each side will be considered.

Hypothesis 10 (H10). The Hagen-Poiseuille equation will be used for both sides’ pres-
sure drop calculations and adapted to consider the non-ideal gas mixture.

An evaluation of the process conditions on the steady-state condition as pro-
posed byHypothesis 4, both permeate and retentate feed temperatures are in equi-
librium. So themajority of energy lost in the process is lost to the ambient inwhich
the membrane modules are. Due to the lack of information about environmental
conditions such as wind, temperature, and humidity, this study will consider the
effects of temperature only for permeability calculations.

Furthermore, the Hypothesis 9 is based on the study of COKER et al. (1999),
which concluded that, for low-density gases, themajor impact of temperaturewas
in the permeability factor. According to the authors, the temperature variation
needed to double the permeability factor for CO2 is 45 K, whereas for CH4 is 20
K for a polyimide membrane. Supposing that this sensibility is also applicable
to cellulose-acetate membranes, in this case study, the process conditions have an
average temperature difference, between the inlet and outlet of 4.5 °C, for both
inlet and outlet flows. Considering this, temperature variation would influence
an average of 25% on CH4 permeability and 11% on CO2 permeability at the end
of the process. For a single membrane module, this represents 2.3% for CH4 and
1% for CO2 of error. For that reason, the temperature variation was not taken into
consideration.

Also, regarding Hypothesis 10, besides MULDER (1996) suggestion apply-
ing the Hagen-Poiseuille simplification for flows where the Reynolds number is
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less than 2100, COKER et al. (1998) studied the application for low-density and
high-pressure flows and how they influence the pressure profile for Hollow-Fiber
membranes. The latest authors concluded that the pressure distribution could be
well-represented by the Hagen-Poiseuille. Since that study, many other authors
also rely on that conclusion, such as: AHMAD et al. (2012); CHU et al. (2019);
COKER et al. (1999); LOCK et al. (2015) to propose variations or use it in their
studies. Because of that, this equation should provide enough contribution to-
wards the achievement of the first objective of this work.

The pressure drop model will be an adaptation from CHU et al. (2019). The
authors used theHagen-Poiseulle equation and considered ideal gas behavior, the
shell side hydraulic diameter and the squared-pattern fibers arrange asmentioned
in HE et al. (2017) as the most common pattern found. The hydraulic diameter
considered by the authors is presented in Equation 3.1, and the friction factor used
by the authors was the 24/Re instead of the original Hagen-Poiseulle tube flow
friction factor of 16/Re, which adaptation and rearranging the equations gives
the Equation 3.2.

Dxh =
4
(

πD2

4 − πND2
o

4

)
πNDo

(3.1)

dPx

dz
= −192NDo(D + NDo)RTµm

π(D2 − ND2
o)

3Px

2

∑
i=1

vzi (3.2)

That being reinforced, considering all those hypotheses, and including the
Peng-Robinson compressibility factor, the following equations from 3.3 to 3.6 are
proposed to describe the membrane separation process.

d (uzi)

dz
−

DABs
i
ss

d2uzi

dz2 = −πDoNP
(

PxXi − PyYi
) Shell side (3.3)

d (vzi)

dz
−

DABs
i
sp
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dz2 = πDoNP
(

PxXi − PyYi
) Tube side (3.4)

dPx

dz
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π(D2 − ND2
o)

3ZxPx
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∑
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vzi Shell side (3.5)
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dPy

dz
=

128RTµm

πD4
i NZyPy

2

∑
i=1

uzi Tube side (3.6)

The indexes 1 and 2 from the previous equations sum are the indexes that iden-
tify both elements from the binary mixture of CO2 and CH4. Which, complies to
the following boundary conditions visually explained in Figure 3.2 and itemized
as follows:

1. Follows the Dirichlet boundary concept of a specified condition.

f = constant (3.7)

2. Follows the Neumann boundary type of zero flux for the feed permeate con-
dition.

∂ f
∂z

∣∣∣∣
z=0

= 0 (3.8)

3. Continuity of flux and variable.

f i
out = f i+1

in (3.9)

4. Null gradient for both models flow.

∇ f = 0 (3.10)

where f is a general representation of a state variable, f i
out is a state variable value

at the end of the ith module and f i+1
in is a state variable value at the begining of the

ith + 1 module.
Next it is imperative to knowmodule specification parameters such as internal

diameter, fiber internal and external parameters, number of hollow fibers, length,
and so on. Since this work objective is to make a digital twin, it relies on actual
module specification data. However, due to intellectual property restrictions, the
exact equipment parameters were not disclosed until the time of the development
of thiswork. For that reason, and the effects of the study, a dummymodelwith pa-
rameters that complieswith themakermodel patentwill be used instead and is re-
sumed in Table 3.1 (CASKEY, 1993). The structure presented is enough to achieve
the objectives proposed by this work without compromising the company’s intel-
lectual property.

56



Source: developed by the author.

Figure 3.2: Boundary conditions representation from the three different modules
found in this process, where 1 specified entrance condition, 2 is zero flux, 3
represents the continuity of flux and variables, and 4 is where the gradient is

null.
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Table 3.1: Hollow fiber membranemodule specifications comparison between the
patent from CASKEY (1993) and those used for the digital-twin structure pro-
posal.

Hollow fiber module parameter Patent Used Values
Shell inner diameter (in) 16 or 30 30
Tube outer diameter (µm) 80.5 ≤ Do ≤ 240 240
Tube inner diameter (µm) 70 ≤ Di ≤ 130 130
Tube thickness relation h ≥ 0.15Di 0.84Di

Tube length (m) 2 2
Fibers amount on each module N ≥ 50000 2x106

Membrane composition Cellulose Acetate Cellulose Acetate

The values proposed to be used according to Table 3.1 are the ones that re-
sulted in similar process results as the data gathered from January/2020 and Jan-
uary/2021. Since this work does not aim to estimate module parameters, it seems
reasonable enough tomove onwith the development of this dissertation proposal
with this module configuration.

3.2.2 Model Discretization

For numeric implementation, models need to be discretized. In this work, the one
chosen is the finite volume method because mass, momentum, and energy tend
to conserve and because it is the most common method used on flow problems
involving mass and energy transfer. It consists of creating an evaluation mesh
inside each domain, which analyzes each property variation on each finite volume
of the created mesh (MALISKA, 1995).

The discretization process of the finite volume consists of integrating Equa-
tions 3.3 to 3.6 on every finite volume, which yields the following equations:

∫
ΩVC

d (uzi)

dz
dVC −

∫
ΩVC
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i
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d2uzi

dz2 dVC =
∫

ΩVC

−πDoNP
(
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)
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∫
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dz
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∫
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i
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d2vzi

dz2 dVC =
∫

ΩVC
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(
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)

dVC

(3.12)
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Source: developed by the author.

Figure 3.3: General 1D mesh representation of finite-volume method, with the
central volume P and the neighboring volumes W and E. The border midpoints

are represented by w and e, respectively.

∫
ΩVC

dPx

dz
dVC = −

∫
ΩVC
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2

∑
i=1

vzidVC (3.13)

∫
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∫
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i NZyPy

2

∑
i=1

uzidVC (3.14)

where ΩVC is each finte volume boundaries. Figure 3.3 represents a one-
dimensional finite volume mesh of an arbitrary discretization. The central vol-
ume, represented by the letter P, is where the equations and fluxes will be evalu-
ated. The lettersW and E (West and East) represent the neighbor volumes, which
share only one border with the P volume, whose midpoints are represented by
letters w and e.

Applying Equations 3.11 to 3.14 under the finite volume represented by Figure
3.3, and using the central finite differences to approximate the first-order deriva-
tives of the diffusive terms, gives the following discretized models:(
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Ss∆z

)
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(
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Ss∆z

− 1

)
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(
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)
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)
vziw +

(
DABs

i
Sp∆z

+ 1

)
vzie

+ πDoNPP
(

PxPXiP − PyPYiP
)

∆z Tube side
(3.16)
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P2
xe = P2
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2

∑
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(vziP)∆z Shell side (3.17)

P2
ye = P2

yw − 256RTµm

πD4
i ZxN

2

∑
i=1

(uziP)∆z Tube side (3.18)

One may notice that the signal changed for the tube side equations due to the
way of integrating the equations for the counter-current pattern. While the inte-
gration from the shell side is done from z=0 to z=L direction, for the tube side,
the integration will take place from z=L to z=0. At the end of the evaluation, the
equation signals change. The values from each variable in the faces of each finite
volume will be calculated as the average of the values found at w and e. In the
first finite volume, w variable value will comply with the initial condition from
Equation 3.7 and the e variable value will comply with the outlet condition from
Equation 3.10 at the module‘s exit.

3.2.3 Molar volume calculation

To calculate phenomenological equation parameters, such as permeability, fugac-
ity, molar flow, viscosity, and many others, the molar volume from each module
side hydrocarbonmixture (permeate and retentate)will be calculated using Peng-
Robinson thermodynamic model, described by Equation 3.19. According to BIRD
et al. (2004). This equation of state can represent the binary mixture of CO2 and
CH4 with high accuracy,

P =
RT

V − bmix
− amix

V(V + bmix) + bmix(V − bmix)
(3.19)

where amix and bmix for a mixture of compounds can be calculated using van der
Waals mixture rules where a is quadratic approximation while b is linear MEHL
(2009). The expression to calculate each parameter is as follows:

amix =
n

∑
i=1

n

∑
j=1

yiyjaij (3.20)
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bmix =
n

∑
i=1

yibi (3.21)

where:

aij = (1 − kCO2−CH4)
√

aiaj (3.22)

where yi is the molar fraction from ith component, ai and bi are the properties of
pure substances given by Equations 3.23 and 3.24.

a = 0.45724
R2(Tc)2

Pc

(
1 +

(
0.37464 + 1.54226ω − 0.26992ω2

) (
1 −

√
Tr
))2

(3.23)

b = 0.0778
RTc

Pc (3.24)

where Tc stands for critical temperature, Pc is the critical pressure, Tr stands for
reduced temperature described byEquation 3.26, ω is PITZER et al. (1955) acentric
factor described by Equation 3.25 and Psat is the saturation pressure.

ω = −1 − log10
Psat

Pc |Tr=0.7 (3.25)

Tr =
T
Tc (3.26)

Table 3.2 presents the parameters used to calculate molar volume from this
work.

3.2.4 Diffusion Coefficient calculation for low-density gases

To calculate theDiffusionCoefficient from eachmodule side hydrocarbonmixture
(permeate and retentate) at low density, the Chapman-Enskog model, described
by Equation 3.27 for binary mixtures, will be used. Although it was first aimed to
model monoatomic gases, according to BIRD et al. (2004), the model performed
remarkably well for non-polar polyatomic gases.
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Table 3.2: Peng-Robinson thermodynamic parameters for the fugacity calculation

Parameter CO2 CH4

Pc(bar)(1) 73.9 46.3
Tc(K)(1) 304.1 190.4

ω(1) 0.239 0.011
k(2)CO2−CH4

0.103

Source: (1)TERRON (2009); (2)LI (2008)

DAB = 1.8583x10−3

√
T3
(

1
MA

+
1

MB

)
1

Pσ2
ABΩAB

(3.27)

where T is temperature, P is pressure, ωAB is the collision integral, and it is given
byEquation 3.28, σAB is the averagemolecule diameter and MA and MB themolec-
ular mass from each component.

Ωϵ =
1.06036

T0
ϵ .15610

+
0.1930

exp(0.47635Tϵ)
+

1.03587
exp(1.52996Tϵ)

+
1.76474

exp(3.89411Tϵ)
(3.28)

where Tϵ is a dimensionless temperature given by Equation 3.29.

