
ENHANCING CLOSED-LOOP CONTROL PERFORMANCE WITH
MODEL-BASED CONTROLLERS: ALGORITHMS AND APPLICATIONS FOR

TIME-DELAYED SYSTEMS

Sergio Andres Castaño Giraldo

Tese de Doutorado apresentada ao Programa
de Pós-graduação em Engenharia Química,
COPPE, da Universidade Federal do Rio de
Janeiro, como parte dos requisitos necessários
à obtenção do título de Doutor em Engenharia
Química.

Orientadores: Argimiro Resende Secchi
Príamo Albuquerque Melo
Junior

Rio de Janeiro
Setembro de 2023



ENHANCING CLOSED-LOOP CONTROL PERFORMANCE WITH
MODEL-BASED CONTROLLERS: ALGORITHMS AND APPLICATIONS FOR

TIME-DELAYED SYSTEMS

Sergio Andres Castaño Giraldo

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO
LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA
DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS
REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR
EM CIÊNCIAS EM ENGENHARIA QUÍMICA.

Orientadores: Argimiro Resende Secchi
Príamo Albuquerque Melo Junior

Aprovada por: Prof. Argimiro Resende Secchi
Prof. Príamo Albuquerque Melo Junior
Prof. Julio Elias Normey Rico
Prof. Márcio André Fernandes Martins
Prof. Mauricio Bezerra de Souza Junior

RIO DE JANEIRO, RJ – BRASIL
SETEMBRO DE 2023



Giraldo, Sergio Andres Castaño
Enhancing Closed-Loop Control Performance with

Model-Based Controllers: Algorithms and Applications for
Time-Delayed Systems/Sergio Andres Castaño Giraldo. –
Rio de Janeiro: UFRJ/COPPE, 2023.

XXIII, 155 p.: il.; 29, 7cm.
Orientadores: Argimiro Resende Secchi

Príamo Albuquerque Melo Junior
Tese (doutorado) – UFRJ/COPPE/Programa de

Engenharia Química, 2023.
Referências Bibliográficas: p. 132 – 140.
1. Model Predictive Control (MPC). 2. Filtered

Smith Predictor (FSP). 3. Model-Plant Mismatch (MPM).
4. Unmeasured Disturbance (UD). 5. Performance
Diagnosis. 6. Tuning. I. Secchi, Argimiro Resende
et al. II. Universidade Federal do Rio de Janeiro, COPPE,
Programa de Engenharia Química. III. Título.

iii



"We are just waves in time and
space, changing continuously,

and the illusion of individuality
is produced through the

concatenation of the rapidly
succeeding phases of existence.
What we define as likeness is

merely the result of the
symmetrical arrangement of

molecules which compose our
body."

"If you want to find the secrets
of the universe, think in terms of
energy, frequency and vibration."

Nikola Tesla
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MELHORIA DO DESEMPENHO DE CONTROLE EM MALHA FECHADA
COM CONTROLADORES BASEADOS EM MODELO: ALGORITMOS E
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Setembro/2023
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Este trabalho de doutorado desenvolve e valida duas metodologias distintas para
aprimorar o desempenho de controladores preditivos baseados em modelos, focando
principalmente nas estruturas de Controle Preditivo baseado em Modelo (MPC) e
nos compensadores de tempo morto (DTC). A primeira parte da pesquisa apresenta
um algoritmo de sintonia inovador para controladores MPC que é híbrido, com-
binando dois métodos de otimização para determinar os melhores parâmetros de
sintonia. Este algoritmo foi projetado para ser versátil, aplicável a uma ampla gama
de sistemas, incluindo sistemas lineares e não lineares, e com custo computacional
relativamente baixo. A segunda parte da pesquisa se concentra em algoritmos de di-
agnóstico em tempo real para sistemas monovariáveis, especificamente aplicados aos
compensadores de tempo morto (DTC) para o Preditor de Smith Filtrado (FSP).
Este algoritmo multifuncional não apenas detecta erros de modelo e perturbações
não medidas, mas também ajusta com precisão o filtro de robustez, contribuindo
para a estabilidade do sistema. Ambas as metodologias foram rigorosamente val-
idadas através de estudos de caso, tanto simulados quanto em cenários do mundo
real, destacando sua eficácia prática em melhorar o desempenho e a robustez dos
sistemas de controle em malha fechada baseados numa estrutura de predição com
modelo interno, trazendo implicações promissoras para a engenharia de sistemas de
controle.
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ENHANCING CLOSED-LOOP CONTROL PERFORMANCE WITH
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This doctoral research develops and validates two distinct methodologies to en-
hance the performance of model-based controllers, focusing primarily on Model Pre-
dictive Control (MPC) structures and Dead Time Compensators (DTC). The first
part of the research presents an innovative tuning algorithm for MPC controllers
through a hybrid combination of two optimization algorithms to determine the best
tuning parameters. This algorithm is designed to be versatile, applicable to a wide
range of systems, including linear and non-linear ones, and with relatively low com-
putational cost. The second part of the research focuses on real-time diagnostic al-
gorithms for single-input, single-output systems, specifically applied to Dead Time
Compensators for Filtered Smith Predictors (FSP). This multifunctional algorithm
not only detects model errors and unmeasured disturbances but also accurately ad-
justs the robustness filter, contributing to system stability. Both methodologies
have been rigorously validated through case studies, both simulated and in real-
world scenarios, highlighting their practical efficacy in improving the performance
and robustness of closed-loop control systems based on an internal model predictive
structure, bringing promising implications for control systems engineering.
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Chapter 1

