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O Método Lattice Boltzmann (LBM) tem sido crescentemente adotado na Engenharia 

Química. Embora popular e fácil de implementar, o modelo pseudopotencial de Shan-Chen 

possui limitações como inconsistência termodinâmica, geração de velocidades espúrias, dentre 

outras. Vários modelos alternativos que corrigem essas limitações são encontrados na literatura. 

Neste trabalho, por meio de manipulações algébricas, propomos um modelo unificado a partir do 

qual diferentes forças de interação multifásicas podem ser recuperadas. Simulações isotérmicas 

e monocomponentes de transição de fase de gotas estacionária e oscilante validam o modelo 

numericamente como também reforçam que as forças de interação são essencialmente 

equivalentes. Os parâmetros multifásicos são ajustados com base nas densidades da fase vapor 

na região de baixa temperatura da curva de coexistência de Maxwell. A consistência 

termodinâmica é melhorada ao escrever os parâmetros como funções da temperatura reduzida, 

sem perda de estabilidade numérica ou aumento das velocidades espúrias. A validade de um 

modelo preditor de caminho preferencial para um regime não Darcyano é verificada e seus 

resultados são confrontados com os das simulações. LBM recupera com sucesso a equação de 

Forchheimer. Embora o modelo preveja razoavelmente os caminhos preferidos, as contribuições 

inerciais no regime de Forchheimer fazem o padrão poroso, a forma do grão e as deflexões do 

caminho perturbarem essas previsões.  
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The Lattice Boltzmann Method (LBM) has been increasingly adopted in Chemical 

Engineering. Although popular and easy to implement, the Shan-Chen pseudopotential 

model suffers from many limitations regarding thermodynamic consistency, the formation of 

spurious currents, and others. Several alternative models that mitigate these effects are found 

in the literature. Through algebraic manipulations, we propose a unified model from which 

these multiphase interaction forces can be recovered. Isothermal phase transition simulations 

of single-component stationary and oscillating droplets validate the model numerically and 

reinforce that the multiphase forces are essentially interchangeable. The multiphase 

parameters are selected based on the vapor densities at low temperatures in the Maxwell 

coexistence curve, where there is a narrow range of optimal values. Writing them as functions 

of the reduced temperature enhances the thermodynamic consistency without losing stability 

or increasing spurious velocities. The validity of a preferential path predictor in a non-Darcy 

regime is also verified, and the results are confronted with the simulated preferred paths. 

LBM successfully recovers the Forchheimer equation. Although the model reasonably 

predicts the preferred paths, the inertial contributions in the Forchheimer regime make the 

porous pattern, grain shape, and path deflections disturb those predictions.  
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Chapter 1  
 

Introduction 

 

1.1 Motivation 

 

The Lattice Boltzmann Method (LBM) has evolved from the Lattice Gas Automata 

model [1, 2]. The method is an attractive, mesoscopic approach for simulating numerous 

problems, such as bubble dynamics, fluid flows in complex geometries, and reactive flows 

with coupled transport phenomena [3, 4]. To correctly simulate these phenomena, the 

equations must ensure reasonable interactions among fluid-fluid and fluid-solid phases, and 

satisfy mass, momentum, and energy balances. 

Arguably, the main feature of LBM is its straightforward computational 

implementation, effortless description of interfacial systems, and feasible insertion of 

capillary effects and other thermodynamic phenomena. For instance, while traditional 

Computational Fluid Dynamics (CFD) methods (e.g., Volume of Fluid (VOF) and Arbitrary 

Lagrangian-Eulerian (ALE)) are interface-tracking methods [5, 6, 7], the interface width and 

location arise naturally in LBM from the density profile, without tracking or reconstruction 

[8, 9, 10]. Even though, the no-slip boundary condition is still easily extended to complex 

geometries [4, 11].  

Hence, several LBM applications have been advancing in the industry [3, 12], 

especially in chemical processes. The multiphase flow problems, commonly associated with 

separation processes and operations in the oil industry, e.g., emulsions and enhanced oil 

recovery (EOR), are engaging LBM applications [13, 14]. Most studies focus on analyzing 

the dynamic behavior of the fluid and ensuring recovery of the conservation equations (i.e., 

mass, momentum, and energy). The availability of the Lattice Boltzmann (LB) multiphase 

and multicomponent models turns the method suitable for simulating such types of flow.  
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The ubiquitous approach for multiphase and multicomponent modeling in LBM is the 

pseudopotential method, a bottom-up model, initially proposed by Shan and Chen in 1993 

[15], that mimics particle interactions and performs phase transitions. Besides being a 

promising candidate for multiphase problems, LBM is also suitable for modeling porous 

media flows [11, 16, 17]. One branch of study is the preferential flow, an elusive phenomenon 

in porous media that impacts the oil industry, micro- and nanofluidic applications, and soil 

sciences. Notably, LBM with the Pore-Scale approach deals with complex geometries [3], 

accounts for mesoscopic properties that are hardly considered using macroscopic methods 

[18], details velocity fields, and identifies preferred pathways. Since preferential flow has 

several causes, it is hard to distinguish and evaluate the diverse contributions to the 

phenomenon. However, a starting simplification assumes that geometrical features are its 

primary cause, like in the Ju et al. model [19], a tortuosity-dependent resistance model. 

 

 

1.2 Objectives 

 

The primary objectives of this dissertation are to gain theoretical knowledge about 

LBM and practical experience with its computational implementation for future applications 

in multiphase flows in porous media. To achieve these objectives, this dissertation can be 

divided into three independent parts: (i) the deduction of the transport equations, (ii) the 

unified multiphase model proposal, and (iii) the LBM performance in porous media flow.  

First, we deduce the transport equations in detail by employing the asymptotic 

analysis in the Boltzmann equation. This derivation enhances our confidence in algebraic 

manipulations for future LB deductions and provides a clear and didactic procedure to derive 

the transport equations, which is an information gap in the literature.  

In the second part, we investigate the pseudopotential model. Several multiphase 

interaction models have been proposed in the literature, based on the same bottom-up 

concept, to reduce intrinsic limitations of the original Shan-Chen model. However, these 

interaction models are widespread in the literature under various names. Some of them are 

commonly presented as unique formulations that seem to yield similar results. Here, we 

propose a unified pseudopotential model, which recovers five previous multiphase models 
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depending on a tuned parameter. Combining the interaction models in simpler mathematical 

form makes later work more concise and quickly directs the reader to a unified parameter. 

In the third part, parallel to developing the unified model for future multiphase 

simulations, we also study a porous media flow problem. We perform non-Darcy flow 

simulations with complex geometry to check the recovery of the Forchheimer equation and 

the prediction of the preferred path according to the Ju et al. model.  

We aim to investigate the pseudopotential model and test a simple implementation of 

porous media independently. More specifically, in this dissertation, we intend to: 

▪ clarify the theoretical details for the recovery of the continuity and the Navier-

Stokes equations from LBM; 

▪ investigate the correlation among different pseudopotential models;  

▪ establish a proper region in the coexistence curve to tune the pseudopotential 

parameter; 

▪ compare the limitations (thermodynamic consistency, density ratio, spurious 

velocity, and interface thickness) of the pseudopotential models and suggest an 

alternative way to decrease them; 

▪ carry out simulations in complex geometries; 

▪ verify if LBM recovers the Forchheimer model for a porous media flow; 

▪ explore Ju et al. resistance model to search for preferential paths. 

 

1.3 Document structure 

 

Initially, Chapter 2 addresses the main aspects of the LBM theory to understanding 

the following sections, such as the general mathematical formalism, boundary conditions, 

and forcing schemes. Then, in Chapter 3, we thoroughly prove that LBM recovers the 

transport equations. Next, in Chapter 4, we implement two frequent benchmarks to 

demonstrate the theory and validate our implementation. In Chapter 5, we develop and test 

the unified model for multiphase interactions. Chapter 6 displays the results from a parallel 

investigation in which we demonstrate the LBM applicability to porous media simulations 

by performing a preferential flow study. Lastly, Chapter 7 concludes with a summary of the 

central ideas presented in this dissertation.  
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Chapter 2  
 

Theoretical background 

 

In this chapter, we present an LBM overview. Interested readers, however, are referred to 

Guo and Shu [20] and Kruger et al. [21] for additional theoretical details. We must clarify 

here that throughout the text we use an arrow to indicate vectors (e.g., v⃗⃗) and bold notation 

to indicate tensors (e.g., 𝐒), regardless of the tensor order. Throughout the chapter we will 

also often use the Einstein summation convention (index notation).   

 

2.1 Boltzmann Transport Equation 

 

LBM uses the density distribution function 𝑓(x⃗⃗, v⃗⃗, 𝑡) to track the distribution of 

particles in the system. This function describes the probability of finding a particle with 

velocity v⃗⃗ (associated with a momentum p⃗⃗) in a position x⃗⃗ at time 𝑡. The total derivative of 

𝑓(x⃗⃗, v⃗⃗, 𝑡) in the physical space is [22]: 

 

d𝑓

d𝑡
=
𝜕𝑓

𝜕xα

dxα
d𝑡

+
𝜕𝑓

𝜕vα

dvα
d𝑡

+
𝜕𝑓

𝜕𝑡

d𝑡

d𝑡
   .  (2.1) 

 

Since vα ≡ dxα/d𝑡, d𝑡/d𝑡 = 1, and pα ≡ M vα, where M is the mass experiencing 

the momentum pα, the right-hand side (RHS) of Equation (2.1) is rewritten as: 

 

d𝑓

d𝑡
= vα

𝜕𝑓

𝜕xα
+
𝜕𝑓

𝜕pα

𝜕pα
𝜕vα

dvα
d𝑡

+
𝜕𝑓

𝜕𝑡
   .  (2.2) 

 

 From the definition of pα, we know that ∂pα/ ∂vα = M. Also, dvα/d𝑡 ≡ acα, where 

a⃗⃗c is the acceleration. Then, 
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d𝑓

d𝑡
= vα

𝜕𝑓

𝜕xα
+M acα

𝜕𝑓

𝜕pα
+
𝜕𝑓

𝜕𝑡
   .  (2.3) 

 

 Recalling that Fα ≡ M acα, where F⃗⃗ is an external force, 

 

d𝑓

d𝑡
= vα

𝜕𝑓

𝜕xα
+ Fα

𝜕𝑓

𝜕pα
+
𝜕𝑓

𝜕𝑡
   .  (2.4) 

 

Defining the collision operator as Ω ≡ d𝑓/d𝑡 and returning to the direct tensor 

notation:  

 

[v⃗⃗ ∙ ∇⃗⃗⃗x + F⃗⃗ ∙ ∇⃗⃗⃗p + 𝜕𝑡]𝑓(x⃗⃗, v⃗⃗, 𝑡) = Ω(𝑓)  ,  (2.5) 

 

where, ∇⃗⃗⃗x, ∇⃗⃗⃗p, and 𝜕𝑡 are the short notations for 𝜕/𝜕xα, 𝜕/𝜕pα and 𝜕/𝜕𝑡. Equation (2.5) is 

the Boltzmann Transport Equation (BTE), which governs the advection dynamics of the 

density distribution function of particles in the presence of an external force (e.g., gravity) 

[21]. The collision operator describes the complex dynamical interactions during particle 

collisions. Later, Section 2.3 presents two relevant collision models in LBM. 

Once 𝑓(x⃗⃗, v⃗⃗, 𝑡) is calculated, the macroscopic quantities can be obtained from 

moments of the distribution in the velocity space: 

 

𝜌 = ∫𝑓(x⃗⃗, v⃗⃗, 𝑡)dv⃗⃗  ,  (2.6) 

 

𝜌u⃗⃗ = ∫ v⃗⃗𝑓(x⃗⃗, v⃗⃗, 𝑡)dv⃗⃗  ,  (2.7) 

 

𝜌𝐸 =
1

2
∫|v⃗⃗|2𝑓(x⃗⃗, v⃗⃗, 𝑡)dv⃗⃗  ,  (2.8) 

 

where 𝜌, u⃗⃗, and 𝐸 are respectively the macroscopic density, velocity, and total energy. 
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To assure the LBM can reproduce correctly the transport phenomena, one is interested 

in recovering the hydrodynamic equations of the continuum theory, such as the continuity 

equation,  

 

∂𝑡 𝜌 + ∇⃗⃗⃗ ∙ 𝜌u⃗⃗ = 0  ,  (2.9) 

 

which expresses the mass conservation in the conservative form [23, 24], and the motion 

equation, 

 

𝜕𝑡𝜌u⃗⃗ = −∇⃗⃗⃗ ∙ 𝜌u⃗⃗u⃗⃗ − ∇⃗⃗⃗𝑝 − ∇⃗⃗⃗ ∙ 𝐒 + F⃗⃗b  ,  (2.10) 

 

which guarantees the momentum conservation in the Eulerian specification [23, 24]. In 

Equation (2.10), 𝑝 is the pressure, 𝐒 is the deviatoric stress tensor and F⃗⃗b is a body force (e.g., 

gravity or electric forces) per unit of volume. 

The Chapman-Enskog expansion is a typical methodology to recover these equations 

[25, 26, 27]. It is a perturbation expansion of 𝑓(x⃗⃗, v⃗⃗, 𝑡) around its equilibrium value 𝑓𝑒𝑞. The 

small parameter used in this asymptotic analysis is related to the Knudsen number, which is 

a ratio between the molecular mean free path and a characteristic length of the flow. The 

reader can find the foundation of the perturbation expansion in Appendix A, and the 

Chapman-Enskog analysis is detailed Chapter 3, where LBM recovers both Equations (2.9) 

and (2.10). Appendix B details the moments required for such derivations, like the moments 

in Equations (2.6) to (2.8).  

 

 

2.2 Lattice Boltzmann Method 

 

The solution of the BTE is cumbersome since it is a non-linear partial 

integrodifferential equation [28]. The computational time could be affected depending on the 

numerical treatment. For instance, 𝑓(x⃗⃗, v⃗⃗, 𝑡) depends on five (in a bidimensional domain: 

xα, xβ, vα, vβ, and 𝑡) or seven physical continuous variables (in a three-dimensional domain: 
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xα, xβ, xγ, vα, vβ, vγ, and 𝑡). One can simplify the continuous dependence by performing the 

discretization of the space and velocity. As a result, the LBM emerges as a numerical method 

to solve the BTE, in which space, time, and velocity (c⃗i) are now discretized. The outcome 

is a discrete distribution function 𝑓𝑖 = 𝑓𝑖(x⃗⃗, c⃗i, 𝑡), where x⃗⃗,  c⃗i, and 𝑡 are given in lattice units 

rather than physical units.  

The fully discrete form of BTE is the Lattice Boltzmann Equation (LBE), 

 

𝑓𝑖(x⃗⃗ + c⃗i𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑓𝑖(x⃗⃗, 𝑡) = [Ωi(𝑓𝑖) + Fi]𝛿𝑡 ,  (2.11) 

 

which is applied to each direction i in the lattice node. 

Depending on the extent of physical consistency and time-cost one may provide for 

the simulations, different lattice arrangements arise. They are often gathered in the DdQq 

model, in which d is the dimension (e.g., d = 2 for a bidimensional domain) and q is the 

number of discrete velocities [29]. D1Q3, D2Q7, D2Q9, D2Q25, D3Q19, and D3Q27 models 

are some examples. The most common model for bidimensional domains is the D2Q9, 

displayed in Figure 1.  

 

 

In the equilibrium, the distribution function is generally expressed by a Maxwell-

Boltzmann distribution function, which, after discretization, is given by:  

 

Figure 1: Lattice structure of D2Q9 model. The lattice nodes (circles) are numbered from zero to eight, which 

identifies each direction, i.e., 𝑖 = 0, 1, … , 8. 
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𝑓𝑖
𝑒𝑞(x⃗⃗, 𝑡) = 𝜔𝑖 𝜌 [1 +

c⃗i . u⃗⃗
eq

𝑐𝑠2
+
(c⃗i . u⃗⃗

eq)2

2𝑐𝑠4
−
(u⃗⃗eq)2

2𝑐𝑠2 
]  ,  (2.12) 

 

where u⃗⃗eq is the equilibrium velocity, 𝑐𝑠 is the speed of sound and 𝜔𝑖 are the weights. In the 

absence of external forces, the equilibrium velocity is the same as the real fluid velocity, i.e., 

u⃗⃗eq(x⃗⃗)  = u⃗⃗(x⃗⃗). On the other hand, Section 2.5 reveals how to calculate u⃗⃗eq when 

considering external force. Also, Appendix B demonstrates the mandatory isotropy 

conditions, independent of the orthogonal transformations, to ensure that the transport 

equations are recovered and to calculate the weights for each different lattice model [20, 30]. 

For instance, the D2Q9 model fixes the speed of sound as 𝑐𝑠 = (𝛿𝑥/𝛿𝑡)/√3 and sets the 

weights and discrete velocities as: 

 

𝜔𝑖 =

{
 

 
4
9⁄  ,

1
9⁄  ,

1
36⁄  ,

 

 i = 0                 

 i = 1, 2, 3, 4    , (2.13) 

 i = 5, 6, 7, 8  

 

{(
c0x
c0y
) , … , (

c8x
c8y
)} = 

= {(
0
0
) , (

1
0
) , (

0
1
) , (

−1
0
) , (

0
−1
) , (

1
1
) , (

−1
1
) , (

−1
−1
) , (

1
−1
)} (

𝛿𝑥

𝛿𝑡
) . 

 (2.14) 

 

The LBM encloses two main steps: the collision and the streaming. In the collision 

step, the collision model is inserted (Section 2.3) in the LBE and further calculate the post-

collision distribution function 𝑓𝑝𝑜𝑠𝑡𝑖
(x⃗⃗, 𝑡) for all fluid nodes of the lattice: 

 

𝑓𝑝𝑜𝑠𝑡𝑖
(x⃗⃗, 𝑡) = 𝑓𝑖(x⃗⃗, 𝑡) + [Ωi(𝑓𝑖) + Fi]𝛿𝑡  .  (2.15) 

 

The effects of the particle collisions propagate through the lattice. Hence, in the 

streaming step, the distribution functions 𝑓𝑖(x⃗⃗ + c⃗i𝛿𝑡, 𝑡 + 𝛿𝑡) are calculated after the 

collisions, i.e., the post-collision distribution function of the resting node propagates to each 

neighboring node, as given by: 
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𝑓𝑖(x⃗⃗ + c⃗i𝛿𝑡, 𝑡 + 𝛿𝑡) = 𝑓𝑝𝑜𝑠𝑡𝑖
(x⃗⃗, 𝑡)  .  (2.16) 

 

 Exemplifying the streaming step using the D2Q9 model and 𝛿𝑡 = 1 for a resting node 

centered at (𝑥0, 𝑦0), as in the case of Figure 2, Equation (2.16) is rewritten nine times: 

 

𝑓0(𝑥0, 𝑦0, 𝑡 + 𝛿𝑡) = 𝑓𝑝𝑜𝑠𝑡0
(𝑥0, 𝑦0, 𝑡)   (2.17) 

 

𝑓1(𝑥0, 𝑦0, 𝑡 + 𝛿𝑡) = 𝑓𝑝𝑜𝑠𝑡1
(𝑥0 − 1, 𝑦0, 𝑡)    (2.18) 

 

𝑓2(𝑥0, 𝑦0, 𝑡 + 𝛿𝑡) = 𝑓𝑝𝑜𝑠𝑡2
(𝑥0, 𝑦0 − 1, 𝑡)    (2.19) 

 

  (⋮) 
 

𝑓7(𝑥0, 𝑦0, 𝑡 + 𝛿𝑡) = 𝑓𝑝𝑜𝑠𝑡7
(𝑥0 + 1, 𝑦0 + 1, 𝑡)   (2.20) 

 

𝑓8(𝑥0, 𝑦0, 𝑡 + 𝛿𝑡) = 𝑓𝑝𝑜𝑠𝑡8
(𝑥0 − 1, 𝑦0 + 1, 𝑡)   (2.21) 

 

 

After the streaming, the macroscopic density and velocity are obtained similarly to 

Equations (2.6) and (2.7), 

 

Figure 2: Illustration of the streaming process for D2Q9 model. The circles are the fluid nodes. The solid arrows 

(—) are the distribution functions known in the current step (𝑡) after the collisions, and the dashed arrows (– –) 

are the unknown distribution functions in the next step (𝑡 + 𝛿𝑡).  Hence, the unknown distribution function in 

direction 𝑖 at the resting node is 𝑓𝑖(𝑡 + 𝛿𝑡) = 𝑓𝑝𝑜𝑠𝑡𝑖
(𝑡). 
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𝜌 =∑𝑓𝑖
i

  ,  (2.22) 

 

u⃗⃗(x⃗⃗) =
1

𝜌
∑𝑓𝑖(x⃗⃗, 𝑡)c⃗i
i

  .  (2.23) 

  

 

2.3 Collision models 

 

The collision operator is a double integral in the velocity space [28]. Since its solution 

is not a simple task, collision models have been conceived through some simplifications [20], 

as the Bhatnagar-Gross-Krook (BGK) (Section 2.3.1) and the improved Multiple-Relaxation-

Time (MRT) models (Section 2.3.2). Indeed, other robust collision schemes, such as the 

Cascaded [31, 32, 33], the Karlin-Bosch-Chikatamarala [34], and the entropic [35, 36] 

methods achieve stable and accurate results and reduce the Galilean invariance [3]. 

Regardless of the model chosen, the collision operator must conserve mass, momentum, and 

energy [28], which are mathematically expressed as, 

 

∫Ω(𝑓)dv⃗⃗ = 0  ,  (2.24) 

 

∫ v⃗⃗Ω(𝑓)dv⃗⃗ = 0⃗⃗  ,  (2.25) 

 

∫|v⃗⃗|2Ω(𝑓)dv⃗⃗ = 0  .  (2.26) 

 

 Additionally, the collision model must be consistent with the Boltzmann ℋ-Theorem, 

which declares that a quantity ℋ, defined as,  

 

ℋ = ∫𝑓ln𝑓dv⃗⃗  ,  (2.27) 

 

always decreases until it reaches the equilibrium (𝑓 = 𝑓𝑒𝑞) [37].  
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2.3.1 Bhatnagar-Gross-Krook model 

 

The BGK model, proposed by Bhatnagar et al. in 1954 [38], presumes that the 

collision operator varies linearly with 𝑓𝑖,  

 

Ω𝑖(𝑓) = −
1

𝜏
(𝑓𝑖 − 𝑓𝑖

𝑒𝑞)  ,  (2.28) 

 

where the relaxation time 𝜏 specifies how fast the system converges to equilibrium. Since 

BGK includes only one parameter (𝜏), the model is often named Single-Relaxation-Time 

(SRT).  

 Considering de BGK model, the LBE reads: 

 

𝑓𝑖(x⃗⃗ + c⃗i𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑓𝑖(x⃗⃗, 𝑡) = −
1

𝜏
[𝑓𝑖(x⃗⃗, 𝑡) − 𝑓𝑖

𝑒𝑞(x⃗⃗, 𝑡)]𝛿𝑡 + Fi𝛿𝑡  .  (2.29) 

 

Because of this simplicity, BGK is broadly used in LBM literature; however, it yields 

a few artificial anomalies, such as viscosity-dependent results (e.g., Poiseuille flow, 

permeability, and wall location) [39]. This dependence arises because, as Chapter 3 

demonstrates through the Chapman-Enskog expansion, the relaxation time is a connection 

between the mesoscopic approach and the continuum theory through its relation with the 

shear viscosity 𝜇 of the fluid: 

 

𝜇 = 𝜌𝑐𝑠
2 (𝜏 −

𝛿𝑡

2
)  .  (2.30) 

 

Regarding Equation (2.30), one must set 𝜏 > 𝛿𝑡/2 to avoid unphysical shear 

viscosities (𝜇 ≤ 0) and instabilities. In fact, the BGK provides limited stable simulations. For 

instance, the model requires many lattice nodes to reproduce stable turbulent problems, 

increasing computational time. Similarly, the modeling of viscous fluids demands higher 𝜏, 

raising the simulation fluid velocity and causing inaccuracy [3]. Other collision operators, 



 

12 

 

such as the MRT model presented in Section 2.3.2, are usually considered to attain more 

accurate and stable simulations. 

 

2.3.2 Multiple-Relaxation-Time model 

 

The BGK model establishes that all 𝑓𝑖 relax together with the same 𝜏 in the collision 

step of the population space. The MRT model proposed by d’Humières in 1992 [40] employs 

a set of different parameters instead to relax the moments 𝑚𝑗 individually in the moment 

space. 

The mapping of 𝑓𝑖 from the population space to the moment space is conducted 

through a linear transformation as follows: 

 

𝑚𝑗 =∑𝑀𝑗𝑖𝑓𝑖
𝑖

  ,  (2.31) 

 

𝑚𝑗
𝑒𝑞 =∑𝑀𝑗𝑖𝑓𝑖

𝑒𝑞

𝑖

  ,  (2.32) 

 

where 𝑚𝑗
𝑒𝑞

 is the equilibrium moment, and 𝑀𝑗𝑖 (or 𝐌) is the transformation matrix given by:  

 

𝐌 =

[
 
 
 
 
 
 
 
 
1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1]

 
 
 
 
 
 
 
 

  .  (2.33) 

 

 The collisions are then executed in the moment space with the calculated moments, 

 

𝑚𝑝𝑜𝑠𝑡𝑗
= 𝑚𝑗 − Λ𝑗𝑗(𝑚𝑗 −𝑚𝑗

𝑒𝑞)𝛿𝑡  ,  (2.34) 
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where 𝑚𝑝𝑜𝑠𝑡𝑗
 is the moment after the collision, Λ𝑗𝑗 (or 𝚲) is the diagonal relaxation matrix,  

 

𝚲 = 𝑑𝑖𝑎𝑔(𝜏𝜌
−1, 𝜏𝑒

−1, 𝜏𝜖
−1, 𝜏𝑗

−1, 𝜏𝑞
−1, 𝜏𝑗

−1, 𝜏𝑞
−1, 𝜏𝜈

−1, 𝜏𝜈
−1)  ,  (2.35) 

 

and 𝜏𝜌 and 𝜏𝑗 are the relaxation times for the conserved moments (i.e., density and 

momentum), 𝜏𝜖 and 𝜏𝑞 are free parameters adjusted to keep the method stable, 𝜏𝑒 is related 

to the dilatational viscosity (or bulk viscosity) 𝜅 and 𝜏𝜈 is related to the shear viscosity 𝜇, 

 

𝜅 = 𝜌𝑐𝑠
2 (𝜏𝑒 −

𝛿𝑡

2
) −

𝜇

3
   ,  (2.36) 

 

𝜇 = 𝜌𝑐𝑠
2 (𝜏𝜈 −

𝛿𝑡

2
)  .  (2.37) 

 

After the collision step, the moments are mapped back to the population space 

through: 

 

𝑓𝑝𝑜𝑠𝑡𝑖 =∑𝑀𝑖𝑗
−1𝑚𝑝𝑜𝑠𝑡𝑗

𝑗

 ,  (2.38) 

 

where 𝑀𝑖𝑗
−1 (or 𝐌−1) is the inverse of 𝐌, as displayed in Equation (2.39). 

The matrices can be calculated either from Hermite (the moments are Hermite 

polynomials) or from Gram-Schmidt (orthogonal-based method) approaches [21]. Since the 

latter is predominant in LBM literature, Equations (2.33), (2.35), and (2.39) present the 

matrices from the Gram-Schmidt approach, which are adopted in this work. Accordingly, the 

insertion of the MRT model in the LBE originates Equation (2.40), which recovers Equation 

(2.29). This is possible because 𝚲 = 𝜏−1𝐈 and 𝐌−𝟏𝐌 = 𝐈, where 𝐈 is the identity matrix, 

which is unable to modify the equations. Hence, the only difference between the BGK and 

MRT models is the collision step. The additional parameters in the moment space result in 

more accurate and stable simulations with the MRT model [3, 21]. 
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  .  (2.39) 

 

𝑓𝑖(x⃗⃗ + c⃗i𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑓𝑖(x⃗⃗, 𝑡) = −𝐌−1𝚲𝐌[𝑓𝑖(x⃗⃗, 𝑡) − 𝑓𝑖
𝑒𝑞(x⃗⃗, 𝑡)]𝛿𝑡 + 

+Fi𝛿𝑡 . 
 (2.40) 

 

 

2.4 Boundary conditions 

 

Two different approaches to model boundary conditions can be distinguished: the 

link-wise and the wet-node. In the latter, the lattice nodes constitute the computational 

boundary on their own, as shown in Figure 3. In the former, the computational boundary is 

located on the lattice links, i.e., the boundary lies between the fluid and solid nodes [21].  

The link-wise approach is more attractive because it simultaneously yields high 

stability, exact mass conservation, and simplicity. Therefore, the link-wise description was 

chosen to model the boundary conditions in the simulations of this work. Consequently, this 

section only presents boundary conditions related to the link-wise, i.e., the bounce-back 

scheme and the periodic condition. 
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2.4.1 Bounce-back scheme 
 

The bounce-back scheme is a systematic method employed to model solid boundaries 

in the link-wise approach. It brings the outstanding no-slip boundary condition to the 

mesoscopic procedure, establishing that the fluid velocity near the wall is the same as the 

wall velocity. Within this method, when a group of particles hits the boundary in a direction 

i with a known 𝑓𝑖, it will be reflected in the opposite direction i ̅but with the same value of 𝑓𝑖, 

as illustrated in Figure 4.  

 

 

The bounce-back scheme can be performed in two ways, using (i) the fullway bounce-

back scheme [41], in which the population travels entirely from the fluid to the solid nodes, 

i.e., the known 𝑓𝑖(x⃗⃗, 𝑡) are stored in the solid nodes in step 𝑡 + 𝛿𝑡 and collect the values from 

them in step 𝑡 + 2𝛿𝑡; or (ii) the halfway bounce-back scheme [42], which the population 

Figure 3: Difference between link-wise and wet-node approaches. The solid and fluid nodes are, respectively, 

the black and white nodes. The solid line (—) and the dashed line (– –) are the computational boundary in the 

wet-node and link-wise approaches, respectively.  

Figure 4: Example of the bounce-back scheme for D2Q9 model. The solid and fluid nodes are, respectively, the 

black and white nodes. The dashed line (– –) is the computational boundary in the link-wise approach. The solid 

and dashed arrows are, respectively, the known distribution functions in the step 𝑡 and the unkown distritution 

functions in the step 𝑡 + 𝛿𝑡. 
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travels only the half distance between the fluid and solid nodes, i.e., the values of 𝑓𝑖(x⃗⃗, 𝑡) are 

directly used to calculate 𝑓𝑖̅(x⃗⃗, 𝑡 + 𝛿𝑡), without storing them in the solid nodes. Therefore, 

when applying the fullway bounce-back scheme, the lattice demands more nodes (solid 

nodes), and there is a 2𝛿𝑡 time delay to the information get back to the original fluid node.  