Tϵ =
T

ϵAB
(3.29)

ϵAB =
√

ϵAϵB (3.30)

where ϵi is the molecule’s characteristic energy. Table 3.3 presents the parameters
used to calculate molar volume from this work.

3.2.5 Viscosity calculation for binary mixture gases

To calculate the viscosity from each module side hydrocarbon mixture (permeate
and retentate) at lowdensity,Wilke’smodel, described byEquation 3.31 for binary
mixtures, will be used. Wilke’smodel is a less rigorous Chapman-Enskog-derived
model for gas mixtures that provide sufficient accuracy without relying too much
on computational cost (BIRD et al., 2004; WILKE, 1950). Although it was first
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Table 3.3: Chapman-Enskog parameters for theDiffusionCoefficient and viscosity
calculation

Parameter CO2 CH4
M(g/mol) 44.01 16.04

σ(A) 3.996 3.780
ϵ( 1

K ) 190 154
Source: BIRD et al. (2004)

aimed to model monoatomic gases, according to BIRD et al. (2004), the model
performed remarkably well for non-polar polyatomic gases at low density.

µmix =
n

∑
i=1

xiµi

∑n−1
j=1 xjΦij

(3.31)

where N is the number of chemical species in the mixture, xi, is the mole fraction
of ith and jth compounds for i ̸= j, µi is the viscosity of pure compounds at a given
temperature and pressure described by Equation 3.32, µmix the viscosity of the gas
mixture and ΦAB is the dimensionless quantities given by Equation 3.33.

µi = 2.6693x10−5
√

MiT
σ2

i Ωµi
(3.32)

Φij =
1√
8

(
1 +

Mi

Mj

)−1/2
1 +

(
µi

µj

)1/2(
Mj

Mi

)1/4
2

(3.33)

where Ωµi is the collision integral for viscosity, given by Equation 3.34.

Ωµi =
1.16145

T0
ϵ .14874

+
0.52487

exp(0.77320Tϵ)
+

2.16178
exp(2.43787Tϵ)

(3.34)

in which Tϵ is the same dimensionless temperature given by Equation 3.29. For
binary mixtures, one can summarize the following couple of equations:

µAB =
xAµA

xAΦAA + xBΦAB
+

xBµB

xAΦBA + xBΦBB
(3.35)
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ΦAB =
1√
8

(
1 +

MA

MB

)−1/2
[

1 +
(

µA

µB

)1/2 (MB

MA

)1/4
]2

(3.36)

where:

ΦAA = ΦBB = 1 (3.37)

Table 3.3 presents the parameters used to calculate viscosity from this work.

3.2.6 Permeance calculation

To determine the change in the permeation values of CO2 and CH4 mixture along
the membrane module, the mathematical functions developed by SABERI et al.
(2016) were used. The presence of CO2 in the feed/retentate stream promotes the
plastification effect of cellulose acetate, which hinders compound transport and
separation efficiency. SABERI et al. (2016) and co-workers assumed that the dif-
fusivity across the membrane solely depends on the plasticizer component. To
represent the sorption-diffusion model, the equations developed were based on:
the dual sorption theory (Dual Mode Sorption), the partial immobilization sorp-
tion theory, and the competitive sorption theory.

The dual-mode sorption theory consists of the junction of two theorems. The
first is Henry’s law of diffusion, shown in Chapter 2, and the second from Lang-
muir’s competition for permeation site theory ("hole-filling" theory). Equations
3.38 and 3.39 are SABERI et al. (2016) models for permeation in terms of compo-
nent fugacity.

PCO2 =
DCO20/l

βCO2 fCO2

{
exp

[
βCO2 fCO2

(
kDCO2 +

FCO2C′
HCO2

bCO2

1 + bCO2 fCO2 + bCH4 fCH4

)]

− 1
}

(3.38)

PCH4 = DCH40/l

{
exp

[
βCH4 fCO2

(
kDCO2 +

FCO2C′
HCO2

bCO2

1 + bCO2 fCO2 + bCH4 fCH4

)]
(

kDCH4 +
FCH4C′

HCH4
bCH4

1 + bCO2 fCO2 + bCH4 fCH4

)} (3.39)
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Table 3.4: Parameters for cellulose acetate hollow-fiber membranes

Component kD (cm3/cm3
memkPa) C′

H (cm3/cm3
mem) b (1/kPa)

CO2 0.0143 37.29 1.32x10−3

CH4 0.00151 37 1.32x10−4

Source: DONOHUE et al. (1989)

Table 3.5: Parameters for permeation evaluation considering binary mixture
CO2/CH4 and linear approximation.

Component β F D0, l
CO2 0.027 0.023 3.03257x10−3

CH4 0.033 0.08 8.418x10−4

Source: Adapted from SABERI et al. (2016)

where Pi is the component permeation factor, Di0/l is the diffusion coefficient of
pure gas per membrane thickness, C′

Hi is the membrane site saturation constant
βi is an empirical constant that dependent on membrane material and thickness,
and temperature, fCO2 is the compound fugacity calculated using Peng-Robinson
equation of state presented on Appendix D, kDi is Henry’s law solubility coeffi-
cient, bi is the hole affinity constant and Fi is the fraction the compound absorbed.

Table 3.4 shows the Dual Mode Sorption parameters for the cellulose acetate
membranes. In contrast, Table 3.5 parameters were calculated using linear ap-
proximation from SABERI et al. (2016) to match membrane process mean feed
composition.

3.3 Results and Discussion

3.3.1 Diffusion Coefficient Contribution Evaluation

As the gases flow through a membrane module, a concentration profile may usu-
ally develop in specific points, especially in the initial stages of permeate side that
do not have a feed sweep flow where a degree of back mixing may not be enough
yet to form a uniform concentration. Some authors identified this profile as rele-
vant in studies for low-pressure and high-density systems. For instance, SECCHI
et al. (1999) with albumin ultrafiltration using reverse osmosis, VAN GAUWBER-
GEN and BAEYENS (2000) with their parametric study for reverse osmosis in
spiral wound membranes, and AL-MUTAZ et al. (1997) with their study on ra-
dial effects contribution for a reverse osmosis desalination process in hollow fiber
structures. MARRIOTT (2001) studied the effects of convection, diffusion, and
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Figure 3.4: Average Péclet number over operation conditions for model tube side.

many other models for gas separation, but the diffusion coefficient was only con-
sidered for reverse osmosis structure.

This rate of mixing is measured using the Péclet number, a dimensionless pa-
rameter that represents the ratio of advective transport phenomena with diffusive
transport, given by Equation 3.40 where v is the fluid speed, l is the characteristic
length and DAB the diffusion coefficient (MARRIOTT, 2001).

Pe =
vl

DAB
(3.40)

A large Péclet number indicates little mixing will occur, according to BIRD
et al. (2004). When the Péclet number is less than

√
48 the molecular diffusion

does take part in axial mass transport. A Péclet variation study alongside each
theoreticalmodulewas conducted using Table 3.1 order ofmagnitude parameters,
alongside the operational conditions described by the gathered data.

Figures 3.4 and 3.5 shows the average Péclet number variation from the begin-
ning to the end of each set of modules considering more than 3 thousand feed
conditions given by the gathered data. As one can see, it is notable that the Pé-
clet number exceeds by a grand marge the threshold of

√
48 cited by BIRD et al.

(2004). This suggests that the diffusion coefficient initially intended to be part
of this study proposal will not contribute much to the phenomenological model
structure. For that reason, another study regarding the actual contribution of the
diffusive transport coefficient was carried out.

This change in significance is expected due to the absence of feed permeate
flow, where the mass flow is solely provenient from the compound’s permeation
process. Fluid velocity is too low, thus enhancing mass diffusion significance on
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Figure 3.5: Average Péclet number over operation conditions for model shell
side.

themass balance equations. However, this significant participation fastly switches
as the evaluation advances through each module. It is only meaningful for less
than 5% of each set of modules.

Furthermore, the shell side Péclet behavior is proportionally inverse of the tube
side. The values start at the higher Péclet number possible, dropping as mass
permeates to the tube side. However, it never reaches any closer to the valuewhere
the diffusion is significant in the mass balance equations.

From this study, it can be implied that the diffusion parcel is only significant for
less than 5% from the tube side mass balance. That seems reasonable enough and
proves that this coefficient does not significantly influence the results from mass
balance, and it can be omitted for enhancing computational purposes without
losing modeling accuracy.

To sum up this discussion so far, the set of equations used for model validation
study and further chapters discussion will be as follows:

uzie = uziw − πDoNPp
(

PxPXiP − PyPYiP
)

∆z Shell side (3.41)

vziw = vzie + πDoNPp
(

PxPXiP − PyPYiP
)

∆z Tube side (3.42)

P2
xe = P2

xw − 384NDo(D + NDo)RTµm

π(D2 − ND2
o)

3Zy

2

∑
i=1

(vziP)∆z Shell side (3.43)
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Table 3.6: CHU et al. (2019) Scenario 1 parameters and feed conditions.

Parameter/ Condition Value
Temperature [K] 308

Feed Pressure [bar] 1
Feed flow [mol/s] 0.35

Retentate feed flow [mol/s] 0
CO2 feed composition [mol%] 10
CH4 feed composition [mol%] 90
CO2 Permeance [mol/m2 Pa s] 3.207x10−9

CH4 Permeance [mol/m2 Pa s] 0.133x10−9

Module Inner Diameter [m] 0.1
Fiber outer diameter [µm] 250
Fiber inner diameter [µm] 200

Fiber length [m] 0.6
Number of fibers per module 60000

Source: adapted from CHU et al. (2019)

P2
ye = P2

yw − 256RTµm

πD4
i ZxN

2

∑
i=1

(uziP)∆z Tube side (3.44)

3.3.2 Model Validation 1

For the model validation study, two acknowledged works were chosen. The first
one is thework of CHU et al. (2019), which studied the influence ofmodule design
parameters over the performance ofCO2 separation process in a hydrocarbonmix-
ture. For their study, isothermic mass and momentum modeling was proposed.
They also did not consider the site competition, membrane plastification effects,
or viscosity change.

CHU et al. (2019) studied the influence of design parameters over seven dif-
ferent mixture scenarios. The one used to validate this study was scenario one.
Initial conditions and parameters are described in Table 3.6 not only solved by
the authors’ proposed method (Mollocator equation) but also solved by NTNU
membrane separation software Chembrane (GRAINGER, 2007) which resulted
in Table 3.7.

As shown in Table 3.7, this work proposed equation relative error against the
other studies was lesser than 1%, which indicates that this work proposal is yield-
ing results similar to the ones expected by the literature. Also, for a lower CO2

fraction on the feed flow, plastification effects and site competition should not sig-
nificantly affect the results. For that reason, having similar results to the Molloca-

68



Table 3.7: Model validation.

Studies Permeate CO2 fraction on Retentate CH4 fraction on
Flow [mol/s] permeate [%mol] flow [mol/s] permeate [%mol]

Mollocator1 0.0298 59.54 0.3202 94.60
ChemBrane1 0.03 59.12 0.32 94.77
This work 0.02983 59.62 0.3201 94.62
RE1 [%] 0.101 0.134 0.031 0.021
RE2 [%] 0.57 0.839 0.031 0.159

Source: (1) adapted from CHU et al. (2019)

Table 3.8: Parameters and feed conditions for model validation 2.

Parameter/ Condition Value
Temperature [K] 343
Feed Pressure [Pa] 59.6x105

Feed flow [mol/s] 0.377
Retentate Pressure [Pa] 1.7x105

Retentate feed flow [mol/s] 0
CO2 feed composition [mol%] 10
CH4 feed composition [mol%] 90
Module Inner Diameter [m] 0.3048
Fiber outer diameter [µm] 300
Fiber inner diameter [µm] 150

Fiber length [m] 1
Number of fibers per module 500000

Source: COKER et al. (1999)

tor and ChemBrane is expected.