Introduction

1.1 Relevance and Motivation

The overarching goal of control theory is developing methods to drive a system’s
behavior as closely as possible to a desired performance specification. Among the
array of control techniques, model-based predictive controllers have gained consid-
erable attention due to their ability to anticipate future events and, thus, provide
an optimized control strategy. Central to these controllers, which encompass Model
Predictive Control (MPC) and Dead-Time Compensators (DTC), is the notion of
predicting the future behavior of a system based on an internal model and employing
that prediction to make informed control decisions (CAMACHO and BORDONS,
2002).

However, as promising as this predictive approach is, it is not devoid of chal-
lenges. One key challenge lies in the tuning of control parameters. In complex,
multivariable systems, the number of parameters grows proportionally with the sys-
tem size, complicating their precise tuning (BAGHERI and KHAKI-SEDIGH, 2014).
Moreover, selecting prediction and control horizons and adjusting weight matrices
can heavily influence the system’s closed-loop performance (YAMASHITA et al.,
2016). Tuning these parameters is a procedure that has proven particularly chal-
lenging, with no definitive methodology universally recognized as the most effective
solution (GARRIGA and SOROUSH, 2010).

Another fundamental difficulty arises from the inherent characteristic of model-
based controllers: they rely on a model of the system to predict future behavior.
Although such predictive ability is their strength, it is also their Achilles’ heel. Over
time, the model’s ability to accurately predict the system’s behavior can degrade
due to unmeasured disturbances, changes in system dynamics, or process nonlinear-
ity. When a system deviates from the controller’s model, control performance can
deteriorate, leading to a less than optimal response (SHRIDHAR and COOPER,
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1997).
In this context, process models play an essential role in any control structure

design because (i) classical control schemes use models offline in combination with
tuning guidelines and (ii) model-based controllers use the model online to generate
output predictions and take corrective actions (YERRAMILLI and TANGIRALA,
2016). Therefore, the quality of the model significantly affects the closed-loop per-
formance. This performance is critical to industrial processes’ product quality and
system safety. In the last decades, the monitoring and performance assessment of
closed-loop control has gained critical attention, giving rise to several techniques
(LING et al., 2017). Some of these are based on the concept of minimal variance
control (MVC), initially developed by ÅSTRÖM (1970). Then, it was produced by
HARRIS (1989), who evaluated the best achievable benchmark from normal closed-
loop data. It has subsequently been extended to multi-input multi-output (MIMO)
systems in HARRIS et al. (1996) and HARRIS et al. (1999), feedforward/feedback
control in DESBOROUGH and HARRIS (1993), proportional-integral-differential
(PID) control in FU et al. (2012), Run-to-Run (RtR) control in CHEN et al. (2009)
and model predictive control (MPC) system in LEE et al. (2008). As an alterna-
tive to the MVC benchmark, in POUR et al. (2010) it was proposed the optimal
linear quadratic Gaussian (LQG), which provides a trade-off curve that displays the
minimal achievable variance of the input and output of the system. Nevertheless,
some authors disagree on using LQG/MVC for control structure assessment, mainly
in model-based controllers like an MPC, as they deem it an unattainable model for
most real-life applications (BOTELHO et al., 2015).

The challenges in tuning and modeling are not the only hurdles for optimizing
control systems. Even a well-tuned and modeled system can begin to falter if not
properly maintained. Maintenance plays a crucial role in preserving the efficiency
and efficacy of the control system over time. As illustrated in Figure 1.1, the lack
of adequate maintenance can lead to a gradual deterioration of the control system’s
performance, undermining the optimizations that have been achieved (CAMPOS
et al., 2013).

This work is focused on two key areas of model-based predictive controllers:
the tuning methods for the MPC and the model degradation detection in DTC,
specifically within the Smith predictor framework for Single-Input Single-Output
(SISO) systems.

Firstly, the research explores the tuning methods for the MPC, aiming to de-
velop a universal strategy that can be applied regardless of the control scheme (be
it linear or non-linear) and the system type (whether square or non-square). By
working towards a more versatile and robust tuning procedure, the proposed re-
search aims to enhance the application of MPC across various system architectures
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and control strategies. This can potentially reduce the complexities associated with
manual tuning and open the door to more automated, adaptive approaches (QIN
and BADGWELL, 2003).