For Figure 4, the halfway bounce-back scheme is mathematically implemented as: 

 

𝑓4(x⃗⃗, 𝑡 + 𝛿𝑡) = 𝑓2(x⃗⃗, 𝑡)  ,  (2.41) 

 

𝑓7(x⃗⃗, 𝑡 + 𝛿𝑡) = 𝑓5(x⃗⃗, 𝑡)  ,  (2.42) 

 

𝑓8(x⃗⃗, 𝑡 + 𝛿𝑡) = 𝑓6(x⃗⃗, 𝑡)  ,  (2.43) 

 

where 𝑓2, 𝑓5, and 𝑓6 are the known distribution functions from the streaming in the step 𝑡, 

and 𝑓4, 𝑓7, and 𝑓8 are the distribution functions that must be calculated in step 𝑡 + 𝛿𝑡. 

 The halfway bounce-back scheme for moving walls can be extended as, 

 

𝑓𝑖̅(x⃗⃗, 𝑡 + 𝛿𝑡) = 𝑓𝑖(x⃗⃗, 𝑡) − 2𝜔𝑖𝜌𝑤  
c⃗i ∙ u⃗⃗w
𝑐𝑠2

  ,  (2.44) 

 

where 𝜌𝑤 and u⃗⃗w  are, respectively, the density and the macroscopic velocity of the wall. A 

usual simplification is to define 𝜌𝑤 as the fluid density near the wall, i.e., 𝜌𝑤 = 𝜌(x⃗⃗, 𝑡).  

 For stationary walls (u⃗⃗w = 0⃗⃗), the last term in Equation (2.44) vanishes and the 

standard halfway bounce-back scheme is recovered: 

 

𝑓𝑖̅(x⃗⃗, 𝑡 + 𝛿𝑡) = 𝑓𝑖(x⃗⃗, 𝑡)  .  (2.45) 

 

In this way, the bounce-back scheme ensures there is no mass flux either through 

resting or moving solid walls. A complication that may arise is the modeling of boundary 

conditions in concave corners, where it is impossible to determine two (𝑓6 and 𝑓8) of the nine 

density distribution functions at the corner node [30], i.e., the red node in Figure 5. The reason 

is that the values of 𝑓6 and 𝑓8 cannot be obtained from the streaming step, since the neighbors 

where they must originate are solid nodes. 
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 Ignoring this situation can lead to unstable simulations. Hence, a typical solution is 

to set the central corner node density as the average density of the system. This adjustment 

reduces the degrees of freedom, making it possible to calculate 𝑓6 and 𝑓8. From Equation 

(2.22) [43],  

 

𝜌 = 𝑓6 + 𝑓8 +∑𝑓𝑖
i≠6
i≠8

  . 
 (2.46) 

 

Note that 𝑓6 and 𝑓8 are enclosed in the corner node, which means that their 

information does not stream over the lattice. Then, imposing 𝑓6 = 𝑓8 in Equation (2.46), the 

remainder 𝑓𝑖 is calculated through: 

 

𝑓6 = 𝑓8 =
1

2
(𝜌 −∑𝑓𝑖

i≠6
i≠8

) .  (2.47) 

 

 

 

 

 

Figure 5: Bounce-back scheme in concave corners for D2Q9 model. The solid, fluid and corner nodes are, 

respectively, the black, white, and red nodes. The solid arrows (—) are the distribution functions known from 

streaming (𝑓0, 𝑓3, 𝑓4, and 𝑓7) or calculated from the bounce-back scheme (𝑓1, 𝑓2, and 𝑓5). The dashed arrows (– 

–) are the unknown distribution functions. 
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2.4.2 Periodic condition 
 

A periodic condition in open boundaries (Figure 6) is introduced when one intends to 

make the outflow enter the opposite side. This condition implies that the zeroth and first order 

moments at the outlet (𝑥 = 𝐿) are equal to those at the inlet (𝑥 = 0), 

 

𝜌(𝑥 = 0, 𝑦, 𝑡) = 𝜌(𝑥 = 𝐿, 𝑦, 𝑡)  ,  (2.48) 

 

𝜌(𝑥 = 0, 𝑦, 𝑡)u⃗⃗(𝑥 = 0, 𝑦, 𝑡) = 𝜌(𝑥 = 𝐿, 𝑦, 𝑡)u⃗⃗(𝑥 = 𝐿, 𝑦, 𝑡) .  (2.49) 

 

 

 In other words, the known density distribution functions leaving the domain, both at 

the inlet and outlet, stream to the opposite side. Exemplifying for D2Q9 model, 

 

𝑓𝑖(𝑥 = 0, 𝑦, 𝑡 + 𝛿𝑡) = 𝑓𝑝𝑜𝑠𝑡𝑖
(𝑥 = 𝐿, 𝑦𝑖, 𝑡) , for i = 1, 5 and 8,  (2.50) 

 

𝑓𝑖(𝑥 = 𝐿, 𝑦, 𝑡 + 𝛿𝑡) = 𝑓𝑝𝑜𝑠𝑡𝑖
(𝑥 = 0, 𝑦𝑖, 𝑡) , for i = 3, 6 and 7,  (2.51) 

 

where 𝑦𝑖 = 𝑦 + |c⃗i|𝑦𝛿𝑡, and |c⃗i|𝑦 is the magnitude of c⃗i in the 𝑦 direction.  

In this way, the periodic condition in Figure 6 is written as: 

 

Figure 6: An example of a D2Q9 domain with open boundaries where the periodic conditions can be applied. 

The solid and fluid nodes are, respectively, the black and white nodes. The solid arrows (—) are the distribution 

functions known from streaming, and the dashed arrows (– –) are the distribution functions calculated 

implementing periodic conditions. 



 

19 

 

𝑓1(𝑥 = 0, 𝑦, 𝑡 + 𝛿𝑡) = 𝑓𝑝𝑜𝑠𝑡1
(𝑥 = 𝐿, 𝑦, 𝑡)   ,  (2.52) 

 

𝑓5(𝑥 = 0, 𝑦, 𝑡 + 𝛿𝑡) = 𝑓𝑝𝑜𝑠𝑡5
(𝑥 = 𝐿, 𝑦 + 1, 𝑡)   ,  (2.53) 

 

𝑓8(𝑥 = 0, 𝑦, 𝑡 + 𝛿𝑡) = 𝑓𝑝𝑜𝑠𝑡8
(𝑥 = 𝐿, 𝑦 − 1, 𝑡)   ,  (2.54) 

 

𝑓3(𝑥 = 𝐿, 𝑦, 𝑡 + 𝛿𝑡) = 𝑓𝑝𝑜𝑠𝑡3
(𝑥 = 0, 𝑦, 𝑡)   ,  (2.55) 

 

𝑓6(𝑥 = 𝐿, 𝑦, 𝑡 + 𝛿𝑡) = 𝑓𝑝𝑜𝑠𝑡6
(𝑥 = 0, 𝑦 + 1, 𝑡)   ,  (2.56) 

 

𝑓7(𝑥 = 𝐿, 𝑦, 𝑡 + 𝛿𝑡) = 𝑓𝑝𝑜𝑠𝑡7
(𝑥 = 0, 𝑦 − 1, 𝑡)   .  (2.57) 

 

There exist some cases, however, that one must simulate a pressure flow. Since the 

inlet pressure is higher than the outlet pressure, a generalized periodic condition must regard 

the pressure drop. To do so, one starts first with the ideal equation of state (EOS) that emerges 

from the LBM: 

 

𝑝(x⃗⃗) = 𝜌(x⃗⃗)𝑐𝑠
2 .  (2.58) 

 

The periodic condition with pressure variation [44] can be applied in these 

circumstances. From Equation (2.58), the pressure drop in Figure 6 reads: 

 

𝛿𝑝 = [𝜌(𝑥 = 0) − 𝜌(𝑥 = 𝐿)]𝑐𝑠
2 = 𝑐𝑠

2𝛿𝜌 .  (2.59) 

  

Once 𝛿𝑝 is available, 𝛿𝜌 is calculated. Hence, if an average density 𝜌̅ is set inside the 

domain, the macroscopic densities would be specified in the open boundaries,  

 

𝜌(𝑥 = 0) = 𝜌̅ + 0.5𝛿𝜌 ,  (2.60) 

 

𝜌(𝑥 = 𝐿) = 𝜌̅ − 0.5𝛿𝜌 .  (2.61) 
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Implementing 𝑓𝑖
𝑛𝑒𝑞(𝑥 = 0, 𝑦, 𝑡) = 𝑓𝑖

𝑛𝑒𝑞(𝑥 = 𝐿, 𝑦, 𝑡) in the open boundaries, where 

𝑓𝑖
𝑛𝑒𝑞 = 𝑓𝑖 − 𝑓𝑖

𝑒𝑞
 is the non-equilibrium distribution function, the periodic condition with 

pressure variation for a compressible flow is: 

 

𝑓𝑖(𝑥 = 0, 𝑦, 𝑡 + 𝛿𝑡) = 𝑓𝑖
𝑒𝑞(𝜌(𝑥 = 0, 𝑦, 𝑡), u⃗⃗(𝑥 = 𝐿, 𝑦, 𝑡)) + 

 +𝑓𝑝𝑜𝑠𝑡𝑖
(𝑥 = 𝐿, 𝑦, 𝑡) − 𝑓𝑖

𝑒𝑞(𝑥 = 𝐿, 𝑦, 𝑡) ,  
 (2.62) 

 

𝑓𝑖(𝑥 = 𝐿, 𝑦, 𝑡 + 𝛿𝑡) = 𝑓𝑖
𝑒𝑞(𝜌(𝑥 = 𝐿, 𝑦, 𝑡), u⃗⃗(𝑥 = 0, 𝑦, 𝑡)) + 

+𝑓𝑝𝑜𝑠𝑡𝑖
(𝑥 = 0, 𝑦, 𝑡) − 𝑓𝑖

𝑒𝑞(𝑥 = 0, 𝑦, 𝑡) . 
 (2.63) 

 

The periodic condition works as a momentum source when the pressure variation is 

considered. Still, when only the periodic condition is implemented without pressure 

variation, one must insert a momentum source, e.g., a moving wall or an external force; 

otherwise, the simulation will fade in time. Section 2.5 presents how to insert external forces 

in LBM. 

 

 

2.5 Forcing schemes 

 

Gravitational and electromagnetic forces are present in a great variety of engineering 

problems. Thus, one is frequently interested in inserting an external force into the LBM 

procedure, which can be carried out through the forcing term Fi in the LBE. In 2012, Li et 

al. [45] grouped notable forcing schemes as follows: 

 

Fi = 𝜔𝑖 [
𝐵𝑒(F⃗⃗ ∙ c⃗i)

𝑐𝑠2
+
𝐶𝑒(u⃗⃗LiF⃗⃗ + F⃗⃗u⃗⃗Li) ∶ (c⃗ic⃗i − 𝑐𝑠

2𝐈)

2𝑐𝑠4
] ,  (2.64) 

 

where the modified velocity u⃗⃗Li is: 
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u⃗⃗Li(x⃗⃗)  =
1

𝜌
∑𝑓𝑖c⃗i
i

+ 𝐴𝐿𝑖
F⃗⃗𝛿𝑡

2𝜌
 ,  (2.65) 

 

and the parameters 𝐴𝐿𝑖, 𝐵𝑒 and 𝐶𝑒 depend on the forcing scheme selected (see Table 1). 

 

Table 1. Specifications of different forcing schemes. 

Forcing schemes 𝐵𝑒 and 𝐶𝑒 𝐴𝐿𝑖 𝐴𝑒𝑞 

Shan-Chen [15] 1 
𝜏

𝛿𝑡
 

𝜏

𝛿𝑡
 

EDM (Exact Difference Method) [46] 1 1 0 

Guo et al. [47] 1 −
1

2𝜏
 1 

1

2
 

Luo et al. [48] 1 0 0 

Ladd and Verberg [49] 1 0 0 

 

To ensure second-order space-time accuracy, the real fluid velocity u⃗⃗ is calculated 

through: 

 

u⃗⃗(x⃗⃗) =
1

𝜌
∑𝑓𝑖 c⃗i
i

+
F⃗⃗𝛿𝑡

2𝜌
  .  (2.66) 

 

Luo et al. scheme is the only one which u⃗⃗ is still given by Equation (2.23), inducing 

some additional relevant errors. Another famous method is the He et al. forcing scheme [50], 

but it is essentially the same as the Ladd and Verberg forcing scheme [51].  

To calculate 𝑓𝑖
𝑒𝑞

 in Equation (2.12), the general equilibrium velocity must be written 

as: 

 

u⃗⃗𝑒𝑞 =
1

𝜌
∑𝑓𝑖 c⃗i
i

+ 𝐴𝑒𝑞
F⃗⃗𝛿𝑡

𝜌
  ,  (2.67) 

 

where 𝐴𝑒𝑞 is a parameter that depends on the forcing scheme (see Table 1). 
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Li et al. [45] have found evidence that the stability and accuracy of LB simulations 

are strongly connected to the forcing scheme adopted. The Shan-Chen and EDM schemes, 

for instance, recover the motion equation with additional 𝜏-dependent terms. As a 

consequence, their results (spurious velocities, densities, and surface tensions) are dependent 

on 𝜏. On the other hand, Ladd and Verberg scheme is independent on 𝜏, but it achieves weak 

stability. Among the models in Table 1, the Luo et al. scheme attains the worse stability since 

it causes negative surface tensions in multiphase problems [51]. 

Although the EDM forcing scheme, directly derived from the BTE [9, 46], is 𝜏-

dependent, it is a straightforward method to introduce the force. Notice that one handles the 

forcing schemes displayed in Table 1 only with the BGK model. For MRT, instead, other 

forcing schemes must be considered [52, 53]. The most common approach for the MRT 

model [54, 55] is: 

 

𝐅𝐢 =

[
 
 
 
 
 
 
 
 
 

0
6(uxFx + uyFy)

−6(uxFx + uyFy)

Fx
−Fx
Fy
−Fy

2(uxFx − uyFy)

uxFx + uyFy ]
 
 
 
 
 
 
 
 
 

   ,  (2.68) 

 

where x and y represent the horizontal and vertical components of F⃗⃗ and u⃗⃗. The equilibrium 

and real macroscopic velocities are still calculated through Equations (2.67) and (2.66) with 

𝐴𝑒𝑞 = 1/2. 
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Chapter 3 

Recovery of transport equations 

 

Various methodologies, such as Finite Volume and Finite Element Methods, can be used 

numerically to solve the transport equations. In Chapter 2, however, we presented the LBM 

procedure, centered in the LBE, to model the fluid flow. Chapter 3 mathematically 

demonstrates, through asymptotic analysis of the BGK-LBE without external force, that the 

much simpler LBE recovers both the continuity and the Navier-Stokes equations. Although 

the literature already recognizes it for low Mach number (𝑀𝑎 = |u⃗⃗|/𝑐𝑠), the algebraic 

manipulations are hardly exposed. Looking for providing a clear and didactic way to derive 

the transport equations, here, instead, based on the thesis of Viggen [30], we exhaustively 

detail the intermediate mathematical steps. Furthermore, this deduction also contributes to 

gaining the mathematical tools for performing this type of analysis whenever new LB models 

are proposed, allowing us to test them for consistency and physical meaning. At the end of 

this chapter, the connection between the mesoscale modeling and the macroscopic properties 

will be clear. Understanding it makes us more conscious and critical in discerning 

assumptions and approximations for a given physical problem. Throughout the chapter, we 

will often use the Einstein summation convention (index notation).    

 

3.1 Chapman-Enskog expansion 

 

In this section, we carry out the Chapman-Enskog expansion. It is essentially a 

perturbation expansion (see Appendix A) of the LBM variables around their equilibrium 

values (e.g., 𝑓𝑖
𝑒𝑞

) that makes the discretization disappear to check for the method consistency.  

Initially, we recall the LBE in the absence of an external force: 

 

Ωi(x⃗⃗, 𝑡) = 𝑓(x⃗⃗ + c⃗i𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑓𝑖(x⃗⃗, 𝑡)  (3.1) 
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With the usual simplification that 𝛿𝑡 = 1, 

 

Ωi(x⃗⃗, 𝑡) = 𝑓𝑖(x⃗⃗ + c⃗i, 𝑡 + 1) − 𝑓𝑖(x⃗⃗, 𝑡)  (3.2) 

 

Taylor’s series for functions of two variables 𝑠 and 𝑞 is: 

 

𝑓(𝑠0 + 𝛿𝑠, 𝑞0 + 𝛿𝑞) = 𝑓(𝑠0, 𝑞0) + 
𝜕𝑓(𝑠0, 𝑞0) 

𝜕𝑠
𝛿𝑠 +

𝜕𝑓(𝑠0, 𝑞0) 

𝜕𝑞
𝛿𝑞 + 

+
1

2!

(

 
 

𝜕2𝑓(𝑠0, 𝑞0) 

𝜕𝑠2
𝛿𝑠2 +

2𝜕2𝑓(𝑠0, 𝑞0) 

𝜕𝑠 𝜕𝑞
𝛿𝑠𝛿𝑞 +

+
𝜕2𝑓(𝑠0, 𝑞0) 

𝜕𝑞2
𝛿𝑞2

)

 
 
+ 

+⋯+
1

𝑧!
 ∑(

𝑧

𝑗
)

𝑧

𝑗=0

 
𝜕𝑧𝑓(𝑠0, 𝑞0) 

𝜕𝑠𝑧−𝑗 𝜕𝑞𝑗
𝛿𝑠𝑧−𝑗  𝛿𝑞𝑗 + 𝑅𝑧+1(𝛿𝑠, 𝛿𝑞) 

 

 (3.3) 

where, 

 

𝑅𝑧+1(𝛿𝑠, 𝛿𝑞) =  
1

(𝑧+1)! 
 ∑ (𝑧+1

𝑗
)
𝜕𝑧+1𝑓(𝑠0+𝛿𝑠,𝑞0+𝛿𝑞) 

𝜕𝑠𝑧+1−𝑗 𝜕𝑞𝑗
𝑧+1
𝑗=0  𝛿𝑠𝑧+1−𝑗 𝛿𝑞𝑗  (3.4) 

 

Then, the second-order Taylor expansion on the RHS of LBE, i.e., Equation (3.2), is: 

 

Ωi(x⃗⃗, 𝑡) = 𝑓𝑖(x⃗⃗, 𝑡) + (∇⃗⃗⃗𝑓𝑖(x⃗⃗, 𝑡)) ⋅ c⃗i + 𝜕𝑡𝑓𝑖(x⃗⃗, 𝑡) +
1

2
[∇⃗⃗⃗ (∇⃗⃗⃗𝑓𝑖(x⃗⃗, 𝑡)): c⃗ic⃗i] +

+𝜕𝑡 (∇⃗⃗⃗𝑓𝑖(x⃗⃗, 𝑡)) ∙ c⃗i +
1

2
𝜕𝑡
2𝑓𝑖(x⃗⃗, 𝑡) − 𝑓𝑖(x⃗⃗, 𝑡)   

(3.5) 

 

After the organization and simplification of terms and the omission of the explicit 

spatial and time dependence of 𝑓𝑖(x⃗⃗, 𝑡), we find: 
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Ωi (x⃗⃗, 𝑡) = 𝜕𝑡 𝑓𝑖 + (∇⃗⃗⃗𝑓𝑖 ) ⋅ c⃗i +
1

2
[∇⃗⃗⃗ (∇⃗⃗⃗𝑓𝑖 ): c⃗i c⃗i] + 𝜕𝑡(∇⃗⃗⃗𝑓𝑖 ) ∙ c⃗i +

1

2
𝜕𝑡
2𝑓𝑖  (3.6) 

 

Through the Einstein summation convention, we can demonstrate that: 

 

∇⃗⃗⃗𝑓𝑖 ∙ c⃗i = ∂α𝑓𝑖 ciα = ∂α ciα𝑓𝑖 = ∇⃗⃗⃗ ∙ c⃗i𝑓𝑖   (3.7) 

∇⃗⃗⃗ ∇⃗⃗⃗ 𝑓𝑖 : c⃗i c⃗i = ∂α ∂β𝑓𝑖 ciβciα = ∂α ∂βciβciα𝑓𝑖 = ∇⃗⃗⃗ ∇⃗⃗⃗ ∶ c⃗ic⃗i𝑓𝑖      (3.8) 

 

Note that i is not an index term of Einstein convention. Instead, here, the index terms 

are greek letters (i.e., α, β, γ, δ, ϵ). Using Equations (3.7) and (3.8), and factoring out the 

common factor 𝑓𝑖  in Equation (3.6), 

 

Ωi (x⃗⃗, 𝑡) = (𝜕𝑡 + ∇⃗⃗⃗ ∙ c⃗i )𝑓𝑖 + [
1

2
(∇⃗⃗⃗ ∇⃗⃗⃗ ∶ c⃗i c⃗i) + 𝜕𝑡 ∇⃗⃗⃗ ∙ c⃗i +

1

2
𝜕𝑡
2] 𝑓𝑖   (3.9) 

 

From the perturbation theory (see Appendix A), we can expand 𝜕𝑡 , ∇⃗⃗⃗, Ωi and 𝑓𝑖. The 

equilibrium distribution function (𝑓𝑖
𝑒𝑞) that emerges in the asymptotic expansion of fi is also 

identified as 𝑓𝑖
(0)

. Equations (3.10) to (3.13) are the Chapman-Enskog expansions, where ϵ 

is a small parameter proportional to the Knudsen number. Equation (3.14) arises from the 

rearrangement of Equation (3.13). 

 

𝜕𝑡 = ϵ ∂𝑡1 + ϵ² ∂𝑡2 + 𝒪(ϵ
3)  (3.10) 

∇⃗⃗⃗  =  ϵ∇⃗⃗⃗1 + 𝒪(ϵ
2)  (3.11) 

Ωi  = Ωi
(0) + ϵΩi

(1) + ϵ2Ωi
(2) + 𝒪(ϵ3)  (3.12) 

𝑓𝑖 = 𝑓𝑖
(0) + ϵ𝑓𝑖

(1) + 𝒪(ϵ2)  (3.13) 

𝑓𝑖 − 𝑓𝑖
(0) = ϵ𝑓𝑖

(1) + 𝒪(ϵ2)  (3.14) 

 

In Equation (3.10), 𝑡1 and 𝑡2 have physical meanings: 𝑡1 is the time related to the fast 

phenomena (e.g., advection), and 𝑡2 is related to the slow phenomena (e.g., diffusion). 
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Substituting the asymptotic expansions of 𝜕𝑡 and ∇⃗⃗⃗, i.e., Equations (3.10) and (3.11), into 

Equation (3.9), 

 

Ωi (x⃗⃗, 𝑡) = (ϵ ∂𝑡1 + ϵ
2 ∂𝑡2 + ϵ∇⃗⃗⃗1 ∙ c⃗i )𝑓𝑖 + [

1

2
(ϵ2∇⃗⃗⃗1∇⃗⃗⃗1: c⃗i c⃗i) + (ϵ ∂𝑡1 +

+ϵ2 ∂𝑡2 ) ϵ∇⃗⃗⃗1 ∙ c⃗i +
1

2
(ϵ ∂𝑡1 + ϵ

2 ∂𝑡2 )(ϵ ∂𝑡1 + ϵ
2 ∂𝑡2 )] 𝑓𝑖   

(3.15) 

 

Neglecting terms with order greater than 𝒪(ϵ2) and factoring out the common factor 

𝑓𝑖 , 

 

Ωi(x⃗⃗, 𝑡) = [ϵ ∂𝑡1 + ϵ
2 ∂𝑡2 + ϵ∇⃗⃗⃗1 ∙ c⃗i +

ϵ2

2
 (∇⃗⃗⃗1∇⃗⃗⃗1: c⃗i c⃗i) + ϵ

2 ∂𝑡1 ∇⃗⃗⃗1 ∙

c⃗i ++
ϵ2

2
𝜕𝑡1
2 ] 𝑓𝑖 + 𝒪(ϵ

3)   

 

 (3.16) 

 

Now substituting the asymptotic expansion of 𝑓𝑖, i.e., Equation (3.13), into Equation 

(3.16), 

 

Ωi(x⃗⃗, 𝑡) = [ϵ ∂𝑡1 + ϵ
2 ∂𝑡2 + ϵ∇⃗⃗⃗1 ∙ c⃗i +

ϵ2

2
(∇⃗⃗⃗1∇⃗⃗⃗1: c⃗i c⃗i) + ϵ

2 ∂𝑡1 ∇⃗⃗⃗1 ∙ c⃗i +

+ 
ϵ2

2
𝜕𝑡1
2 ] (𝑓𝑖

(0) + ϵ𝑓𝑖
(1)) +  𝒪(ϵ3)   

 (3.17) 

 

Factoring out the common factor ϵ and neglecting the terms with order greater than 

𝒪(ϵ2), 

 

Ωi(x⃗⃗, 𝑡) = [ϵ(∂𝑡1 + ∇⃗⃗⃗1 ∙ c⃗i) + ϵ
2(∂𝑡2 +

1

2
 (∇⃗⃗⃗1∇⃗⃗⃗1: c⃗i c⃗i) + ∂𝑡1 ∇⃗⃗⃗1 ∙ c⃗i +

 
1

2
𝜕𝑡1
2 )] (𝑓𝑖

(0) + ϵ𝑓𝑖
(1)) + 𝒪(ϵ3)   

 (3.18) 

 

Ωi(x⃗⃗, 𝑡) = ϵ(∂𝑡1 + ∇⃗⃗⃗1 ∙ c⃗i) 𝑓𝑖
(0) + ϵ2 [(∂𝑡2 +

1

2
 (∇⃗⃗⃗1∇⃗⃗⃗1: c⃗i c⃗i) + +𝜕𝑡1 ∇⃗⃗⃗1 ∙

c⃗i + 
1

2
𝜕𝑡1
2  ) 𝑓𝑖

(0) + (𝜕𝑡1 + ∇⃗⃗⃗1 ∙ c⃗i)𝑓𝑖
(1)] + 𝒪(ϵ3)   

 (3.19) 
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 From a comparison between Equations (3.12) and (3.19), we achieve that: 

 

Ωi
(0)  = 0 (3.20) 

Ωi
(1) = (∂𝑡1 + ∇⃗⃗⃗1 ∙ c⃗i)𝑓𝑖

(0)
 (3.21) 

Ωi
(2) = (∂𝑡2 + 

1

2
(∇⃗⃗⃗1∇⃗⃗⃗1: c⃗i c⃗i) + ∂𝑡1 ∇⃗⃗⃗1 ∙ c⃗i + 

1

2
 𝜕𝑡1
2 ) 𝑓𝑖

(0) + (𝜕𝑡1 +

     + ∇⃗⃗⃗1 ∙ c⃗i) 𝑓𝑖
(1)

   

(3.22) 

 

These equations are the main results of the Chapman-Enskog expansion. They will 

be further used in Section 3.2 when evaluating the zeroth and first moments. But before 

changing the sections, we have to prove two other equations. Hence, substituting Equation 

(3.14) into the BGK model,  

 

Ωi = − 
1

𝜏
 (ϵ 𝑓𝑖

(1) + 𝒪(ϵ2))  (3.23) 

 

Recalling that the collision operator must conserve mass and momentum, i.e., ∑ Ωii =

0 and ∑ c⃗iΩii = 0⃗⃗, 

 

∑Ωi
(1)

i
= − 

1

𝜏
 ϵ∑ 𝑓𝑖

(1)

i
 →  ∑  𝑓𝑖

(1)

i
= 0  (3.24) 

 

∑ c⃗iΩi
(1)

i
= −

1

𝜏
 ϵ ∑ c⃗i

i
 𝑓𝑖
(1) → ∑ c⃗i 𝑓𝑖

(1) = 0⃗⃗
i

  (3.25) 

 

and generalizing, 

 

∑𝑓𝑖
(𝑘)

i
  =  0 , 𝑘 > 0  (3.26) 

 

∑ c⃗i𝑓𝑖
(𝑘)

i
= 0⃗⃗ ,        𝑘 > 0  (3.27) 
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3.2 Moment evaluation 

 

In this section, we use the equations deduced in Section 3.1 to evaluate the zeroth and 

first-order moments. Just after this assessment, we will be accomplished to recover the 

transport equations. Initially, we evaluate the zeroth moments, i.e., ∑ 𝑓𝑖i  or ∑ Ωii . Hence, 

imposing the mass conservation ∑ Ωi
(𝑘) = 0 i  in Equation (3.21), i.e., for 𝑘 = 1, 

 

∑Ωi
(1)

i

= ∑(∂𝑡1 + ∇⃗⃗⃗1 ∙ c⃗i)𝑓𝑖
(0) =

i

∂𝑡1∑𝑓𝑖
(0)

i

+ ∇⃗⃗⃗1 ∙∑ c⃗i𝑓𝑖
(0)

i

= 0  (3.28) 

 

Since ∑ 𝑓𝑖
(0)

i =  𝜌 and ∑ c⃗i𝑓𝑖
(0)

i =  𝜌u⃗⃗, we attain the continuity equation for the time 

𝑡1, 

 

𝜕𝑡1𝜌 + ∇⃗⃗⃗1 ∙  𝜌u⃗⃗ = 0  (3.29) 

 

Again, imposing the mass conservation ∑ Ωi
(𝑘)

i = 0 in Equation (3.22), i.e., for k = 2, 

 

∑ Ωi
(2)

i = ∂𝑡2 ∑ 𝑓𝑖
(0) i + 

1

2
(∇⃗⃗⃗1∇⃗⃗⃗1 : ∑ c⃗i c⃗ii 𝑓𝑖

(0)) + ∂𝑡1 ∇⃗⃗⃗1 ∙  ∑ c⃗i𝑓𝑖
(0)

i +

+
1

2
𝜕𝑡1
2 ∑  𝑓𝑖

(0)
i + 𝜕𝑡1 ∑  𝑓𝑖

(1)
i + ∇⃗⃗⃗1 ∙ ∑ c⃗i𝑓𝑖

(1)
i    

 (3.30) 

 

Since ∑ 𝑓𝑖
(0)

i = 𝜌 and ∑ c⃗i𝑓𝑖
(0)

i = 𝜌u⃗⃗, and also recalling Equations (3.26) and (3.27), 

Equation (3.30) is rewritten as: 

 

𝜕𝑡2𝜌 + 
1

2
 (∇⃗⃗⃗1∇⃗⃗⃗1 : ∑ c⃗i c⃗i

i
𝑓𝑖
(0)) + 𝜕𝑡1 ∇⃗⃗⃗1 ∙ 𝜌u⃗⃗ +

1

2
𝜕𝑡1
2 𝜌 = 0   (3.31) 

  