3.3.3 Model Validation 2

A second model validation was proposed. The chosen one was the work from
COKER et al. (1999), which evaluated the effects of feed flow and membrane
area over the stage cut from cellulose acetate hollow fiber membranes for a
temperature-independent permeability coefficient. In this part of the study, the
authors used a unidimensional equation. However, likewise CHU et al. (2019)
work, COKER et al. (1999) also did not consider site competition or membrane
plastification effects for high CO2 concentration or the effects of temperature. Ta-
ble 3.8 describes a summary list of parameters and conditions.

Differently from comparing with the last work, similar results are expected
only for lower stage cut, where the effects of classification are not significant to
promote a gap between the proposed model results and the one presented in the
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Source: adapted from COKER et al. (1999)

Figure 3.6: Model validation.

literature. Following this expected mismatch for higher values of CO2, Figure 3.6
shows the comparison as expected. The dashed line, representing the results of
COKER et al. (1999), tends to create a gap from this study proposal for higher CO2

fraction, while it tends to overlay each other for lower CO2 fraction.
To sum up, considering both model validation accuracy, the model proposed

and developed in this chapter is proved to be a plausible and effective alternative
and is under what is already established in the literature.

3.4 Conclusion

The development of a phenomenological model is imperative to be used as a
benchmark for the next chapters development. The proposedmodel is a more de-
tailed alternative to a membrane-based natural gas deacidification process. It bal-
ances computational costs with accuracy. It benefits from knowing the expected
process parameters such as permeability, gas fugacity, membrane plastification
rate, and viscosity.
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Chapter 4

Multi-layer Perceptron Network
development

4.1 Introduction

To achieve the second objective of this study, the permeability factor estimation
will be estimated by a neural network model to skip the process of thermody-
namic parameters calculation for each finite volume. The core idea is to study
and propose a model with reduced computational demand to be implemented
online for further process monitoring and optimization. For that process, anMLP
neural network structure will be developed in this section and trained with real
data process range.

All 4 input variables available, mentioned and treated in Section 4.2.1 (Tem-
perature, Pressure, volumetric flow, and feed composition) will be used to predict
the permeability factor for CO2 and CH4 compounds. Different structures of an
MLP neural networks will be tested in search of the best configuration that gives
smaller errors in validation and prediction. Also, a search on the literature was
made to verify if similar works on permeability prediction and hybrid models
were already developed. As a result, similar research was found, but none had
used a hybrid model, which makes the present work the first of it until the date
of its publication.

A neural network can be used to estimate critical parameters and predict the
output variables even if they are bond to each other by a non-linear relation. Be-
cause of that, as amatter of performance comparison, another study regarding the
assertiveness of an MLP network regarding the variable’s boundary conditions at
the process exit is done. The objective of this side study does not contribute di-
rectly to any of this study’s objectives. However, it enriches this workwith another
alternative for comparison and discussion if it can be used for real-time evalua-
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tion.

4.2 Methodology

In this chapter, the process described by Figure 3.1 and the SABERI et al. (2016)
equation presented in Section 3.2.6 are considered. The thermodynamic param-
eters are given by the Peng-Robinson equation of state exposed in Section 3.2.3,
and mixture rules detailed in the Appendix D. Those generated data will be used
to adjust the weights and biases of a Neural Network to predict the permeability
factor and achieve part of this work’s second objective.

In Chapter 2, the structure of an MLP is presented. That structure will be op-
timized and oriented to model assertiveness and trained accordingly to the back-
propagation algorithm described in Section 2.4.4.

All numerical algorithms were developed using an 8th generation i7 Intel pro-
cessor PC with 16Gb of RAM and Python 2.0 programming language at Jupyter
compiler using Keras Optuna test generator package for Neural Networks struc-
turing and performance evaluation.

4.2.1 Data evaluation and treatment

Before any neural network development, an in-depth evaluation of the avail-
able data quality is required to avoid corrupted data or outliers that may inter-
fere with the parameter estimation algorithm causing even worse neural network
weights and biases adjustments. An analysis of the normalized raw feed vari-
ables database shown in Figure 4.1 indicates that some data might be corrupted.
Please refer to Appendix F for the visualization from the other feature’s raw data.
Not only negative values for temperature, pressure, and molar percentage were
found, but sensor errors with constant values for extended periods were also fre-
quent. Besides, it also shows how this process is well-behaved and fast enough
that the sampling time step almost does not catch a maintenance stop and restart
dynamics.

All the data was gathered fromMay 2019 until the end of October of the same
year with a sampling time of 1 hour, yielding an amount of 4425 points from each
variable (temperature, CO2 composition, pressure, and volumetric flow). Unfor-
tunately, this FPSOdoes not have enough instrumentation to analyze CH4, SO2, or
any long-chain hydrocarbons, whichwould be of great value to thiswork. And for
that reason, some additional assumptions to the ones presented in Section 3.2.1 re-
garding permeate and retentate streamsweremade to deal with thismissing data,
as follows.
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Figure 4.1: Normalized raw data sheet from feed variables. Sampling time of 1
hour.

Hypothesis 11 (H11). Only the binary mixture CO2 and CH4 will be considered in this
study. So the molar fraction of CH4 will be considered as the complementary from CO2 to
reach 100%.

Hypothesis 12 (H12). The SO2 is considered to be in a concentration low enough to
meet the regulation standards at the end of the process.

Hypothesis 13 (H13). Since the analyzer’s minimum sampling time is one hour, the
output variables from a given timestamp can be approximated to be the output from the
input from the same timestamp, i.e., disregarding the dynamic effects.

To begin the data treatment procedure, measurement errors and missing data
were removed from the series. That included empty values, not-a-number val-
ues, and data inconsistent values mentioned in the first paragraph of this sec-
tion. Those points were also considered measurement errors and therefore disre-
garded.

After the treatment process, feed parameters were used to calculate each ini-
tial permeability factor for both compounds according to the SABERI et al. (2016)
equation. That yielded around 2900 permeability values used as targets for the
neural network. During the period when the data set was gathered, only TREM 1
and 2 were operating. For that reason, only these TREMs were considered.
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4.2.2 Neural Network modeling

The strategy to build a neural network was based on the structure of the percep-
tron as illustrated in Figure 2.14 developed by MCCULLOCH and PITTS (1943)
improved by ROSENBLATT (1958) where the network first layer is composed by
the exact number of input variables. The last layer will also have as much as the
number of output variables, likewise, as HAYKIN (2001) suggests.

All four feed variables were considered input for the first layer (Temperature,
Flow, CO2 composition, and Pressure). For the hidden layers, the same percep-
tron model will be used. However, Section 4.3 will discuss the best structure of
how many hidden layers and how many neurons on each layer. KAVLAKOGLU
(2020) published an article considering more than just one hidden layer as a deep
learning algorithm. Although this work does not intend to create a deep learning
model, it will also be considered if proven useful and more accurate in achieving
its objectives. For the output, a 2-node layerwill be used to simultaneously predict
both compounds’ permeability factors.

The backpropagation algorithm will be used to update each perceptron’s
weights, and biases as described by RUMELHART and MCCLELLAND (1986)
and by Equations 4.1 and 4.2. However, the learning rate parameter will not use
the fixed step to minimize overshooting and oscillation possibilities. The algo-
rithms developed by KINGMA and BA (2015) (ADAM) and DUCHI et al. (2011)
(AdaGrad) will be used instead and compared since one is a stochastic gradient-
based algorithm, and the other is an adaptive gradient method that takes into
account the function profile from previous interactions to adapt the learning rate.
Different activation functions will also be tested.

∆wj−1(t) = −η∇Obj(t)j (4.1)

Obj(t) =
||r(t)− y(t)||2

2
(4.2)

This search for the best neural network configurationwill be done in two steps.
The first one is amanual search to understand how theMLPNetworkwill perform
for different non-structural parameters, such as:

• Normalized features x Raw features;

• While normalizing, which normalization strategy is better;

• What is the maximum training epochs without producing over-fitting;
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Source: developed by the author.

Figure 4.2: Roadmap for the search of key parameters non-structural from the
manually-set Neural Network.

• Which optimizer algorithm performs better in terms of accuracy and evalu-
ation speed.

For themanual search of those hyperparameters, Figure 4.2 visually represents
a general strategic workflow for developing the neural network structure.

4.2.3 Architecture search

A full network architecture search using the test-trial package Optuna® was used
to optimize the best set of hidden layers and nodes as well as corresponding
weights and biases to achieve the second objective of this study which is to find a
neural networkmodel to predict the permeability parameters for both compounds
studied and serve as an alternative to avoid computational costs with state equa-
tions evaluation every finite volume.

For this part of the study, more data was necessary. This architecture search
aims to create amodel capable of predicting the permeability factors for both com-
pounds inside the range of operation the dataset indicated. Because of that, syn-
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thetic data was necessary to simulate an actual process range of parameters and
the evolution of the permeability factors among a wider range of operations.

In total, 10000 data were generated using a 10-value range between each input
variable minimum value to the maximum value and divided randomly for train-
ing, validation, and testing in the proportion of 3:3:1. A set of trialswas scheduled,
limiting up to 5 hidden layers and up to 5 nodes per layer. Also, the number of
training epochs was limited to a maximum of 4000, and the loss function was kept
as the mean squared error. The stop criteria were set for a mean squared error re-
sulting in 10−4 or 100 trials, which came first.

4.2.4 The Hybrid Model

TheHybridization proposed in this section consists of the replacement of the ther-
modynamic calculations used to determine the mixture key coefficients that are
needed in the Permeability model developed by SABERI et al. (2016), by the Neu-
ral Network model developed in this section.

The core idea is to fasten the phenomenologic model evaluation. Furthermore,
the hybridization process proposed does not make the model totally unaware of
the process physics and restrictions. After the hybridization, a performance com-
parison is made to sum up and ponder the proposed model’s benefits against the
purely phenomenological model presented in the last chapter. Figure 4.3 illus-
trates how the hybridization described will be done.

In this section, the phenomenologic set of equations proposed and validated
in Chapter 3 was used with the process conditions accordingly to the study of
COKER et al. (1999) for the performance evaluation of the proposed models. For
that, five key parameters were analyzed: permeate flow [mol/s], permeate CO2

molar fraction [%], retentate flow [mol/s], retentate CH4 molar fraction [%], and
the time that the model needed to render the output variables. For this study, a
100-finite-volume mesh was used as the number of discrete volumes.

4.3 Results and Discussion

4.3.1 Data Treatment

As discussed in the methodology section, after the data treatment, almost 1500
points were disregarded from the 4400 total points initially available, which is
more than one-third of invalid values. The first insight gathered from this treat-
ment procedure is that if any of this work’s findings come to be implemented in
any membrane-based gas-sweetening process. Data filtering and cleaning must
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Source: developed by the author.

Figure 4.3: Comparison between the proposed pure phenomenological
modeling workflow and the Hybrid process.
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Figure 4.4: Normalized treated data dispersion from feed variables.

be done before model evaluation.
As a result, almost 1500 pointswere excluded, and the results fromnormalized

feed variables are shown in Figure 4.4. Please refer to Appendix F for the results
of the other features filtering results. For the retentate and permeate values, it
is worth noting that the CO2 analyzer is only available on the main lines of the
process and corresponds to the combined TREM 1 and 2 flowrates. To promote
better visualization of the process behavior, maximum and minimum values for
each normalization procedure were fixed by variable type.