Subsequently, the research delves into the domain of DTCs, explicitly focusing
on the filtered Smith predictor for SISO systems. This part of the study aims to
diagnose the internal model’s predictive capability and devise methods to detect
unmeasured disturbances. The ultimate goal is to improve the robustness of the
control loop by developing an auto-tuning mechanism for both the primary controller
and the robustness filter in the control structure. By assessing the degree of model
degradation and detecting the onset of unmeasured disturbances, it is expected to
devise strategies to maintain control performance, thus enhancing the utility of the
Smith predictor in DTCs.

These two approaches address the fundamental challenges in model-based predic-
tive controllers and target improvements that can significantly enhance closed-loop
control performance in industrial applications.

1.2 Objectives

1.2.1 General Objective

The central objective of this thesis is to develop and validate methodologies for
enhancing the performance of model-based controllers, specifically, Model Predictive
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Control (MPC) and Dead Time Compensator (DTC). The research aims to address
the issues arising from dominant time delays, tuning parameters, the predictive
capacity of the internal model, and unmeasured disturbances in industrial process
control systems.

1.2.2 Specific Objectives

• To construct an algorithm that effectively identifies optimal MPC tuning pa-
rameters using a hybrid combination of two optimization algorithms. The
algorithm is expected to be applicable to various system types, including lin-
ear, non-linear, square, and non-square systems.

• To develop a real-time diagnostic algorithm to monitor the performance of
the control loop in DTC systems. The algorithm should be capable of iden-
tifying the degradation of the internal model or the presence of unmeasured
disturbances.

• To explore the effectiveness of the proposed algorithms in enhancing the perfor-
mance of the Filtered Smith Predictor (FSP) in single-variable systems, specif-
ically addressing the issues associated with dead-time compensators (DTCs).

• To demonstrate the application of the proposed methodologies and algorithms
through case studies, thus highlighting their practical applicability and effec-
tiveness in enhancing industrial process control.

1.3 Document Arrangement

This doctoral thesis is organized into five chapters, which are structured as follows:

• Chapter 1: Introduction - This chapter lays the foundation for the thesis by
introducing the research’s relevance and motivation. The general and specific
objectives of the study are clearly stated. The document arrangement and a
list of publications stemming from this research are presented.

• Chapter 2: Literature Review - A comprehensive review of the literature
on predictive controllers, principles of model-based control, challenges and
improvements in the tuning of predictive controllers, and control of processes
with dead time is provided in this chapter. The chapter also discusses the
detection and diagnosis of predictive controller issues and concludes with some
final remarks.
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• Chapter 3: Tuning of Model Predictive Controllers Based on Hybrid
Optimization - This chapter focuses on the proposed methodology for tuning
model predictive controllers using hybrid optimization techniques. It discusses
in detail the Model Predictive Control Tuning Approach (MPCT) and presents
various simulation case studies to validate the proposed methodology.

• Chapter 4: Filtered Smith Predictor Monitoring, Diagnosis, and
Self-tuning due to Unmeasured Abrupt Load Disturbance or Model
Plant Mismatch - This chapter details another significant part of the research
which involves monitoring, diagnosis, and self-tuning of the Filtered Smith
Predictor. It presents a detailed methodology, case studies, and experimental
application of the proposed approach.

• Chapter 5: Conclusions - This final chapter summarizes the key findings
of the research and discusses the implications of the research in the control
systems engineering field. It offers a recap of the main contributions of the
study and suggests future research directions based on the results.

In addition to these chapters, this thesis includes an extensive list of references
and several appendices. The appendices provide additional material related to the
adequacy of the process model to be controlled, DTC-GPC implementation exam-
ple, comparative performance evaluation of PI control with and without model plant
mismatch (MPM) and unmeasured disturbance (UD) monitoring structure, and PI
controller performance on the Temperature Control Lab (TCLab) system. There is
also an appendix that shows the construction circuit of the TCLab which is a board
oriented for the teaching and study of control theory, along with its implementa-
tion code. These supplementary materials offer a more in-depth exploration of the
research’s methodologies and findings.

1.4 Publications

This section presents an overview of the research outputs produced during this
doctoral research, published in peer-reviewed journals, and presented at academic
conferences. These works provide the basis for the methodologies and algorithms
presented in this thesis, demonstrating their development, validation, and applica-
tion.

1.4.1 Publications in Index Journals

• Giraldo, S.A.C., Melo, P.A., & Secchi, A.R. (2022). Tuning of Model
Predictive Controllers Based on Hybrid Optimization. Processes,
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10(2), 351. https://doi.org/10.3390/pr10020351

• Giraldo, S.A.C., Melo, P.A., & Secchi, A.R. (2023). Filtered Smith
Predictor Monitoring, Diagnosis and Self-tuning due to Unmeasured
Abrupt Load Disturbance or Model Plant Mismatch. Journal of
Process Control (Under Evaluation).