As defined in Appendix B, ∑ c⃗i c⃗ii 𝑓𝑖
(𝑘) = 𝛑(𝐤) + 𝑐𝑠

2 𝐈 ∑ 𝑓𝑖
(𝑘)

i . Rewriting, then, 

Equation (3.31), 
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𝜕𝑡2𝜌 + 
1

2
 [∇⃗⃗⃗1∇⃗⃗⃗1: (𝛑

(𝟎) + 𝑐𝑠
2 𝐈∑ 𝑓𝑖

(0)

i
)] + ∂𝑡1 ∇⃗⃗⃗1 ∙ 𝜌u⃗⃗ +

1

2
𝜕𝑡1
2 𝜌 = 0   (3.32) 

 

Again, ∑  𝑓𝑖i
(0)
= 𝜌, 

 

𝜕𝑡2𝜌 + 
1

2
 (∇⃗⃗⃗1∇⃗⃗⃗1: 𝛑

(𝟎)) +
𝑐𝑠
2𝜌

2
( ∇⃗⃗⃗1∇⃗⃗⃗1: 𝜌𝐈) + ∂𝑡1 ∇⃗⃗⃗1 ∙ 𝜌u⃗⃗ +

1

2
∂𝑡1
2 𝜌 = 0   (3.33) 

  

Through the Einstein summation convention, we prove that: 

 

∇⃗⃗⃗1∇⃗⃗⃗1: 𝐈 = ∂α ∂βδβα = ∂α ∂α = ∇⃗⃗⃗1 ∙ ∇⃗⃗⃗1  (3.34) 

 

Hence, substituting Equation (3.34) into Equation (3.33), 

 

𝜕𝑡2𝜌 + 
1

2
 (∇⃗⃗⃗1∇⃗⃗⃗1: 𝛑

(𝟎)) +
𝑐𝑠
2

2
∇⃗⃗⃗1 ∙ ∇⃗⃗⃗1𝜌 + ∂𝑡1 ∇⃗⃗⃗1 ∙ 𝜌u⃗⃗ +

1

2
𝜕𝑡1
2 𝜌 = 0   (3.35) 

 

Equations (3.29) and (3.35) arise from the zeroth-order moment evaluation. Now, we 

have to evaluate the first-order moments, i.e., ∑ c⃗i𝑓𝑖i  or ∑ c⃗iΩii . Multiplying Equation (3.21) 

by c⃗i and employing the summation, 

   

∑ c⃗iΩi
(1)

i
= ∑(∂𝑡1 + ∇⃗⃗⃗1 ∙ c⃗i) c⃗i𝑓𝑖

(0)

i

  (3.36) 

 

Establishing the momentum conservation ∑ c⃗iΩi
(1)

i = 0⃗⃗ and breaking the RHS 

summation, 

 

∑ ∂𝑡1 c⃗i𝑓𝑖
(0)

i
+∑∇⃗⃗⃗1 ∙ c⃗i

i

c⃗i𝑓𝑖
(0) = 0⃗⃗  (3.37) 

 

Rearranging the terms, 
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𝜕𝑡1∑c⃗i𝑓𝑖
(0)

i
+ ∇⃗⃗⃗1 ∙∑ c⃗i

i

c⃗i𝑓𝑖
(0) = 0⃗⃗  (3.38) 

 

Appendix B shows that ∑ c⃗ii 𝑓𝑖
(0) = 𝜌u⃗⃗, ∑ 𝑓𝑖

(0) = 𝜌i  and ∑ c⃗ii c⃗i𝑓𝑖
(0) = 𝛑(0) +

𝑐𝑠
2𝐈 ∑ 𝑓𝑖

(0)
i . Substituting these conditions into Equation (3.38), 

 

𝜕𝑡1𝜌u⃗⃗ + ∇⃗⃗⃗1  ∙   (𝛑
(0) + 𝑐𝑠

2𝐈𝜌) =  0⃗⃗  (3.39) 

 

and breaking the second term into two components, 

 

𝜕𝑡1𝜌u⃗⃗ + ∇⃗⃗⃗1  ∙   𝛑
(0) + 𝑐𝑠

2 ∇⃗⃗⃗1  ∙  (𝐈𝜌) =  0⃗⃗  (3.40) 

 

Through Einstein summation convention,  

 

∇⃗⃗⃗1  ∙  (𝐈𝜌) = ∂αδαβ𝜌 = ∂β𝜌 =   ∇⃗⃗⃗1𝜌 ,  (3.41) 

  

we can rewrite ∇⃗⃗⃗1  ∙  (𝐈𝜌)  in Equation (3.40), 

 

𝜕𝑡1𝜌u⃗⃗ + ∇⃗⃗⃗1  ∙  𝛑
(0) + 𝑐𝑠

2 ∇⃗⃗⃗1 𝜌 =  0⃗⃗ 
 

 (3.42) 

 

We must check the same first-order moment analysis for Ωi
(2)

. Similarly, as we have 

done for Ωi
(1)

, multiplying Equation (3.22)  by c⃗i and employing the summation, 

 

∑ c⃗iΩi
(2)

i = ∂𝑡2 ∑ c⃗i𝑓𝑖
(0)

i + 
1

2
(∇⃗⃗⃗1∇⃗⃗⃗1 : ∑ c⃗ic⃗ic⃗ii 𝑓𝑖

(0)) + ∂𝑡1 ∇⃗⃗⃗1 ∙  ∑ c⃗ic⃗i𝑓𝑖
(0)

i +

+
1

2
∂𝑡1
2 ∑ c⃗i 𝑓𝑖

(0)
i + ∂𝑡1 ∑ c⃗i 𝑓𝑖

(1)
i + ∇⃗⃗⃗1 ∙ ∑ c⃗ic⃗i𝑓𝑖

(1)
i    

 (3.43) 
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Including the momentum conservation ∑ c⃗iΩi
(2)

i = 0⃗⃗ and regarding that, from 

Appendix B, ∑ c⃗i𝑓𝑖
(0)

i = 𝜌u⃗⃗, ∑ c⃗ic⃗i𝑓𝑖
(0)

i = 𝛑(0) + 𝑐𝑠
2 𝐈 ∑ fi

(0)
i , ∑ c⃗ic⃗ic⃗i𝑓𝑖

(0) = 𝐑(𝟎)i , and 

∑ 𝑓𝑖
(0) = 𝜌i , Equation (3.43) is simplified to: 

 

𝜕𝑡2𝜌u⃗⃗ + 
1

2
(∇⃗⃗⃗1∇⃗⃗⃗1: 𝐑

(0)) + ∂𝑡1 ∇⃗⃗⃗1  ∙ (𝛑
(0) + 𝑐𝑠

2 𝐈𝜌) +
1

2
 𝜕𝑡1
2 𝜌u⃗⃗ + 

                                                    +𝜕𝑡1∑c⃗i 𝑓𝑖
(1)

i

+ ∇⃗⃗⃗1 ∙∑ c⃗ic⃗i𝑓𝑖
(1)

i

= 0⃗⃗  

 

 (3.44) 

 

Since ∑ c⃗ic⃗i𝑓𝑖
(1)

i = 𝛑(1) + 𝑐𝑠
2 𝐈 ∑ 𝑓𝑖

(1)
i  (see Appendix B) and ∑ c⃗i𝑓𝑖

(1)
i = 0⃗⃗ (see 

Equation (3.27)), 

 

𝜕𝑡2𝜌u⃗⃗ +
1

2
(∇⃗⃗⃗1∇⃗⃗⃗1: 𝐑

(0)) + ∂𝑡1 ∇⃗⃗⃗1 ∙ (𝛑
(0) + 𝑐𝑠

2 𝐈𝜌) +
1

2
𝜕𝑡1
2 𝜌u⃗⃗ + ∇⃗⃗⃗1 ∙  𝛑

(1) = 0⃗⃗  (3.45) 

 

 Breaking the third term into two components, 

 

𝜕𝑡2𝜌u⃗⃗ +
1

2
(∇⃗⃗⃗1∇⃗⃗⃗1: 𝐑

(0)) + ∂𝑡1 ∇⃗⃗⃗1 ∙ 𝛑
(0) + 𝑐𝑠

2𝜕𝑡1(∇⃗⃗⃗1 ∙ 𝐈𝜌) +
1

2
𝜕𝑡1
2 𝜌u⃗⃗ + 

                                                                                                         +∇⃗⃗⃗1 ∙ 𝛑
(1) = 0⃗⃗ , 

 (3.46) 

 

and as we have already demonstrated that: 

 

∇⃗⃗⃗1 ∙  𝐈𝜌 =  ∇⃗⃗⃗1𝜌  ,  (3.47) 

 

we can write: 

 

𝜕𝑡2𝜌u⃗⃗ +
1

2
(∇⃗⃗⃗1∇⃗⃗⃗1: 𝐑

(0)) + ∂𝑡1 ∇⃗⃗⃗1 ∙ 𝛑
(0) + ∇⃗⃗⃗1 ∙ 𝛑

(1) + 𝑐𝑠
2𝜕𝑡1 ∇⃗⃗⃗1𝜌 +

1

2
∂𝑡1
2 𝜌u⃗⃗ = 

= 0⃗⃗   

 (3.48) 
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Finally, we gained four main equations by evaluating the moments: Equations (3.29) 

and (3.35) arose from the zeroth-order moment evaluation, and Equations (3.42) and (3.48) 

from the first-order moment evaluation. They will be further combined and used in Sections 

3.3 and 3.4 to recover the continuity and Navier-Stokes equations.  

 

 

3.3 Continuity equation 

 

In this section, we deduce the continuity equation by combining Equations (3.29), 

(3.35), and (3.42) from Section 3.2. Initially, we can write Equation (3.29) as: 

 

𝜕𝑡1𝜌 = − ∇⃗⃗⃗1 ∙ 𝜌u⃗⃗    (3.49) 

 

Substituting Equation (3.49) into Equation (3.35), 

 

𝜕𝑡2𝜌 +
1

2
(∇⃗⃗⃗1∇⃗⃗⃗1: 𝛑

(0)) +
𝑐𝑠
2

2
∇⃗⃗⃗1 ∙ ∇⃗⃗⃗1𝜌 + ∂𝑡1 ∇⃗⃗⃗1 ∙ 𝜌u⃗⃗ −

1

2
∂𝑡1( ∇⃗⃗⃗1 ∙ 𝜌u⃗⃗) = 0   , 

 (3.50) 

  

and simplifying, 

 

𝜕𝑡2𝜌 +
1

2
(∇⃗⃗⃗1∇⃗⃗⃗1: 𝛑

(0)) +
𝑐𝑠
2

2
∇⃗⃗⃗1 ∙ ∇⃗⃗⃗1𝜌 +

1

2
∂𝑡1 ∇⃗⃗⃗1 ∙ 𝜌u⃗⃗ = 0   (3.51) 

 

Equation (3.51) is the first outcome obtained by manipulating two main equations of 

Section 3.2, i.e., Equations (3.29) and (3.35). Now, we quickly investigate Equation (3.42). 

Employing the divergence operator in Equation (3.42) and multiplying it by ½, 

 

1

2
 ∂𝑡1 ∇⃗⃗⃗1 ∙ 𝜌u⃗⃗ +

1

2
 ∇⃗⃗⃗1 ∙  (∇⃗⃗⃗1 ∙  𝛑

(0)) +
𝑐𝑠
2

2
∇⃗⃗⃗1 ∙ (∇⃗⃗⃗1𝜌) = 0   (3.52) 

 

Through Einstein summation convention, we note that: 
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∇⃗⃗⃗1 ∙ (∇⃗⃗⃗1 ∙ 𝛑
(0)) = ∂α(∂απαβ) =  ∂α ∂απαβ = ∇⃗⃗⃗1∇⃗⃗⃗1: 𝛑

(0)   (3.53) 

 

Then, Equation (3.52) becomes: 

 

1

2
(∇⃗⃗⃗1∇⃗⃗⃗1: 𝛑

(0)) +
𝑐𝑠
2

2
∇⃗⃗⃗1 ∙ ∇⃗⃗⃗1𝜌 +

1

2
∂𝑡1 ∇⃗⃗⃗1 ∙ 𝜌u⃗⃗ = 0  (3.54) 

  

Substituting Equation (3.54) into Equation (3.51), 

 

𝜕𝑡2𝜌 = 0  (3.55) 

  

As we have disclosed, 𝑡2 is the time related to slow phenomena, e.g., diffusion. 

Equation (3.55) specifies there is mass conservation for this kind of phenomenon. But what 

about advection phenomena? We must inspect the complete continuity equation, i.e., when 

we consider the time 𝑡, instead of only 𝑡1 or 𝑡2.  

Employing the time derivative of the density 𝜌 and recalling the asymptotic expansion 

of 𝜕𝑡  from Equation (3.10), 

 

𝜕𝑡 𝜌 = ϵ𝜕𝑡1𝜌 + ϵ
2𝜕𝑡2𝜌  (3.56) 

 

Substituting Equation (3.55) into Equation (3.56), 

 

𝜕𝑡 𝜌 = ϵ𝜕𝑡1𝜌  (3.57) 

 

Substituting Equations (3.57) and (3.11) into Equation (3.29), 

 

1

ϵ
∂𝑡𝜌 +

1

ϵ
 ∇⃗⃗⃗ ∙ 𝜌u⃗⃗ = 0  ,  (3.58) 

 

and multiplying by ϵ, we finally recover the continuity equation,  
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∂𝑡 𝜌 + ∇⃗⃗⃗ ∙ 𝜌u⃗⃗ = 0  (3.59) 

 

Hence, we recovered the continuity equation, which expresses the mass conservation, 

combining three of the four main equations deduced in Section 3.2, i.e., Equations (3.29), 

(3.35), and (3.42).  

 

 

3.4 Navier-Stokes equation 

 

Similar to what we have performed in Section 3.3 to recover the continuity equation, 

we can also combine the main equations of Section 3.2 to recover the Navier-Stokes equation. 

Note that Equation (3.48) was not used yet; we use it in this section. But, first, employing the 

time derivative related to the fast phenomena (𝜕𝑡1 ) in Equation (3.42), multiplying it by ½, 

and isolating the first term, we get: 

 

1

2
𝜕𝑡1
2 𝜌u⃗⃗ = −

1

2
∂𝑡1 ∇⃗⃗⃗1 ∙ 𝛑

(0) −
1

2
𝑐𝑠
2 ∂𝑡1 ∇⃗⃗⃗1𝜌    (3.60) 

 

Substituting Equation (3.60) into Equation (3.48),  

 

∂𝑡2𝜌u⃗⃗ +
1

2
(∇⃗⃗⃗1∇⃗⃗⃗1: 𝐑

(𝟎)) + ∂𝑡1 ∇⃗⃗⃗1 ∙ 𝛑
(0) + ∇⃗⃗⃗1 ∙ 𝛑

(𝟏) + 𝑐𝑠
2 ∂𝑡1 ∇⃗⃗⃗1𝜌 +

                                                                −
1

2
𝜕𝑡1 ∇⃗⃗⃗1 ∙ 𝛑

(0) −
1

2
𝑐𝑠
2 ∂𝑡1 ∇⃗⃗⃗1𝜌 = 0⃗⃗  ,   

(3.61) 

 

and simplifying it, 

 

∂𝑡2𝜌u⃗⃗ +
1

2
(∇⃗⃗⃗1∇⃗⃗⃗1: 𝐑

(𝟎)) +
1

2
∂𝑡1 ∇⃗⃗⃗1 ∙ 𝛑

(0) + ∇⃗⃗⃗1 ∙ 𝛑
(𝟏) +

1

2
𝑐𝑠
2 ∂𝑡1 ∇⃗⃗⃗1𝜌 = 0⃗⃗   (3.62) 
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To recover 𝜕𝑡 and ∇⃗⃗⃗, we must perform the reverse Chapman-Enskog expansion. Thus, 

multiplying Equation (3.42) by ϵ and Equation (3.62) by ϵ2, we find, respectively,  

 

ϵ ∂𝑡1𝜌u⃗⃗ + ϵ∇⃗⃗⃗1 ∙ 𝛑
(𝟎) + 𝑐𝑠

2ϵ∇⃗⃗⃗1𝜌 = 0⃗⃗  (3.63) 

ϵ2 ∂𝑡2𝜌u⃗⃗ +
1

2
(ϵ∇⃗⃗⃗1ϵ∇⃗⃗⃗1: 𝐑

(𝟎)) +
1

2
ϵ ∂𝑡1ϵ∇⃗⃗⃗1 ∙ 𝛑

(0) + ϵ2∇⃗⃗⃗1 ∙ 𝛑
(𝟏) +

                                                                                      +
1

2
𝑐𝑠
2ϵ𝜕𝑡1ϵ∇⃗⃗⃗1𝜌 = 0⃗⃗   

(3.64) 

 

Summing both equations and grouping similar terms,  

 

(ϵ ∂𝑡1 + ϵ
2 ∂𝑡2)𝜌u⃗⃗ + ϵ∇⃗⃗⃗1 ∙ (𝛑

(𝟎) + ϵ𝛑(𝟏)) + (1 +
ϵ

2
∂𝑡1) 𝑐𝑠

2ϵ∇⃗⃗⃗1𝜌 +

                                                    +
1

2
ϵ ∂𝑡1ϵ∇⃗⃗⃗1 ∙ 𝛑

(𝟎) +
1

2
(ϵ∇⃗⃗⃗1ϵ∇⃗⃗⃗1: 𝐑

(𝟎)) = 0⃗⃗   

(3.65) 

 

Substituting the asymptotic expansions of 𝜕𝑡 and ∇⃗⃗⃗, i.e., Equations (3.10) and (3.11), 

 

𝜕𝑡𝜌u⃗⃗ + ∇⃗⃗⃗ ∙ (𝛑
(𝟎) + ϵ𝛑(𝟏)) + (1 +

ϵ

2
𝜕𝑡1) 𝑐𝑠

2∇⃗⃗⃗𝜌 +
1

2
ϵ𝜕𝑡1 ∇⃗⃗⃗ ∙ 𝛑

(𝟎) +

                                                                                            +
1

2
(∇⃗⃗⃗∇⃗⃗⃗: 𝐑(𝟎)) = 0⃗⃗   

(3.66) 

 

But we can rewrite the third term as, 

 

(1 +
ϵ

2
𝜕𝑡1) 𝑐𝑠

2∇⃗⃗⃗𝜌 = 𝑐𝑠
2∇⃗⃗⃗𝜌 +

ϵ

2
𝜕𝑡1𝑐𝑠

2∇⃗⃗⃗𝜌 = 𝑐𝑠
2∇⃗⃗⃗𝜌 +

𝑐𝑠
2

2
∇⃗⃗⃗ϵ𝜕𝑡1𝜌   ,   (3.67) 

 

and then, substitute Equation (3.57) into Equation (3.67), 

 

(1 +
ϵ

2
𝜕𝑡1) 𝑐𝑠

2∇⃗⃗⃗𝜌 = 𝑐𝑠
2∇⃗⃗⃗𝜌 +

𝑐𝑠
2

2
∇⃗⃗⃗𝜕𝑡𝜌 = (1 +

𝜕𝑡

2
) 𝑐𝑠

2∇⃗⃗⃗𝜌   (3.68) 

 

Hence, the third term of Equation (3.66) can be rewritten as shown in Equation (3.68). 

Equation (3.66), then, becomes: 
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𝜕𝑡𝜌u⃗⃗ + ∇⃗⃗⃗ ∙ (𝝅
(𝟎) + ϵ𝝅(𝟏)) + (1 +

𝜕𝑡

2
) 𝑐𝑠

2∇⃗⃗⃗𝜌 +
ϵ

2
𝜕𝑡1 ∇⃗⃗⃗ ∙ 𝝅

(𝟎) +
1

2
(∇⃗⃗⃗∇⃗⃗⃗: 𝑹(𝟎)) = 0⃗⃗   (3.69) 

 

Equation (3.69) is already the Navier-Stokes equation; however, we can customize it to 

present the equation with well-known terms. In Appendix B, we observe that 𝝅(𝟎) and 𝑹(𝟎) 

depend on the equilibrium distribution function 𝑓𝑖
(0)

, which emerges from the Maxwell 

distribution as: 

 

𝑓𝑖
(0) = 𝜌𝜔𝑖 (1 +

u⃗⃗ ∙ c⃗i
𝑐𝑠2

+
(u⃗⃗ ∙ c⃗i)

2

2 𝑐𝑠4
−
u⃗⃗ ∙ u⃗⃗

2 𝑐𝑠2
) (3.70) 

 

Rewriting Equation (3.70) by considering the Einstein summation convention, 

 

𝑓𝑖
(0) = 𝜌𝜔𝑖 (1 +

uαci𝛼
𝑐𝑠2

+
uαci𝛼uβci𝛽

2 𝑐𝑠4
−
uαuα
2 𝑐𝑠2

) (3.71) 

 

Similarly, we can also write 𝛑(𝟎) (see Appendix B) with Einstein summation 

convention and recall that ∑ 𝑓𝑖
(0)

i = 𝜌, 

 

παβ
(0) =∑ciαciβ𝑓𝑖

(0) − 𝑐𝑠
2δαβ𝜌 

i

 (3.72) 

 

Substituting Equation (3.71) into Equation (3.72), 

 

παβ
(0)
= 𝜌∑𝜔𝑖ciαciβ 

i

+
𝜌uγ 

𝑐𝑠2
∑𝜔𝑖ciαciβ ciγ
i

+
𝜌uγuδ 

2𝑐𝑠4
∑𝜔𝑖ciαciβ ciγciδ
i

+ 

−
𝜌uγuγ 

2𝑐𝑠2
∑𝜔𝑖ciαciβ 

i

− 𝑐𝑠
2δαβ𝜌   , 

(3.73) 

 

and substituting the isotropy conditions (see Appendix B) for BGK collision operator, 
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𝛑(𝟎) = 𝜌𝑐𝑠
2δαβ +

𝜌uγuδ 

2
δαβδγδ +

𝜌uγuδ 

2
δαγδβδ +

𝜌uγuδ 

2
δαδδβγ + 

−
𝜌uγuγ 

2
δαβ − 𝜌𝑐𝑠

2δαβ 

(3.74) 

 

To attain the final expression for 𝛑(𝟎), we must observe some index operations. First, 

resolving the dot products between tensor and vector, 

 

uγuδδαβδγδ = uγuγδαβ (3.75) 

uγuδδαγδβδ = uαuβ (3.76) 

uγuδδαδδβγ = uβuα (3.77) 

 

Implementing these operations in Equation (3.74), 

 

𝛑(𝟎) =
𝜌uγuγ 

2
δαβ +

𝜌uαuβ 

2
+
𝜌uβuα 

2
−
𝜌uγuγ

2
δαβ   , (3.78) 

 

and simplifying it, 

 

𝛑(𝟎) =
𝜌 

2
uαuβ +

𝜌 

2
uβuα (3.79) 

 

𝛑(𝟎) =
𝜌 

2
(uαuβ + uβuα) (3.80) 

 

Returning to the direct tensor notation, since uα and uβ are the same vector u⃗⃗, 

 

𝛑(𝟎) =
𝜌

2
(u⃗⃗u⃗⃗ + u⃗⃗u⃗⃗) (3.81) 

 

𝛑(𝟎) = 𝜌u⃗⃗u⃗⃗ (3.82) 
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Therefore, we calculated the tensor 𝛑(𝟎), which can already be substituted into 

Equation (3.69). But, as a next step, we first evaluate the tensor 𝐑(𝟎) = ∑ c⃗ic⃗ic⃗i𝑓𝑖
(0)

i . 

Substituting Equation (3.71) into 𝐑(𝟎) definition, 

 

𝐑(𝟎) = (∑𝜔𝑖ciαciβciγ
i

)𝜌 +
uδ 

𝑐𝑠2
(∑𝜔𝑖ciαciβ ciγciδ

i

)𝜌 + 

+
uδu𝜖 

2𝑐𝑠4
(∑𝜔𝑖ciαciβ ciγciδciϵ

i

)𝜌 −
uδuδ 

2𝑐𝑠2
(∑𝜔𝑖ciαciβciγ

i

)𝜌  

(3.83) 

 

Enforcing the isotropy conditions (see Appendix B), 

 

𝐑(𝟎) = uδ𝑐𝑠
2(δαβδ𝛾𝛿 + δαγδβδ + δαδδβγ)𝜌   ,  (3.84) 

 

and calculating the dot products, 

 

uδδαβδ𝛾𝛿 = u𝛾δαβ  (3.85) 

uδδαγδβδ = uβδαγ (3.86) 

uδδαδδβγ = uαδβγ  (3.87) 

 

Substituting the dot operations into Equation (3.84), we obtain 𝐑(𝟎), which we will 

maintain in index notation because it will be further required. 

 

𝐑(𝟎) = 𝑐𝑠
2(u𝛾δαβ + uβδαγ + uαδβγ)𝜌  (3.88) 

 

Hence, in this section, we already reached the tensors 𝐑(𝟎) and 𝛑(𝟎). However, to 

complete Equation (3.69), we must determine 𝛑(𝟏). Differently to 𝐑(𝟎) and 𝛑(𝟎) calculations, 

which we know 𝑓𝑖
(0)

, 𝑓𝑖
(1)

 is unknown to calculate 𝛑(𝟏). The deduction of 𝑓𝑖
(1)

 goes from 

Equation (3.89) to Equation (3.136). The strategy to obtain it is to substitute Equation (3.21) 

into Ωi
(1) = −

1

τ
𝑓𝑖
(1)

 (see Equation (3.23)) and isolate 𝑓𝑖
(1)

, 



 

39 

 

 

𝑓𝑖
(1) = −𝜏(∂𝑡1 + ∇⃗⃗⃗1 ∙ c⃗i)𝑓𝑖

(0)  (3.89) 

 

Before we substitute Equation (3.70) into Equation (3.89), to turn the algebraic 

manipulations easier, we need to rearrange two terms of Equation (3.70), (u⃗⃗ ∙ c⃗i)
2 and u⃗⃗ ∙ u⃗⃗,  

 

(u⃗⃗ ∙ c⃗i)
2 = (u⃗⃗ ∙ c⃗i)(u⃗⃗ ∙ c⃗i) = uαciαuβciβ = uαuβciβciα = u⃗⃗u⃗⃗ ∶ c⃗ic⃗i (3.90) 

u⃗⃗ ∙ u⃗⃗ = uαuα = uαuβδβα = u⃗⃗u⃗⃗ ∶ 𝐈   (3.91) 

 

Equation (3.70) becomes, then, 

 

𝑓𝑖
(0) = 𝜌𝜔𝑖 (1 +

u⃗⃗ ∙ c⃗i
𝑐𝑠2

+
u⃗⃗u⃗⃗ ∶ c⃗ic⃗i
2 𝑐𝑠4

−
u⃗⃗u⃗⃗ ∶ 𝐈

2 𝑐𝑠2
) (3.92) 

 

When we sum the last two terms of Equation (3.92), 

 

𝑓𝑖
(0) = 𝜌𝜔𝑖 [1 +

u⃗⃗ ∙ c⃗i
𝑐𝑠2

+
(u⃗⃗u⃗⃗ ∶ c⃗ic⃗i) − cs

2(u⃗⃗u⃗⃗ ∶ 𝐈)

2 𝑐𝑠4
] (3.93) 

 

From Appendix B, c⃗ic⃗i = 𝐐𝐢 + 𝑐𝑠
2𝐈, 

 

𝑓𝑖
(0) = 𝜌𝜔𝑖 [1 +

u⃗⃗ ∙ c⃗i
𝑐𝑠2

+
(u⃗⃗u⃗⃗ ∶ (𝐐𝐢 + 𝑐𝑠

2𝐈)) − (u⃗⃗u⃗⃗ ∶ 𝑐𝑠
2𝐈)

2 𝑐𝑠4
] (3.94) 

 

Simplifying, 

 

𝑓𝑖
(0) = 𝜌𝜔𝑖 [1 +

u⃗⃗ ∙ c⃗i
𝑐𝑠2

+
u⃗⃗u⃗⃗ ∶ 𝐐𝐢
2 𝑐𝑠4

] (3.95) 

 

Substituting Equation (3.95) into Equation (3.89), 
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𝑓𝑖
(1) = −𝜏(∂𝑡1 + ∇⃗⃗⃗1 ∙ c⃗i)𝜌𝜔𝑖 [1 +

u⃗⃗ ∙ c⃗i
𝑐𝑠2

+
u⃗⃗u⃗⃗ ∶ 𝐐𝐢
2 𝑐𝑠4

]  , (3.96) 

  

and employing the distributive property, 

 

𝑓𝑖
(1) = −𝜏𝜔𝑖

[
 
 
 
 𝜕𝑡1𝜌 +

𝜕𝑡1(𝜌u⃗⃗ ∙ c⃗i)

𝑐𝑠2
+
𝜕𝑡1(𝜌u⃗⃗u⃗⃗ ∶ 𝐐𝐢)

2 𝑐𝑠4
+ (∇⃗⃗⃗1 ∙ c⃗i)𝜌 +

+
(∇⃗⃗⃗1 ∙ c⃗i)(u⃗⃗ ∙ c⃗i)𝜌

𝑐𝑠2
+
(∇⃗⃗⃗1 ∙ c⃗i)(𝜌u⃗⃗u⃗⃗ ∶ 𝐐𝐢)

2 𝑐𝑠4 ]
 
 
 
 

 (3.97) 

 

Using the Einstein summation convention, we can prove that: 

 

(∇⃗⃗⃗1 ∙ c⃗i)𝜌 = ∂αciα𝜌 = ciα ∂α𝜌 = c⃗i ∙ ∇⃗⃗⃗1𝜌 (3.98) 

(∇⃗⃗⃗1 ∙ c⃗i)(𝜌u⃗⃗ ∙ c⃗i) = ∂αciα𝜌uβciβ = ciαciβ ∂α𝜌uβ = c⃗ic⃗i ∶  ∇⃗⃗⃗1(𝜌u⃗⃗)  (3.99) 

 

Substituting these relations into Equation (3.97), 

 

𝑓𝑖
(1) = −𝜏𝜔𝑖

[
 
 
 
 𝜕𝑡1𝜌 +

∂𝑡1(𝜌u⃗⃗ ∙ c⃗i)

𝑐𝑠2
+
∂𝑡1(𝜌u⃗⃗u⃗⃗ ∶ 𝐐𝐢)

2 𝑐𝑠4
+ c⃗i ∙ ∇⃗⃗⃗1𝜌 +

+
c⃗ic⃗i ∶  ∇⃗⃗⃗1(𝜌u⃗⃗)

𝑐𝑠2
+
(∇⃗⃗⃗1 ∙ c⃗i)(𝜌u⃗⃗u⃗⃗ ∶ 𝐐𝐢)

2 𝑐𝑠4 ]
 
 
 
 

 (3.100) 

 

We will substitute and simplify some terms of Equation (3.100), but we must first 

handle some algebraic efforts. From Equation (3.29),  

 

∂𝑡1𝜌 = −∇⃗⃗⃗1 ∙ 𝜌u⃗⃗ (3.101) 