4.3.2 Neural network Parameter Study

Table 4.1 shows the differences between the network accuracy (represented by
the average correlation factor from validation data) and the average total time re-
quired for the training step from using raw data without normalization and nor-
malized training data using a min-max scaler. In this study, activation functions
were fixed at the logistics equation (sigmoid), and the number of epochs (inter-
actions over the entire data set) was fixed at 1000. Optimizers were also fixed to
the ADAM algorithm in both training sessions.

Normalized input parameters proved more efficient and faster, with an aver-
age time difference of 3 s per training, just as mentioned by SOLA and SEVILLA
(1997). Besides, the most relevant result was that normalized data yielded a far
more accuratemodel adjustment than raw data and lookedmuchmore promising
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Table 4.1: Model adjustment comparison between raw data and normalized data
training sets.

Raw Data Normalized Data
Compounds CO2 CH4 CO2 CH4
Method - - Min-Max Min-Max

Activation Sigmoid Sigmoid Sigmoid Sigmoid
Epochs 1000 1000 1000 1000

Optimizer ADAM ADAM ADAM ADAM
Av. R2 Validation 0.2498 0.2368 0.9510 0.9262

R2 Maximum 0.7833 0.7961 0.9992 0.9991
Training time (s) 17.87 17.87 14.10 14.10

Table 4.2: Model adjustment comparison between ADAM and ADAGRAD opti-
mizer algorithms.

Compounds CO2 CH4 CO2 CH4
Activation Sigmoid Sigmoid Sigmoid Sigmoid
Epochs 800 800 4000 4000

Optimizer ADAM ADAM ADAGRAD ADAGRAD
Av. R2 Validation 0.9510 0.9262 -0.0060 0.0033

R2 Maximum 0.9992 0.9991 0.1468 0.0645
Training time (s) 14.10 14.10 58.97 58.97

as shown on Table 4.1.
In addition, an additional study on the optimizer was also made to identify

the one with the best performance. Table 4.2 summarizes the milestones that
indicated the ADAM algorithm yielded the best model adjustment. Only with
800 Epochs could the ADAM structure update the weights with better adjustment
than the ADAGRAD algorithm, which had issues optimizing the mean-squared
objective function using the sigmoid function. Each ADAGRAD model adjust-
ment was evaluated from 800 to 4000 epochs, and only at 4000 was the loss be-
tween the predicted and real values presented no longer significant variation (or-
der of 10−6). Because of that, epochs evaluation was stopped at 4000.

However, as one can also see in Table 4.3, ADAGRAD algorithm, which shows
the adjustment correlation from different network structures, showed a good per-
formance adjusting the model with a hyperbolic tangent activation function only
for a few network structures.

In addition, the study presented in Table 4.4 aimed to identify the activation
function which yielded the best model adjustment. As a result, the logistic func-
tion yielded a better maximum R2. However, the hyperbolic tangent activation
function resulted in faster training time (almost half) and better average R2. Be-
sides the sigmoid function achieving higher maximum accuracy, the hyperbolic
tangent study characteristics suggested that different network structures could be
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Table 4.3: ADAGRAD performance with a hyperbolic tangent activation function.

R2 Validation
Compound Hidden layers Nodes per layer

1 2 3 4 5

CO2

1 -0.0092 0.3054 0.3370 0.3691 0.3407
2 -0.0612 0.0038 0.2639 0.8923 0.8470
3 -0.1451 -3x10−4 0.0049 0.2718 0.9185
4 -0.0656 -5x10−4 0.9050 1x10−4 0.8844

CH4

1 0,0051 0.2116 0.269 0.2872 0.3181
2 4x10−4 0.0028 0.2571 0.8796 0.8387
3 -6x10−4 -3x10−4 0.0031 0.3047 0.9147
4 -6x10−4 -4x10−4 0.5283 -0.4819 0.8799

Table 4.4: Model adjustment comparison between Tanh and Sigmoid activation
functions.

Compounds CO2 CH4 CO2 CH4
Activation Tanh Tanh Sigmoid Sigmoid
Epochs 800 800 800 800

Optimizer ADAM ADAM ADAM ADAM
Av. R2 Validation 0.9951 0.9863 0.9510 0.9262

R2 Maximum 0.9991 0.9985 0.9992 0.9991
Training time (s) 7.93 7.93 14.10 14.10

used without relying much on accuracy and be twice as fast as the logistic activa-
tion function network. For these reasons, the hyperbolic tangent equation seemed
to be the best option.

To summarize, Table 4.5 shows a case study result on NN structure perfor-
mance using ADAM optimizer and logistics activation function. As one can see,
many different structures performed with at least a 0.999 correlation coefficient.

Figure 4.5 shows the loss behavior as the network is trained. As one can see,
there is a sub-decay in the first stages of training, expected as the learning rate
is adaptive. So, it is customary to be faster at the beginning and slower as the
algorithm approaches the objective function minimum. For this step, 90% of the
2960 data were used for training and 10% for validation.

As expected, the training yielded a strong adjustment of 0.9962 for the CO2

and 0.9973 for CH4. Next, to evaluate the network’s performance, brand new data
set was gathered fromNov-2019 up to Feb-2020with 3 thousandmore points. The
same data treatment described in Section 4.2.1 wasmade, and the trained network
was evaluated.

At first glance, it is clear that the network performed well, with predicted val-
ues reasonably close to the data. The correlation coefficient of 0.9883 for CO2 val-
ues and 0.9879 for CH4.
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Table 4.5: ADAM optimizer performance with a sigmoid activation function.

R2 Validation
Compound Hidden layers Nodes per layer

1 2 3 4 5

CO2

1 0.99953 0.99472 0.99905 0.99925 0.99947
2 0.99705 0.99566 0.95260 0.99678 0.99929
3 0.78250 0.93294 0.98023 0.99778 0.99083
4 0.64949 0.82321 0.97191 0.97437 0.98355

CH4

1 0.99854 0.99289 0.99734 0.99827 0.99855
2 0.99542 0.98993 0.95226 0.99692 0.99916
3 0.64675 0.94122 0.98171 0.99767 0.99075
4 0.30916 0.80408 0.97383 0.97728 0.98223

Figure 4.5: Loss behavior as the network is trained.

To sum up, this study confirmed some key parameters that served as simpli-
fications for the following study of architecture search. For instance, the manual
roadmaphas shown that theADAMoptimizer and gradient search for the optimal
weights and biases are the best approaches for this type of data and non-linearities
prediction. Also, the number of training epochs can not be more than 4000, and
800 epochs are enough to reach the desired accuracy. The activation function can
be both Tanh or Sigmoid approach. However, the Tanh model was twice as fast as
the sigmoid model without relying too much on accuracy, as the maximum cor-
relation coefficient is slightly lower than the sigmoid case study. Therefore, Tanh
is a better model for reaching the hybridization objectives.

4.3.3 Neural network architecture search

For the best architecture, two approaches were used: a model that can predict
both permeances at once or two models that can predict one compound’s perme-
ability. This will make sense in the next section, where different models and ways
of calling them are studied to produce a faster result.
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Figure 4.6: Permeance prediction result for the model with two output layers.

The first approach of a singlemodel to predict both permeances resulted in the
following architecture: 4 hidden layers using the configuration of 2x2x5x5 nodes
on each layer, respectively. With 2000 epochs, it yielded a validationmean squared
error of 0.0108. Themodel’s performance against the test dataset shown by Figure
4.6 produced an R2 coefficient of 0.9979 for the CO2 and 0.9658 for CH4. It took 107
s for this model to be trained and less than 2 s to predict all the 1400 test values,
which is a desired result for a neural network on both accuracy and evaluation
speed.

The second approach was to develop two models to predict each compound’s
permeance separately. For comparison purposes, two single-output networks
were proposed, and their architecture was searched using the same method as
the two-output network search, with more restrictions.

As the single-output model is supposed to be simpler than the two-output
model, and the best structure of the two-output model was with four hidden lay-
ers, the maximum number of hidden layers tried was 2 with a limit of 5 nodes per
layer, with the same optimizer, activation function, loss function and maximum
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Figure 4.7: Permeance prediction result for the two models with one output layer
each.

training epochs of 4000.
Figure 4.7 shows the prediction of the test dataset for the one-output network

model. The result of this study was a model with one hidden layer, four nodes
each, and 2000 epochs of training. Both models resulted in the same structure
of one hidden layer with four nodes. They have had the training session mean
squared error of 10−5 magnitude and an R2 adjustment of 0.9968 for the CO2 and
0.9752 for CH4. It took around 60 s for these models to be trained and less than 2
s to predict all the 1400 test values.

The results for the single-output network model are similar to the ones pro-
duced by the two-output network, especially on accuracy and speed with a more
straightforward structure. For that reason, different types of algorithm hybridiza-
tion using the neural networks found in this section are tested in the next section.
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4.3.4 Hybridization performance evaluation

The hybridization process only replaced the thermodynamic equations algorithm
with the neural networks callback on the finite volume solver for the phenomeno-
logical model. Table 4.6 shows the performance of each hybridization method in
the face of the purely phenomenological model performance.

The models were abbreviated for Table 4.6 size. Their meaning and character-
istics are as follows.

• Phenom. - The purely phenomenological model used as the benchmark for
the hybrid models

• Hybrid 1A - The hybridization consisted of loading the two-output network
in place of the thermodynamic equations for permeance prediction for each
discretized finite volume.

• Hybrid 2A - The hybridization consisted of loading one-output networks
in place of the thermodynamic equations for permeance prediction for each
discretized finite volume.

• Hybrid 1B - The hybridization consisted of remounting the two-output net-
work in place of the thermodynamic equations for permeance prediction for
each discretized finite volume.

• Hybrid 2B - The hybridization consisted of remounting one-output net-
works in place of the thermodynamic equations for permeance prediction
for each discretized finite volume.

It is also important to note that the terms "loading" and "remounting" have dis-
tinct meanings. To load a model means to import a model package straight to the
compiler. The weights, biases and structure information are loaded at the same
time using the TensorFlow backend interpreter. Conversely, to remount a model
means to pass to the TensorFlow interpreter an array of weights and biases, then
the neural network structure is remounted based on the array passed in the Ten-
sorFlow backend.

From the results, two major conclusions can be made out. The first is that the
neural network can be used as an alternative to certain parts of the phenomeno-
logical models. In this case, 3 out of 5 resulted in average errors of less than 2%
for both approaches, one and two output models. The second finding is the lack
of speed of the hybrid model against the purely phenomenological model. How-
ever, models 1B and 2B indicate that the most time loss is related to the need for
network callbacks for every discretized finite volume.
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Table 4.6: Hybrid models and their comparison with the purely phenomenologi-
cal model proposed on Chapter 3

Model Perm. CO2 Perm. Ret. CH4 Ret. Eval. Avg. Rel.
Flow [mol/s] Frac. [%] Flow [mol/s] Frac. [%] Time [s] Error [%]

Phenom. 8.662 75.11 8.168 97.24 0.16 -
Hybrid 1A 8.474 76.62 8.356 97.13 13.85 1.65
Hybrid 2A 8.498 76.41 8.333 97.12 27.53 1.44
Hybrid 1B 8.327 77.84 8.502 97.06 10.57 2.94
Hybrid 2B 8.502 76.17 8.310 97.08 10.50 1.23

Besides, in the previous section, this study showed that the network models
could predict more or less 1400 points in less than 2 s, while when hybridized, it
could not predict 100 of them in less than 10 s. This also confirms the conclusion
that the amount of network model callbacks is the main reason for the evalua-
tion delay. To solve this issue, the number of callbacks should be reduced to the
minimum possible ( 1 time only) to extract the maximum potential of the hybrid
model.

Because of that, another hybridization approach is proposed as an alternative
to decreasing the number of network callbacks. It is called Physics InformedNeu-
ral Networks (PINNs) and is further developed in the next chapter.