1.4.2 Conference Papers

• Giraldo, S.A.C., Melo, P.A., & Secchi, A.R. (2019).
Tuning of Model Predictive Control Based on Hy-
brid Optimization. IFAC-PapersOnLine, 52(1), 136-141.
https://doi.org/10.1016/j.ifacol.2019.06.050

• Garcia, C.A., Giraldo, S.A.C., & Secchi, A.R. (2023). Sintonia
otimizada do LMPC para uma coluna de destilação reativa em escala
de planta piloto. To be presented at the 24th Brazilian Congress of
Chemical Engineering in October 2023 (COBEQ 2023).

• Giraldo, S.A.C., Melo, P.A., & Secchi, A.R. (2023). Método de
ajuste de MPC para sistemas não quadrados baseado em otimização
híbrida. To be presented at the 24th Brazilian Congress of Chemical
Engineering in October 2023 (COBEQ 2023).

1.4.3 Additional Research Publications

In addition to the research directly linked to this thesis, the doctoral journey has led
to a series of publications focusing on various applications of Model Predictive Con-
trol (MPC). These works, although not directly connected to the main focus of this
thesis, have significantly enriched the research process. They have provided diverse
perspectives, deepened the understanding of MPC applications, and offered addi-
tional avenues of research exploration. These publications offer a detailed account
of the academic contributions achieved throughout the doctoral study.

• Giraldo, S.A.C., Supelano, R.C., d’Avila, T.C., Capron, B.D.O.,
Ribeiro, L.D., Campos, M.M., & Secchi, A.R. (2021). Model Predic-
tive Control with Dead-time Compensation Applied to a Gas Com-
pression System. Journal of Petroleum Science and Engineering,
203, 108580. https://doi.org/10.1016/j.petrol.2021.108580

• Giraldo, S.A.C., Supelano, R.C., d’Avila, T.C., Ribeiro, L.D., Cam-
pos, M.M., Neto, S.C., & Secchi, A.R. (2020). Controle avançado
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de sistemas de compressão de plataformas de produção de óleo e
gás natural. In Rio Oil & Gas 2020: Technical Papers (No. 181).
IBP. https://icongresso.ibp.itarget.com.br/arquivos/trabalhos_-
completos/ibp/3/final.IBP0274_20_18112020_133724.pdf

• Giraldo, S.A.C., Melo Junior, P.A., & Secchi, A.R. (2021).
Nonlinear Model Predictive Control with Full Dead-Time
Compensation. In Proceedings of the 23rd Brazilian
Congress of Chemical Engineering (COBEQ 2021) (pp. 4).
https://proceedings.science/cobeq/cobeq-2021/papers/nonlinear-
model-predictive-control-with-full-dead-time-compensation
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Chapter 2

Literature Review

This chapter comprehensively reviews the literature on model-based predictive con-
trol, focusing on Model Predictive Control (MPC) and Dead Time Compensator
(DTC). The chapter is structured into six sections. The first section reviews how
the performance of predictive controllers has been assessed in the past, considering
approaches based on minimum-variance principles and Linear-Quadratic Gaussian
(LQG) benchmarking. The second section introduces the principles of model-based
predictive control. The third section examines the challenges and improvements in
tuning predictive controllers, including discussions on multi-objective optimization
and tuning for non-square systems and robust performance. The fourth section
delves into the control of processes with dead time, a key issue in predictive con-
trol. The fifth section discusses the detection and diagnosis of predictive controller
issues, a crucial aspect of maintaining controller performance, followed by the final
remarks.

2.1 Performance Assessment of Predictive Con-

trollers

The control problem in a dynamic system can have diverse goals, such as (i) steady-
state regulation, (ii) set-point tracking, and (iii) disturbance rejection. Therefore,
tuning a control system must maintain stability and robustness compromises, i.e.,
sensitivity to changes in the plant parameters, speed of response, and tracking of
reference must be considered. The performance of a control system is generally
defined by different criteria, which can be divided into the following categories and
represented by Figure 2.1 (JELALI, 2013):

• Deterministic performance criteria. There are traditional performance mea-
sures of the response of a dynamic system, such as the settling time, overshoot,
rise time, steady-state error, etc.
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• Stochastic performance criteria. Typically include the variance, or equiva-
lently, the standard deviation of the controlled variable or control error.

Figure 2.1: Disturbances usually considered for control design.

Such criteria directly relate to process performance, product quality, and energy
or material consumption. The steady-state regulation is the essential control prob-
lem. Nevertheless, load disturbance rejection response is more critical in closed-loop
control, mainly because set-points are fixed in the operating point of the process
(SHINSKEY, 1996).