 

Employing the dot product of each term of Equation (3.42) by 
c⃗⃗𝑖

𝑐𝑠
2, 

 

∂𝑡1𝜌u⃗⃗ ∙
c⃗i
𝑐𝑠2
+ ∇⃗⃗⃗1 ∙ 𝛑

(𝟎) ∙
c⃗i
𝑐𝑠2
+ 𝑐𝑠

2∇⃗⃗⃗1𝜌 ∙
c⃗i
𝑐𝑠2
= 0⃗⃗ (3.102) 
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Isolating the first term, 

 

∂𝑡1(𝜌u⃗⃗ ∙ c⃗i)

𝑐𝑠2
= −

∇⃗⃗⃗1 ∙ 𝛑
(𝟎) ∙ c⃗i
𝑐𝑠2

− ∇⃗⃗⃗1𝜌 ∙ c⃗i (3.103) 

 

Again, employing the Einstein summation convention, we can see that: 

 

∇⃗⃗⃗1 ∙ 𝛑
(𝟎) ∙ c⃗i = ∂απαβciβ = ciβ ∂απαβ = c⃗i∇⃗⃗⃗1∶  𝛑

(𝟎) (3.104) 

 

Using Equation (3.104) to rewrite Equation (3.103), 

 

∂𝑡1(𝜌u⃗⃗ ∙ c⃗i)

𝑐𝑠2
= −

c⃗i ∇⃗⃗⃗1∶  𝛑
(𝟎)

𝑐𝑠2
− ∇⃗⃗⃗1𝜌 ∙ c⃗i (3.105) 

 

Since we already know 𝛑(𝟎) from Equation (3.82), 

 

∂𝑡1(𝜌u⃗⃗ ∙ c⃗i)

𝑐𝑠2
= −

c⃗i ∇⃗⃗⃗1∶ 𝜌u⃗⃗u⃗⃗

𝑐𝑠2
− ∇⃗⃗⃗1𝜌 ∙ c⃗i (3.106) 

 

Stay aware that we want an expression for 𝑓𝑖
(1)

 to calculate 𝛑(𝟏). So, substituting 

Equations (3.101) and (3.106) into Equation (3.100), and regarding that ∇⃗⃗⃗1𝜌 ∙ c⃗i = c⃗i ∙ ∇⃗⃗⃗1𝜌, 

 

𝑓𝑖
(1) = −𝜏𝜔𝑖

[
 
 
 
 −c⃗i ∙ ∇⃗⃗⃗1𝜌 − ∇⃗⃗⃗1 ∙ 𝜌u⃗⃗ −

c⃗i∇⃗⃗⃗1 ∶ 𝜌u⃗⃗u⃗⃗

 𝑐𝑠2
+
𝜕𝑡1(𝜌u⃗⃗u⃗⃗ ∶ 𝐐𝐢)

2 𝑐𝑠4
+ c⃗i ∙ ∇⃗⃗⃗1𝜌 +

+
c⃗ic⃗i ∶  ∇⃗⃗⃗1(𝜌u⃗⃗)

𝑐𝑠2
+
(∇⃗⃗⃗1 ∙ c⃗i)(𝜌u⃗⃗u⃗⃗ ∶ 𝐐𝐢)

2 𝑐𝑠4 ]
 
 
 
 

 (3.107) 

 

Simplifying, 
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𝑓𝑖
(1) = −𝜏𝜔𝑖

[
 
 
 
 −∇⃗⃗⃗1 ∙ 𝜌u⃗⃗ −

c⃗i∇⃗⃗⃗1 ∶ 𝜌u⃗⃗u⃗⃗

 𝑐𝑠2
+
∂𝑡1(𝜌u⃗⃗u⃗⃗ ∶ 𝐐𝐢)

2 𝑐𝑠4
+
c⃗ic⃗i ∶  ∇⃗⃗⃗1(𝜌u⃗⃗)

𝑐𝑠2
+

+
(∇⃗⃗⃗1 ∙ c⃗i)(𝜌u⃗⃗u⃗⃗ ∶ 𝐐𝐢)

2 𝑐𝑠4 ]
 
 
 
 

 (3.108) 

 

Note that we can write the third term of Equation (3.108) in another way, 

 

𝜕𝑡1(𝜌u⃗⃗u⃗⃗ ∶ 𝐐𝐢) = ∂𝑡1(𝜌uαuβQβα) = Qβα𝜕𝑡1(𝜌uαuβ) = 𝐐𝐢 ∶  𝜕𝑡1(𝜌u⃗⃗u⃗⃗) (3.109) 

 

In this way, we can quickly evaluate the time derivative of 𝜌u⃗⃗u⃗⃗. Employing the 

product rule with Einstein notation,  

 

∂𝑡1(𝜌u⃗⃗u⃗⃗) = 𝜕𝑡1(𝜌uαuβ) = [𝜕𝑡1(𝜌uα)]uβ + 𝜌uα𝜕𝑡1uβ (3.110) 

 

Employing the product rule of the first derivative again on RHS, 

 

∂𝑡1(𝜌uαuβ) = uα(𝜕𝑡1𝜌)uβ + (∂𝑡1uα)𝜌uβ + 𝜌uα𝜕𝑡1uβ (3.111) 

 

We can write ∂𝑡1(𝜌u⃗⃗u⃗⃗) differently than the way expressed by Equation (3.110) if the 

product rule regards another set of terms,  

 

∂𝑡1(𝜌uαuβ) = 𝜕𝑡1(𝜌uαuβ) = uα ∂𝑡1(𝜌uβ) + (∂𝑡1uα)𝜌uβ (3.112) 

 

Summing Equations (3.110) with (3.112) and subtracting Equation (3.111) from 

them, 

 

2𝜕𝑡1(𝜌uαuβ) − ∂𝑡1(𝜌uαuβ) = [𝜕𝑡1(𝜌uα)]uβ + 𝜌uα ∂𝑡1uβ + uα ∂𝑡1(𝜌uβ) + 

+(∂𝑡1uα)𝜌uβ − uα(𝜕𝑡1𝜌)uβ + 

−(∂𝑡1uα)𝜌uβ − 𝜌uα ∂𝑡1uβ 

(3.113) 
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Simplifying, 

 

𝜕𝑡1(𝜌uαuβ) = 𝜕𝑡1(𝜌uα)uβ + uα𝜕𝑡1(𝜌uβ) − (𝜕𝑡1𝜌)uαuβ (3.114) 

 

Returning to the direct tensor notation: 

 

∂𝑡1(𝜌u⃗⃗u⃗⃗) = ∂𝑡1(𝜌u⃗⃗)u⃗⃗ + u⃗⃗𝜕𝑡1(𝜌u⃗⃗) − (𝜕𝑡1𝜌)u⃗⃗u⃗⃗ (3.115) 

 

Substituting Equation (3.115) into Equation (3.109), 

 

𝜕𝑡1(𝜌u⃗⃗u⃗⃗ ∶ 𝐐𝐢) = 𝐐𝐢 ∶ [𝜕𝑡1(𝜌u⃗⃗)u⃗⃗ + u⃗⃗ ∂𝑡1(𝜌u⃗⃗) − (𝜕𝑡1𝜌)u⃗⃗u⃗⃗] (3.116) 

 

To recover the Navier-Stokes equation, we must neglect terms of order greater than 

𝒪(𝑀𝑎2) [30]. The first two terms on the RHS of Equation (3.116) present 𝒪(𝑀𝑎2); however, 

as 𝜕𝑡1𝜌 = − ∇⃗⃗⃗1 ∙  𝜌u⃗⃗ (see Equation (3.29)), the third term yields 𝒪(𝑀𝑎3) and must be 

neglected. Therefore, Equation (3.116) is written as: 

 

∂𝑡1(𝜌u⃗⃗u⃗⃗ ∶ 𝐐𝐢) = 𝐐𝐢 ∶ [∂𝑡1(𝜌u⃗⃗)u⃗⃗ + u⃗⃗ ∂𝑡1(𝜌u⃗⃗)] (3.117) 

 

Since 𝐐𝐢 is a symmetric tensor, i.e., Qiαβ = Qiβα, 

 

𝐐𝐢 ∶ u⃗⃗ ∂𝑡1(𝜌u⃗⃗) = Qiαβuβ ∂𝑡1(𝜌uα) = Qiβα ∂𝑡1(𝜌uα)uβ = 𝐐𝐢 ∶ ∂𝑡1(𝜌u⃗⃗)u⃗⃗ (3.118) 

 

Hence, rewriting the last term of Equation (3.117), 

 

∂𝑡1(𝜌u⃗⃗u⃗⃗ ∶ 𝐐𝐢) = 𝐐𝐢 ∶ [𝜕𝑡1(𝜌u⃗⃗)u⃗⃗ + ∂𝑡1(𝜌u⃗⃗)u⃗⃗] (3.119) 

 

∂𝑡1(𝜌u⃗⃗u⃗⃗ ∶ 𝐐𝐢) = 𝐐𝐢 ∶ 2 ∂𝑡1(𝜌u⃗⃗)u⃗⃗ = 2𝐐𝐢 ∶ ∂𝑡1(𝜌u⃗⃗)u⃗⃗ (3.120) 
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We know 𝜕𝑡1(𝜌u⃗⃗) from Equation (3.42). Substituting its expression into Equation 

(3.120), 

 

∂𝑡1(𝜌u⃗⃗u⃗⃗ ∶ 𝐐𝐢) = 2𝐐𝐢 ∶ (−∇⃗⃗⃗1 ∙ 𝛑
(𝟎) − 𝑐𝑠

2∇⃗⃗⃗1𝜌)u⃗⃗   , (3.121) 

 

and substituting 𝛑(𝟎) from Equation (3.82), 

 

∂𝑡1(𝜌u⃗⃗u⃗⃗ ∶ 𝐐𝐢) = 2𝐐𝐢 ∶ (−∇⃗⃗⃗1 ∙ 𝜌u⃗⃗u⃗⃗ − 𝑐𝑠
2∇⃗⃗⃗1𝜌)u⃗⃗ (3.122) 

 

The first term inside the parenthesis on the RHS achieves 𝒪(𝑀𝑎3) and must be 

neglected, 

 

∂t1(𝜌u⃗⃗u⃗⃗ ∶ 𝐐𝐢) = −2𝑐𝑠
2𝐐𝐢 ∶ (∇⃗⃗⃗1𝜌)u⃗⃗ (3.123) 

 

Keep in mind that we are deducing 𝑓𝑖
(1)

 and, consequently, 𝝅(𝟏). Therefore, 

substituting Equation (3.123) into Equation (3.108), 

 

𝑓𝑖
(1) = −𝜏𝜔𝑖

[
 
 
 
 −∇⃗⃗⃗1 ∙ 𝜌u⃗⃗ −

c⃗i∇⃗⃗⃗1 ∶ 𝜌u⃗⃗u⃗⃗

 𝑐𝑠2
−
2𝑐𝑠

2𝐐𝐢 ∶ (∇⃗⃗⃗1𝜌)u⃗⃗

2 𝑐𝑠4
+
c⃗ic⃗i ∶  ∇⃗⃗⃗1(𝜌u⃗⃗)

𝑐𝑠2
+

+
(∇⃗⃗⃗1 ∙ c⃗i)(𝜌u⃗⃗u⃗⃗ ∶ 𝐐𝐢)

2 𝑐𝑠4 ]
 
 
 
 

 (3.124) 

 

Simplifying and factoring out 
1

𝑐𝑠
2 , 

 

𝑓𝑖
(1) =

𝜏𝜔𝑖
𝑐𝑠2

[

𝑐𝑠
2∇⃗⃗⃗1 ∙ 𝜌u⃗⃗ + c⃗i∇⃗⃗⃗1 ∶ 𝜌u⃗⃗u⃗⃗ + 𝐐𝐢 ∶ (∇⃗⃗⃗1𝜌)u⃗⃗ − c⃗ic⃗i ∶  ∇⃗⃗⃗1(𝜌u⃗⃗) +

−
(∇⃗⃗⃗1 ∙ c⃗i)(𝜌u⃗⃗u⃗⃗ ∶ 𝐐𝐢)

2 𝑐𝑠2

] (3.125) 

 

Next, we will simplify some terms of Equation (3.125). To avoid writing the same 

long term repeatedly and turning the equations longer, we define: 
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𝜒 = 𝑐𝑠
2∇⃗⃗⃗1 ∙ 𝜌u⃗⃗ + 𝐐𝐢 ∶ (∇⃗⃗⃗1𝜌)u⃗⃗ − c⃗ic⃗i ∶  ∇⃗⃗⃗1(𝜌u⃗⃗) (3.126) 

 

Using Einstein notation, 

 

𝜒 = 𝑐𝑠
2(∂α𝜌uα) + Qiαβ(∂β𝜌)uα − ciαciβ(∂β𝜌uα)   , (3.127) 

 

and employing the product rule, 

 

𝜒 = 𝑐𝑠
2𝜌 ∂αuα + 𝑐𝑠

2uα ∂α𝜌 + Qiαβ(∂β𝜌)uα − ciαciβ𝜌 ∂βuα − ciαciβuα ∂β𝜌 (3.128) 

 

From Appendix B, 𝐐𝐢 = c⃗ic⃗i − 𝑐𝑠
2𝐈, i.e., Qiαβ = ciαciβ − 𝑐𝑠

2δαβ, 

 

𝜒 = 𝑐𝑠
2𝜌 ∂αuα + 𝑐𝑠

2uα ∂α𝜌 + ciαciβ(∂β𝜌)uα − 𝑐𝑠
2δαβ(∂β𝜌)uα + 

−ciαciβ𝜌∂βuα − ciαciβuα ∂β𝜌 
(3.129) 

 

The order of the variables has no significance because all the terms are scalar. In this 

way, canceling out the third and the last terms and employing the dot product δαβ ∂β = ∂α, 

 

𝜒 = 𝑐𝑠
2𝜌 ∂αuα + 𝑐𝑠

2uα ∂α𝜌 − 𝑐𝑠
2(∂α𝜌)uα − ciαciβ𝜌 ∂βuα (3.130) 

 

Similarly, simplifying the second and third terms on the RHS, 

 

𝜒 = 𝑐𝑠
2𝜌 ∂αuα − ciαciβ𝜌 ∂βuα (3.131) 

 

Again, seeing that Qiαβ = ciαciβ − 𝑐𝑠
2δαβ   ↔  ciαciβ = Qiαβ + 𝑐𝑠

2δαβ, 

 

𝜒 = 𝑐𝑠
2𝜌 ∂αuα − Qiαβ𝜌 ∂βuα − 𝑐𝑠

2δαβ𝜌 ∂βuα (3.132) 
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Employing the dot product δαβ ∂β = ∂α, 

 

𝜒 = 𝑐𝑠
2𝜌 ∂αuα − Qiαβ𝜌 ∂βuα − 𝑐𝑠

2𝜌 ∂αuα (3.133) 

  

Canceling out the first and the last terms on the RHS, and returning to the direct tensor 

notation, 

 

𝜒 = −Qiαβ𝜌∂βuα (3.134) 

𝜒 = −𝐐𝐢 ∶ 𝜌(∇⃗⃗⃗1u⃗⃗) (3.135) 

  

Substituting Equations (3.135) and (3.126) into Equation (3.125), 

 

𝑓𝑖
(1) = −

𝜏𝜔𝑖
𝑐𝑠2

[𝐐𝐢 ∶ 𝜌(∇⃗⃗⃗1u⃗⃗) − c⃗i∇⃗⃗⃗1 ∶ 𝜌u⃗⃗u⃗⃗ +
(∇⃗⃗⃗1 ∙ c⃗i)(𝜌u⃗⃗u⃗⃗ ∶ 𝐐𝐢)

2 𝑐𝑠2
] (3.136) 

  

As we know 𝑓𝑖
(1)

, we can now calculate 𝛑(𝟏) and further substitute it into Equation 

(3.69) to complete the Navier-Stokes equation. Hence, substituting Equation (3.136) into the 

definition of 𝛑(𝟏), i.e., 𝛑(𝟏) = ∑ c⃗ic⃗i𝑓𝑖
(1)

i − 𝑐𝑠
2𝐈 ∑ 𝑓𝑖

(1)
i  (see Appendix B), 

 

𝛑(𝟏) = −
𝜏

𝑐𝑠2
∑𝜔𝑖
i

{

c⃗ic⃗i[𝐐𝐢 ∶ 𝜌(∇⃗⃗⃗1u⃗⃗)] − c⃗ic⃗i(c⃗i∇⃗⃗⃗1 ∶ 𝜌u⃗⃗u⃗⃗) +

+c⃗ic⃗i [
(∇⃗⃗⃗1 ∙ c⃗i)(𝜌u⃗⃗u⃗⃗ ∶ 𝐐𝐢)

2 𝑐𝑠2
] − 𝑐𝑠

2𝐈∑𝑓𝑖
(1)

i

} (3.137) 

  

From Equation (3.26), ∑ 𝑓𝑖
(1)

i = 0. Then, the last term of Equation (3.137) is zero.  

Next, we will analyze the remained terms. Writing the first term on the RHS using Einstein 

notation, 

 

∑𝜔𝑖c⃗ic⃗i[𝐐𝐢 ∶ 𝜌(∇⃗⃗⃗1u⃗⃗)]

i

=∑𝜔𝑖ciαciβ [Qi𝛾𝛿𝜌 ∂𝛿u𝛾]

i

 (3.138) 
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From Appendix B, Qi𝛾𝛿 = ci𝛾ciδ − 𝑐𝑠
2δ𝛾𝛿, 

  

∑𝜔𝑖c⃗ic⃗i[𝐐𝐢 ∶ 𝜌(∇⃗⃗⃗1u⃗⃗)]

i

=∑𝜔𝑖ciαciβci𝛾ciδ𝜌 ∂𝛿u𝛾
i

+ 

−∑𝜔𝑖ciαciβ𝑐𝑠
2δ𝛾𝛿𝜌 ∂𝛿u𝛾

i

 

(3.139) 

  

Since 𝜌 ∂𝛿u𝛾 and 𝑐𝑠
2δ𝛾𝛿  play any role in the summation, 

 

∑𝜔𝑖c⃗ic⃗i[𝐐𝐢 ∶ 𝜌(∇⃗⃗⃗1u⃗⃗)]

i

= (∑𝜔𝑖ciαciβci𝛾ciδ
i

)𝜌 ∂𝛿u𝛾 + 

−(∑𝜔𝑖ciαciβ
i

) 𝑐𝑠
2δ𝛾𝛿𝜌 ∂𝛿u𝛾 

(3.140) 

  

Recalling the isotropy conditions (see Appendix B), 

 

∑𝜔𝑖c⃗ic⃗i[𝐐𝐢 ∶ 𝜌(∇⃗⃗⃗1u⃗⃗)]

i

= 𝑐𝑠
4(δ𝛼𝛽δ𝛾𝛿 + δ𝛼𝛾δ𝛽𝛿 + δ𝛼𝛿δ𝛽𝛾)𝜌 ∂𝛿u𝛾 + 

−𝑐𝑠
4δ𝛼𝛽δ𝛾𝛿𝜌 ∂𝛿u𝛾 

(3.141) 

  

Simplifying, 

 

∑𝜔𝑖c⃗ic⃗i[𝐐𝐢 ∶ 𝜌(∇⃗⃗⃗1u⃗⃗)]

i

= 𝑐𝑠
4(δ𝛼𝛾δ𝛽𝛿 + δ𝛼𝛿δ𝛽𝛾)𝜌 ∂𝛿u𝛾 (3.142) 

  

Since δ𝛼𝛾δ𝛽𝛿 ∂𝛿u𝛾 = ∂𝛽u𝛼 and δ𝛼𝛿δ𝛽𝛾 ∂𝛿u𝛾 = ∂𝛼u𝛽, 

 

∑𝜔𝑖c⃗ic⃗i[𝐐𝐢 ∶ 𝜌(∇⃗⃗⃗1u⃗⃗)]

i

= 𝑐𝑠
4𝜌(∂𝛽u𝛼 + ∂𝛼u𝛽) (3.143) 
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Note that, when we return to the direct tensor notation, to maintain the index 

consistency, we have to write the transpose of ∇⃗⃗⃗1u⃗⃗, 

 

∑𝜔𝑖c⃗ic⃗i[𝐐𝐢 ∶ 𝜌(∇⃗⃗⃗1u⃗⃗)]

i

= 𝜌𝑐𝑠
4 [(∇⃗⃗⃗1u⃗⃗)

T
+ ∇⃗⃗⃗1u⃗⃗] (3.144) 

 

Equation (3.144) simplifies the first term inside the summation of Equation (3.137). 

Now, we analyze the second term,  

 

∑𝜔𝑖c⃗ic⃗i(c⃗i∇⃗⃗⃗1 ∶ 𝜌u⃗⃗u⃗⃗)

i

=∑𝜔𝑖ciαciβ[ci𝛾 ∂δ(𝜌uδuγ)

i

]  (3.145) 

 

As ∂δ(𝜌uδuγ) plays any role in the summation, 

 

∑𝜔𝑖c⃗ic⃗i(c⃗i∇⃗⃗⃗1 ∶ 𝜌u⃗⃗u⃗⃗)

i

= (∑𝜔𝑖ciαciβ
i

ci𝛾)∂δ(𝜌uδuγ) (3.146) 

 

Recalling the isotropy conditions (see Appendix B), we realize the summation is zero, 

 

∑𝜔𝑖c⃗ic⃗i(c⃗i∇⃗⃗⃗1 ∶ 𝜌u⃗⃗u⃗⃗)

i

= 𝟎 (3.147) 

 

Equation (3.147) simplifies the second term inside the summation of Equation 

(3.137). Now, we analyze the third term,  

 

∑𝜔𝑖c⃗ic⃗i [
(∇⃗⃗⃗1 ∙ c⃗i)(𝜌u⃗⃗u⃗⃗ ∶ 𝐐𝐢)

2 𝑐𝑠2
]

i

=
1

2𝑐𝑠2
∑𝜔𝑖ciαciβ (∂γci𝛾𝜌uδuϵQϵδ)

i

 (3.148) 

 

Since 𝜕γci𝛾 = ci𝛾𝜕γ   ↔   ∇⃗⃗⃗1 ∙ c⃗i = c⃗i ∙ ∇⃗⃗⃗1,  
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∑𝜔𝑖c⃗ic⃗i [
(∇⃗⃗⃗1 ∙ c⃗i)(𝜌u⃗⃗u⃗⃗ ∶ 𝐐𝐢)

2 𝑐𝑠2
]

i

=
𝜌

2𝑐𝑠2
(∑𝜔𝑖ciαciβci𝛾

i

)∂γuδuϵQϵδ (3.149) 

 

Recalling the isotropy conditions (see Appendix B), 

 

∑𝜔𝑖c⃗ic⃗i [
(∇⃗⃗⃗1 ∙ c⃗i)(𝜌u⃗⃗u⃗⃗ ∶ 𝐐𝐢)

2 𝑐𝑠2
]

i

= 𝟎 (3.150) 

 

Equation (3.150) simplifies the third term inside the summation of Equation (3.137). 

Now, we can substitute Equations (3.144), (3.147), and (3.150) into Equation (3.137), 

 

𝛑(𝟏) = −
𝜏

𝑐𝑠2
𝜌𝑐𝑠

4 [(∇⃗⃗⃗1u⃗⃗)
T
+ ∇⃗⃗⃗1u⃗⃗] (3.151) 

  

Simplifying, 

 

𝛑(𝟏) = −𝜌𝜏𝑐𝑠
2 [(∇⃗⃗⃗1u⃗⃗)

T
+ ∇⃗⃗⃗1u⃗⃗] (3.152) 

 

We finally calculated the tensors 𝛑(𝟎), 𝐑(𝟎) and 𝛑(𝟏), respectively given by Equations 

(3.82), (3.88), and (3.152). We can now substitute these tensors into Equation (3.69) to 

enforce the well-known Navier-Stokes equation to arise. Substituting, first, Equations (3.82) 

and (3.152) into Equation (3.69), 

 

𝜕𝑡𝜌u⃗⃗ + ∇⃗⃗⃗ ∙ {𝜌u⃗⃗u⃗⃗ − ϵ𝜌𝜏cs
2 [(∇⃗⃗⃗1u⃗⃗)

T
+ ∇⃗⃗⃗1u⃗⃗]} + (1 +

𝜕𝑡
2
) 𝑐𝑠

2∇⃗⃗⃗𝜌 + 

+
ϵ

2
∂𝑡1 ∇⃗⃗⃗ ∙ 𝜌u⃗⃗u⃗⃗ +

1

2
(∇⃗⃗⃗∇⃗⃗⃗: 𝑹(𝟎)) = 0⃗⃗ 

(3.153) 

 

To factor out the divergence operation in most terms of Equation (3.153), we can 

write the last term in another form,  
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∇⃗⃗⃗∇⃗⃗⃗: 𝐑(𝟎) = ∇⃗⃗⃗ ∙ (∇⃗⃗⃗ ∙ 𝐑(𝟎)) (3.154) 

 

Undoubtedly, we must substitute 𝐑(𝟎) into Equation (3.154) and, consequently, 

Equation (3.153), yet. As 𝐑(𝟎) is given by Equation (3.88), we calculate ∇⃗⃗⃗ ∙ 𝐑(𝟎), 

 

∇⃗⃗⃗ ∙ 𝐑(𝟎) = 𝑐𝑠
2 ∂γ[(u𝛾δαβ + uβδαγ + uαδβγ)𝜌 ] (3.155) 

 

Implementing the derivative ∂γ in each term, and recalling that 𝜕γδαγ = 𝜕α and 

𝜕γδβγ = 𝜕β, 

 

∇⃗⃗⃗ ∙ 𝐑(𝟎) = 𝑐𝑠
2(∂γ𝜌u𝛾δαβ + 𝜕α𝜌uβ + 𝜕β𝜌uα)  (3.156) 

  

Returning to the direct tensor notation, 

 

∇⃗⃗⃗ ∙ 𝐑(𝟎) = 𝑐𝑠
2 {(∇⃗⃗⃗ ∙ 𝜌u⃗⃗)𝐈 + ∇⃗⃗⃗(𝜌u⃗⃗) + [∇⃗⃗⃗(𝜌u⃗⃗)]

T
}  (3.157) 

  

Substituting Equations (3.154) and (3.157) into Equation (3.153), 

 

𝜕𝑡𝜌u⃗⃗ + ∇⃗⃗⃗ ∙ {𝜌u⃗⃗u⃗⃗ − ϵ𝜌𝜏𝑐𝑠
2 [(∇⃗⃗⃗1u⃗⃗)

T
+ ∇⃗⃗⃗1u⃗⃗]} + (1 +

𝜕𝑡
2
) 𝑐𝑠

2∇⃗⃗⃗𝜌 + 

+
ϵ

2
∂𝑡1 ∇⃗⃗⃗ ∙ 𝜌u⃗⃗u⃗⃗ +

𝑐𝑠
2

2
∇⃗⃗⃗ ∙ {(∇⃗⃗⃗ ∙ 𝜌u⃗⃗)𝐈 + ∇⃗⃗⃗(𝜌u⃗⃗) + [∇⃗⃗⃗(𝜌u⃗⃗)]

T
} = 0⃗⃗ 

(3.158) 

  

Factoring out the divergence operation, 

 

𝜕𝑡𝜌u⃗⃗ + 

+∇⃗⃗⃗ ∙

{
 

 𝜌u⃗⃗u⃗⃗ − ϵ𝜌𝜏𝑐𝑠
2 [(∇⃗⃗⃗1u⃗⃗)

T
+ ∇⃗⃗⃗1u⃗⃗] + (1 +

𝜕𝑡
2
) 𝑐𝑠

2𝜌𝐈 +
ϵ

2
∂𝑡1𝜌u⃗⃗u⃗⃗ +

+
𝑐𝑠
2

2
[(∇⃗⃗⃗ ∙ 𝜌u⃗⃗)𝐈 + ∇⃗⃗⃗(𝜌u⃗⃗) + (∇⃗⃗⃗(𝜌u⃗⃗))

T

] }
 

 
= 0⃗⃗ 

(3.159) 
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Substituting Equation (3.115) into Equation (3.159), 

 

𝜕𝑡𝜌u⃗⃗ + 

+∇⃗⃗⃗ ∙

{
 
 

 
 𝜌u⃗⃗u⃗⃗ − ϵ𝜌𝜏𝑐𝑠

2 [(∇⃗⃗⃗1u⃗⃗)
T
+ ∇⃗⃗⃗1u⃗⃗] + (1 +

𝜕𝑡
2
) 𝑐𝑠

2𝜌𝐈 +
ϵ

2
∂𝑡1(𝜌u⃗⃗)u⃗⃗ +

+
ϵ

2
u⃗⃗ ∂𝑡1(𝜌u⃗⃗) −

ϵ

2
(∂𝑡1𝜌)u⃗⃗u⃗⃗ +

𝑐𝑠
2

2
[
(∇⃗⃗⃗ ∙ 𝜌u⃗⃗)𝐈 + ∇⃗⃗⃗(𝜌u⃗⃗) +

+(∇⃗⃗⃗(𝜌u⃗⃗))
T ] 

}
 
 

 
 

= 0⃗⃗ 
(3.160) 

  

From Equation (3.29), we know that 𝜕𝑡1𝜌 = −∇⃗⃗⃗1 ∙ u⃗⃗. Hence, (𝜕𝑡1𝜌)u⃗⃗u⃗⃗ has 𝒪(𝑀𝑎3) 

and must be neglected. Considering this and also substituting Equation (3.42) into ∂𝑡1(𝜌u⃗⃗), 

 

𝜕𝑡𝜌u⃗⃗ + 

+∇⃗⃗⃗ ∙

{
 
 
 

 
 
 𝜌u⃗⃗u⃗⃗ − ϵ𝜌𝜏𝑐𝑠

2 [(∇⃗⃗⃗1u⃗⃗)
T
+ ∇⃗⃗⃗1u⃗⃗] + (1 +

𝜕𝑡
2
) 𝑐𝑠

2𝜌𝐈 +

+
ϵ

2
(−𝑐𝑠

2∇⃗⃗⃗1𝜌 − ∇⃗⃗⃗1 ∙ 𝛑
(𝟎))u⃗⃗ +

ϵ

2
u⃗⃗(−𝑐𝑠

2∇⃗⃗⃗1𝜌 − ∇⃗⃗⃗1 ∙ 𝛑
(𝟎)) +

+
𝑐𝑠
2

2
[
(∇⃗⃗⃗ ∙ 𝜌u⃗⃗)𝐈 + ∇⃗⃗⃗(𝜌u⃗⃗) +

+(∇⃗⃗⃗(𝜌u⃗⃗))
T ] 

}
 
 
 

 
 
 

= 0⃗⃗ 
(3.161) 

  