4.4 Conclusions

This chapter discussed the effective use of neural networks to predict the perme-
ability factors to replace the thermodynamic evaluation of the phenomenological
model proposed in Chapter 3 to achieve better model performance. It showed
that a simple multi-layer perceptron network with one hidden layer can predict
the permeability factor with a correlation coefficient of more than 0.96. However,
data-cleaning treatments and normalization are crucial to achieving these results.

Furthermore, itwas shown that the hybridization problem consists of the num-
ber of network callbacks made. The more network callbacks are made, the more
the loading process happens. This hinders themodel performance frombecoming
100 times slower than the purely phenomenological models. For real-time moni-
toring, it would depend on the required sensors’ sampling time. If the sensors are
to sample in less than 15 s, this hybridization is not the best approach.
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Chapter 5

Physics-Informed Neural Network

5.1 Introduction

To complement this study’s third objective and complete its final one, data-driven
and physics-informed neural network models are proposed to replace the phe-
nomenological model. This replacement intends to use real-world data and to
keep physical constraints without compromising accuracy and efficiency. Data-
drivenmodels learn patterns in data andmake predictions based on that informa-
tion. Physics-informed models, on the other hand, use physical laws to constrain
the solution space and ensure that the model outputs are physically meaningful.

Physics-Informed Neural Networks (PINNs) is a type of neural network that
incorporate physical laws and constraints into the model. These networks can be
used to solve problems where traditional machine learning techniques may not
be effective, such as problems in which the underlying physical laws are known
but challenging to formulate mathematically. The approach consists of defining a
loss function based on the physical laws and constraints, in addition to the data,
and then training the neural network to minimize this loss function (RAISSI et al.,
2019).

One advantage of PINNs is that they can handle both forward and inverse
problems. For example, they can be used to predict the future state of a system
given its initial state or to determine the initial state of a system given its final
form. Additionally, they can handle nonlinear and partial differential equations,
making them well-suited for modeling complex physical phenomena.

In summary, PINNs provide away to leverage the power of neural networks to
solve problems guided by physical laws, making them valuable tools for various
applications in fields such as engineering, physics, and materials science.
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5.2 Methodology

Gas separation data will be generated through the phenomenological modeling
proposed in Chapter 3. The measurements gathered will be used as a source of
information from the operating range that the actual process undertook over the
year the data was collected. The generated data will then train a physics-informed
neural network and data-driven models.

A gaussian noise of a maximum of 1% will be added to the synthetically gen-
erated data to account for measurement uncertainties and other sources of error.
This will help to improve the robustness and generalizability of the trainedmodel.
The end goal is to produce a model that can accurately predict gas separation out-
comes based on the input data and physical constraints.

The PINN network will be designed to incorporate physical constraints and
equations that govern the behavior of the gas mixtures. PINN and data-driven
networks will then learn to predict the gas separation outcome based on input
data and physical constraints during training. All coding algorithms were devel-
oped using an 8th generation i7 Intel processor PCwith 16Gb of RAM and Python
3.0 programming language at Jupyter compiler using Keras packages Neural Net-
works structuring and HAGHIGHAT and JUANES (2021) SCIANN computing
package for PINN development and performance evaluation.

For both approaches, aMulti-Layer Perceptron network structure will be used.

5.2.1 The loss function

Data-driven andphysics-informedneural networkmodels are distinct approaches
to modeling complex physical systems. Both approaches have unique loss func-
tions to evaluate the model’s performance and guide the optimization process
during training. Understanding the differences between these loss functions is
crucial for choosing the appropriate model for a given problem and interpreting
the model’s results.

A data-drivenmodel is trained by optimizing a loss function that measures the
difference between the model’s predictions and the observed data. The loss func-
tion commonly used in data-drivenmodels is the mean squared error (MSE) sum
function, which measures the average squared difference between each model’s
prediction variables and their true values represented by Equation 5.1. The op-
timization process tries to minimize the MSE sum by adjusting the model’s pa-
rameters until the difference between the predictions and the true values is as
small as possible, as presented in section 2.4.4 objective function. The data-driven
model aims to fit the data as closely as possible without considering any underly-
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ing physical constraints or equations.

Loss = MSE =
1
N

N

∑
i=0

|Targeti − Predictioni|2 (5.1)

On the other hand, a physics-informed neural networkmodel is trained by op-
timizing a loss function that incorporates the observed data and the underlying
physical constraints or equations. The loss function measures the difference be-
tween the model’s predictions and the observed data and the deviation from the
physical constraints. The optimization process tries to minimize this combined
loss by adjusting themodel’sweights and biases. The goal of the physics-informed
neural network model is to produce a model that not only fits the data well but
also respects the underlying physical principles.

The Equation 5.2 represents how the loss function for the PINN will be used.
It is a weighted sum of mean squared errors from the following key parameters:
data (dat), residuals (Res), outlet conditions (OC) and inlet conditions (IC).

Loss =
N

∑
i=0

[w1.MSE(Res)i + w2.MSE(OC)i + w3.MSE(IC)i + w4.MSE(dat)i] (5.2)

The data targetswill be the normalized features given by simulated data added
by 1% random noise generator. The residuals target will be given the phenomeno-
logical model from Chapter 3 without noise. However, the boundary conditions
MSE is calculated only at the beginning and end of each dataset using the first and
last positions from the data dataset, and set to zero for the other positions. The
loss equation weights were set to 1 at first and then study their influence during
the studies that followed this chapter.

The PINNs and data-driven models will be set to predict eight features (each
gas separation unit side molar flowrate for CO2 and CH4, each side pressure
buildup and drop end each compound permeability factors) while using three
input features (inlet molar flowrate for both compounds and the inlet shell-side
pressure), apart from the module position argument, according to the roadmap
of evaluation described in Figure 5.1.

5.2.2 Data generation

For the data generation process, the relative position of each discretized finite vol-
ume of the membrane modules was considered, the operating ranges of the CO2

and CH4 molar flowrate variables and the operating range of the shell pressure.
First, the performance of the proposed models considering only one mem-
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Figure 5.1: Roadmap for the PINN and data-driven model development and
performance evaluation.

brane module was studied. For this first study, a 400 finite volume discretization
was performed, and a range of values equally spaced over a specific range for
each key variable, according to the following: nineteen values for the CO2 molar
flowrate, ten for the CH4 molar flowrate, and thirteen for the shell pressure. The
total number of points generated for training and validation of the models was
1,482,000. Since the operating range gave the values chosen from the dataset gath-
ered from the actual process, those values are also covered in the non-disclosure
agreement.

For the second part of this chapter, the performance of themodels in the digital
twin of the industrial process used as a basis for this dissertation was studied. In
this phase, the same ranges of operation of the dataset of one year of operation
of the industrial process were used as the benchmark. In this second step, 400
finite volumes for each TREM (please refer to the Figure C.1 in Appendix C) were
used as discretization, totaling 1200 finite volumes in each operating condition.
Additionally, a range with nineteen values for the CO2 molar flowrate, ten for
the CH4 molar flowrate, and nineteen for the shell pressure were used. In total,
the number of points generated for training and validation of the models was
4,332,000.

In addition, a noise signal was added, which was performed on the entire
dataset, excluding the points of the boundary conditions. The added noise value
was -1% to 1% of the value of each point randomly and with normal distribution.
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5.2.3 PINN and Data-Driven models structure and parameters

For the structure of the neural networks for each proposed model, some param-
eters of the optimization algorithms and updating of the network’s weights and
biaseswere fixed according to knowledge acquired in the previous chapters. Thus,
the following parameters were set:

• The activation function was set to Hyperbolic Tangent;

• The optimizer was set on the ADAM algorithm;

• The number of training batches was set to 500;

• The number of nodes per layer was fixed at 10, only varying the number of
layers per model created;

• The objective function was set to MSE;

• Training and validation data were divided as 80% and 20% from the total
dataset respectively;

• Test dataset inlet conditions will be given randomly and bounded to each
feature range after the training process;

• For the data-driven and PINN models, a single MLP network will be given
to predict each feature.

The hyperparameters available to be modified were the amounts of internal
layers for both models, the number of data per batch, the initial learning rate and
rate of decay for each training performed, the weights of the loss function, the
normalizationmethod and the criteria for abrupt stopping of the training process.

5.3 Results and Discussion

5.3.1 One module data-driven model

• 1 input parameter: Module discrete positioning

As part of obtaining knowledge for better modeling and training strategy, first, an
MLP network containing two internal layers was trained using only the position
parameter of the module as input for each neural network. In this first step, the
min-max normalization strategy was also used, where the values of each variable
for each finite volume are normalized between the minimum and maximum val-
ues of the entire dataset for that variable. This first study aimed to understand
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Figure 5.2: First results for molar flowrates, permeabilities, and side pressure
evolution for the data-driven model using one input and one output for each

network.

if only the module position parameter and a low number of internal layers were
enough to accurately predict the evolution of the variation of the features along
the module.

As a result of this first study, the data-driven net behaved very well when pre-
dicting the parameters of molar concentration and permeability of CO2 and CH4

aswell as tube side pressure buildup. However, for the prediction of shell pressure
drop, there was almost no fitting, as presented in Figure 5.2, for an inlet condition
never before seen by neural nets, in comparison to its theoretical result using the
phenomenological equation that gave origin to the training data.

The training procedure for this data-driven model configuration took, on av-
erage, 1 h to 1.5 h to complete; and the time this model took to evaluate the test
dataset was 1.06 s.

A mismatch in pressure prediction results within the module is perceived.
Consequently, it was decided to change the number of internal layers in the pres-
sure model structures from 2 to 4, increase the learning rate from 0.01 to 0.05, and
increase the amount of training data provided in each training batch from 512 to
1024.

Thesemodificationswere not carried out all at once, theywere done in isolated
steps and different combinations and comparing the results. However, the config-
uration that resulted in the lowest MSE value for the data-driven network was the
one with the configurations mentioned above, and presented in the results below
in Figure 5.3. However, it is still possible to see a slight offset in the shell pressure
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Figure 5.3: Best results for molar flowrates, permeabilities, and pressure
evolution for the data-driven model using one input and one output for each

network.

variable, although, in proportional terms, this offset represents less than 1% in the
final deviation, it is still a more significant misfit than the other variables.

From this study, it can be understood that it is possible to model the proposed
system using models purely based on data in a simple way, using only the dis-
cretization parameter of the modules as input to the network. However, some-
thing worth pointing out is that, when the inlet conditions of the provided test
dataset were farther from the points used for training, the greater the MSE of the
test data. Unfortunately, no set of charts was generated for those poor results,
however, it can be noted on the shell pressure discrepancy in Figure 5.2. Accord-
ing to the test data randomly generated, the shell pressure condition given to the
data-driven model that generated the results from Figure 5.2 was far from the
conditions used in training. This indicates that the discretization of the range of
network operationswould need to be large enough to reduce these gaps from inlet
conditions away from the training data.

An alternate possibility to minimize the effects of this data gap is to include
the inlet conditions as inputs to the neuronal model. This way, the weights and
biases can be updated to make the model better understand how each variable
behaves throughout the process, considering these inlet parameters. And so, it
was understood that a studywith these conditions would be appropriate to verify
the best fits of the model and reduce the amount of data needed for training and
validation.

Another benefit of this approach would be the reduction of overfitting since
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the network would update its parameters based on the weighting of the inlet con-
ditions and not dependent only on the applied normalization and the number of
spatial discretizations of the gas separation module.

Although seven of the eight variables yielded satisfactory results, the utiliza-
tion of spatial discretization alone in the development of a data-driven network
was an additional attempt to evaluate the flexibility of data-driven models in the
absence of essential information. Moreover, it aimed to simplify the model by
reducing the number of weights and biases. However, this approach fails to con-
sider the diversity of boundary conditions, as the models are incapable of learn-
ing different boundary conditions, which are essentially distinct boundary value
problems. Consequently, the models can only predict specific operating condi-
tions with minimal variation.