The stochastic criteria for performance assessment in process control usually use
the variance expressed in a regulatory control such as:

σ2
y =

1

Ns − 1

Ns∑
k=1

(y(k)− ȳ)2, (2.1)

where σ2
y is the output variance, Ns is the collected output samples, k is the current

instant, y(k) is the process output and ȳ is given by

ȳ =
1

Ns

Ns∑
k=1

y(k). (2.2)

Combining stochastic and deterministic criteria to guarantee product quality
consistency is useful when used for optimal controls such as in MPC. The variance
in the output variable of the process is related to product quality, so reducing this
variance can improve the final product and make it possible to operate the system
near the constraints to increase performance, reduce energy consumption, and save
raw materials. This relationship is illustrated in Figure 2.2.
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Figure 2.2: Relationship between economic performance and variance reduction.

2.1.1 Assessment Based on Minimum-Variance Principles

Minimum-variance method is concerned with the performance assessment of the
control loop with minimum output variance, which does not explicitly consider the
control effort. This kind of control has excessive control action and poor robustness,
although performance assessment with minimum-variance does provide helpful in-
formation as a global lower bound of process variance. In general, tighter quality
has, as a result, minor variation in the process output but requires more control
effort. So, it is interesting to know how far away the actual control performance is
from the best achievable performance with the same control action (HUANG and
SHAH, 1999). In mathematical form:

Given that E
{
u2
}
≤ α, what is the lowest achievable E

{
y2
}
? (2.3)

Solving the LQG problem with the following objective function,

J(ρg) = E
{
y2(k)

}
+ ρgE

{
u2(k)

}
, (2.4)

where E is the mathematical expectation, and ρg is the move suppression weight. It
is possible to obtain the solution of Equation (2.3), i.e., the achievable performance
given by the trade-off or Pareto curve, also known as the performance limit curve
depicted in Figure 2.3.

Optimal solutions of E {y2(k)} and E {u2(k)} are found by varying ρg. In BOYD
and BARRATT (1991), the authors showed that a variety of constraints, such as
hard constraints, robustness specification, etc., can be formed as convex optimization
problems and are readily solved via convex optimization tools. It is clear that given
E {u2(k)} = α, the minimum value (or the Pareto optimal value) of E {y2(k)} can
be found from this curve which represents the bound of performance; therefore, it
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Figure 2.3: An example of the trade-off or Pareto curve that separates achievable
and non-achievable performance regions.

can be used for performance assessment purpose.
LQG benchmark can be calculated in different ways as (i) via state space or

input-output model, (ii) via generalized predictive control (GPC), and (iii) via the
trade-off curve. For a focus on these theories, readers are referred to ÅSTRÖM and
WITTENMARK (1990); HUANG and SHAH (1999); KWAKERNAAK and SIVAN
(1972). This document instead emphasizes the LQG solution strategy via GPC.

In this section, the focus is predominantly on the utility of minimum-variance
methods for control loop performance assessment. While the mathematical rigor
presented, specifically through the LQG problem formulation, lends credibility to
the arguments, the study reveals limitations in its scope. Primarily, the approach
neglects to factor in external noise and real-world constraints, thereby undermining
its robustness and applicability. Additionally, although it references alternative LQG
benchmark calculations, it falls short of providing a comparative analysis with other
methodologies, missing an opportunity to contextualize its findings.

Minimum-Variance Control (MVC)

The minimum variance controller proposed by ÅSTRÖM (1970) aims to reduce the
effect of disturbances on the output. It is especially useful when the output of the
process to be controlled is contaminated by a stochastic disturbance that cannot be
eliminated but can be reduced.

The strategy of this controller is to apply the control signal at the k-time, taking
the past values of the input [u(k − 1), u(k − 2), ..., u(k − nb)] and of the output
[y(k), y(k − 1), y(k − 2), ..., y(k − na)] to minimize a J index.

J = E
{
y2(k + d+ 1|k)

}
, (2.5)
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where d is the discrete dead-time and y2(k + d + 1|k) represents the square of the
system output at a future time instant k + d + 1, conditioned on the information
available at the current time instant k. This equation indicates that at each sampling
period, k, a control signal must be determined to minimize this index J for the
subsequent time instant k + d+ 1.

The equation that represents the physical process can be described by an AR-
MAX model:

A(z−1)y(k) = z−dB(z−1)u(k) + C(z−1)v(k), (2.6)

where A(z−1), B(z−1) and C(z−1) are polynomials in z−1 of order na, nb and nc,
respectively:

A(z−1) = 1 + a1z
−1 + a2z

−2 + ...+ anaz
−na ,

B(z−1) = b1z
−1 + b2z

−2 + b3z
−3 + ...+ bnb

z−nb , (2.7)

C(z−1) = 1 + c1z
−1 + c2z

−2 + ...+ cncz
−nc .

Polynomial C is filtering the stochastic perturbation v(k) (white noise), and it is
added to the system response. Since this polynomial appears in the process model,
this term is used as a design parameter of the controller. Polynomial C is one degree
smaller than the polynomial A, nc = na−1, to form a causal transfer function. This
one is strongly related to an observer polynomial.