From Equation (3.82), 𝛑(𝟎) = 𝜌u⃗⃗u⃗⃗. Therefore, (∇⃗⃗⃗1 ∙ 𝛑
(𝟎))u⃗⃗ and u⃗⃗(∇⃗⃗⃗1 ∙ 𝛑

(𝟎)) in 

Equation (3.161) have 𝒪(𝑀𝑎3) and must be neglected, 

 

𝜕𝑡𝜌u⃗⃗ + ∇⃗⃗⃗ ∙

{
 
 

 
 𝜌u⃗⃗u⃗⃗ − ϵ𝜌𝜏𝑐𝑠

2 [(∇⃗⃗⃗1u⃗⃗)
T
+ ∇⃗⃗⃗1u⃗⃗] + (1 +

𝜕𝑡
2
) 𝑐𝑠

2𝜌𝐈 +

−
ϵ𝑐𝑠
2

2
[(∇⃗⃗⃗1𝜌)u⃗⃗ + u⃗⃗∇⃗⃗⃗1𝜌] +

𝑐𝑠
2

2
[
(∇⃗⃗⃗ ∙ 𝜌u⃗⃗)𝐈 + ∇⃗⃗⃗(𝜌u⃗⃗) +

+(∇⃗⃗⃗(𝜌u⃗⃗))
T ]

 }
 
 

 
 

= 0⃗⃗ (3.162) 

  

Substituting Equation (3.11) into Equation into Equation (3.162), we recover ∇⃗⃗⃗ 

operator, 
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𝜕𝑡𝜌u⃗⃗ + ∇⃗⃗⃗ ∙

{
 
 

 
 𝜌u⃗⃗u⃗⃗ − 𝜌𝜏𝑐𝑠

2 [(∇⃗⃗⃗u⃗⃗)
T
+ ∇⃗⃗⃗u⃗⃗] + (1 +

𝜕𝑡
2
) 𝑐𝑠

2𝜌𝐈 +

−
𝑐𝑠
2

2
[(∇⃗⃗⃗𝜌)u⃗⃗ + u⃗⃗∇⃗⃗⃗𝜌] +

𝑐𝑠
2

2
[
(∇⃗⃗⃗ ∙ 𝜌u⃗⃗)𝐈 + ∇⃗⃗⃗(𝜌u⃗⃗) +

+(∇⃗⃗⃗(𝜌u⃗⃗))
T ]

 }
 
 

 
 

= 0⃗⃗ (3.163) 

  

If we look closely, we can see that the continuity equation appears in Equation 

(3.163). If we multiply Equation (3.59) (the continuity equation) by  
𝑐𝑠
2

2
𝐈, 

 

𝑐𝑠
2

2
𝜕𝑡𝜌𝐈 +

𝑐𝑠
2

2
(∇⃗⃗⃗ ∙ 𝜌u⃗⃗)𝐈 = 0  (3.164) 

  

Substituting Equation (3.164) into Equation (3.163), 

 

𝜕𝑡𝜌𝑢⃗⃗ + ∇⃗⃗⃗ ∙

{
 

 𝜌u⃗⃗u⃗⃗ − 𝜌𝜏𝑐𝑠
2 [(∇⃗⃗⃗u⃗⃗)

T
+ ∇⃗⃗⃗u⃗⃗] + 𝑐𝑠

2𝜌𝐈 +

−
𝑐𝑠
2

2
[(∇⃗⃗⃗𝜌)u⃗⃗ + u⃗⃗∇⃗⃗⃗𝜌] +

𝑐𝑠
2

2
[∇⃗⃗⃗(𝜌u⃗⃗) + (∇⃗⃗⃗(𝜌u⃗⃗))

T

]
 }

 

 
= 0⃗⃗ (3.165) 

 

Factoring out 
𝑐𝑠
2

2
, 

 

𝜕𝑡𝜌𝑢⃗⃗ + ∇⃗⃗⃗ ∙

{
 

 𝜌u⃗⃗u⃗⃗ − 𝜌𝜏𝑐𝑠
2 [(∇⃗⃗⃗u⃗⃗)

T
+ ∇⃗⃗⃗u⃗⃗] + 𝑐𝑠

2𝜌𝐈 +

+
𝑐𝑠
2

2
[−(∇⃗⃗⃗𝜌)u⃗⃗ − u⃗⃗∇⃗⃗⃗𝜌 + ∇⃗⃗⃗(𝜌u⃗⃗) + (∇⃗⃗⃗(𝜌u⃗⃗))

T

]
 }

 

 
= 0⃗⃗ (3.166) 

 

We can reduce the summation inside the brackets. Again, to avoid writing the same 

lengthy-term repeatedly and turning the equations longer, we define: 

 

𝛘′ = −(∇⃗⃗⃗𝜌)u⃗⃗ − u⃗⃗∇⃗⃗⃗𝜌 + ∇⃗⃗⃗(𝜌u⃗⃗) + (∇⃗⃗⃗(𝜌u⃗⃗))
T

  (3.167) 

  

Using Einstein summation convention to rewrite Equation (3.167), 
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𝛘′ = −(∂α𝜌)uβ − uα ∂β𝜌 + ∂α(𝜌uβ) + ∂β(𝜌uα)  , (3.168) 

  

employing the product rule, 

 

𝛘′ = −(∂α𝜌)uβ − uα ∂β𝜌 + 𝜌 ∂αuβ + (∂α𝜌)uβ + (∂β𝜌)uα + 𝜌∂βuα   , (3.169) 

  

and simplifying, 

 

𝛘′ = 𝜌 ∂αuβ + 𝜌∂βuα  (3.170) 

  

Returning to the direct tensor notation, 

 

𝛘′ = 𝜌 [∇⃗⃗⃗u⃗⃗ + (∇⃗⃗⃗u⃗⃗)
T
]  (3.171) 

  

Substituting Equations (3.167) and (3.171) into Equation (3.166), 

 

𝜕𝑡𝜌u⃗⃗ + ∇⃗⃗⃗ ∙ {𝜌u⃗⃗u⃗⃗ − 𝜌𝜏𝑐𝑠
2 [∇⃗⃗⃗u⃗⃗ + (∇⃗⃗⃗u⃗⃗)

T
] + 𝑐𝑠

2𝜌𝐈 +
𝑐𝑠
2

2
𝜌 [∇⃗⃗⃗u⃗⃗ + (∇⃗⃗⃗u⃗⃗)

T
]} = 0⃗⃗ (3.172) 

 

Factoring out ∇⃗⃗⃗u⃗⃗ + (∇⃗⃗⃗u⃗⃗)
T
, 

 

𝜕𝑡𝜌u⃗⃗ + ∇⃗⃗⃗ ∙ {𝜌u⃗⃗u⃗⃗ + (
𝜌𝑐𝑠

2

2
− 𝜌𝜏𝑐𝑠

2) [∇⃗⃗⃗u⃗⃗ + (∇⃗⃗⃗u⃗⃗)
T
] + 𝜌𝑐𝑠

2𝐈} = 0⃗⃗ (3.173) 

 

Factoring out ρcs
2, 

 

𝜕𝑡𝜌u⃗⃗ + ∇⃗⃗⃗ ∙ {𝜌u⃗⃗u⃗⃗ + (
1

2
− 𝜏) 𝜌𝑐𝑠

2 [∇⃗⃗⃗u⃗⃗ + (∇⃗⃗⃗u⃗⃗)
T
] + 𝜌𝑐𝑠

2𝐈} = 0⃗⃗ (3.174) 
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In LBM, the pressure for ideal gases is 𝑝 = 𝜌𝑐𝑠
2 . Introducing it into Equation (3.174), 

 

𝜕𝑡𝜌u⃗⃗ = −∇⃗⃗⃗ ∙ {𝜌u⃗⃗u⃗⃗ − (𝜏 −
1

2
) 𝜌𝑐𝑠

2 [∇⃗⃗⃗u⃗⃗ + (∇⃗⃗⃗u⃗⃗)
T
] + 𝑝𝐈} = 0⃗⃗ (3.175) 

 

Hence, we finally recovered the Navier-Stokes equation in its well-known form, i.e., 

Equation (3.175), for only small values of Ma (we neglected terms with order equals to or 

greater than 𝒪(𝑀𝑎3)). According to Bird et al. [24], in a system with a gravitational force 

field, the motion equation is: 

 

𝜕𝑡𝜌u⃗⃗ = −∇⃗⃗⃗ ∙ 𝜌u⃗⃗u⃗⃗ − ∇⃗⃗⃗𝑝 − ∇⃗⃗⃗ ∙ 𝐒 + 𝜌g⃗⃗ = 0⃗⃗  , (3.176) 

 

where g⃗⃗ is the gravitational acceleration and 𝐒 is the deviatoric stress tensor.  

We can compare our recovered equation, i.e., Equation (3.175), with the classical 

Navier-Stokes equation, i.e., Equation (3.176). The first, second, and third terms of Equation 

(3.175) are also in Equation (3.176). Since we started this deduction neglecting external 

forces (see Equation (3.1)), we must neglect 𝜌g⃗⃗ in Equation (3.176). Hence, comparing the 

remained terms,  

 

−∇⃗⃗⃗ ∙ 𝐒 = ∇⃗⃗⃗ ∙ {(𝜏 −
1

2
) 𝜌𝑐𝑠

2 [∇⃗⃗⃗u⃗⃗ + (∇⃗⃗⃗u⃗⃗)
T
]} (3.177) 

 

𝐒 = −(𝜏 −
1

2
) 𝜌𝑐𝑠

2 [∇⃗⃗⃗u⃗⃗ + (∇⃗⃗⃗u⃗⃗)
T
] (3.178) 

 

The stress tensor describes the distortion of a body and is defined as [24],  

 

𝐒 = −𝜇 [∇⃗⃗⃗u⃗⃗ + (∇⃗⃗⃗u⃗⃗)
T
] + (

2

3
𝜇 − 𝜅) (∇⃗⃗⃗ ∙ u⃗⃗)𝐈   , (3.179) 

 

where μ and κ are, respectively, the shear and dilatational viscosities. From the continuity 

equation, we know that ∇⃗⃗⃗ ∙ u⃗⃗ = 0 for incompressible flow. Then, 



 

55 

 

 

𝐒 = −𝜇 [∇⃗⃗⃗u⃗⃗ + (∇⃗⃗⃗u⃗⃗)
T
] (3.180) 

 

Substituting Equation (3.180) into Equation (3.178), 

 

−𝜇 [∇⃗⃗⃗u⃗⃗ + (∇⃗⃗⃗u⃗⃗)
T
] = −(𝜏 −

1

2
) 𝜌𝑐𝑠

2 [∇⃗⃗⃗u⃗⃗ + (∇⃗⃗⃗u⃗⃗)
T
]   , (3.181) 

 

and simplifying, 

 

𝜇 = (𝜏 −
1

2
) 𝜌𝑐𝑠

2 (3.182) 

 

Seeing that the kinematic viscosity is 𝜈 = 𝜇/𝜌, then, 

 

𝜈 = (𝜏 −
1

2
) 𝑐𝑠

2 (3.183) 

 

Equation (3.183) reveals that both physical and numerical frameworks are connected 

to only one parameter: the relaxation time, which links the mesoscale to the real fluid 

property (macroscopic value) when 𝛿𝑡 = 1. Hence, the relaxation time is associated with 

stability: values around 𝜏 ~ 0.5 may induce numerical instabilities since it approaches 

unphysical viscosities (𝜇 ≤ 0). For any interval of lattice time 𝛿𝑡, Equation (2.30) is 

recovered instead. 

We conclude Equation (3.175) recovers the Navier-Stokes equation for the BGK 

collision operator and small Ma (i.e., incompressible flow). Other collision operators, such 

as MRT, also recover the Navier-Stokes equation, but with a different format from Equation 

(3.174). Because of the Mach number influence in the deduction, 𝑀𝑎 is understood as a 

dimensionless number that monitors the LBM accuracy: for higher 𝑀𝑎, the compressibility 

effects that arise deteriorate the simulation accuracy.  
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Note that the Navier-Stokes equation is recovered with a second-order approximation 

in 𝑓𝑖 expansion, i.e., in Equation (3.13). Other relevant equations originate from different 

order expansions instead. For instance, the Euler and the Burnett equations emerge, 

respectively, when zeroth- and second-order approximations are considered. Both equations 

represent the momentum conservation, but the former is for an ideal fluid (𝜇 = 0) and the 

latter for higher Knudsen numbers (e.g., ultrasonic sound propagation) [21]. On the other 

hand, it is only necessary a zeroth-order approximation in 𝑓𝑖 expansion to recover the 

continuity equation.   

The Chapman-Enskog proves to be a helpful method to check for LBM consistency. 

Still, one can also handle this analysis with other methods, such as the Maxwellian iteration, 

the regular error, and Hermite expansions, without losing information. Nevertheless, the 

Chapman-Enskog is the most used method in the literature. 
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Chapter 4 

Computational aspects of LBM 

 

The evidence of the LBM consolidation in the transport phenomena community is the amount 

of several available open-source codes (e.g., Palabos [56], OpenLB [57], Taxila LBM [58], 

and waLBerla [59]) and even commercial software (e.g., SIMULIA’s PowerFLOW [60], and 

NUMECA’s OMNIS/LB [61]) that implement LBM. Through commands modified 

exceptionally for this method, they improve the user programming, enhance productivity, 

efficiency, and performance, facilitate parallelization if desired, and support 

multidisciplinary investigations (e.g., thermal and multiphase combined flows). Although 

they present various LB models already implemented and validated, we write our own codes 

using C/C++ language in this work to ensure we understand the LB concepts entirely. We 

summarize a general LBM algorithm in Figure 7, the foundation of our codes. Hence, this 

chapter is a valuable starting point to demonstrate for LBM beginners how to use the theory 

equations presented in Chapters 2 and 3. Here, we validate our computational LBM 

implementation and highlight its main features. For this purpose, we perform two frequent 

 

Figure 7: General diagram for an LBM code. Sections 2.3 to 2.5 cover the implementations of 𝛺𝑖(𝑓𝑖), 𝐹𝑖 and 

boundary conditions. The error is calculated as the difference of the updated variable (e.g., density and velocity)  

from its value at a previous distant iteration.  
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examples of the LBM application: the Couette (Section 4.1) and the square-cavity flows 

(Section 4.2). 

 

4.1 Couette flow 

 

In the Couette flow problem, a fluid is confined between a top and a bottom walls and 

presents zero initial velocity. The top wall ensures the flow since it moves to the right with a 

constant horizontal velocity u⃗⃗w, as shown in Figure 8. After the system reaches the steady 

state, the velocity profile ux(𝑦) achieved is [62]: 

 

ux(𝑦) =
𝑦

ℎ
|u⃗⃗w|  ,  (4.1) 

 

where 𝑦 is the vertical position, ℎ is the height between the walls, and 𝐿 is the length from 

the inlet to the outlet. 

 

 

Assume, for illustration, that the fluid is water, the Reynolds number is 𝑅𝑒 = 1000, 

and the geometry specification are ℎ = 0.01 m and 𝐿 = 5ℎ. Then |u⃗⃗w| can be calculated for 

the Couette flow benchmark as:  

 

Figure 8: Illustrative sketch of the Couette flow benchmark, where the blue region and the arrows represent, 

respectively, the fluid and the velocity profile.  
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𝑅𝑒 =
𝐿|u⃗⃗w|

𝜈
   ,  (4.2) 

 

where 𝜈 is the kinematic viscosity, which is 𝜈 = 10-6 m²/s for water at 20°C. 

However, a proper implementation of the LBM requires a careful unit conversion of 

the physical problem specifications (originally in the International System of Units in this 

case) into lattice units (l.u.). This conversion is usually performed through similarity scaling. 

For instance, the ratio between the real density (𝜌𝑅) and the lattice density (𝜌𝐿) determines 

the density conversion factor (𝐶𝑓)
𝜌
:  

 

(𝐶𝑓)
𝜌
=
𝜌𝑅

𝜌𝐿
   .  (4.3) 

 

The density in LBM is usually specified around one (𝜌𝐿 = 1) to ensure stability, 

which results (𝐶𝑓)
𝜌
= 𝜌𝑅. For water (𝜌 = 1000 kg/m³), (𝐶𝑓)

𝜌
= 1000 kg/m³.  

Notice the proportion of the domain is determined in Figure 8, which implies that one 

only needs to determine ℎ or 𝐿 in the LB implementation. However, as covered in Chapter 

2, the lattice is discretely composed of nodes, and (𝛿𝑥)𝐿  is generally fixed as (𝛿𝑥)𝐿  = 1. 

Thus, it is more straightforward to set the number of nodes in the horizontal (𝑁𝑥) or vertical 

(𝑁𝑦) directions. 

There are two walls in the vertical direction. We place the top wall at row = 1 (solid 

nodes) and the bottom wall at row = 𝑁𝑦 (solid nodes). Figure 9 helps the visualization. The 

first row/column of the arrays and matrices is identified as position zero in C/C++ language, 

differently to, e.g., MATLAB. In other words, we ignored row = 0 for convenience. 

Consequently, there are 𝑁𝑦 + 1 nodes over the vertical direction (considering row = 0), but 

only 𝑁𝑦 − 2 fluid nodes (discarding row = 0 and the walls). On the other hand, there are no 

walls in the horizontal direction. Then, the fluid nodes stand from column = 1 to column =

𝑁𝑥. Consequently, there are 𝑁𝑥 fluid nodes over the horizontal direction.  

A given variable that presents a particular value for each domain position is a matrix 

in the implementation. Note that the call of a matrix in the C/C++ language is 
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matrix_name[row][column]. For instance, the dimension of the density matrix is 

rho[Ny + 1][Nx + 1] but their values are only calculated at 1 < row < 𝑁𝑦 and 1 ≤

𝑐olumn ≤ 𝑁𝑥.  

 

 

If one specifies 𝑁𝑦 = 100 nodes, 𝑁𝑥 is calculated from similarity. Based on Equation 

(4.3), the conversion factor for distances (𝐶𝑓)
𝑑

 is: 

 

(𝐶𝑓)
𝑑
=

ℎ

(𝑁𝑦 − 2)(𝛿𝑥)𝐿 
   .  (4.4) 

 

Note that (𝑁𝑦 − 2)(𝛿𝑥)
𝐿 is written in the denominator because one must compare 

distances rather than node quantities. As discussed above, there are 𝑁𝑦 − 2 fluid nodes over 

the vertical direction, which leads to 𝑁𝑦 − 3 intervals between fluid nodes, one interval 

between the fluid node and the top wall, and one interval between the fluid node and the 

bottom wall. But we intend to incorporate the link-wise approach (Section 2.4.1), which 

places the wall midway the solid and fluid nodes. Hence, there is, actually, 0.5 interval 

between the fluid node and each wall. As a result, the total number of intervals between nodes 

Figure 9: Domain representation for the Couette flow problem considered when 𝑁𝑦 = 4. The solid, fluid and 

ignored nodes are, respectively, the black, white and dashed nodes. The dashed lines (– –) are the computational 

boundary in the link-wise approach. 
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is 𝑁𝑦 − 3 + 0.5 + 0.5, i.e., there are 𝑁𝑦 − 2 intervals over the vertical direction. Then, 𝑁𝑦 −

2 must be multiplied by the length of each interval (𝛿𝑥)𝐿 to allow the distance comparison. 

Similarly, (𝐶𝑓)
𝑑

 can also be written using 𝐿: 

 

(𝐶𝑓)
𝑑
=

𝐿

𝑁𝑥(𝛿𝑥)𝐿
    .  (4.5) 

 

Matching Equations (4.4) and (4.5), 

 

𝑁𝑥 =
𝐿(𝑁𝑦 − 2)

ℎ
    .  (4.6) 

 

Stipulating 𝑁𝑦 = 100 nodes, Equation (4.6) achieves 𝑁𝑥 = 490 nodes. Categorically 

for this benchmark, one could implement a less refined lattice without losing accuracy 

because the Couette flow has linear dependence. For the same reason, the problem is 

independent of the relaxation time, corroborating to carry out the BGK model.  

Therefore, LBM-BGK simulations were employed with 𝜏 = 0.6 and 𝜏 = 1.0, which 

provides, respectively, 𝜈 = 0.033 l.u. and 𝜈 = 0.167 l.u. from Equation (2.30). As suggested 

in Figure 7, the first step in the implementation is to initialize all the variables. The 

macroscopic velocities in the x-direction (ux[row][column]) and in the y-direction 

(uy[row][column]) are zero for all fluid nodes (1 < row < 𝑁𝑦 and 1 ≤ 𝑐olumn ≤ 𝑁𝑥). For 

the same range, the initial density is rho[row][column] = 1.0.  

Notice that the initial values of the probability distribution function 

f[row][column][direction] are required to conduct the collision step and may impact the 

following calculations. This influence is only evidenced in transient issues or problems that 

depend on the initial conditions [21], which is not the case for the Couette flow problem.  

However, to initialize f[row][column][direction] consistently with transient 

problems is an LBM programming good practice. In this case, the equilibrium scheme is a 

frequent initialization, in which f[row][column][direction] = feq for all fluid nodes. 

Alternatively, one can implement the (i) non-equilibrium scheme, through which the non-

equilibrium part is also inserted in the initialization [63], or the (ii) iterative method, which 
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resolves the Poisson equation to initialize f[row][column][direction] consistently with the 

velocity field [64, 65].  

As displayed in Figure 10, the equilibrium distribution function feq is computed from 

Equation (2.12) using the initial densities and velocities for the equilibrium scheme. 

 

 

Note that f[row][column][direction], different from the density and velocities, is a 

three-dimensional array because it also contemplates the lattice directions i (Section 2.2). 

Since 0 ≤ direction ≤ 8 for the D2Q9 model, f[row][column][direction] is composed of 

nine two-dimensional arrays with individual dimensions of 𝑁𝑦 + 1 × 𝑁𝑥 + 1.  

Contrarily, a proper initialization scheme for f_post[row][column][direction] is 

unnecessary because the LBE calculates 𝑓𝑝𝑜𝑠𝑡𝑖 in the collision step. However, to declare and 

initialize all the variables as zero, including f_post[row][column][direction], is a good 

programming practice. This habit guarantees the variables will not collect garbage values and 

avoids the algorithm having undefined behavior.  

The collision is measured in Figure 11. The difference from Figure 10 is that Figure 

11 evaluates the LBE to calculate f_post[row][column][direction]. The collision step 

becomes, then, a straightforward way to initialize 𝑓𝑝𝑜𝑠𝑡𝑖  consistently with 𝑓𝑖, and with the 

velocity and density fields. Note that one can write omega (≡ 1/𝜏) rather than tau (≡ 𝜏) in 

the LBE to improve the time performance of the algorithm preventing undesarible divisions.   

 

Figure 10: Initialization of the probability distribution function employing the equilibrium scheme, in which 

cu ≡  c⃗i ∙ u⃗⃗, U2 ≡ u⃗⃗ ∙ u⃗⃗, feq ≡ 𝑓𝑖
𝑒𝑞

, and w ≡ 𝜔𝑖. The discrete velocities cx[direction] and cy[direction] are 

found in Equation (2.14).  
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According to Figure 7, the next step is the streaming, in which 𝑓𝑖 propagates through 

the nodes as a result of the collisions performed. Since D2Q9 model was implemented, 𝑓𝑖 is 

allowed to propagate to nine different neighboring nodes. To track which neighboring node 

at position (rho_new, column_new ) is chosen depending on the value of i (or direction), 

one must recall the definition of the velocity magnitudes, i.e., cx = (𝛿𝑥)𝐿/(𝛿𝑡)𝐿 =

(column_new − column)/(𝛿𝑡)𝐿 and cy = (row − row_new)/𝛿𝑡, and, then, calculate 

column_new and row_new as follows: 

column_new = column + cx[direction]   ,  (4.7) 

 

row_new = row − cy[direction]   ,  (4.8) 

where the sign before c⃗i is intentionally inverted because the identification of the matrix rows 

increases downwards while cy is negative for this direction. 

In Figure 12, the periodic conditions are implemented at column = 1 and column =

𝑁𝑥 and the halfway bounce-back scheme at row = 2 and row = 𝑁𝑦 − 1. The distribution 

function, which always originates from a fluid node, is exposed to five different situations: 

(i) 𝑓𝑖 propagates and hits the moving wall at row_new = 1 (Equation (2.44) is implemented), 

(ii) 𝑓𝑖 propagates and hits the bottom wall at row_new = 𝑁𝑦 (Equation (2.45) is 

implemented), (iii) 𝑓𝑖 propagates and arrives at an ignored node at column_new = 𝑁𝑥 + 1 

(Equation (2.50) is implemented), (iv) 𝑓𝑖 propagates and arrives at an ignored node at 

Figure 11: BGK collision step, in which cu ≡  c⃗i ∙ u⃗⃗, U2 ≡ u⃗⃗ ∙ u⃗⃗, feq ≡ 𝑓𝑖
𝑒𝑞

, w ≡ 𝜔𝑖, and omega ≡ 1/𝜏. The 

discrete velocities cx[direction] and cy[direction] are found in Equation (2.14).  
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column_new = 0 (Equation (2.51) is implemented), and (v) 𝑓𝑖 propagates to other fluid node 

(Equation (2.16) is implemented). 

 

 

Figure 12: Streaming step calculation. The discrete velocities cx[direction] and cy[direction] are found in 

Equation (2.14).  
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When 𝑓𝑖 propagates from a fluid node to a solid one, its direction changes due to the 

solid boundary condition (Section 2.4.1). As an example, 𝑓4 at a node (𝑁𝑦 − 1, column) hits 

the wall at (𝑁𝑦 − 0.5, column), becomes 𝑓2 and propagates back to the original node at (𝑁𝑦 −

1, column). To capture this change, the halfway bounce-back scheme is implemented in 

Figure 12 with an extra variable, rc[direction], which only recalculates the direction of 𝑓𝑖 

when the algorithm requests the boundary condition. The variable rc[direction] is declared 

as: 

 

int rc[9] = {0, 3, 4, 1, 2, 7, 8, 5, 6};     (4.9) 

 

and it is equivalent to the values of i ̅in Chapter 2. 

The macroscopic quantities are updated after the streaming step. One may apply “for 

loops” to calculate the densities and velocities in Equations (2.22) and (2.23), but one can 

simplify this by writing the equations in their complete form, as displayed in Figure 13. 

Through this description, the density is measured at once, and the algorithm is released to 

perform various irrelevant c⃗i𝑓𝑖 multiplications since the c⃗i values are directly inserted in the 

velocity calculations.     

 

 

Figure 13: Macroscopic quantities calculation through Equations (2.22) and (2.23). The discrete velocities 

cx[direction] and cy[direction] are already considered for 𝛿𝑥 = 1 and 𝛿𝑡 = 1. 
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At this moment, the data of this time step can be exported to the hard disk if desired. 

Next, the algorithm returns to the collision step (Figure 11) to update 𝑓𝑝𝑜𝑠𝑡𝑖 using the newest 

macroscopic densities and velocities. The algorithm proceeds to conform to Figure 7 until 

the macroscopic quantities converge.    

Figure 14 compares Equation (4.1) with the velocity profile obtained in the post-

processing employing our LBM code. The velocities agree well with the analytical profile 

both for 𝜏 = 0.6 and 𝜏 = 1.0. As expected, the Couette flow is 𝜏-independent because it 

provides linear spatial dependence.  

 

 

Since the link-wise approach was employed, one can only visualize the accurate 

agreement in Figure 14 if the match between the lattice location and its velocity is evaluated 

correctly. Based on the definition of the conversion factor, the physical spatial increment 

(𝛿𝑥)𝑅 between each node is: 

 

(𝛿𝑥)𝑅 = (𝐶𝑓)
𝑑
(𝛿𝑥)𝐿 =

ℎ

𝑁𝑦 − 2
=
𝐿

𝑁𝑥
   .  (4.10) 

Figure 14: Normalized velocity profile of the Couette flow for |u⃗⃗w| = 0.067 l.u. (𝜏 = 0.6) and |u⃗⃗w| = 0.333 

l.u. (𝜏 = 1.0). In both cases, 𝑀𝑎 = |u⃗⃗w|/𝑐𝑠 < 0.3, which ensures accuracy. 
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Hence, (𝛿𝑥)𝑅 = 0.102 mm in our simulations. Exemplifying, the physical location 

of the velocity at row = 2 is ℎ − 0.5(𝛿𝑥)𝑅, and at row = 3 is ℎ − 1.5(𝛿𝑥)𝑅. Generalizing, 

at a given row (for 1 < row < 𝑁𝑦), the physical location of the velocity is ℎ − (row −

1.5)(𝛿𝑥)𝑅. If this relationship is ignored, Figure 14 will present a deficient agreement. 

If desired, the conversion factor of the velocity (𝐶𝑓)
𝑢

 can be promptly evaluated. 

First, in this case, the conversion factor of the kinematic viscosity is calculated as: 

 

(𝐶𝑓)
𝜈
=
𝜈𝑅

𝜈𝐿
    .  (4.11) 

 

Since (𝐶𝑓)
𝑢

 has a dimension that can be written as a function of the dimensions of 

(𝐶𝑓)
𝑑

 and (𝐶𝑓)
𝜈
, one can compute (𝐶𝑓)

𝑢
 as: 

 

(𝐶𝑓)
𝑢
=
(𝐶𝑓)

𝜈

(𝐶𝑓)
𝑑    .  (4.12) 

 

For 𝜏 = 0.6, (𝐶𝑓)
𝑢
= 0.294, and for 𝜏 = 1.0, (𝐶𝑓)

𝑢
= 0.059. Then, the physical 

velocities are calculated through (𝑢𝑥)
𝑅 = (𝐶𝑓)

𝑢
(𝑢𝑥)

𝐿. 

 

 

4.2 Square-cavity flow 

 

In the square-cavity flow benchmark, a cubic region composed of solid walls with 

length 𝐿 confines the fluid, as illustrated in Figure 15(a). Similarly to the Couette flow, the 

fluid with initial zero velocity gains momentum from the top wall, which is moving to the 

right with constant velocity u⃗⃗w. The proposition to construct the lattice in Figure 15(b) is the 

same as in Section 4.1. Still, differently, there are solid walls on the lateral sides. 
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Again, the physical parameters of the real problem are specified first:  simulations of 

water at 20°C (𝜈 = 10-6 m²/s) were carried out for 𝐿 = 1 m, 𝑅𝑒 = 400, and 𝑅𝑒 = 5000. The 

velocity of the moving wall is calculated through Equation (4.2). The square domain (𝑁𝑥 =

𝑁𝑦 = 𝑁) consists of 𝑁 + 1 × 𝑁 + 1 total nodes. By setting the walls as Figure 15(b) 

suggests, the range of the fluid nodes is 1 < row < 𝑁𝑦 and 1 < column < 𝑁𝑥.  