Furthermore, the solution generated by the network represents an average of
all solutions contained in each boundary condition in the dataset. While normal-
ization of training data may mitigate this effect, the network’s assertiveness be-
comes unreliable when input conditions differ from the training dataset. To en-
able the network to learn the process behavior for various initial conditions, it is
crucial to incorporate changes in boundary conditions as input to the network.
Nonetheless, the resulting solution, while promising, cannot be applied to the
construction of a Digital Twin as it is not generalizable.

• 4 input parameters: Module position + inlet conditions

In this study, only the input variables of the data-driven model were changed.
At this time, not only the position in the module but also the inlet molar flowrates
of CO2 and CH4, and also the value of the inlet shell pressure were considered
as input variables. The same network structure, training, and optimization condi-
tions of the previous study that yielded better results were maintained.

The results of this study are shown in Figure 5.4. It can be seen in the figure a
fit of the final molar flowrates and the prediction of permeability are very similar
to those found by the previous model with one input variable. However, when
comparing the results for both tube and shell pressure settings, the new model
with four input variables performed much better than the best model proposed
in the last section.

The sum of the loss function fits of all normalized variables was 2.3 × 10−4

with an average relative error of less than 0.1% and an average R2 of 0.9843. Sig-
nificantly better result than that obtained with the previous model. Despite these
promising results, the model took about 60% longer to predict the values of each
module finite volume. While in the previously proposed model, the evaluation
time was only one second, the model with four input variables took, on average,
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Figure 5.4: Best results for molar flowrates, permeabilities, and side pressure
evolution for the data-driven model using four inputs and one output for each

network.

1.6 s to predict the values and profiles of the eight variables within the membrane
module.

Another essential point evaluated was the network performance for inlet con-
ditions far from the discretization points provided in the training dataset. Unlike
the network with only one variable, the model with four input variables showed
no apparent difference in the adjustment to the test data of the phenomenolog-
ical model, adding another positive point for the preference for using this new
structure found.

For all these reasons, the modeling of the PINNs presented in the following
sections was all carried out considering four input variables.

5.3.2 One module PINN model

With the promising results of the last section, the first version of PINN was mod-
eled following the same conditions as the neural network found in the previous
section (four inputs). The loss equation weights were all kept equal to one in this
first study. However, the first results were not presented in such a way as to be
considered valid. See an example of the result obtained in Figure 5.5, which shows
the comparison between the values predicted by the PINN and those whose de-
velopment comes from the phenomenological equation for a given inlet condition.

From this result, some actionswere taken, and changes in the structural param-
eters of the network were evaluated. Although each training session took almost
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Figure 5.5: First results for molar flowrates, permeabilities, and side pressure
evolution for the PINN model using four inputs and one output for each

network.

4 h to be done, the following changes were proposed and evaluated:

• Changing each neural network hidden layers number;

• Varying the number of training epochs;

• Changed the learning rate;

• Changed the weights of each feature of the loss function.

At the end of the search roadmap, some conclusions could be drawn. The first
is that a minimum of 4 hidden layers were needed to produce good results for
all output variables. Adjustment deviations in the MSE of the validation dataset
are found from 1000 epochs of training, characterizing possible overfitting of the
PINN,which iswhy the 500 epochs initially proposedweremaintained. The initial
learning rate of the PINN could not be greater than 0.01, with a decay rate of ten
times less every 100 training epochs. Otherwise, it would show signs of losing
track of the lowest MSE point.

In addition to this acquired knowledge, the most significant improvements oc-
curred when changing the weights of the variables that make up the PINN loss
function. By decreasing the weights of the residual equations parcel, a better fit
was repaired in all data. They presented results very similar to those shown in
the previous section for the data-driven model.

Based on this knowledge, a training and retraining path was expected to grad-
ually update the weights of the loss equation at each new PINN training session.

95



Figure 5.6: Best results for molar flowrates, permeabilities, and cavities pressure
evolution for the PINN model using four inputs and one output for each

network.

Initially, weights equal to 1 were considered for adjusting the data and bound-
ary conditions, and 0.1 for all residual equations. Once trained, the states of the
network were saved, and from this state, the weight of the portion of the resid-
ual equations was increased by 0.2, and the initial learning rate was reduced by
50%. This was done successively until it reached equal weight distribution for all
variables.

The best results of this study are shown in Figure 5.6. Adjustments to the test
data provided showed good results, fitting the molar flowrate, permeability, and
pressures both in the tube and the shell. Despite the loss function having given
almost 25 times more than the results of the data-driven model, the adjustments
of each plot individually were in the order of 10−3 for the boundary conditions
and residuals and the order of 10−4 for the PINN fitting of the data.

Table 5.1 compares the results obtained by the best four-input data-driven and
the PINN models. In this table, it is possible to compare the performance of both
proposed models numerically. Both models were shown to be reasonably accu-
rate. However, the time both models took to evaluate the test given is still higher
than the theoretical model used as a benchmark. Besides, when considering the
MSE sum and evaluation time, the proposed models from this chapter proved to
be more accurate and faster than the hybridization method proposed in Chapter
4. Evaluation time dropped 90% for the data-driven model and 30% for the PINN
model.
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Table 5.1: Curve adjustment comparison between the data-driven and PINNmod-
els’ KPIs for normalized features.

Model IC OC Res Data ∑ MSE Eval. Time
Theoretical - - - - - 0.58s
Data-driven 9x10−5 1.2x10−4 7x10−6 3.6x10−6 2.3x10−4 1.6s

PINN 2.9x10−4 1.4x10−3 1.9x10−3 5.2x10−3 5.6x10−3 6.9s

5.3.3 Digital Twin data-driven model

In this part of the study, the process known and available in Appendix C for con-
sultation was considered to model the digital twin and thus conclude this disser-
tation’s third and final objectives.

By evaluating the flowchart of the actual process, it is possible to identify that
the entire permeate flow is removed with each set of membranes. Therefore, the
inlet conditions change as the retained flowrate changes sets, in such a way that it
was necessary to create another dataset for training and validation that considered
this change of inlet conditions every time the flowrates changed from one TRAIN
to the other. This new dataset was synthetically generated, as presented in the
methodology section of this chapter.

The modeling proposal for the digital twin using the data-driven model is a
little different from the one studied in Section 4. As there are new inlet conditions
in each set, a model was proposed that considers the 3 or 4 modules coupled as
if they were a single gas separation module. Instead of considering the length of
the module according to each one individually, it was considered as if the end of
each module was directly connected to the next one.

In this way, the behavior of the variables in the first set of membraneswould be
equivalent to that of a module with the same configurations as the standardized
module used so far in the course of this work but with a length three times greater
due to the number of 3 modules in set 1. The same was given to sets 2 and 3 of
each TREM, whose number of membrane modules is 4, with a length four times
greater than the standardized module used for the study until then.

First, a set of 4 coupledmembraneswas trained (1 data-drivenmodel to predict
the evolution of the variables by the size 4x more significant than the one studied
in Section 4). The training process took about 6 h using the 4.3 MM dataset. De-
spite the time and the expectation of providing good results, the result obtained
for the pressure loss in the shell drew attention. The data-driven model pursued
the other variables with low errors and MSE (on the order of 10−2). However,
it is clear that as the Model evaluation progresses along the longer length of the
coupled modules, there is a significant offset close to the output conditions.

As this behavior occurred only in one of the output variables, it was consid-
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Figure 5.7: Best results for molar flowrates, permeabilities, and side pressure
evolution for the Digital Twin data-driven-modeled.

ered to study another method of normalization of the shell pressure to overcome
this problem. Among the proposals, the most effective one was the min-max nor-
malization of the pressure difference between the value of each point (value) and
the dataset maximum value (MAX(value)), as represented by Equation 5.3.

∆V = MAX(value)− value (5.3)

where ∆V is the difference between themaximumvalue from the dataset and each
point value. The normalization method is made over those ∆V values given by
the min-max method presented in Equation 5.4. WhereMAX(∆V) andMIN(∆V)

are the ∆V maximum and minimum value from the dataset, respectively.

Normalized value = 1 − MAX(∆V)− ∆V
MAX(∆V)−MIN(∆V)

(5.4)

This change resulted in significantly fewer errors than those of the first study
for the evolution of the shell pressure, keeping the other variables in the same pre-
diction performance. Figure 5.7 shows the final result for a given inlet condition
and its comparison with its theoretical development.

At the end of the study, the sum of the MSE of the purely data-based model
was of the order of 10−2 considering normalized data. An expressive result with
minor errors. Despite the strictly data-based model having no contribution from
the phenomenological equations that govern the process’s nature, the model’s ac-
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Figure 5.8: First results of molar flowrates, permeabilities, and side pressure
evolution for the PINN model using four inputs and one output for each

network.

curacy was much improved.
Likemostmetrics of thismodel, the evaluation of the given inlet test conditions

took an average of 3.2 s. The sum of the MSE of the adjusted variables of the
model’s predicted variables concerning the data was 1.2 × 10−3.

5.3.4 Digital Twin PINN model

In this study, the same PINN structure developed in Section 5.3.2 was used with
the same training strategy from the beginning. First, the proposed PINN was
trained using only data from the boundary conditions and the dataset and with
the loss equation weights set to 0 for the residual equations, in order to generate
a starting point which was given by the data-driven model.

Then, the weights of the residual portion were gradually increased at the same
time as the learning rate was reduced, as was done in Section 5.3.2. The results
obtained with this strategy for the digital twin clearly showed similar behavior to
those obtained for the first study carried out for the digital twin considering the
data-drivenmodelwith the original pressure normalization conditions. Figure 5.8
shows thementioned results, however, alongside the deviation some continuation
boundary conditions errors were found alongside the shell pressure offset.

Although the continuation problem, the adjustments for the variables ofmolar
flowrate and tube pressure permeability were well-adjusted. Only a coarse offset
in the prediction of the shell pressure was noticed. The total training time of the
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Figure 5.9: Best results for molar flowrates, permeabilities, and side pressure
evolution for the digital twin PINN-modeled.

PINN, considering the dataset of the digital twin, was approximately 8 h for each
parameter update, totaling a training run of roughly 32 h.

With this result, the need to consider a new normalization strategy to improve
the adjustment of the pressure variable was evident. Thus, the same normaliza-
tion strategy used for the data-drivenmodel of the digital twinwas used. The new
results are shown in Figure 5.9. In this figure, one can see an improvement in the
pressure adjustment. However, the offset did not decrease as much as in the data-
driven model. Despite this, in absolute values, the deviation from the boundary
condition was close to 1% as the pressure unit of measurement was Pascal. The
normalized chart presented does not make that clear. The sum of the MSE of the
adjustment was 9.2 × 10−2 considering the normalized values.

The PINNmodel took approximately 8.2 s to resolve the entire digital twin for
the inlet test conditions. This result is slightly lower than expected but satisfactory
regarding neural network prediction.

Table 5.2 shows a summary of the results obtained by data-driven and the
PINN models for the digital twin. In this table, it is possible to compare the per-
formance of both proposed models numerically. Both models were shown to be
reasonably accurate. The boundary conditions and data higher values of MSE
for the PINN model were majorly due to the shell pressure carried-over errors.
The MSE was of the 10−5 order of magnitude for the other variables. Besides,
the time both models took to evaluate the test given is still higher than the the-
oretical model used as a benchmark. However, when considering the MSE sum
and evaluation time, the proposedmodels from this chapter proved to be accurate
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Table 5.2: Digital-Twin curve adjustment comparison between the data-driven and
PINN models’ KPIs for normalized features.