To obtain the equation of the model in an instant, k+d+1, it suffices to multiply
both terms of Equation (2.6) by zd+1 and to divide by A(z−1):

y(k + d+ 1) =
zB(z−1)

A(z−1)
u(k) +

C(z−1)

A(z−1)
v(k + d+ 1). (2.8)

Using the division algorithm (i.e., use long division), it can always write the
following polynomial identity (WELLSTEAD and ZARROP, 1991):

C(z−1) = A(z−1)F (z−1) + z−(d+1)G(z−1), (2.9)

where:

F (z−1) = 1 + f1z
−1 + f2z

−2 + ...+ fdz
−d,

G(z−1) = g0 + g1z
−1 + g2z

−2 + ...+ gna−1z
−na−1, (2.10)

it is possible to represent Equation (2.8) in the following way:

y(k + d+ 1) =
zB(z−1)

A(z−1)
u(k) + F (z−1)v(k + d+ 1) +

G(z−1)

A(z−1)
v(k). (2.11)
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In the instant k, the last term of Equation (2.11) has the stochastic noise v(k)
of the current and the past instants. These terms can be obtained by isolating v(k)
from Equation (2.6).

v(k) =
A(z−1)

C(z−1)
y(k)− z−dB(z−1)

C(z−1)
u(k) (2.12)

Substituting Equation (2.12) in Equation (2.11):

y(k + d+ 1) = F (z−1)v(k + d+ 1) +
G(z−1)

C(z−1)
y(k) +

zB(z−1)F (z−1)

C(z−1)
u(k). (2.13)

The expression of the output prediction y(k + d + 1) is formed by three terms:
the first term is formed by future instants not available at the current instant, and
the second and third terms have information from the past until the current instant.
Therefore, the following expression can be assumed:

ŷ(k + d+ 1|k) = G(z−1)

C(z−1)
y(k) +

zB(z−1)F (z−1)

C(z−1)
u(k), (2.14)

then, the best prediction of the output is given by:

y(k + d+ 1) = F (z−1)v(k + d+ 1) + ŷ(k + d+ 1|k). (2.15)

This result can be included in the cost function presented in Equation (2.5).

J = E
{
y2(k + d+ 1|k)

}
= E

{[
F (z−1)v(k + d+ 1) + ŷ(k + d+ 1|k)

]2} (2.16)

From Equation (2.16), it is observed that the cost function is minimized when
the output prediction is equal to zero, that is:

ŷ(k + d+ 1|k) = 0

G(z−1)

C(z−1)
y(k) +

zB(z−1)F (z−1)

C(z−1)
u(k) = 0

u(k) = − G(z−1)

zB(z−1)F (z−1)
y(k). (2.17)

This controller cancels the zeros of the system in an open loop due to the presence
of polynomial B in the denominator. However, it should be noted that if these zeros
are located outside of the unit circle, the system exhibits internal instability in a
closed-loop configuration, even in the nominal case. Consequently, any variation in
system parameters could exacerbate this unstable behavior.

The Minimum-Variance strategy can be implemented according to Figure 2.4.
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Figure 2.4: MV Regulator.

Example 2.1.1. Consider the following example of a first-order process in difference
equation form (WELLSTEAD and ZARROP, 1991)

y(k) = 0.8y(k − 1) + u(k − 1) + v(k) + 0.98v(k − 1), (2.18)

where v(k) is zero mean white noise of variance σ2
e = 1.

The model in the instant k + d+ 1 (d = 0) is

y(k + 1) = 0.8y(k) + u(k) + v(k + 1) + 0.98v(k), (2.19)

where the prediction model is:

ŷ(k + 1|k) = 0.8y(k) + u(k) + 0.98v(k). (2.20)

In this case, the order of the polynomials F and G is zero, therefore the identity
from Equation (2.9) takes the form

(1 + 0.98z−1) = (1− 0.8z−1)(1) + z−1(g0), (2.21)

leading to g0 = 1.78.
The MV controller is, therefore,

u(k) = −1.78y(k), (2.22)

note that Equation (2.19) can be written in the form

y(k + 1) = ŷ(k + 1|k) + v(k + 1), (2.23)
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so the closed-loop behavior with MV controller of Equation (2.22) is given by

y(k + 1) = v(k + 1). (2.24)

Figure 2.5 shows a simulation of the system switching from an open-loop process
for 0 ≤ k ≤ 200 to MV regulation for 201 ≤ k ≤ 400. Note that the output variance
as the control changes and under MV regulation, the output y(k) is the same as the
corrupting noise v(k).

Figure 2.5: Simple MV Regulator.