 

 

The algorithm for this benchmark is almost the same as for the Couette flow. The 

difference emerges at the streaming step because the solid boundary conditions must be 

applied in the lateral walls rather than periodic conditions. However, the halfway bounce-

back scheme framework is the same as in Figure 12 and is easily extended for 

column_new = 1 and column_new = 𝑁𝑥.  

Moreover, the challenge is to model the boundary conditions in the four corner nodes, 

i.e., the red nodes in Figure 15(b), and prevent instabilities from arising. At the end of the 

streaming step, after performing all 𝑓𝑖 propagations and boundary conditions, one must 

correct two 𝑓𝑖 in each corner node. Hence, the last effort in the streaming step is to incorporate 

Equation (2.47), as displayed in Figure 16. 

Figure 15: Illustrative sketch of (a) the square-cavity flow benchmark, and (b) LBM domain when 𝑁𝑦 = 9. The 

blue region represents the fluid. The solid, fluid, corner, and ignored nodes are, respectively, the black, white, 

red, and dashed nodes. The dashed lines are (a) the central axes of the domain, and (b) the computational 

boundary for the link-wise approach. 
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The results are compared with the data from Hou et al. [66] work, which also 

accomplished LBM simulations, to validate the algorithm for this benchmark. Both for 𝑅𝑒 = 

400 and 𝑅𝑒 = 5000, the density is initialized as 𝜌 = 1.0. The relaxation time (𝜏 = 0.6 and 

𝜏 = 0.8) and the number of nodes (𝑁 = 101 and 𝑁 = 257) vary for 𝑅𝑒 = 400. The 

comparison is achieved by analyzing the normalized velocities ux/|u⃗⃗w| and uy/|u⃗⃗w| over, 

respectively, the central y-axis and x-axis (see Figure 15(a)).  

 

 

Figure 17 shows the reliable agreement of our velocities for 𝑅𝑒 = 400. The values 

remain unaffected by modifying 𝜏, but they slightly change at 0.1 < 𝑦/𝐿 < 0.5, 0.1 < 𝑥/𝐿 < 

0.4, and 0.8 < 𝑥/𝐿 < 1.0 when adjusting the lattice refinement. In conclusion, the number 

of fluid nodes is a critical feature to ensure the simulation accuracy for the square-cavity 

flow. Furthermore, a higher 𝑁 may produce colored velocity maps with improved conformity 

in the post-processing step.    

The excellent agreement endures in Figure 18 for a greater Reynolds number (𝑅𝑒 = 

5000). To keep the method stable with the BGK model, the number of nodes increases for 

𝑁 = 501 and the relaxation time drops for 𝜏 = 0.55. Even with this condition, the Mach 

number (𝑀𝑎 = |u⃗⃗w|/𝑐𝑠) stays at the limit of accuracy with 𝑀𝑎 = 0.289 < 0.3. 

Figure 16: Corrections of the corner nodes distribution functions in the streaming step, through which Equation 

(2.47) is incorporated.  
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Figure 17: Normalized velocities (𝑅𝑒 = 400) over the central axes varying the relaxation time (𝜏 = 0.6 and 𝜏 = 

0.8) and the number of nodes (𝑁 = 101 and 𝑁 = 257), which leads to |u⃗⃗w| = 0.052 l.u. (𝜏 = 0.6 and 𝑁 = 257), 

|u⃗⃗w| = 0.157 l.u. (𝜏 = 0.8), and |u⃗⃗w| = 0.135 l.u. (𝜏 = 0.6 and 𝑁 = 101). 

Figure 18: Normalized velocities (𝑅𝑒 = 5000) over the central axes for 𝜏 = 0.55 and 𝑁 = 501, which leads to 

|u⃗⃗w| = 0.167 l.u. 
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Chapter 5 
 

Unified multiphase model 

 

The previous chapters presented the main LBM features regarding theory, the connection 

between scales, and implementation aspects. Their discussion also prepares the reader to 

advance to other LB topics, such as the multiphase analysis. At this point, Chapter 5 delivers 

the second independent part of this dissertation: the unified multiphase model proposal. Here, 

we incorporate the bottom-up-based pseudopotential methodology, centered in the Shan-

Chen model, into the LBM formalism.  

 

5.1 Introduction 

 

Several multiphase models have been addressed in LBM literature. Gunstensen et al. 

[67], based on the Rothman-Keller model [68] for the Lattice Gas Automata, proposed in 

1991 the first multiphase approach for LBM, the colored model. It provides a different color 

for each fluid, causing the interface to arise from the color gradient promptly. Besides the 

simplicity, the model is ineffective in incorporating thermodynamic concepts.  

On the other hand, the free energy model, proposed by Swift et al. in 1995 [69, 70], 

presents a profound thermodynamic foundation. By setting a free energy functional, the non-

ideal pressure tensor is calculated and incorporated in LBM. A third approach, initially 

proposed by He et al. in 1999 [71], is based on the phase-field theory. The model incorporates 

the order parameter and recovers the Cahn-Hilliard or a Cahn-Hilliard-like equation, which 

discriminates the phase regions. 

Many researchers, however, adopt the pseudopotential model proposed by Shan and 

Chen in 1993 [15] because it is simple to implement and provides good results and 

computational efficiency [16, 17]. Their insight was to mimic the interactions through an 

indirect function of space: the pseudopotential. Nevertheless, important limitations have 
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already been remarked in the literature, such as thermodynamic inconsistency [45, 72], 

narrow temperature range of application [9, 73], low-density ratios [9, 74, 75], weak stability 

[51, 76, 77], coupling of physical properties [52, 78, 79], and large spurious currents [80, 81]. 

Spurious velocities or currents are unphysical velocities that arise in the lattice domain, 

mainly near curved interfaces, because of a lack of isotropy to calculate the interaction forces 

[80] and the mesoscopic redistribution [81]. 

In general, the strategies to mitigate the constraints can be classified into four broad 

categories: (i) the incorporation of better equations of state (EOS) and optimal parameters 

[53, 74, 82], (ii) the adoption of forcing schemes [51, 53, 79], (iii) the implementation of 

different approaches for interaction forces [9, 72, 80, 83], and (iv) the inclusion of enhanced 

collision operators [31, 84, 85]. Yuan and Schaefer demonstrated that incorporating real EOS 

can minimize spurious currents and increase density ratios [74]. Additionally, a proper 

forcing scheme can enhance the thermodynamic consistency, enlarge the temperature range 

[45], condense spurious currents [86], and independently adjust interface thickness and 

surface tension from density ratios [79]. However, the third strategy, which involves 

calculating the interaction force, will be the main focus of this work.  

Many seemingly independent interaction models, such as Kupershtokh et al. [9], 

Zhang-Chen [87], Gong-Cheng (also known as 𝛽-scheme) [83], and Yang-He [73] are often 

used in the literature [76, 88, 89]. Fine-tuning of additional parameters certainly enriches the 

pseudopotential LBM. It can achieve density ratios larger than 104 with Peng-Robinson EOS 

[90] or even larger than 109 with Carnahan-Starling EOS [9], as well as good thermodynamic 

consistency and a wide temperature range of stability [83]. Besides having been implemented 

in multicomponent multiphase simulations [8, 88], some models have been successfully 

carried out in heat problems [91, 92, 93].  

Despite their attested individual performances, Kupershtokh et al., Gong-Cheng, and 

Yang-He forces (Section 5.2) are largely accepted as distinct models [90, 94], and parameters 

are chosen without a theoretical basis. Here, we suggest a unified model by arguing that there 

is a relationship among models and their parameters, making them equivalent. We 

demonstrate this both through algebraic manipulations (Section 5.4) and numerical analysis 

(Sections 5.5 and 5.6) of multiphase droplet simulations. We confront the models and 
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compare the extent of their limitations regarding spurious currents, thermodynamic 

consistency, density ratios, and method stability. 

 

 

5.2 Pseudopotential multiphase models 

 

5.2.1 Shan-Chen multiphase model 

 

Shan and Chen proposed the first interaction pseudopotential model [15], which is 

written in the continuum form as:  

 

F⃗⃗SC(x⃗⃗) = −𝐺𝑐𝑠
2𝜓(x⃗⃗)∇⃗⃗⃗𝜓(x⃗⃗ + c⃗i𝛿𝑡)𝛿𝑡

2 ,  (5.1) 

 

where 𝐺 is an interaction strength, and 𝜓 is the pseudopotential, also named effective mass. 

The interaction force can be repulsive, if 𝐺 > 0, or attractive, if 𝐺 < 0. Equation (5.1) is 

discretized as: 

 

F⃗⃗SC(x⃗⃗) = −𝐺𝑐𝑠
2𝜓(x⃗⃗)∑w(|c⃗i|

2)𝜓(x⃗⃗ + c⃗i𝛿𝑡)c⃗i𝛿𝑡

i

 ,  (5.2) 

 

where w(|c⃗i|
2) are the static weights (w(|𝐞𝛼|

2) = 𝜔α/𝑐𝑠
2). Because of the external force, the 

behavior of the fluid is described by a non-ideal EOS: 

 

𝑝(x⃗⃗) = 𝜌(x⃗⃗)𝑐𝑠
2 +

𝐺𝑐𝑠
2𝛿𝑡2𝜓2(x⃗⃗)

2
 .  (5.3) 

 

5.2.2 Other multiphase models 

 

In 2003, working with non-isothermal problems, Zhang and Chen [87] proposed 

another interaction model, 
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F⃗⃗ZC(x⃗⃗) = −∇⃗⃗⃗𝑈(x⃗⃗ + c⃗i𝛿𝑡) ,  (5.4) 

 

where the EOS can be inserted by: 

 

𝑈(x⃗⃗) = 𝑝(x⃗⃗) − 𝜌(x⃗⃗)𝑐𝑠
2 .  (5.5) 

  

However, the Zhang-Chen model proved insufficiently accurate and stable to model 

the multiphase problems in their central discussion [95]. Around 2007, Kupershtokh et al. 

[96] extended this model, which can be rewritten as follows, 

 

F⃗⃗ZC(x⃗⃗) = −∇⃗⃗⃗𝑈 = ∇⃗⃗⃗(−𝑈) =  ∇⃗⃗⃗(√−𝑈)
2
= 2√−𝑈 ∇⃗⃗⃗(√−𝑈) .  (5.6) 

  

Through adding and subtracting ∇⃗⃗⃗(−𝑈) multiplied by a constant 𝐴 in Equation (5.4), 

 

F⃗⃗K(x⃗⃗) = ∇⃗⃗⃗(−𝑈) + 𝐴∇⃗⃗⃗(−𝑈) − 𝐴∇⃗⃗⃗(−𝑈) .  (5.7) 

  

Replacing the first and the last terms on the RHS of Equation (5.7) with Equation 

(5.6), 

 

F⃗⃗K(x⃗⃗) = 2√−𝑈 ∇⃗⃗⃗(√−𝑈) + 𝐴∇⃗⃗⃗(−𝑈) − 2𝐴√−𝑈 ∇⃗⃗⃗(√−𝑈) .  (5.8) 

  

Finally, using the definition 𝜙2 = −𝑈, Kupershtokh et al. model is given by: 

 

F⃗⃗K(x⃗⃗) = 𝐴∇⃗⃗⃗𝜙2(x⃗⃗ + c⃗i𝛿𝑡) + 2(1 − 𝐴)𝜙(x⃗⃗)∇⃗⃗⃗𝜙(x⃗⃗ + c⃗i𝛿𝑡) ,  (5.9) 

 

which can be discretized as follows, 
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F⃗⃗K(x⃗⃗) = 𝐴∑w(|c⃗i|
2)𝜙2(x⃗⃗ + c⃗i𝛿𝑡)c⃗i𝛿𝑡

i

+ 

+2(1 − 𝐴)𝜙(x⃗⃗)∑w(|c⃗i|
2)𝜙(x⃗⃗ + c⃗i𝛿𝑡)c⃗i𝛿𝑡

i

 . 

 (5.10) 

 

However, Kupershtokh et al. model is originally written differently. If we add and 

subtract 2𝐴∇⃗⃗⃗(−𝑈) in Equation (5.4) instead of 𝐴∇⃗⃗⃗(−𝑈) and repeat the previous steps, we 

get:  

 

F⃗⃗K(x⃗⃗) = 2𝐴∇⃗⃗⃗𝜙2(x⃗⃗ + c⃗i𝛿𝑡) + 2(1 − 2𝐴)𝜙(x⃗⃗)∇⃗⃗⃗𝜙(x⃗⃗ + c⃗i𝛿𝑡) ,  (5.11) 

 

which can be discretized similarly, 

 

F⃗⃗K(x⃗⃗) = 2𝐴∑w(|c⃗i|
2)𝜙2(x⃗⃗ + c⃗i𝛿𝑡)c⃗i𝛿𝑡

i

+ 

+2(1 − 2𝐴)𝜙(x⃗⃗)∑w(|c⃗i|
2)𝜙(x⃗⃗ + c⃗i𝛿𝑡)c⃗i𝛿𝑡

i

 . 

 (5.12) 

 

Between these two options, we apply Equation (5.10) in our study since it is a 

commonly used [16, 76, 94] form of the Kupershtokh et al. model.  

In 2012, Gong and Cheng [83] investigated a proposition similar to the one above but 

in the Shan-Chen model. The authors rewrote Equation (5.1) as: 

 

F⃗⃗SC(x⃗⃗) = −𝐺𝑐𝑠
2𝜓(x⃗⃗)∇⃗⃗⃗𝜓(x⃗⃗ + c⃗i𝛿𝑡)𝛿𝑡

2 = −
𝐺𝑐𝑠

2

2
∇⃗⃗⃗𝜓2(x⃗⃗ + c⃗i𝛿𝑡)𝛿𝑡

2 .  (5.13) 

 

Through adding and subtracting 𝐺𝑐𝑠
2𝜓∇⃗⃗⃗𝜓𝛿𝑡2 multiplied by a constant 𝛽 in Equation 

(5.13), 

 

F⃗⃗β(x⃗⃗) = −
𝐺𝑐𝑠

2

2
∇⃗⃗⃗𝜓2(x⃗⃗ + c⃗i𝛿𝑡)𝛿𝑡

2 − 𝛽𝐺𝑐𝑠
2𝜓(x⃗⃗)∇⃗⃗⃗𝜓(x⃗⃗ + c⃗i𝛿𝑡)𝛿𝑡

2 +  (5.14) 
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+𝛽𝐺𝑐𝑠
2𝜓(x⃗⃗)∇⃗⃗⃗𝜓(x⃗⃗ + c⃗i𝛿𝑡)𝛿𝑡

2 .  

 

Recalling that 𝜓∇⃗⃗⃗𝜓 = ∇⃗⃗⃗𝜓2/2, the last term on the RHS of Equation (5.14) can be 

rewritten. Consequently, the Gong-Cheng model, also called β-scheme, is given by: 

 

F⃗⃗β(x⃗⃗) = −𝛽𝐺𝑐𝑠
2𝜓(x⃗⃗)∇⃗⃗⃗𝜓(x⃗⃗ + c⃗i𝛿𝑡)𝛿𝑡

2 −
(1 − 𝛽)𝐺𝑐𝑠

2

2
∇⃗⃗⃗𝜓2(x⃗⃗ + c⃗i𝛿𝑡)𝛿𝑡

2,  (5.15) 

 

which can be discretized as follows,  

 

F⃗⃗β(x⃗⃗) = −𝛽𝐺𝑐𝑠
2𝜓(x⃗⃗)∑w(|c⃗i|

2)𝜓(x⃗⃗ + c⃗i𝛿𝑡)c⃗i𝛿𝑡

i

+ 

−
(1 − 𝛽)𝐺𝑐𝑠

2

2
∑w(|c⃗i|

2)𝜓2(x⃗⃗ + c⃗i𝛿𝑡)c⃗i𝛿𝑡

i

 . 

 (5.16) 

 

Yang-He interaction model was similarly derived [73],  

 

F⃗⃗YH(x⃗⃗) = −𝜀𝐺𝑐𝑠
2𝜓(x⃗⃗)∑w(|c⃗i|

2)𝜓(x⃗⃗ + c⃗i𝛿𝑡)c⃗i𝛿𝑡

i

+ 

−(1 − 𝜀)∑w(|c⃗i|
2)𝑈(x⃗⃗ + c⃗i𝛿𝑡)c⃗i𝛿𝑡

i

 , 

 (5.17) 

 

where 𝜀 is the Yang-He parameter. The model presented spurious velocities, density ratio 

range, and thermodynamic consistency only slightly better than the β-scheme [73]. 

 

 

5.3 Equations of State and thermodynamic consistency 

 

Yuan and Schaefer [74] presented how to incorporate several EOS in LBM through 

the pseudopotential methodology. In this way, general cubic EOS, such as Peng-Robinson 

[74], van der Waals [51], Carnahan-Starling [8, 82, 97], and even EOS like CPA (Cubic-
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Plus-Association) [86, 98] can be introduced in the method. The non-ideal EOS given by 

Equation (5.3) is rewritten as:  

 

𝜓(x⃗⃗) = √
2[𝑝(x⃗⃗) − 𝜌(x⃗⃗)𝑐𝑠2]

𝐺𝑐𝑠2𝛿𝑡2
   .  (5.18) 

  

When the effective mass given by Equation (5.18) is substituted into the interaction 

model, the parameter 𝐺 cancels out. Only its sign, however, remains relevant to ensure that 

the term inside the square root is positive [74]. 

Phase densities for a single-component system can be calculated from the Maxwell 

equal-area construction rule and compared to densities obtained from LBM. Therefore, this 

approach is often adopted to check the thermodynamic consistency of LBM multiphase 

calculations [16, 17]. The Yuan-Schaefer's methodology naturally causes inconsistency [45] 

because the pseudopotential model requires an appropriate 𝜓 to achieve consistency, i.e., 

𝜓 ∝ 𝑒𝑥𝑝(−1/𝜌) [72]. Zhang and Tian, to avoid what they have characterized as an 

unphysical methodology, have proposed to introduce the EOS through a modification in the 

equilibrium distribution function [99]. Since their approach violates the Galilean invariance 

[45], Yuan and Schaefer’s methodology stands as a practical step to introduce well-known 

EOS in LBM. The consistency can be later enforced by adding some degrees of freedom in 

the discrete forces [9, 83] or employing Li et al. forcing scheme [45]. 

The Maxwell construction imposes the following condition for a chosen EOS at a 

given reduced temperature 𝑇𝑟 = 𝑇/𝑇𝑐, where 𝑇𝑐 is the critical temperature: 

 

∫[𝑝0 − 𝑝𝐸𝑂𝑆(𝜌)]𝑑𝑣

𝜌𝑙

𝜌𝑣

= 0 ,  (5.19) 

 

where 𝜌𝑣 is the vapor density, 𝜌𝑙 is the liquid density, 𝑝0 is the saturation pressure, 𝑣 is the 

molar volume and 𝑝𝐸𝑂𝑆 incorporates the expression of the chosen EOS. After some iterations, 

we reach the equilibrium, 𝑝0 = 𝑝𝐸𝑂𝑆(𝜌𝑣, 𝑇𝑟) = 𝑝𝐸𝑂𝑆(𝜌𝑙, 𝑇𝑟), and, consequently, get the phase 
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density values. The reduced volume is similarly defined as 𝑣𝑟 = 𝜌𝑐/𝜌, where 𝜌𝑐 is the critical 

density. 

 

 

5.4 A unified multiphase model 

 

Here, we propose a unified model that gathers the pseudopotential models displayed 

in Section 5.2. We briefly demonstrate the association among the models in Section 5.4.1, 

and we further compare the pressure tensors in Section 5.4.2. 

 

5.4.1 Model proposal 

 

It will be demonstrated that the β-scheme can be turned into the Kupershtokh et al. 

interaction model. This is possible because 𝜓 can be written as a function of 𝑈 and vice versa,  

 

𝜓(x⃗⃗) = √
2(𝑝 − 𝜌𝑐𝑠2)

𝐺𝑐𝑠2𝛿𝑡2
= √

2

𝐺𝑐𝑠2𝛿𝑡2
√𝑈(x⃗⃗) .  (5.20) 

  

Equation (5.20) can be substituted into Equation (5.15), and the β-scheme is now 

given by: 

 

F⃗⃗β(x⃗⃗) = −2𝛽√𝑈(x⃗⃗)∇⃗⃗⃗√𝑈(x⃗⃗ + c⃗i𝛿𝑡) − (1 − 𝛽)∇⃗⃗⃗𝑈(x⃗⃗ + c⃗i𝛿𝑡) .  (5.21) 

 

Recalling that 𝜙2 = −𝑈,  

 

F⃗⃗β(x⃗⃗) = −2𝛽𝜙(x⃗⃗)𝑖∇⃗⃗⃗𝜙(x⃗⃗ + c⃗i𝛿𝑡)𝑖 + (1 − 𝛽)∇⃗⃗⃗𝜙
2(x⃗⃗ + c⃗i𝛿𝑡) ,  (5.22) 

 

where 𝑖 is the unit imaginary number (𝑖2 = −1), which gives: 
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F⃗⃗β(x⃗⃗) = 2𝛽𝜙(x⃗⃗)∇⃗⃗⃗𝜙(x⃗⃗ + c⃗i𝛿𝑡) + (1 − 𝛽)∇⃗⃗⃗𝜙
2(x⃗⃗ + c⃗i𝛿𝑡) .  (5.23) 

  

Now, we must make the definition 𝐴 + 𝛽 = 1, which makes it possible to write 

Equation (5.23) as follows, 

 

F⃗⃗β(x⃗⃗) = 2(1 − 𝐴)𝜙(x⃗⃗)∇⃗⃗⃗𝜙(x⃗⃗ + c⃗i𝛿𝑡) + 𝐴∇⃗⃗⃗𝜙
2(x⃗⃗ + c⃗i𝛿𝑡) = F⃗⃗

K(x⃗⃗) .  (5.24) 

 

Therefore, when it is assumed that 𝐴 + 𝛽 = 1, β-scheme can be successfully turned 

into Equation (5.24), the Kupershtokh et al. interaction model. We must note that the 

parameters were initially adjusted in Section 5.5.1 without imposing this constraint in our 

simulations, but their optimal values naturally converged to satisfy it. Hence, Kupershtokh 

et al. model can be converted to β-scheme and vice versa. β-scheme can also be recovered 

from the Yang-He model when we incorporate 𝜓 = 𝜓(𝑈) and 𝜀 = 𝛽. Consequently, the 

small discrepancies the authors [73] observed between the models may be due either to 

differences in parameter values or to numerical errors. 

Given all the previous models, a last unified model can be written in continuous form 

as: 

 

F⃗⃗(x⃗⃗) = −𝛶𝐺𝑐𝑠
2𝜓(x⃗⃗)∇⃗⃗⃗𝜓(x⃗⃗ + c⃗i𝛿𝑡)𝛿𝑡

2 + 

−
(1 − 𝛶)𝐺𝑐𝑠

2

2
∇⃗⃗⃗𝜓2(x⃗⃗ + c⃗i𝛿𝑡)𝛿𝑡

2 , 
 (5.25) 

  

where 𝛶 is the unified parameter whose appropriate value recovers the desired model: 

 

𝛶 =

{
 
 

 
 

1, Shan-Chen model
0, Zhang-Chen model

1 − 𝐴, Kupershtokh et al. model
𝛽, Gong-Cheng model
𝜀, Yang-He model

 (5.26) 
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Hence, the unified model groups the recurrent multiphase interaction forces in a 

uniform format and emphasizes that these models, especially for the commonly identified 

different models (i.e., Kupershtokh et al., Gong-Cheng, and Yang-He models), are, actually, 

the same. This general equation might simplify future discussions and direct the reader to 

tune only one parameter in only one multiphase interaction model.  

The final unified discrete form, further detailed in Section 5.4.2, is: 

 

F⃗⃗(x⃗⃗) = −𝛶𝐺𝑐𝑠
2𝜓(x⃗⃗)∑w(|c⃗i|

2)𝜓(x⃗⃗ + c⃗i)c⃗i
i

+ 

−
(1 − 𝛶)𝐺𝑐𝑠

2

2
∑w(|c⃗i|

2)𝜓2(x⃗⃗ + c⃗i)c⃗i
i

 , 

 (5.27) 

 

where the simplification 𝛿𝑡 = 1 is already considered. Note also that, Equation (5.9) is the 

Kupershtokh et al. model recovered by 𝛶 = 1 − 𝐴, causing the relationship 𝐴 + 𝛽 = 1 to 

originate. If Equation (5.11) is recognized as the Kupershtokh et al. model instead, the 

relationship must be rewritten as 𝛶 = 1 − 2𝐴, which provides 2𝐴 + 𝛽 = 1. 

 

5.4.2 Checking the pressure tensors 

 

In this section, we compare the pressure tensors in discrete form. Shan, in his paper, 

gave some attention to how to correctly calculate the pressure tensor and assure the exact 

mechanical balance [100]. Instead of calculating it through Taylor expansion, the discrete 

force is used in the definition of the pressure tensor 𝐏, 

 

dF⃗⃗⃗⃗⃗ = dA⃗⃗⃗⃗⃗⃗ ∙ 𝐏 ,  (5.28) 

 

where dA⃗⃗⃗⃗⃗⃗  is an infinitesimal area element and dF⃗⃗⃗⃗⃗ is the interaction force through dA⃗⃗⃗⃗⃗⃗  .  

The force is integrated over a closed volume afterward. As a result, the pressure tensor 

corresponding to the Shan-Chen model and 4th degree of isotropy is:  
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𝐏𝐒𝐂 = −
𝐺𝑐𝑠

2

2
𝜓(x⃗⃗)∑w(|c⃗i|

2)𝜓(x⃗⃗ + c⃗i𝛿𝑡)c⃗i𝛿𝑡c⃗i𝛿𝑡

i

 .  (5.29) 

  

Similarly, the pressure tensors corresponding to the β-scheme and the Kupershtokh 

et al. model with 4th degree of isotropy are, respectively, 

 

𝐏𝛃 = −
𝛽𝐺𝑐𝑠

2

2
𝜓(x⃗⃗)∑wβ(|c⃗i|

2)𝜓(x⃗⃗ + c⃗i𝛿𝑡)c⃗i𝛿𝑡c⃗i𝛿𝑡

i

+ 

−
(1 − 𝛽)𝐺𝑐𝑠

2

4
∑wβ(|c⃗i|

2)𝜓2(x⃗⃗ + c⃗i𝛿𝑡)c⃗i𝛿𝑡c⃗i𝛿𝑡

i

 , 

 (5.30) 

𝐏𝐊 = (1 − 𝐴)𝜙(x⃗⃗)∑wK(|c⃗i|
2)𝜙(x⃗⃗ + c⃗i𝛿𝑡)c⃗i𝛿𝑡c⃗i𝛿𝑡

i

+ 

+
𝐴

2
∑wK(|c⃗i|

2)𝜙2(x⃗⃗ + c⃗i𝛿𝑡)c⃗i𝛿𝑡c⃗i𝛿𝑡

i

 , 

 (5.31) 

 

where “β” and “K” in w(|c⃗i|
2) identify the dimensions of the weights used in the β-scheme 

and Kupershtokh et al. model, respectively. This distinction will be understood soon.  

Making the substitution of Equation (5.20) into the Equation (5.30), 

 

𝐏𝛃 = −
1

(𝛿𝑡)2

[
 
 
 
 𝛽√𝑈(x⃗⃗)∑wβ(|c⃗i|

2)√𝑈(x⃗⃗ + c⃗i𝛿𝑡)c⃗i𝛿𝑡c⃗i𝛿𝑡

i

+

+
(1 − 𝛽)

2
∑wβ(|c⃗i|

2)𝑈(x⃗⃗ + c⃗i𝛿𝑡)c⃗i𝛿𝑡c⃗i𝛿𝑡

i ]
 
 
 
 

 ,  

 

(5.32) 

 

and reminding that 𝜙2 = −𝑈, 

 

𝐏𝛃 =
1

(𝛿𝑡)2

[
 
 
 
 𝛽𝜙(x⃗⃗)∑wβ(|c⃗i|

2)𝜙(x⃗⃗ + c⃗i𝛿𝑡)c⃗i𝛿𝑡c⃗i𝛿𝑡

i

+

+
(1 − 𝛽)

2
∑wβ(|c⃗i|

2)𝜙2(x⃗⃗ + c⃗i𝛿𝑡)c⃗i𝛿𝑡c⃗i𝛿𝑡

i ]
 
 
 
 

 .  (5.33) 
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Again, we must use the previous definition that 𝐴 + 𝛽 = 1, which turns Equation 

(5.33) into:  

 

𝐏𝛃 =
1

(𝛿𝑡)2

[
 
 
 
 (1 − 𝐴)𝜙(x⃗⃗)∑wβ(|c⃗i|

2)𝜙(x⃗⃗ + c⃗i𝛿𝑡)c⃗i𝛿𝑡c⃗i𝛿𝑡

i

+

+
𝐴

2
∑wβ(|c⃗i|

2)𝜙2(x⃗⃗ + c⃗i𝛿𝑡)c⃗i𝛿𝑡c⃗i𝛿𝑡

i ]
 
 
 
 

 .  (5.34) 

 

Since the weighting values are the same, i.e., |wβ(|c⃗i|
2)| = |wK(|c⃗i|

2)|, Equation 

(5.31) can be substituted into Equation (5.34), 

 

𝐏𝛃 =
𝐏𝐊

(𝛿𝑡)2
 .  (5.35) 

 

Equation (5.35) shows the models are the same only when 𝛿𝑡 = 1. This happens 

because the discretized gradients of the models in the continuum form are different. To clarify 

the relationship, note that the dimension (here, we use the notation [variable/parameter] to 

declare the dimension of the variable/parameter) of the weight in the β-scheme is 

[wβ(|c⃗i|
2)] = 𝑡𝑖𝑚𝑒2/𝑙𝑒𝑛𝑔𝑡ℎ2, which can be deduced by recognizing that 𝛽 is a 

dimensionless parameter and [𝜓] = [𝜌] = 𝑚𝑎𝑠𝑠/𝑙𝑒𝑛𝑔𝑡ℎ3, inspecting [F⃗⃗] and [𝐺] in 

Equations (2.66) and (5.18), respectively, and finally discovering [w(|c⃗i|
2)] in Equation 

(5.16). On the other hand, the dimension of the Kupershtokh et al. weight is [wK(|c⃗i|
2)] =

1/𝑙𝑒𝑛𝑔𝑡ℎ2, which can be deduced regarding that 𝐴 is a dimensioneless parameter, 

investigating [𝜙] in Equation (5.5) and then verifying [w(|c⃗i|
2)] in Equation (5.10). Because 

of [wβ(|c⃗i|
2)] ≠ [wK(|c⃗i|

2)], both Equations (5.31) and (5.34), and consequently, Equation 

(5.35) preserve the dimensional homogeneity. Therefore, when 𝐴 + 𝛽 = 1 and 𝛿𝑡 = 1, we 

check that 𝐏𝛃 = 𝐏𝐊. 
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5.5 Static droplet 

 

In this section, we numerically demonstrate the results from the unified model that 

ensure the connection between the models. The first benchmark is the stationary droplet 

problem. 