Model IC OC Res Data ∑ MSE Eval. Time
Theoretical - - - - - 0.82s
Data-driven 2x10−5 5x10−3 3x10−6 1.2x10−3 7.2x10−3 3.2s

PINN 1.2x10−3 5.2x10−2 5.0x10−3 3.3x10−2 9.2x10−2 8.2s

Table 5.3: Digital-Twin curve adjustment comparison between the data-driven and
adjusted PINN (aPINN) models’ KPIs for normalized features.

Model IC OC Res Data ∑ MSE Eval. Time
Theoretical - - - - - 0.82s
Data-driven 2x10−5 5x10−3 3x10−6 1.2x10−3 7.2x10−3 3.2s

PINN 1.2x10−3 5.2x10−2 5.0x10−3 3.3x10−2 9.2x10−2 8.2s
aPINN 1.2x10−3 3.1x10−4 1.0x10−6 1.4x10−4 1.7x10−3 8.2s

and faster enough to be implemented for a 10-second sampling time monitoring
system.

As one can see in Figure 5.9, there is still a considerable offset as the prediction
advances through the digital twin length. In order to improve the prediction ac-
curacy of the shell pressure, an adjustment function is proposed to correlate the
offset errors between the predicted and actual values. To achieve this, a 3rd order
polynomial approach was considered. For that study, 12,000 offset data points
from 10 different initial conditions were used to estimate the polynomial fit. The
results obtained were good, with the mean square error (MSE) for boundary con-
ditions reducing from 10−2 to 10−4.

The resulting polynomial equation is shown in Equation 5.5 which correlation
coefficient was 0.9990.

ξ = 7.47x10−3z3 − 0.631z2 + 30.09z − 4.19 (5.5)

As amatter of comparison, the same case study in Figure 5.9 is shown in Figure
5.10with the polynomial error adjustment fitted. This approach outperformed the
data-drivenmodel, indicating that the proposed polynomial fit was effective in re-
ducing the offset errors and improving the accuracy of the PINNmodel. Overall,
the results of this study highlight the potential of polynomial fitting in enhanc-
ing the accuracy of physics-informed neural networks, which is an important step
toward improving the reliability of digital twin models.

Table 5.3 summarizes the findings and compares the adjustment curves con-
sidering the error-adjusted PINN.
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Figure 5.10: Best results for shell pressure after the application of the error
adjustment function.

5.4 Conclusions

This chapter presents strategies for modeling the gas separation process using
pure neural networks. However, both proposed models move away from the idea
of a black-box model since the data-driven model was trained to understand how
the variables behave from data generated by the phenomenological model. In the
same way, the PINN, in its conception, aims to pursue not only the data but the
restrictions of the process and the trends of variations described by the residual
equations that govern the physical process.

The results presented in this chapter show the ability of neural networks to
solve coupled differential equations and deal with non-linearities in the sameway
that phenomenological models are capable. They presented much more accurate
and faster results than the hybrid models proposed in the previous chapter. For
this reason, they were chosen for the digital twin modeling and thus fulfilled the
3rd objective proposed in this work.

However, despite the efficiency of the models proposed in this chapter, it is
worth mentioning the importance of a detailed study of the structure of the pro-
posed networks, aswell as a detailed study of the best configuration of parameters
and conditions for optimization and training of the neural network models. Each
model is unique and has specific needs and conditions of use and setup. More
time was taken to find the optimal settings than testing the model against test
data.

It is noteworthy that the data-drivenmodels and PINNs do not need all the pa-
rameters of the membrane modules to understand the data relation. Once trained
with theoretical equations, it is possible to extrapolate without knowing all the
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details of each membrane module, which makes these models highly flexible and
scalable, as long as the operating conditions are among the states used in training
the models.
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Chapter 6

Conclusion

6.1 Developments Overview

In the introduction of this document, we highlighted the main motivations for
developing a hybrid approach to develop a digital twin for a gas separation unit.
Among them, one can highlight:

1. Develop a phenomenological model to describe each membrane module’s mass, mo-
mentum, and heat transfer.

2. Develop, train, and evaluate aMulti-Layer Perceptron network to predict compound
permeability.

3. Determine the best hybridization structure that can predict the output with signifi-
cant accuracy and efficiency to be implemented in real-time.

4. Create and evaluate the performance of a digital twin with the best alternative model
developed for the third objective.

Until recently, gas separation unit models were purely theoretical or phe-
nomenological and were based on thermodynamic, physical, and chemical prop-
erties. These models respect physical laws and result in the process of detailed
comprehension of how each variable interacts. However, it has some restraints
when facing non-linearity problems, mainly predicting and analyzingmass trans-
fer through different membrane fibers in a gas separation process (ASGHARI
et al., 2018).

Machine learning-based models, though, could deal with this non-linearity
more efficiently. However, being an empirical model, it also has uncertainty in de-
scribing a complex manufacturing process. Besides, it does not take into account
any thermodynamic or physical law. Because of that, combining bothmodels into
a hybrid one can result in a powerful approach to respect the physical laws and
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deal with non-linearity faster than purely phenomenological, which also enables
more accurate real-time optimization algorithms (ASGHARI et al., 2018; QUIZA
et al., 2012). Also, the use of machine learning is an attribute of the new digital
era in industry, one that promises more profitability and reliability (KANE et al.,
2015).

Furthermore, as presented during the theory and bibliography review chap-
ter, there were no studies on natural gas sweetening considering a hybrid ANN
and Phenomenological approach. On the contrary, many phenomenological ap-
proaches were found, and only a few studies used a purely black box model,
trained using experimental data. None was found using gas separation unit data
up to the time the bibliography review was finished (February 2023).

In Chapter 3, the hollow-fibermodelswere presented according to the continu-
ity equations from BIRD et al. (2004); WHITAKER (1977) and MULDER (1996).
Also, a one-dimensionalmesh and finite volume discretizationwere presented for
mass, momentum, and energy conservation. The present study has successfully
proposed a phenomenologicalmodel that balances robustness and computational
efficiency. The model considers essential aspects of the studied phenomena and
provides a reliable and accurate representation. Furthermore, its computation-
ally friendly nature makes it easily implementable and computationally efficient,
making it an ideal solution for practical applications. Also, the proposed model
confirms that a gas separation unit using membranes on the oil & gas field using
high pressures and high feed flows is pointless considering a diffusive parcel. The
results of this study showed that it is possible to achieve a good balance between
robustness and computational efficiency and provide valuable insights for future
model development studies in a similar field.

The data treatment and manual hybridization method were investigated in
Chapter 4. It was shown that normalizing all data proved essential for not only
speeding up training but also in terms of accuracy. Furthermore, the gradient-
based network parameter actualization method (ADAM) proved more accurate
than the adaptive gradient (ADAGRAD). Also, the hyperbolic tangent activation
function was slightly off-target compared to the sigmoid function. Its maximum
correlation coefficient to the test datasets was at least 0.99 for each compound.
However, the training time was cut in half using the hyperbolic tangent activa-
tion function. For that, the hyperbolic tangent was the most suitable parameter to
address the problem better. Still, in Chapter 4, a study has compared the perfor-
mance of a hybrid network-phenomenological model with a purely phenomeno-
logical model. The results showed that the hybrid model achieved an average
relative error of less than 2%, showing its accuracy compared to the phenomeno-
logical model. However, the evaluation time of the hybrid model was at least 100
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times higher than that of the phenomenological model, making it infeasible for
real-time implementation in the proposed digital twin. This highlights the trade-
off between accuracy and computational efficiency in selecting models for prac-
tical applications. Although the hybrid model has similar results, the hybridiza-
tionmethod proposed in this chapter resulted in high computational costs. It may
limit its use in specific applications where real-time performance is crucial. It is
also worth noting that a trade-off from the hybridization method proposed in this
chapter still requires a phenomenological model with all equipment parameters
and configurations known. That level of detail may not be available to all FPSOs
or units, just as it was not available for this work.

Chapter 5 presented the development route of two differentmodels from those
previously proposed. One 100% data-driven and another whose hybridization
did not take place to incorporate a neural network into a phenomenological model
but instead incorporated the results of the phenomenological model as a target for
estimating the data-driven network, a concept known since 2019 in literature such
as Physics-InformedNeuralNetworks (PINNs). During the development of these
models, the high relevance of a good strategy for normalizing the variables, the
amount of information available for estimation, and the need for slow and gradual
training in the case of PINNs became evident.

In addition, both models proposed in this chapter met the efficiency, agility,
and accuracy goals that had not been found together during the studies of the
previous chapter. Instead of taking about 10 s to evaluate the profiles of each vari-
able within 1 module, the data-driven, and PINN models were able to evaluate
the entire digital twin in 3 s and 7 s, respectively. Hence, these strategies can be
implemented in real-time if the frequency of sending sensors is 10s or more. Fur-
thermore, even with the shell pressure prediction needing a post adjustment, by
fitting a polynomial function after the PINN, it does not correspond to deviations
more significant than 1% in absolute terms, so it is possible to conclude that both
the data-driven model and the PINNs fulfilled the main objective of this study.

6.2 Work Contributions

At the time of completion of this work, no other work was proposed to study al-
ternatives to existing models for gas separation processes on offshore platforms.
Furthermore, no digital twinmodeling was found in the literature using physical-
informed neural networks or comparing a pure data-driven model with PINNs.
The results and conclusions presented in this work are expected to be significantly
valuable and a time saver for oil & gas industry managers in research and devel-
opment. They are proposed to help streamline the digitalization and expansion
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of the oil & gas segment for industry 4.0.

6.3 Proposal for Continuation

This work showed and proved models that work both in the phenomenological
and data-driven parts. However, some parallel paths can be better explored to
improve the scope of the proposed models.

In terms of application, the present work can serve as a basis for further devel-
opments, such as:

• Use the proposed phenomenological model with actual gas separation unit
parameters and compare the variables against what is read on the sensors
and validate the model also with real data;

• Use another hybridization method rather than just estimating the perme-
ability factors;

• With enough data, consider expanding the evaluation for more than just 2
compounds;

• Extrapolate the proposedmodels and try to predict the parameters for a pre-
salt gas composition;

• Create an application capable of taking in the models proposed in this work
and testing it in real-time simulations to verify its theoretical capabilities
found in this work;

• Use the proposed models as the basis of an AI-based control system.

In terms of methodology, some open matters to the development of the pro-
posed algorithm can be cited:

• Evaluate and compare the proposed phenomenological model against other
pressure estimation equations different from the PAN’s study;

• Evaluate if a deep learning algorithmwould have performed faster andmore
accurately for the hybridization method using the neural network to predict
the permeability;

• Use the PINN normalization and structure as a benchmark and propose
modifying its structural parameters and try to achieve better results for the
shell pressure;

• If available, use real data to train and test data-driven and PINN models;
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• Extrapolate the inputs used on the test dataset to verify how all models deal
with offset variables.

In conclusion, the oil and gas industry is at the threshold of a digital revo-
lution, and there is a pressing need to integrate Industry 4.0 technologies. The
presented work has proposed several models that could accelerate the digital ma-
turity of the oil and gas industry, providing a head start for the national industry.
With the low digital maturity of the oil and gas segment, the proposedmodels of-
fer a promising solution to enhance oil and gas operations’ efficiency, safety, and
sustainability. The oil and gas industry can unlock new operational excellence
and competitiveness levels by leveraging cutting-edge technologies such as ma-
chine learning, artificial intelligence, and the Internet of Things. This dissertation
highlighted the importance of digital transformation in the national oil and gas
industry and demonstrated that with the right approach, it can achieve its digital
maturity faster and become a head start in the digital era.
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Appendix A

Membrane diffusion equation

As mentioned in Section 2.1.3 Fick’s law of material diffusion can be described by
the following equation where DAB is the diffusion coefficient and J is the material
flux under a concentration gradient (dc/dh) through a membrane sheet of the
thickness (h).