Minimum-Variance Harris Index

The performance of the MVC-based control loops described by HARRIS (1989)
makes a comparison between the output variance of the actual process, σ2

y, to the MV
output variance, σ2

MV , as obtained using the minimum variance controller applied to
an estimated time series model from measured output data (JELALI, 2013). Thus,
the Harris index is defined as

ηMV =
σ2
MV

σ2
y

, (2.25)

with ηMV is in the interval [0, 1], and correspond to the ratio of the variance, which
could theoretically be achieved under minimum variance control, to the actual vari-
ance. Values close to unity indicate good control and close to zero indicate poor
performance or instability.

To apply the Harris index on a system, it is necessary to collect the closed-
loop data appropriately for the controlled variables and to know or estimate the
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dead-time system.
Two important advantages can be highlighted when implementing this index:

1. When taking the ratio between two variances results in a metric that is inde-
pendent of the underlying disturbances of the system, which is fundamental
in industrial processes where there may be variations of disturbances.

2. It is easy to evaluate mainly when it is used in plants with thousands of control
loops since it is a non-scale metric in the range of 0 to 1.

While the framework offers two significant advantages—its insensitivity to un-
derlying system disturbances and its scalability for large industrial processes—the
study could be critiqued for not addressing potential limitations. For instance, the
necessity to know or estimate the dead-time system for applying the Harris Index
might introduce an element of approximation error that is not discussed.

Estimation from Time-Series Analysis

Taking the output measurement data of a closed-loop system, it is possible to esti-
mate the time-series using an ARMA model described as (JELALI, 2013):

A(z−1)y(k) = C(z−1)v(k). (2.26)

A series expansion, i.e., impulse response (FIR), of this model, gives by:

y(k) =

(
∞∑
i=0

eiz
−i

)
v(k)

=
(
e0 + e1z

−1 + · · ·+ ed−1z
d−1
)︸ ︷︷ ︸

feedback−invariant

v(k)

+
(
eτz

−d + ed+1z
−(d+1) + · · ·

)︸ ︷︷ ︸
feedback−varying

v(k). (2.27)

The estimation of the first d coefficients of the impulse response can be calculated
through d-term polynomial long division or solve the Diophantine identity given by:

Ĉ(z−1) = Â(z−1)F̂ (z−1) + z−dĜ(z−1), (2.28)

where F̂ (z−1) is an estimate of F (z−1) in Equation (2.9). The first d feedback-
invariant terms only depend on the inherent characteristics of the disturbance that
acts on the process and they are not a function of the process model or the con-
troller, Figure 2.6. Therefore, the minimum-variance estimate corresponding to the
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feedback-invariant part is given by:

σ2
MV =

d−1∑
i=0

e2iσ
2
v . (2.29)

Figure 2.6: An impulse response showing the contributions to the Harris index.

The first coefficient of the impulse response, e0, is often normalized to be equal
to unity.

The output variance can be estimated from the collected output samples using
Equation (2.1). Nevertheless, in JELALI (2013), the estimated time series model is
suggested to evaluate the current variance. From the series expansion of the time
series model from Equation (2.27), the output variance is given by:

σ2
y =

∞∑
i=0

e2iσ
2
v . (2.30)

Note that in Equation (2.25), the noise, v(k), does not affect the performance
index since it will be canceled. The index compares the sum of the d first impulse
response coefficients squared to the total sum; see Figure 2.6.

In DESBOROUGH and HARRIS (1992), the authors indicated that it is more
useful to replace σ2

y by the mean-square error of y to account for the offset:

ηMV =
σ̂2
MV

σ̂2
y + ȳ2

. (2.31)

A re-tuning controller is required when ηMV is considerably less than 1. If ηMV

is close to 1, the performance cannot be improved by re-tuning the actual controller,
and it is necessary to make process changes to achieve better performance.

While the mathematical rigor and detailed formulations are strengths of this
work, there are areas that merit critical evaluation. Firstly, the complexity of the
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ARMA models and their associated equations could be computationally intensive,
which might be a hindrance in real-time control applications. Secondly, the work
suggests replacing σ2

y with the mean-square error to account for the offset but does
not discuss the implications or the trade-offs involved in this substitution.

2.1.2 Linear-Quadratic Gaussian (LQG) Benchmarking

Considering a cost function of the form:

JGPC = E

{
p∑

j=1

[ŷ(k + j|k)− r(k + j)]2 + ρg

m∑
j=1

[∆u(k + j − 1)]2

}
, (2.32)

where ŷ(k + j|k) is an optimum j step ahead prediction of the system outputs on
data up to time k computed, p is the prediction horizon for process output; m is the
control horizon for process input, r(k+ j) is a future set-point or reference sequence
for the output vector, and ∆u(k + j − 1) is the future incremental control action
where ∆ = 1− z−1 is a difference operator (CLARKE et al., 1987).

The control action can be obtained by minimizing the objective function of Equa-
tion (2.32), but only the first control action is implemented to obtain a time-invariant
control law. For tuning parameters m = p, and p→∞, this objective function con-
verges to the LQG objective function.