 

5.5.1 Methodology 

 

We perform isothermal single-component phase transition simulations in a 

200 ×  200  periodic lattice. The droplet is initialized at the center of a convection-free 

domain (𝑥𝑐 , 𝑦𝑐) with radius 𝑅0 = 30 l.u. and interface thickness 𝑊 =  3 l.u., as defined by 

the following equation:  

 

𝜌(𝑥, 𝑦) =
𝜌𝑙 + 𝜌𝑣
2

−
𝜌𝑙 − 𝜌𝑣
2

[tanh(2
√(𝑥 − 𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2 − 𝑅0

𝑊
)] .  (5.36) 

 

A hydrostatic domain is chosen for the droplet to capture the formation of any 

spurious current in the system [78]. In this work, the Carnahan-Starling EOS with the van 

der Waals attractive term (CSvdW EOS), 

 

𝑝(x⃗⃗) = 𝜌(x⃗⃗)𝑅𝑇 {
1 + 𝜂(x⃗⃗) + 𝜂2(x⃗⃗) − 𝜂3(x⃗⃗)

[1 − 𝜂(x⃗⃗)]3
} − 𝑎𝜌2(x⃗⃗) ,  (5.37) 

 

is inserted in Equation (5.18), where 𝑅 is the universal gas constant, 𝑇 is the temperature, 

𝜂 = 𝑏𝜌/4, 𝑎 = 0.4963𝑅2𝑇𝑐
2/𝑝𝑐, 𝑏 = 0.18727𝑅𝑇𝑐/𝑝𝑐 and 𝑇𝑐 and 𝑝𝑐 are the critical 

temperature and pressure, respectively. The CSvdW EOS is adopted to describe the phase 

transition by setting 𝑎 = 1, 𝑅 = 1 and 𝑇𝑐 = 0.094 as in reference [45]. 

The initial densities of the vapor (𝜌𝑣) and liquid (𝜌𝑙) phases are obtained from the 

Maxwell construction (see Section 5.3) for each 𝑇𝑟. We implement BGK and D2Q9 models 

with 𝛿𝑥 = 1 and 𝛿𝑡 = 1, along with the fourth-order isotropy degree and the EDM forcing 
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scheme to calculate interaction forces and insert them in the LBM approach. The relaxation 

time is fixed as 𝜏 = 0.95, around which the EDM stability begins to saturate [51].  

We write our codes in C/C++ to ensure fast LBM simulations and calculate the 

absolute values of the density differences after each 104 iterations for every fluid node. The 

convergence criteria is |𝜌𝑥⃗,𝑡 − 𝜌𝑥⃗,𝑡−104| ≤  10
−7, which is reached up to iteration ≈ 105, 

depending on 𝑇𝑟. The illustrative images are produced using the open-access software GNU 

Octave 5.1.0 [101]. The density results were compared to the Maxwell construction points in 

the range of 𝑇𝑟 = [0.40, 0.95] with 0.05 increments. Following the procedure in [8, 9, 76, 

83],  the optimal fit for simulation points and the Maxwell coexistence curve is found for 

𝐴 = −0.152 and 𝛽 = 1.152. The value of 𝐴 agrees well with the Kupershtokh et al. work 

[9], but we expected a higher 𝛽 like in the reference [102]. Nevertheless, our values are in 

agreement with Equation (5.26) and reinforce the connection between the parameters. 

 

5.5.2 Results and discussion 

 

5.5.2.1 Numerical validation 
 

The coexistence curve for each model is shown in Figure 19. Zhang-Chen model 

delivers the most unstable simulations, as addressed in the literature [73, 83]. Before the 

instability emerges at 𝑇𝑟 = 0.85, the relative error regarding the Maxwell construction 

densities already reaches 19.2% in the vapor phase, which is 15 times higher than the average 

error of the other models at the same conditions. Because of this narrow range of stability, 

we will omit the Zhang-Chen model in the next discussions. Additionally, from our unified 

model, we see that the β-scheme and Yang-He parameters are equivalent, i.e., 𝛽 = ε. 

Consequently, what is going to be said about the β-scheme will also be valid to the Yang-He 

model. 

Relative errors regarding the Maxwell construction densities for both vapor and liquid 

phases are displayed in Figure 20. Although the Shan-Chen model is stable at low 

temperatures, it performs worse than the others. The relative errors for the Shan-Chen model 

are small in the liquid phase but nearly reach 100% in the interval 𝑇𝑟 = [0.40, 0.50]. In fact, 

for all the models, the vapor phase matching is worse than the liquid phase. 
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Since the vapor-phase density varies more with the parameter, we tuned 𝐴 and 𝛽 using 

only the vapor densities from the Maxwell construction. For each 𝑇𝑟, we investigated the 

parameter range that best matches the points, and we found that it is more limited at low 

temperatures. Just exemplifying, when we reduce 𝛽 by 0.03 from its optimal value, the error 

reaches 57% at 𝑇𝑟 = 0.40 but only 5% at 𝑇𝑟 = 0.80. Therefore, optimal parameter values 

Figure 19: Comparison of the Maxwell coexistence curve with the LB interaction models coexistence curves.    

Figure 20: Relative errors of the LBM densities in the (a) vapor and (b) liquid phases. The Maxwell 

construction densities were considered as a benchmark to calculate the errors. Lines are plotted to help guide 

the eye. 
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should be chosen to minimize the deviations from the Maxwell vapor densities at low 

temperatures. Since the optimal range is wide at large temperatures, we easily confirmed that 

the adjusted values are suitable for the entire range. 

Because of the extra parameters, the coexistence curve fits well for the Kupershtokh 

et al. model and β-scheme. Figure 20(a) shows that the relative error in the vapor phase 

decreases with temperature and is less than 10% in the interval 𝑇𝑟 = [0.65, 0.95]. There is, 

however, an outlier at 𝑇𝑟 = 0.45, which has a smaller relative error than the neighboring 

points because the parameters tuned are closer to the required optimal values at 𝑇𝑟 = 0.45. 

In Figure 20(b), despite the Shan-Chen model yielding the greatest errors for the liquid phase 

at temperatures above 𝑇𝑟 = 0.55, the differences among the models are negligible, 

considering that the relative errors are less than 0.4% for the entire temperature range. 

Although the parameters were set independently, the final coexistence curve is the same for 

Kupershtokh et al. model and β-scheme.  

Further investigation showed that other physical quantities also vary similarly 

between the models. Figure 21 brings the spurious velocities changes with the temperature. 

The maximum spurious velocities from Kupershtokh et al. model and β-scheme are also 

similar. A cubic polynomial fit well describes the dependence on reduced temperature. All 

three models show comparable spurious velocities when 𝑇𝑟 is above 0.70. Below it, the 

Figure 21: Maximum spurious velocities versus reduced temperature for the interaction models considered. 

Lines are plotted to help guide the eye. 
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velocity from the Shan-Chen model increases faster and more disorderly. The top is reached 

at 𝑇𝑟 = 0.40, when 𝑢𝑚𝑎𝑥/𝑐𝑠 for the Shan-Chen model is approximately three times higher 

than for the other models. In Figure 22, this difference in magnitude depends on the lattice 

node location and that the maximum values emerge in no more than few areas near the 

interface. Note also that the spurious velocities from Kupershtokh et al. model and β-scheme 

are similar in every node of the domain. 

 

  

Besides the spurious velocities, the method stability is also associated with the 

interface thickness [77] and density ratio [74]. The EDM forcing scheme, the CSvdW EOS, 

and the chosen relaxation time help keeping the method stable in a wide temperature range 

of the simulations. In Figure 23, the interface thickness contraction, which immediately 

happens at high temperatures, follows the temperature decrease. Here, we consider the 

interface thickness as the lattice length between the different phases where the densities still 

varying from the average bulk values. With the conditions used in this work, the stability and 

the interface thickness behavior stay unaffected when varying the interaction models. The 

density ratios achieved at 𝑇𝑟 = 0.40, however, are different: 367885:1 (Shan-Chen model); 

7488:1 (Kupershtokh et al. model); and 7549:1 (β-scheme).  

The Shan-Chen model attains the greatest ratio, but the value strongly deviates from 

the Maxwell construction (10534:1), as expected from Figure 19. Again, the Kupershtokh et 

al. model and β-scheme come closest to the analytical solution. Although the density ratios 

Figure 22: Location of the spurious velocities in the domain for (a) Shan-Chen model, (b) β-scheme and 

Yang-He models, and (c) Kupershtokh et al. model. 
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from these last models seem to be different, the similar relative errors regarding the Maxwell 

construction ratio (28.91% for Kupershtokh et al. model and 28.34% for β-scheme) show the 

opposite. The explanation is that the differences are intensified when the ratio is analyzed, 

even when there are small density variations.  

 

 

 

5.5.2.2 Parameter improvement 

 

The stationary droplet benchmark successfully validates the interphase models in 

Section 5.5.2.1. As observed, the optimal parameters are dependent on 𝑇𝑟, therefore, we now 

propose 𝐴 = 𝐴(𝑇𝑟) and 𝛽 = 𝛽(𝑇𝑟) instead of tuning only one value for all 𝑇𝑟. These 

functions were found matching a second-degree polynomial curve to the optimal parameter 

points, as presented in Figure 24. The succeeding results confirm that the six points used 

were adequate to predict the functions and reduce the thermodynamic inconsistency. As the 

ranges of optimal parameters are thinner at low 𝑇𝑟, the three smallest temperatures (i.e., 𝑇𝑟 = 

[0.40, 0.50]) were considered to improve the fitting in this region.  

 

Figure 23: Interface thickness changes with reduced temperature for the interaction models considered. Lines 

are plotted to help guide the eye. 
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Since the Kupershtokh et al. and β-scheme models are interchangeable, we can 

develop the parameter related to the stated functions as 𝐴(𝑇𝑟) + 𝛽(𝑇𝑟) = 1 and then choose 

only one model to check the improvement. In this section, only the Kupershtokh et al. model 

(26.95 iterations/s) is used because its computational performance was almost 2.5 times faster 

than the β-scheme (11.33 iterations/s). This variation in computational time is due to 

differences in implementation.  

In Figure 25, we compare the relative errors of the Kupershtokh et al. model with the 

fixed parameter 𝐴 = −0.152 (say “fixed model”) and with 𝐴 = 𝐴(𝑇𝑟) (say “function 

model”). In the vapor phase, Figure 25(a), the largest error of the function model is 7.50% at 

𝑇𝑟 = 0.45, which is more than 5 times lower than for the fixed model. The relative errors are 

less than 1.0% for 𝑇𝑟 = [0.55, 0.90]. Below this range, the error increases because of the 

large sensitivity of the densities related to the parameter value. The thermodynamic 

consistency in the liquid phase, i.e., Figure 25(b), remains markedly good after the 

improvement. 

 

Figure 24: Polynomial fitting of the parameter values. Solid line (—): 𝐴(𝑇𝑟) = 0.870 𝑇𝑟
2 − 1.118 𝑇𝑟 + 0.174. 

Dashed line (– –): 𝛽(𝑇𝑟) = −0.870 𝑇𝑟
2 + 1.118 𝑇𝑟 + 0.826. 
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In Figure 26, spurious velocities and interface thickness are plotted to check if the 

parameter improvement affects these quantities. The performance of the spurious current 

changes slightly, reaching the top at 𝑇𝑟 = 0.40, when 𝑢𝑚𝑎𝑥/𝑐𝑠 = 0.500 (16.55% larger than 

for the fixed model). Conversely, there are no critical changes in the description of the 

interface thickness. The method preserved the stability in the same evaluated range by 

employing parameter improvement.  

 

Figure 25: Comparison between the density relative errors using Kupershtokh et al. model in the (a) vapor and 

(b) liquid phases. The Maxwell construction densities were considered as a benchmark to calculate the errors. 

Lines are plotted to help guide the eye. 

Figure 26: Changes in (a) maximum spurious velocities and (b) interface thickness with the reduced 

temperature for the Kupershtokh et al. model. The lines are plotted to help guide the eye. 
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5.6 Droplet oscillation 

 

Now, we validate the dynamic behavior of the unified model. In this benchmark, an 

elliptic droplet is initialized in the center of a convection-free domain. The attractive 

interactions inside the liquid phase cause oscillations in the droplet shape until it reaches the 

equilibrium spherical format. 

 

5.6.1 Methodology 

 

We implement the same procedure described in Section 5.5.1, but 𝑅0 is now a 

function of the space to provide the elliptical configuration, i.e., 𝑅0
2 = (𝑥 − 𝑥𝑐)

2 +

(𝑦 − 𝑦𝑐)
2. If 𝑦 is specified, 𝑥 is calculated (or vice-versa) from the standard ellipse equation, 

which reads for a horizontal ellipse: 

 

(𝑥 − 𝑥𝑐)
2

𝑅𝑚𝑎𝑥2
+
(𝑦 − 𝑦𝑐)

2

𝑅𝑚𝑖𝑛
2 = 1 ,  (5.38) 

 

where 𝑅𝑚𝑎𝑥 and 𝑅𝑚𝑖𝑛 are the maximum and minimum radius of the ellipse.  

The analytical solution considered here to track the droplet radius 𝑅𝑒𝑙 at an angle 𝜃 

with the horizontal axis is, for a bidimensional domain [103]: 

 

𝑅𝑒𝑙(𝜃, 𝑡) = 𝑅𝑒𝑞 (1 + 𝜀𝑛 cos(𝑛𝜃) −
𝜀𝑛
2

4
)  ,  (5.39) 

 

where 𝑅𝑒𝑞 is the final equilibrium radius, 𝜀𝑛 = 𝜀𝑛(𝑡) < 1, and 𝑛 is the mode oscillation (𝑛 = 

2 for an initial elliptic droplet). We set 𝑅𝑚𝑎𝑥 = 𝑅𝑒𝑙(𝜃 = 0, 𝑡 = 0) = 45 l.u. and 𝑅𝑒𝑞 = 38 

l.u. From Equation (5.39), we find 𝜀𝑛(0) = 0.19 and 𝑅𝑚𝑖𝑛 = 30.29 l.u.  

 One can classify the damping regime as overdamped (Δ𝑛
′ > 0), critical (Δ𝑛

′ = 0), and 

underdamped (Δ𝑛
′ < 0), depending on Δ𝑛

′ , 
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Δ𝑛
′ = 𝜆𝑛

2 −𝜔𝑛,0
2   .  (5.40) 

 

For a bidimensional domain, 

 

𝜆𝑛 =
2𝑛(𝑛 − 1)𝜇𝑙

𝜌𝑙𝑅𝑒𝑞2
  ,  (5.41) 

 

𝜔𝑛,0 = √
𝑛(𝑛 − 1)(𝑛 + 1)𝛾𝑠

𝜌𝑙𝑅𝑒𝑞
3    ,  (5.42) 

 

where 𝜇𝑙 is the shear viscosity of the liquid phase and 𝛾𝑠 is the surface tension. 

We perform the Young-Laplace test for 𝑇𝑟 = [0.50, 0.70, 0.90] to compute 𝛾𝑠. We 

initialize a spherical droplet with three different radius 𝑅0 = [30, 45, 60] following the same 

procedure in Section 5.5.1, and apply 𝛶 = 𝛶(𝑇𝑟) as suggested in Section 5.5.2.2. The 

pressure drop between the phases must present linear dependence with the inverse of the 

spherical droplet radius 𝑅𝑠𝑝, regarding the Young-Laplace law: 

 

𝛿𝑝 =
𝛾𝑠
𝑅𝑠𝑝

  .  (5.43) 

 

5.6.2 Results and discussion 

 

Figure 27 reveals the Young-Laplace test. Shan-Chen, β-scheme (or Yang-He), and 

Kupershtokh et al. models yield similar outcomes, including for 𝑇𝑟 = 0.50, where the Shan-

Chen model reaches massive errors for the equilibrium vapor densities (see Figure 20(a)). 

Zhang-Chen model also recovers the Young-Laplace law for 𝑇𝑟 = 0.90, but the points differ 

from the other models. Evidently, the Young-Laplace tests employing the Zhang-Chen model 

for 𝑇𝑟 = 0.70 and 𝑇𝑟 = 0.50 were impracticable due to numerical instabilities. We obtain 𝛾𝑠 

as the slope of the lines from the linear regression: 𝛾𝑠 = 0.0025 l.u. (𝑇𝑟 = 0.90), 𝛾𝑠 = 0.0154 

l.u. (𝑇𝑟 = 0.70), and 𝛾𝑠 = 0.0334 l.u. (𝑇𝑟 = 0.50).  
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The surface tension contribution governs the dynamics of the problem over the 

viscous forces for the three 𝑇𝑟 considered, i.e., Δ𝑛
′ < 0. In this case,  

 

𝜀𝑛(𝑡) = 𝜀𝑛,𝑚𝑎𝑥𝑒
−𝜆𝑛𝑡 cos(√−Δ𝑛′  𝑡 + 𝜁𝑛)  ,  (5.44) 

 

where, 

 

𝜀𝑛,𝑚𝑎𝑥 = √𝜀𝑛2(0) + (
𝜀𝑛̇(0) + 𝜆𝑛𝜀𝑛(0)

√−Δ𝑛′
)

2

  ,  (5.45) 

 

𝜁𝑛 = atan(−
𝜀𝑛̇(0) + 𝜆𝑛𝜀𝑛(0)

𝜀𝑛(0)√−Δ𝑛′
)  .  (5.46) 

 

The reader can find the equations for the other two types of damping regimes in 

reference [104].  

Figure 27: Young-Laplace test for the interaction models considered at 𝑇𝑟 = [0.50, 0.70, 0.90]. Lines are the 

linear fit of the points. 
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Figure 28 shows that the LBM with the unified model matches the analytical solution, 

i.e., Equation (5.39), well and successfully demonstrates the behavior of the underdamped 

regime, in which the radius of the droplet oscillates with a decaying amplitude until it reaches 

equilibrium.  

 

 

We compute the first period of oscillation as 𝑇𝑝,0 = 2𝜋/𝜔𝑛,0. Figure 29 reveals that 

the numerical periods are in good agreement with the analytical ones, achieving relative 

errors lesser than 3.65% regarding the analytical solution. Figures Figure 28 and Figure 29 

also demonstrate that the temperature notably affects the first amplitude and the period. This 

Figure 28: Time evolutions of the elliptic radius for 𝜃 = 0 at (a) 𝑇𝑟 = 0.90, (b) 𝑇𝑟 = 0.70, and (c) 𝑇𝑟 = 0.50. 

The points were collected at each 200 time steps. We accepted 𝜀𝑛̇(0) = 0 to achieve the analytical solution. 
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influence is because these quantities depend on the surface tension, which is dictated by the 

temperature. 

 

 

Figure 30 presents the velocity maps outside and inside the droplet for 𝑇𝑟 = 0.50. We 

separated each time step (𝑡/𝑇𝑝,0 = [0.23, 0.52, 0.80]) into these two cases because the 

velocity magnitudes inside the droplet are much smaller than outside, hindering the clear 

visualization of the vector directions if the cases were sketched in only one velocity map. 

The velocity fields inside the droplet are similar to the results obtained via finite element 

methods in reference [104]. 

A few moments after starting the simulations, at 𝑡/𝑇𝑝,0 = 0.23, the attractive forces 

that gather the liquid phase breaks the initial elliptic format to converge the droplet to a 

spherical shape. This shape adjustment causes the velocity field outside and inside the droplet 

to rise consistently with the droplet movement, mainly in the axis directions.  

At 𝑡/𝑇𝑝,0 = 0.52, the droplet already reached its maximum rearrangement and just 

started contracting again (see 𝑡 = 1100 in Figure 28(c)). The velocity field inside the droplet 

is the opposite of the previous step, in agreement with the droplet movement again. However, 

the velocity vectors outside the droplet stand in the same direction in the central axis lines, 

as at 𝑡/𝑇𝑝,0 = 0.23. The maintenance directions in the exterior field are a consequence of the 

Figure 29: Comparison between the analytical and the simulated initial periods. The lines are plotted to help guide 

the eye. 
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droplet contraction in the beginning. Hence, to guarantee physical coherence, the velocity  

magnitudes rise in the diagonal regions (red dotted square) of the droplet. Nevertheless, we 

Figure 30: Velocity maps outside (cases (a), (b) and (c)) and inside (cases (d), (e) and (f)) the droplet for 𝑇𝑟 = 

0.50 at 𝑡/𝑇𝑝,0 = [0.23, 0.52, 0.80].  
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must highlight that, at 𝑇𝑟 = 0.50, the maximum spurious velocities outside the static droplet 

observed in Figure 21 present magnitudes (𝑢𝑚𝑎𝑥/𝑐𝑠  ≅ 0.2) close to the values seen in Figure 

30, becoming impossible a reliable analysis outside the droplets. 

Lastly, at 𝑡/𝑇𝑝,0 = 0.80, the velocity vectors inside the droplet contradict the droplet 

movement direction (contraction in the vertical axis). This situation also rises in intermediate 

stages between 𝑡/𝑇𝑝,0 = 0.23 and 𝑡/𝑇𝑝,0 = 0.52, which we understand as an unphysical 

deceleration source of the droplet due to the attractive forces inside the liquid phase.  

 

 

5.7 Conclusions 

 

The LBM is becoming a popular choice among engineers to simulate multiphase 

flows because of its simple interface descriptions. Here we propose a unified model to group 

five multiphase interaction forces of the pseudopotential approach widely used in the 

literature: (i) Shan-Chen, (ii) Zhang-Chen, (iii) Kupershtokh et al., (iv) Gong-Cheng, and (v) 

Yang-He. Although these models are usually considered independent, we have shown that 

they fall under this more generic single-parameter model. Following careful algebraic 

manipulations, all these models could be interchanged, and a correlation among their 

parameters was established. Furthermore, the unified model can make future works more 

concise and facilitate comparisons between the multiphase interaction models, since they 

would direct the reader to only one model and tune only one parameter (𝛶 instead of 𝐴, 𝛽 or 

ε). 

We numerically validated the models and demonstrated their performance through 

two benchmarks: the isothermal stationary and oscillating droplets, both involving a single-

component phase transition. The results support what is already addressed in the literature: 

the extra degree of freedom of the last three alternative models compared to the original 

Shan-Chen model allows them to mitigate artificial effects in the simulations, such as 

spurious currents and thermodynamic inconsistency. The interface thickness remained 

unaffected when the models were varied. The similar density relative errors, spurious 
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currents fields and magnitudes, interface thickness, and density ratios corroborated the 

interdependence among the models.  

We also observed that even when the parameters are modeled as explicit functions of 

the reduced temperature, 𝑇𝑟, simple correlations among the different models remain valid. 

The inclusion of this temperature dependence improved the thermodynamic consistency 

without significant losses of stability or increases of spurious velocities and interface 

thickness. In the dynamic benchmark, the unified model matches well the analytical solution. 
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Chapter 6  
 

Preferential paths of non-Darcy flow 

 

Multiphase conditions are certainly omnipresent in several engineering problems, but its 

modeling in porous media flows is memorable, mainly because of the petroleum and gas 

extractions in geological reservoirs. We intend, in the future, to incorporate in porous media 

studies the unified pseudopotential multiphase model investigated in Chapter 5, but for now, 

we test an implementation of a single-component fluid flow through an artificial porous 

media. Hence, Chapter 6 addresses the last part of this dissertation: the LBM performance in 

porous media flow. Here, we consider a preferential flow problem to understand better the 

LBM implementation issues in complex geometries. 

 

6.1 Introduction 

 

Understanding fluid flow in porous media and mathematically describing its 

dynamics are still current challenges in research. The relevance of the problem is evidenced 

by several areas of application, such as EOR in the oil industry [105, 106] and geological and 

environmental studies [107, 108]. In many cases, one is particularly interested in determining 

the preferential paths of the flow, which are defined as the higher flow rates in specific 

sections of the matrix, such as fractures and fingers [109].  

Knowledge of the preferential flow allows for the design of microfluidic devices [110, 

111], control, and targeted delivery of chemicals [112] and microbes [113], with potential 

applications in pharmaceutical industries and farming. In soil sciences, preferential flow 

influences the aeration [114] and contamination of soils [115], and also the formation of 

subsurface stormflow [116], which causes urban flooding and erosions. Additionally, 

reservoir oil displacement is optimized when preferential paths are contemplated [117], e.g., 

through micro- and nanoparticle control [118] in EOR. Hence, an advanced understanding 
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of the preferential flow dynamics could help develop a theory and spread its applicability in 

diverse problems.  

Preferential flows have several causes, including (i) topological features (e.g., 

presence of macropores [119] and differences in pore configurations [120]), (ii) physical and 

chemical properties of the fluid and solid phases along with their interactions (e.g., spatial 

variability of matrix properties [116], capillarity and surface tension effects), and (iii) flow 

dynamics (e.g., unstable wetting front [121]). Because of the complexity of the problem, 

researchers have usually investigated each contribution to establishing their relative 

importance. Regarding the influence of topology, some authors have identified critical 

geometry factors for better predictions of the preferential flow, like tortuosity [122], channel 

size, and pore-to-pore alignment [123].  

Ju et al. [19] recently proposed and validated a tortuosity-dependent model derived 

from the Darcy law to predict the preferential trajectories in porous media. However, the 

geometry features have been mostly restricted to creeping flows with extremely low 

Reynolds numbers (i.e., the flow rate is a relevant factor [124]). Since the preferential flow 

depends on several aspects, the current literature still lacks a unifying or generalized theory 

to determine it [125]. 

Some works experimentally evaluate the preferential paths through tracer tests [124, 

126] or measurements of isotope signatures [127, 128]. However, experimental investigation 

of preferential flows is often problematic because it causes clogging and interferes with the 

flow patterns [129], decreasing permeability [130] and changing the outlet pressure [131]. 

Hence, a helpful alternative is the use of theoretical modeling and simulation.  

Depending on the length scale, there are two major modeling approaches for porous 

media flow: the Representative Element Volume (REV) [132] and the Pore-Scale [133] 

approaches. The macroscopic properties (e.g., permeability) and continuum models using 

standard computational fluid dynamic tools characterize the REV simulations. With its 

connections and discrete models at a microscopic level, the proper matrix is treated in Pore-

Scale simulations [3]. REV is easy to implement but uses semi-empirical models (e.g., drag 

forces), oversimplifies the descriptions, and fails to provide local information about the flow, 

which is crucial for preferential flow determination. Pore-Scale is precise and detailed, but it 

is also computationally expensive [3, 4]. 
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LB emerges as a powerful and computationally efficient method to model flows 

through porous media [4]. Rothman [134] presented one of the first works about LBM in 

porous media flow. Since then, several works applying LBM have appeared in the literature, 

e.g., the effects of pore configuration in the flow [135, 136], non-Darcy flow description 

[137], thermal flows modeling in porous media [138], multiphase flows [139], and so on [3]. 

REV-LBM, the most popular approach in the literature, represents the porous media through 

a resistance field model [4]. One successful example is the Guo-Zhao model, which proposed 

adding the porosity and a forcing term in the LB methodology [140]. Nevertheless, it still 

relies on macroscopic empirical models, and it is unsuitable for the preferential flow 

determination problem. 

Hence, in this work, we use the Pore-Scale LBM simulations to investigate the 

geometry and topological effects of the matrix on the preferential flow configuration. First, 

we validate the Pore-Scale LBM by showing that the numerical results accurately recover 

the Forchheimer empirical model. Next, focusing on such systems still in the laminar regime 

but distant from creeping conditions, we show that the Darcy resistance model proposed by 

Ju et al. [19] becomes unreliable. Besides tortuosity, the grain shape and relative orientation 

also become relevant topological features of the problem. Finally, the Pore-Scale LBM 

approach demonstrates that clogging of specific pores may obstruct several unclogged pores, 

creating dead zones (zero flow) in the porous media.  

 

 

6.2 Theoretical description 

 
6.2.1 Physical properties 

 

Reynolds number (𝑅𝑒) is a dimensionless parameter frequently used to identify the 

flow regime type by recognizing the balance of inertial and viscous forces. Especially for 

flows through porous media, 𝑅𝑒 can be defined using the Blunt diameter as the characteristic 

length (𝑙𝑐),  
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𝑅𝑒 =
𝜌|u⃗⃗|𝑙𝑐
𝜇

  ,    (6.1) 

𝑙𝑐 =
𝜋𝑉𝑏
𝐴𝑤

  ,    (6.2) 

 

where 𝜇 is the shear viscosity, u⃗⃗ is the macroscopic velocity, 𝜌 is the macroscopic density, 

𝑉𝑏 is the total volume of the porous media, and 𝐴𝑤 is the wetted surface [122, 141]. 

Additionally, some relevant physical properties characterize the porous media, as 

permeability, porosity, and tortuosity. The permeability 𝐾 measures how easy it is for any 

fluid, independent of its properties, to percolate the porous pattern. It is generally associated 

with the fraction of space without solids in the matrix, i.e., the porosity or voidage [142]. 

Among different types of porosity, we can identify the overall porosity (𝜙𝑜) as the ratio 

between the void (𝑉𝑣) and bulk volumes (𝑉𝑏) of the porous media [143], 

 

𝜙𝑜 =
𝑉𝑣
𝑉𝑏
 ,    (6.3) 

 

and the effective porosity (𝜙𝑒) as the fraction that quantifies only the regions with volume 

𝑉𝑓𝑙𝑜𝑤 that cooperate with the flow [122], 

 

𝜙𝑒 =
𝑉𝑓𝑙𝑜𝑤

𝑉𝑏
  .    (6.4) 

 

Although the permeability and porosity are related to the flow magnitude, in this 

work, we consider the tortuosity 𝜏𝑡𝑜𝑟𝑡 as the most crucial matrix property to predict the 

preferential flow. It measures how sinuous the trajectories are inside a porous medium and 

can be defined as 𝜏𝑡𝑜𝑟𝑡 = 𝐿𝑒/𝐿, where 𝐿𝑒 is the sinuous length through the porous structures, 

and 𝐿 is the linear distance from inlet to outlet of the media [144]. The reader will better 

understand the relevance of this geometrical parameter on preferential flow in Section 6.2.2. 
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6.2.2 Governing equations in porous media 

 

In systems described by small 𝑅𝑒 (i.e., Stokes or creeping flows), only viscous forces 

control the flow [142, 145]. In this case, the velocity is directly dependent on the pressure 

drop and inversely dependent on the matrix length, as suggested by the Darcy law, 

 

∇⃗⃗⃗𝑝 = −
𝜇

𝐾
u⃗⃗  .   (6.5) 

 

Equation (6.5) is the most straightforward equation for modeling one-phase flow in 

porous media. Its integral form evidences more clearly the effects of the pressure 𝑝 and the 

porous media length 𝐿𝑃𝑀 to the velocity flow, 

 

|u⃗⃗| =
𝐾

𝜇

𝛿𝑝

𝐿𝑃𝑀
  .   (6.6) 

 

Because the velocity must be inversely dependent on the flow resistance 𝐺𝑓𝑙𝑜𝑤, we 

can define 𝐺𝑓𝑙𝑜𝑤 = 𝜇𝐿𝑃𝑀/𝐾 [19]. Given, however, that the permeability of the matrix is 

usually a function of tortuosity [144, 146], the flow resistance through a uniform cross-

sectional area can be written in the following form, 

 

𝐺𝑓𝑙𝑜𝑤 = 𝐶𝜇𝐿𝑃𝑀𝜏𝑡𝑜𝑟𝑡
2    ,  (6.7) 

 

where 𝐶 is a constant related to the chosen permeability model. Here, we identify Equation 

(6.7) as the Ju et al. model, since it is similar to the Darcy flow resistance equation derived 

in their work [19]. When modeling a specified fluid through settled porous structures, the 

fluid and matrix properties are fixed. Consequently, the flow resistance is only dependent on 

the tortuosity. In these conditions, small tortuosities (i.e., small flow resistances) indicate the 

preferential paths of the porous medium.  