J = −DAB dc
dh

(A.1)

However when comes to considering gas separation, concentration can be rewrit-
ten as a function of partial pressure (pi) according to Henry’s law which:

ci = Sii (A.2)

where Si is the ith coefficient solubility inside membrane, which gives:

Ji = −DAB
i Si

dpi

dh
(A.3)

According to MULDER (1996) the product DABS can be joint in another parame-
ter called permeability (ki), which finally returns:

Ji = −ki
dpi

dh
(A.4)

Concluding that an element i flux through a membrane is proportional to its per-
meability factor and partial pressure gradient and inversely to its thickness h.
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Appendix B

MLP network back-propagation
algorithm

Todeduct a back-propagation algorithmweight correction froman exit layer node,
let’s use the perceptron’s equations from section 2.4.1 and 2.4.3. First, defining the
error as:

em(t) = rm(t)− ym(t) (B.1)

Next, according toWidrow-Hoff law and its LMS algorithm, we have the objective
function to be minimized as:

Objm(t) =
∑m e2

m(t)
2

(B.2)

Besides, the linear combination from all inputs can be described accordingly to
equation 2.32, which adjusted to a last node neural cell, gives:

um(t) =
j

∑ wmj(t)yj(t) (B.3)

However, as it is an exit layer node, its response can be defined accordingly to
equation 2.31, changing the process’s input signal xi(t) to a previous layer re-
sponse output yj(t), which gives

yk = φ

(
N

∑
n=1

wmj(t)yj(t)

)
= φm (um(t)) (B.4)
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According to LMS algorithm, the node weight correction is proportional to the
partial differentiation ∂Objm(t)/∂wmj(t) as it follows:

∆wmj(t) = −η
∂Objm(t)
∂wmj(t)

(B.5)

Which, according to chain rule, ∂Objm(t)/∂wmj(t) can be rewritten as:

∂Objm(t)
∂wmj(t)

=
∂Objm(t)

∂em(t)
∂em(t)
∂ym(t)

∂ym(t)
∂um(t)

∂um(t)
∂wmj(t)

(B.6)

However if we differentiate equation equation B.1 ,B.2, B.3 and B.4 with respect
of ym(t), em(t), wmj(t) and um(t) respectively, it gives the following equations B.7,
B.8, B.9 and B.10 respectively:

∂em(t)
∂ym(t)

= −1 (B.7)

∂Objm(t)
∂em(t)

= em(t) (B.8)

∂um(t)
∂wmj(t)

= yj(t) (B.9)

∂ym(t)
∂um(t)

= φ′
m (um(t)) (B.10)

Replacing equations B.7, B.8, B.9 and B.10 into equation B.6, gives:

∂Objm(t)
∂wmj(t)

= −em(t)φ′
m (um(t)) yj(t) (B.11)

Which, replacing onto equation B.5 gives:

∆wmj(t) = ηem(t)φ′
m (um(t)) yj(t) (B.12)

Besides, a local gradient can be defined as:

δm(t) = −∂Objm(t)
∂um(t)

(B.13)
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Which, again, accordingly to chain law:

δm(t) = −∂Objm(t)
∂em(t)

∂em(t)
∂ym(t)

∂ym(t)
∂um(t)

(B.14)

Replacing equations B.7, B.8 and B.9 into equation B.14, gives:

δm(t) = em(t)φ′
m (um(t)) (B.15)

Then, replacing equation B.15 into equation B.12 gives finally that the last node
weight correction depends on learning rate, local gradient, and previous node
response only, which concludes that:

∆wmj(t) = ηδm(t)yjt) (B.16)

For a non-last-node layer, equations turn out to be a bit different from the example
above. However, the deduction mechanism is quite the same. Let’s then pretend
that j is a neural cell from a hidden layer before exit node m. Since we don’t have
an error measure for an internal layer, the local gradient can be written as:

δj(t) = −
∂Objj(t)

∂yj(t)
∂yj(t)
∂uj(t)

(B.17)

Replacing equation B.10 we have:

δj(t) = −
∂Objj(t)

∂yj(t)
φ′

j
(
uj(t)

) (B.18)

However, we still want to minimize the exit layer error, so that differentiating
equation B.2 to respect to yj(t) gives:

∂Objj(t)
∂yj(t)

= ∑
mem

∂em(t)
∂yj(t)

(B.19)

According to chain law:

∂Objj(t)
∂yj(t)

=
m

∑ em
∂em(t)
∂um(t)

∂um(t)
∂yj(t)

(B.20)

However, equation B.1 suggests that:

em(t) = rm(t)− φm (um(t)) (B.21)
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Which differentiating with respect to uL(t) gives:

∂em(t)
∂um(t)

= −φ′
m (um(t)) (B.22)

Besides, differentiating equation B.3 with respect to yj(t), gives:

∂um(t)
∂yj(t)

= wmj(t) (B.23)

Then, replacing equations B.22 and B.23 into equation B.20, we have:

∂Objj(t)
∂yj(t)

= −
m

∑ em φ′
m (um(t))wmj(t) (B.24)

However, if noticed, equation B.24 contains equation B.15 as the two first terms
inside summation. That way, equation B.24 can be rewritten as:

∂Objj(t)
∂yj(t)

= −
m

∑ δm(t)wmj(t) (B.25)

Which, replacing on equation B.18, gives that a prior exit layer node local gradient
can be described as:

δj(t) = φ′
j
(
uj(t)

) m

∑ δm(t)wmj(t) (B.26)

Then, replacing equation B.26 into equation B.16 gives finally that a prior last node
weight correction depends on learning rate, local gradient (which depends on lo-
cal response gradient, a sum of final node local gradients and weights) and pre-
viously node response, which concludes that:

∆wj(j−1)(t) = ηφ′
j
(
uj(t)

) [ m

∑ δm(t)wmj(t)
]

y(j−1)(t) (B.27)
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Appendix C

Larger real FPSO Gas separation
process diagram
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Appendix D

Fugacity calculation

Peng-Robinson Equation of State can be described by the following:

P =
RT

V − b
− a

V(V + b) + b(V − b)
(D.1)

a = 0.45724
R2(Tc)2

Pc

(
1 +

(
0.37464 + 1.54226ω − 0.26992ω2

) (
1 −

√
Tr
))2

(D.2)

ω = −1 − log10
Psat

Pc |Tr=0.7 (D.3)

b = 0.0778
RTc

Pc (D.4)

Tr =
T
Tc (D.5)

Where P are the pressure, T stands for temperature, R is the universal gas fac-
tor, V is the molar volume, Tc stands for critical temperature, Pc is the critical pres-
sure, Tr stands for reduced temperature, ω is PITZER et al. (1955) acentric factor
and Psat is the saturation pressure. The compressibility factor can be determined
by calculating the roots from the cubic equation as follows.
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Z3 − (1 − B)Z2 + (A − 3B2 − 2B)Z − (AB − B2 − B3) = 0 (D.6)

Where:

A =
amixP
R2T2 (D.7)

B =
bmixP

RT
(D.8)

Therefore:

V =
ZP
RT

(D.9)

According to MEHL (2009) the amix and bmix for a mixture of elements can be
calculated using Van derWaals mixture rules where a is quadratic approximation
whilst b is linear. The expression to calculate each parameter is as follows:

amix =
n

∑
i=1

n

∑
j=1

yiyjaij (D.10)

bmix =
n

∑
i=1

yibi (D.11)

Where:

aij = (1 − kCO2−CH4)
√

aiaj (D.12)

Where yi is the molar fraction from ith component in the mixture. Also, ac-
cording to SANDLER (2017) the vapor phase fugacity coefficient can be given by
a combination of the mixture rules of Van derWaals and Peng-Robinson equation
of state. This expression is given by the following:

ln ϕv
i =

bi

bmix
(Z − 1)− ln (Z − Bmix)−

Amix√
8Bmix

(
2 ∑n

j=1 yiaij

amix
− bi

bmix

)

ln

(
Z + (1 +

√
2)Bmix

Z + (1 −
√

2)Bmix

) (D.13)
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Table D.1: Peng-Robinson thermodynamic parameters for the fugacity calculation

Parameter CO2 CH4

Pc(bar)(1) 73.9 46.3
Tc(K)(1) 304.1 190.4

ω(1) 0.239 0.011
k(2)CO2−CH4

0.103

Source: (1)TERRON (2009); (2)LI (2008)

Finally, the fugacity of each component is given by the equation:

fi = yiϕ
v
i P (D.14)

Table D.1 are the parameters used to calculate each fugacity in this work.
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Appendix E

Model discretization procedure

Following the idea integrating Equations 3.11 to 3.14 under the finite volume rep-
resented by Figure E.1, gives the following resolution formass balance for the shell
side:∫ e

w

∂uzi

∂z
dz − DABs

i

∫ e

w

∂

∂z
∂uzi

∂z
dz = −

∫ e

w
πDoNP

(
PxXi − PyYi

)
dz (E.1)

uzi|e − uzi|w − DABs
i

[
∂uzi

∂z

∣∣∣∣
e
− ∂uzi

∂z

∣∣∣∣
w

]
= − πDoNP

(
PxXi − PyYi

)∣∣
p ∆z (E.2)

However:

∂uzi

∂z

∣∣∣∣
e
≈ uzie − uziP

∆z
(E.3)

∂uzi

∂z

∣∣∣∣
w
≈ uziP − uziw

∆z
(E.4)

Replacing Equations E.3 and E.4 into Equation E.2, changing all the therms on

Figure E.1: General 1D mesh representation of finite-volume method, with the
central volume P and the neighboring volumes W and E. The border midpoints

are represented by w and e, respectively.
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the right side of the equation by BP, and manipulating some variables gives the
following:[

2DABs
i

∆z

]
uziP =

[
DABs

i
∆z

− 1

]
uzie +

[
DABs

i
∆z

+ 1

]
uziw = BP (E.5)

Rewriting the results in a linear system as shown in Equation E.6.

APuziP = Aeuzie + Awuziw + Bp (E.6)

where:

AP =
2DABs

i
∆z

(E.7)

Ae =
DABs

i
∆z

− 1 (E.8)

Aw =
DABs

i
∆z

+ 1 (E.9)

Bp = −πDoNPp
(

PxPXiP − PyPYiP
)

∆z (E.10)

Likewise, this process, the same was made for the other two model equations,
which resulted in the following:[

2DABs
i

∆z

]
vziP =

[
DABs

i
∆z

− 1

]
vziw +

[
DABs

i
∆z

+ 1

]
vzie

+ πDoNPp
(

PxPXiP − PyPYiP
)

∆z

(E.11)

P2
xe = P2

xw − 384NDo(D + NDo)RTµm

π(D2 − ND2
o)

3Zy

2

∑
i=1

(vziP)∆z (E.12)

P2
ye − P2

yw = −256RTµm

πD4
i ZxN

2

∑
i=1

(uziP)∆z (E.13)

where the properties on each control volume center are calculated using the av-
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erage of the properties on each control volume faces, Equation E.14 shows an ex-
ample of center properties calculation for shell side pressure:

PxP =
Pxe + Pxw

2
(E.14)
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Appendix F

Raw dataset X Treated dataset chart
comparison
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Figure F.1: Normalized raw data sheet from feed variables. Time step=1hour.

Figure F.2: Normalized treated data dispersion from feed variables.
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Figure F.3: Normalized raw data sheet from retentate variables. Time
step=1hour.

Figure F.4: Normalized treated data dispersion from retentate variables.
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Figure F.5: Normalized raw data sheet from permeate variables. Time
step=1hour.

Figure F.6: Normalized treated data dispersion from permeate variables.
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