As the flow rate increases, the inertial forces become more and more accentuated, 

causing regions of greater 𝑅𝑒 to arise and disabling the application of the Darcy law. In this 
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case, the Forchheimer equation is a semi-empirical model that seeks to describe the further 

complexity of flow through porous media for systems with larger 𝑅𝑒. The resistance, hence, 

admits contributions from both viscous forces (first term) and inertial forces (second term) 

[145], 

 

−∇⃗⃗⃗𝑝 =
𝜇

𝐾
(1 +

𝛽𝐹𝜌𝐾

𝜇
|u⃗⃗|) u⃗⃗ ,   (6.8) 

 

where 𝛽𝐹 is a constant which, despite some model proposals to predict it [147], is usually 

obtained empirically. The Forchheimer equation recovers the Darcy law at small 𝑅𝑒 when 

the second term is much smaller than the first term, i.e., when 𝛽𝐹𝜌𝐾|u⃗⃗|/𝜇 ≪ 1. Thus, it is 

convenient to give a proper name to this dimensionless term: the permeability Reynolds 

number 𝑅𝑒𝐾 = 𝛽𝐹𝜌𝐾|u⃗⃗|/𝜇. Hence, when 𝑅𝑒𝐾 ≪ 1, the inertial contributions become 

unimportant, and the Forchheimer equation reduces to the Darcy law [145, 148]. 

Again, to inspect the dependency of the velocity with the pressure gradient, the 

Forchheimer equation can be rewritten in a more attractive form when we define the apparent 

permeability 𝐾𝑎𝑝𝑝 = −𝜇|u⃗⃗|/|∇⃗⃗⃗𝑝|  [149], 

 

1

𝐾𝑎𝑝𝑝
=
1

𝐾
+
𝛽𝐹𝜌|u⃗⃗|

𝜇
 ,  (6.9) 

 

which provides a linear relationship between the velocity u⃗⃗ and 1/𝐾𝑎𝑝𝑝 [150].  

 

 

6.3 Methodology 

 

Here, we consider an artificial square porous media of length 𝐿𝑃𝑀 = 1𝑚𝑚, as shown 

in Figure 31. To work with paths with similar areas but also with irregularities and sudden 

flow changes, we generated the porous structure from a freehand sketch and further converted 

it into a binary file (366 ×  366), which became the numerical simulation input. Water at 
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25°𝐶 (𝜌 = 0.997 𝑔/𝑐𝑚³, 𝜇 = 0.890 𝑐𝑃, and 𝜅 = 2.4 𝑐𝑃 [148]) was initialized as a 

stationary fluid. The single-component flow was ensured by ten pressure drops equivalent to 

different heights of water column 𝐻 = [2 𝑚, 20 𝑚] with 2 𝑚 increments. 

 

 

The LBM was implemented with 𝛿𝑥 = 1, 𝛿𝑡 = 1, and the D2Q9 model with no 

additional forces. Again, we write our codes in C/C++ to ensure fast LBM calculations. The 

illustrative images are produced using the open-access software GNU Octave 5.1.0 [101]. 

We considered 𝜌̅ = 1 to adopt the periodic condition with pressure variation in the open 

boundaries (inlet and outlet in Figure 31). When velocity waves reached 𝑥 = 2𝐿𝑃𝑀 (Figure 

32), the simulations were interrupted to prevent the outflow from affecting the inlet of the 

porous media. At this stage, the velocity profile inside the porous media has already 

converged.  

Given that fluid properties are assumed constant, and the minimum areas of each 

channel are considered similar, only the tortuosity governs the preferential path. Therefore, 

we used Equation (6.7) to investigate the preferential flow and compare initial predictions to 

simulation results. Since the preferential paths coincide with the channels that develop the 

highest flow velocities [124], we measured the main paths by evaluating the velocity field.  

Figure 33 enumerates pores and outlets for identification, while Table 2 lists a few 

specific routes in the matrix. The overall route is identified with the notation “number-letter”, 

Figure 31: Simulated domain with artificial porous media. White and black areas represent, respectively, fluid 

and grain regions, while LPM is the length of the porous medium. 
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where the number is the inlet, and the letter is the outlet. From Equation (6.7), the smallest 

resistance 𝐺 (smallest 𝜏𝑡𝑜𝑟𝑡
2 ) reveals the preferential paths (in red) for each overall route. The 

tortuosities were calculated by evaluating the proportion 𝜏𝑡𝑜𝑟𝑡 = 𝐿𝑒/𝐿𝑃𝑀. 

                 

 

 

 

            

Figure 32: Simulated velocity field for varied heights of water column: (a) 2 m, (b) 8 m, (c) 14 m and (d) 

20 m. 

Figure 33:  Identification of the nodes, inlets and outlets in the considered porous media. 
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Table 2. Investigated paths from the given porous media. The preferential paths predicted from Equation (6.7) are in red. The numbers and letters are established 

in Figure 33. 

Paths 𝜏𝑡𝑜𝑟𝑡
2  Paths 𝜏𝑡𝑜𝑟𝑡

2  Paths 𝜏𝑡𝑜𝑟𝑡
2  Paths 𝜏𝑡𝑜𝑟𝑡

2  

1 - A 1 - C 25 - E 42 - H 

1 - 2 - 4 - 5 - 6 - 8 - A 1.17 1 - 2 - 4 - 5 - 6 - 22 - 23 - C 1.42 
25 - 26 - 27 - 29 - 30 - 33 - 

34 - E 
1.07 

42 - 43 - 44 - 47 - 55 - 56 

- 57 - H 
1.35 

1 - 2 - 4 - 5 - 7 - 8 - A 1.17 1 - 2 - 4 - 5 - 7 - 22 - 23 - C 1.42 25 - F 
42 - 43 - 44 - 47 - 48 - 49 

- 56 - 57 - H 
1.48 

1 - 3 - 4 - 5 - 6 - 8 - A 1.17 1 - 3 - 4 - 5 - 6 - 22 - 23 - C 1.42 
25 - 26 - 27 - 29 - 30 - 31 

- 32 - 51 - F 
 1.31 

42 - 52 - 54 - 55 - 56 - 57 

- H 
1.44 

1 - 3 - 4 -5 - 7 - 8 - A 1.17 1 - 3 - 4 - 5 - 7 - 22 - 23 - C 1.42 42 - F 
42 - 52 - 53 - 55 - 56 - 57 

- H 
1.44 

1 - 2 - 15 - 17 - 11 - 8 - A 1.47 
1 - 2 - 4 - 5 - 11 - 19 - 20 - 23 

- C 
1.42 

42 - 43 - 44 - 45 - 46 - 31 - 

32 - 51 - F 
1.35 

42 - 43 - 54 - 55 - 56 - 57 

- H 
1.53 

1 - B 
1 - 3 - 4 - 5 - 11 - 19 - 20 - 23 

- C 
1.42 

42 - 43 - 44 - 47 - 48 - 49 - 

51 - F 
1.35 

42 - 43 - 53 - 55 - 56 - 57 

- H 
1.52 

1 - 2 - 4 - 5 - 6 - 22 - 23 - 

B 
1.40 

1 - 2 - 15 - 17 - 19 - 20 - 23 - 

C 
1.37 

42 - 43 - 44 - 45 - 46 - 48 - 

49 - 51 - F 
1.55 

42 - 43 - 44 - 47 - 48 - 49 

- 50 - H 
1.24 

1 - 2 - 4 - 5 - 7 - 22 - 23 - 

B 
1.40 

1 - 3 - 15 - 17 - 19 - 20 - 23 - 

C 
1.37 

42 - 43 - 44 - 45 - 46 - 47 

- 48 - 49 - 51 - F 
 1.65 

42 - 43 - 44 - 45 - 46 - 48 

- 49 - 50 - H 
1.52 

1 - 3 - 4 - 5 - 6 - 22 - 23 - 

B 
1.40 

1 - 2 - 15 - 18 - 19 - 20 - 23 - 

C 
1.42 25 - G 

42 - 43 - 44 - 45 - 46 - 47 

- 48 - 49 - 50 - H 
1.55 

1 - 3 - 4 - 5 - 7 - 22 - 23 - 

B 
1.40 

1 - 3 - 15 - 18 - 19 - 20 - 23 - 

C 
1.42 

25 - 26 - 27 - 29 - 30 - 31 

- 32 - 51 - G 
 1.35 42 - I 

1 - 2 - 4 - 5 - 11 - 19 - 20 

- 23 - B 
1.42 

1 - 10 - 12 - 13 - 18 - 19 - 20 

- 23 - C 
1.57 42 - G 

42 - 43 - 44 - 47 - 48 - 49 

- 56 - 57 - I 
1.42 

1 - 3 - 4 - 5 - 11 - 19 - 20 

- 23 - B 
1.42 25 - D 

42 - 43 - 44 - 45 - 46 - 47 - 

48 - 49 - 51 - G 
1.53 

42 - 43 - 44 - 47 - 55 - 56 

- 57 - I 
1.30 

1 - 2 - 15 - 17 - 19 - 20 - 

23 - B 
1.35 

25 - 26 - 27 - 29 - 37 - 40 - 41 

- D 
1.42 

42 - 43 - 44 - 45 - 46 - 48 - 

49 - 51 - G 
1.44 

42 - 52 - 53 - 55 - 56 - 57 

- I 
1.39 

1 - 3 - 15 - 17 - 19 - 20 - 

23 - B 
1.35 25 - E 

42 - 43 - 44 - 45 - 46 - 31 - 

32 - 51 - G 
1.39 

42 - 52 - 54 - 55 - 56 - 57 

- I 
1.39 

1 - 2 - 15 - 18 - 19 - 20 - 

23 - B 
1.40 

25 - 26 - 27 - 29 - 37 - 40 - 41 

- E 
1.28 

42 - 43 - 44 - 47 - 48 - 49 - 

51 - G 
1.24 

42 - 43 - 53 - 55 - 56 - 57 

- I 
1.46 

1 - 3 - 15 - 18 - 19 - 20 - 

23 - B 
1.40 

25 - 26 - 27 - 29 - 37 - 40 - 33 

- 34 - E 
1.39   42 - 43 - 54 - 55 - 56 - 57 

- I 
1.46 
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The lattice volume correspondent to a node at (𝑥, 𝑦) with an axial lattice velocity 

|u⃗⃗xnode| >  0.0005 𝑙. 𝑢. ≅ 𝑚𝑒𝑎𝑛 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦/2 is taken as 𝑉𝑓𝑙𝑜𝑤 for the effective porosity 

calculation. That is,  

 

𝜙𝑒 =
(𝛿𝑥)2∑ 𝑏(𝑥, 𝑦)

𝑁𝑥,𝑁𝑦
𝑥,𝑦

𝑉𝑏
  .  (6.10) 

 

where 𝑁𝑥 and 𝑁𝑦 are the total numbers of lattice nodes in the 𝑥 and 𝑦 directions, and 𝑏(𝑥, 𝑦) 

is a Boolean variable (𝑏(𝑥, 𝑦) = 1 if |u⃗⃗xnode| >  0.0005 𝑙. 𝑢., or 𝑏(𝑥, 𝑦) = 0 otherwise).  

 

 

6.4 Results and discussion 

6.4.1 Preferential paths through porous structures 

The ten heights studied generated a Reynolds range of 𝑅𝑒 = [55.4, 274.2]. Some 

recirculation zones are seen in Figure 32, which are related to the transition between porous 

and non-porous regions and the isolated grains near outlets D and G. Their magnitude and 

location behind the porous media vary with pressure. This emphasizes that there are 

substantial modifications to the flow dynamics in this region, which has also been recently 

observed and reported in the literature [151].  

To validate the LB-MRT method with the Pore-Scale approach, we plotted in Figure 

34 the relationship between the inverse of the apparent permeability (𝐾𝑎𝑝𝑝) and the average 

velocity for the ten initial cases studied here. A linear regression of the data shows that the 

method recovers the linearized Forchheimer equation (1/𝐾𝑎𝑝𝑝 = (0.72 |u⃗⃗| + 1.37)10
10) 

with a strong correlation (𝑅2 = 0.998) and a permeability of 𝐾 = 0.76 𝐴̇2. Additionally, the 

Blunt diameter and the overall porosity are, respectively, 𝑙𝑐 = 0.08 mm and 𝜙𝑜 = 0.45, while 

the effective porosity fluctuates around 𝜙𝑒 ≅ 0.34.  
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Having established the matrix physical properties and flow characteristics, the 

discussion about preferential flow will focus on a sample case at 𝐻 = 10 𝑚 with 𝑅𝑒𝐾 =

1.11~1, which suggests that the inertial forces contribute to describing the flows in our 

simulations (Forchheimer regime).   

The flow profile for 𝐻 = 10 𝑚 (Figure 35) confirms that most paths agree with the 

theoretical prediction in Table 2. However, the overall paths 1-B and 1-C are different from 

the predicted results since pore 15 would be preferred (Table 2) because of its lower 

tortuosity. Instead, in the simulation, the velocity field indicates that the path 1-2-4-5-6/7-22-

23-B/C, and, consequently, pore 4, is preferred. Next, 22 is the pore chosen to get to the 

outlets B or C, unless the velocities in pore 15 had been higher than in pore 22. Because path 

1-A locally presents the smallest flow resistance (i.e., path 1-A is preferred in the top region 

of the matrix), the associated velocity field affects the overall paths 1-B and 1-C and changes 

the pore preference. Indeed, the grain pattern also plays a role in this scenario, but the 

configuration effect is more easily observed in pores 2 and 3, as discussed next.  

 

Figure 34: Linear regression of the calculated points (circles) with the linearized Forchheimer 

equation (dashed line): 
1

𝐾𝑎𝑝𝑝
= (0.72|𝑢⃗⃗|+ 1.37)1010 with 𝑅2 = 0.998. 
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Figure 35 indicates that pore 2 is favored in path 1-A, but Equation (6.7) was 

incapable of discerning which pore (2 or 3) is preferred. One could argue that the channel 

area (neglected in the calculation) is the reason for this discrepancy. However, the number 

of lattice nodes is equal in both pores, i.e., the smallest areas that delimit the flow are the 

same. Thus, the resistance expressed by Equation (6.7) indeed depends only on the tortuosity. 

Since the tortuosity of both channels is also similar, it is the grain shape that influences locally 

the pore that is preferred. 

Thus, a controlled flow configuration sketched in Figure 36(a) was simulated to 

investigate the importance of the local shape. The artificial pore region has a solid triangle at 

the center with length 𝐿 = 100 lattice nodes. The two dashed rectangles in Figure 36 (b) 

indicate regions with the same lattice area of 3𝐿/5, through which the fluid must stream and 

where the velocity magnitudes can be compared. Although Equation (6.7) predicts that the 

path under the triangle (𝜏𝑡𝑜𝑟𝑡
2 = 1.13) is favored rather than the one above it (𝜏𝑡𝑜𝑟𝑡

2 = 1.28), 

Figure 36(b) shows that the velocities are higher in the dashed rectangle at the top. Thus, the 

route above the triangle is favored.  

 

Figure 35: Velocity field of the flow simulation for 𝐻 = 10 m in the original porous media. 
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Therefore, both the pore configuration and its orientation relative to the velocity 

profile are crucial to determining which path will be chosen, even in the laminar regime. 

Additionally, some small recirculation zones can emerge in the pore due to entrainment, jet 

effects, and transitional regimes, affecting the preferential paths. These drawbacks make 

Equation (6.7) unviable to predict the preferential flow in the Forchheimer regime accurately, 

but it is sufficient to discern what are the main possible trajectories.       

 

6.4.2 Flow with clogging         

Finally, we obstructed some sections of Figure 33, as seen in Figure 37(a) and (b), 

and simulated the flow again. When A is blocked, the path 1-2-4-5-6/7-22-23-B/C is 

preferred. This reinforces what was previously discussed: pore 15 is disfavored, rather than 

pore 4 when 1-B/C is the overall path considered. Although A is the preferential outlet at the 

top of the matrix, the flow in the neighbor routes keeps slightly unchanged when A is closed.  

On the other hand, when E is obstructed, many routes have their flow locally changed. 

The flow through connections 33-34 and 33-40 almost disappears, while also decreasing in 

40-41. Although D would perhaps be the intuitive path for being the nearest outlet, both 

simulation and theory indicate that this path is not preferred. Instead, F and G are the 

preferential outlets when 25 is the inlet. 

Figure 36: Flow simulation through a rectangular pore with a triangle with length 𝐿 in the center. The sketch 

is presented in (a), where the solid (—) and dashed (– –) lines are the shortest paths passing under and above 

the triangle, respectively. The flow is presented in (b), where the white rectangles specify the two regions 

that have the same area.    
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Figure 38 also gathers a set of closed pores. We demonstrated before that pore 4 is 

favored rather than pore 15. However, pore 4 is blocked in Figure 38(a) and pore 15 is now 

favored. Even so, the connection 15-17 is still disfavored to reach outlets B and C. The flow 

is ensured in the connection 15-16, and, then, keep the preferred path to attain A. 

Alternatively, if we try to close pore 5, as displayed in Figure 38(b), the flow shrinks in pore 

15, raises in 16-17, and prefers connection 17-11-7 to get to the outlet. Again, these results 

disagree with those in Table 2 and disqualify the Equation (6.7) prediction ability for the 

Forchheimer regime since the flow chooses to stream through a higher tortuous path (17-11-

7) rather than take path 17-19-20.     

Next, pore 32 is closed in Figure 38(c). This case validates that the velocity fields in 

the connections 49-51 and 49-50 are similar, as expected from Table 2, since the overall 

preferential paths 42-G and 42-H present comparable 𝜏𝑡𝑜𝑟𝑡
2 . Because of pore 32 being 

obstructed, the flow in 31 and 51-F shrinks, which demonstrates that the outlet F drastically 

loses its applicability because the main contribution to the flow in F comes from pore 32.  

 

 

 

Figure 37: Velocity field of the flow simulation with 𝐻 = 10 𝑚 and the outlets (a) A and (b) E closed. 
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Figure 38: Velocity field of the flow simulation with 𝐻 = 10 𝑚 and the nodes (a) 4, (b) 5, (c) 32, (d) 

51 and (e) 58 closed. 



 

114 

 

If pore 51 is obstructed instead, not only F loses its utility but also G, as observed in 

Figure 38(d). This case illustrates the formation of dead zones near the obstructed pore. Since 

the flow is close to zero in these regions, it could, e.g., reinforce the surface runoff in soils or 

even influence the displacement of oil in geological reservoirs. On the other hand, we can 

also note in Figure 38(d) that 31-32-33-34 is a critical path to reach outlet E from pore 46. 

Similarly, the obstructed pore 58 in Figure 38(e) indicates that the connection 43-44 is 

preferred rather than 43-54/53, which ensures 42-43-44-47-48-49-50-H is the preferential 

path from pore 42, in agreement with Table 2. 

 

 

6.5 Conclusions 

 

Preferential flow is a phenomenon that affects a vast range of problems and needs to 

be better understood. Because of the attractive advantages of LBM in the Pore-Scale 

approach (e.g., straightforward no-slip boundary conditions and absence of empirical 

models), LB is an inviting method to model the flow in porous media and search for 

preferential pathways. A typical and simplified numerical way to predict these paths is 

through the geometric investigation of the matrix. Hence, in this work, we tested the Ju et al. 

model, a tortuosity-dependent resistance model, to measure the preferential paths in a non-

Darcy flow through an artificial square porous medium. 

LBM naturally recovers the Forchheimer equation for the established range of 

Reynolds. The Ju et al. model successfully indicates many preferential paths, but its accuracy 

is more substantial for Darcy flows. This deficiency is related to the inertial effects in the 

Forchheimer regime, which the model does not contemplate. Therefore, geometric 

characteristics like grain shape and pore-to-pore alignment (deflections of the paths) are 

highlighted features to describe this kind of flow. When clogging occurs, the divergence of 

some predictions is more noticeable. Additionally, depending on the position of the blocked 

pores, the flow configuration can change locally, the preferred paths can be modified, and 

other unblocked pores (common neighbors of the blocked pore) may become useless for the 

flow, which originates dead zones in the matrix.  
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Chapter 7  
 

Final remarks 

 

Chapters 3, 5, and 6 address the three independent parts of this dissertation. In this chapter, 

we present a brief overview of them and suggest some future relevant LB outlooks. The 

reader, however, finds more specific details about the concluding remarks in Sections 5.7 

and 6.5.  

 

7.1 Work contributions 

 

Initially, in Chapter 3, we meticulously prove through asymptotic analysis that the 

continuity and the Navier-Stokes equations are recovered from BGK-LBE for low 𝑀𝑎. As a 

result, Chapter 3 stands as a didactic and reliable section to demonstrate the transport 

equations derivation and master mathematical analysis to test LB models. The connection 

between the mesoscale modeling and the macroscopic properties is ensured through the 

relaxation time and the kinematic fluid viscosity.  

In Chapter 4, we validate our computational implementation by demonstrating two 

frequent benchmarks (the Couette and square-cavity flows) and used the algorithm as the 

base for the LBM implementation in the consecutive sections. Then, Chapter 5 proposes and 

validates the unified pseudopotential model, making future works more concise and 

facilitating comparisons between the multiphase interaction models. Depending on the 

parameter, we demonstrate the unified model recovers the (i) Shan-Chen, (ii) Zhang-Chen, 

(iii) Kupershtokh et al., (iv) Gong-Cheng, and (v) Yang-He models. The unified parameter 

is explicitly expressed as a function of the reduced temperature, causing a higher 

thermodynamic consistency.  

To implement the unified model in further multiphase works, we consider an 

independent preferential flow implementation as a starting point. Chapter 6 carries out an LB 
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Pore-Scale approach to explore preferential paths, from which the Forchheimer equation is 

recovered. The evaluated Ju et al. model predicts many preferential paths correctly, but the 

grain shape and relative orientation decrease its accuracy when inertial effects are relevant. 

Furthermore, clogging affects the flow locally, changes the preferential paths, and creates 

dead zones in the porous media flow. 

Finally, LBM presents some advantages (e.g., parallel performance and 

straightforward boundary conditions) that make it suitable for various engineering problems 

and justify its progress in several areas. This dissertation is an example of how valuable the 

LBM is to reproduce multiphase problems and flows in complex geometries. We hope this 

work can help to develop the method and to attract attention to the mesoscale modeling. 

 

 

7.2 Future works 

 

We aim to develop further applications of the unified model in relevant multiphase 

problems and investigate its stability in a three-dimensional domain. We expect to model the 

porous media flow in a real matrix, incorporating multiphase flow (e.g., EOR), mixing, fluid-

structure interactions, and heat transfer. We highlight some other pertinent LBM outlooks 

that we are interested in, such as:  

▪ the insertion of more robust EOS, e.g., CPA and SAFT in the pseudopotential 

model; 

▪ the modeling of reactive flows to track, e.g., the dissolution of solid structures 

inside a porous media; 

▪ the coupling of the multiphase pseudopotential approach with turbulent models; 

▪ the modeling of vapor condensation inside porous media using LBM exclusively, 

and the insertion of capillary effects and other thermodynamic phenomena; 

▪ the assurance of the thermodynamic consistency of multicomponent systems; 

▪ the modeling of liquid-vapor and liquid-liquid equilibria through pseudopotential 

models, answering, e.g., how to link the relative volatility to the kinetic theory; 

▪ and the development of methodologies that gather machine learning with LBM. 
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Appendix A 

Perturbation theory 

 

The perturbation theory is a method for solving algebraic or differential equations, 

linear or not, generally applied when the resolution is cumbersome, or there is no analytical 

solution. It is an alternative to Taylor’s expansion, which may not converge or incorrectly 

represent the real behavior of the function depending on which one is selected. The 

perturbation theory is summarized in the expansion of a variable of interest 𝑟 as: 

 

 𝑟 = 𝑟0 + ϵ𝑟1 + ϵ
2𝑟2 + ϵ

3𝑟3 +⋯  ,  (A.1) 

 

where ϵ is a small parameter. 

The solution of the following quadratic equation will be exemplified to demonstrate 

the method.  

 

𝑟2 − 2ϵ𝑟 − 9 = 0   (A.2) 

 

The analytical solution of Equation (A.2) is: 

 

𝑟 =
2ϵ ± √4ϵ2 + 36 

2
  (A.3) 

 

Through asymptotic expansion and neglecting terms of order equal to or greater than 

𝒪(ϵ3), we write 𝑟 as: 

 

𝑟 = 𝑚0 + ϵ𝑚1 + ϵ
2𝑚2 + 𝒪(ϵ

3)  (A.4) 
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 Equation (A.4) should be replaced in the central equation, Equation (A.2). Initially, 

the term 𝑟2 can be evaluated first. Thus, performing a binomial expansion when Equation 

(A.4) is replaced in 𝑟2 and neglecting terms of order equal to or greater than 𝒪(ϵ3): 

 

𝑟2 = 𝑟0
2 + 2ϵ2𝑟0𝑟1 + 2ϵ𝑟0𝑟2 + ϵ

2𝑟1
2  (A.5) 

 

Now replacing Equations (A.4) and (A.5) into Equation (A.2), 

 

𝑟0
2 + 2ϵ(𝑟0𝑟1 + ϵ𝑟0𝑟2) + ϵ

2𝑟1
2 − 2ϵ(𝑟0 + ϵ𝑟1 + ϵ

2𝑟2) = 9    (A.6) 

 

Again, neglecting terms of order equal to or greater than 𝒪(ϵ3), 

 

𝑟0
2 + 2ϵ(𝑟0𝑟1 + ϵ𝑟0𝑟2) + ϵ

2𝑟1
2 − 2ϵ(𝑟0 + ϵ𝑟1) = 9    (A.7) 

 

Identifying the different degrees related to ϵ: 

 

𝒪(ϵ0):   𝑟0
2 = 9    (A.8) 

 

𝒪(ϵ1):   2𝑟0𝑟1 − 2𝑟0 = 0    (A.9) 

 

𝒪(ϵ2):   2𝑟0𝑟2 + 𝑟1
2 − 2𝑟1 = 0    (A.10) 

 

 From Equations (A.8) and (A.9), respectively, we find that 𝑟0 = ±3 and 𝑟1 = 1. 

Substituting 𝑟0 and 𝑟1 into Equation (A.10), we determine 𝑟2 = ±1/6. Finally substituting 

these values into the asymptotic expansion of 𝑟, i.e., Equation (A.4), the solution of the 

chosen quadratic equation through the perturbation theory is: 

 

𝑟 = ±3 + ϵ ±
1

6
ϵ2    (A.11) 
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 The lower ϵ is, the more accurate the solution will be. To demonstrate this, Figure 

A.1 compares the solution through perturbation theory with the analytical solution. The 

perturbation theory agrees well with the analytical solution only in the range of small ϵ; it 

diverges, however, when ϵ > 1.  

 

 

Figure A.1: The logarithmic plot compares the analytical first roots of the quadratic equation with the ones 

from perturbation theory.   
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Appendix B 

Moments and isotropy in LBM 

 

The zeroth and first-order moments are, respectively,   

 

𝜌 =∑𝑓𝑖
i

  (B.1) 

 

𝜌u⃗⃗ =∑c⃗i𝑓𝑖
i

    (B.2) 

 

To define the second-order moment, we define, first, the tensor 𝐐𝐢 as: 

 

𝐐𝐢 = c⃗ic⃗i − 𝑐𝑠
2𝐈  (B.3) 

 

and then multiply it by 𝑓𝑖
(𝑘)

, where 𝑘 is the order in the Chapman-Enskog expansion, 

 

𝐐𝐢𝑓𝑖
(𝑘)
= c⃗ic⃗i𝑓𝑖

(𝑘)
− 𝑐𝑠

2𝐈 𝑓𝑖
(𝑘)

  (B.4) 

 

We define the second-order moment 𝛑(𝐤) when we sum 𝐐𝐢𝑓𝑖
(𝑘)

 over all i possibilities, 

 

𝛑(𝐤) =∑𝐐𝐢𝑓𝑖
(𝑘)

i

=∑c⃗ic⃗i𝑓𝑖
(𝑘)

i

− 𝑐𝑠
2𝐈∑𝑓𝑖

(𝑘)

i

  (B.5) 

 

Similarly, we can write the third-order moment 𝐑(𝐤), 
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𝐑(𝐤) =∑c⃗ic⃗ic⃗i𝑓𝑖
(𝑘)

i

  (B.6) 

 

To ensure the LBM equations will recover the transport equations, the weights 𝜔𝑖 

must be correctly chosen. In this way, the isotropy conditions (independent of the orthogonal 

transformations) are imposed in the lattice model. The combination and solution of them 

makes the 𝜔𝑖 values to arise. The isotropy conditions are: 

 

∑𝜔𝑖
i

= 1  (B.7) 

 

∑𝜔𝑖
i

c⃗i =∑𝜔𝑖
i

ciα = 0⃗⃗  (B.8) 

 

∑𝜔𝑖
i

c⃗ic⃗i =∑𝜔𝑖
i

ciαciβ = 𝑐𝑠
2δαβ  (B.9) 

 

∑𝜔𝑖
i

c⃗ic⃗ic⃗i =∑𝜔𝑖
i

ciαciβciγ = 𝟎  (B.10) 

 

∑𝜔𝑖
i

c⃗ic⃗ic⃗ic⃗i =∑𝜔𝑖
i

ciαciβciγciδ = 𝑐𝑠
4(δ𝛼𝛽δ𝛾𝛿 + δ𝛼𝛾δ𝛽𝛿 + δ𝛼𝛿δ𝛽𝛾)  (B.11) 

 

∑𝜔𝑖
i

c⃗ic⃗ic⃗ic⃗ic⃗i =∑𝜔𝑖
i

ciαciβciγciδciϵ = 𝟎  (B.12) 

 