KWAKERNAAK and SIVAN (1972) showed that the minimization of this LQG
objective function yields a time-invariant optimal control law. Therefore, the LQG
problem can be solved via an infinite GPC solution. It is important to note that
since p is infinity, GPC computation requires the solution of a large linear problem.
Nevertheless, a finite value of the prediction horizon is usually sufficient to achieve
the approximate infinite horizon LQG solution via the GPC approach.

2.2 Principles of Model-Based Predictive Control

The process control has been dramatically enhanced by the introduction and use
of Model-Based Predictive Control (MPC) systems. These controllers utilize an in-
ternal system model to predict future responses and generate appropriate control
actions, significantly improving control processes’ dynamic performance and stabil-
ity.

An MPC is a class of advanced control strategies that solves an optimal control
problem at every sampling time. The control uses an explicit model to predict the
system’s outputs at a future time by calculating the future control sequences to
minimize a cost function. However, only the first value of the control sequences
is applied to the process, and the rest of the predicted future actions are used as
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initial guesses for the next optimization cycle. The predictions are adjusted based
on new measurements and estimates of the state variables at the next sampling
instant, at which point the optimal control problem is solved again (CAMACHO
and BORDONS, 2002; CLARKE et al., 1987).

The MPC optimization problem can be described in the classical formulation as:

min
u,ϵk

{
J =

ny∑
i=1

p∑
n=1

{
Qii [ŷi(k + n|k)− ri(k + n)]2

}
+

nu∑
j=1

mj∑
n=1

{
Wjj [∆uj(k + n− 1)]2

}
+ ρϵ2k

}
, (2.33a)

subject to

x(k + n) = f(x(k + n− 1), u(k + n− 1), µ), n = 1, . . . , p (2.33b)

g(ŷ(k + n), x(k + n), u(k + n), µ) = 0, n = 1, . . . , p (2.33c)

x(k) = x̂(k) (2.33d)

ujmin
≤ uj(k + n− 1) ≤ ujmax , j = 1, . . . , nu and n = 1, . . . ,mj (2.33e)

∆ujmin
≤ uj(k + n− 1)− uj(k + n− 2) ≤ ∆ujmax ,

j = 1, . . . , nu and n = 1, . . . ,mj (2.33f)

yimin
− ϵk ≤ ŷi(k + n) ≤ yimax + ϵk, i = 1, . . . , ny and n = 1, . . . , p,

(2.33g)

where J is the cost function; y, x, and u are vectors of the controlled, state, and
manipulated variables, respectively; r is the reference vector; and µ is the vector of
the model parameters, which can include disturbances. Ts represents the sampling
time, which defines the interval at which the control actions are applied. Equa-
tions (2.33b) and (2.33c) describe the process model, Equation (2.33d) is the initial
condition of the prediction horizon, and Equations (2.33e)–(2.33g) are the lower
and upper bounds on the manipulated variables and their rate of variation, and the
lower and upper bounds on the controlled variables. ny and nu are the numbers
of controlled and manipulated variables, respectively, of the MIMO system. p is
the prediction horizon value and mj is the control horizon value of the j-th plant
input. All control horizons are condensed in a vector m. Q and W are positive
semidefinite weight matrices. The future reference trajectory for the i-th plant out-
put at the n-th prediction horizon step is given by ri(k + n). The predicted value
of the i-th plant output at the n-th prediction horizon step is given by ŷi(k + n),
where k is the current control interval. The slack variable ϵk is defined for the entire
control interval k, a single parameter used throughout the prediction horizon. ρ is
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the penalty associated with the violation of soft constraints.
In Equation (2.33), Ts, p, m, Q, and W are the MPC tuning parameters. Among

these, Ts and p are chosen based on the dynamics and performance requirements
of the control system, independently of its size. In contrast, m, Q, and W are
parameters that may require more intricate tuning as the size and complexity of the
control system increase. According to CAMPOS et al. (2013), a poor tuning of the
MPC parameters contributes to an ill-posed optimization control problem, which
can cause undesired oscillations in the controlled variables. Therefore, each MPC
tuning parameter influences the system dynamics (TRIERWEILER and FARINA,
2003). A good selection of the sampling period, control, and prediction horizons
allow a good system behavior estimate. It avoids a high computational cost in the
calculation of the control action. The weight matrices guarantee the performance
and robustness of the system, providing priorities and scaling among the considered
process variables.

2.3 Challenges and Improvements in Tuning of Pre-

dictive Controllers

The poor performance of the MPC, in addition to the deterioration of the internal
model of the controller or the entry of an unmeasured disturbance, can be given to
the bad tuning of the controller that eventually does not allow it to reach its control
objectives. The tuning of an MPC is not a simple task because of the high number
of parameters that increase as the process variables increase.

As part of a lower level in a control function hierarchy, the MPC’s role is to
minimize the proposed operation objectives, trying to maintain the outputs in the
desirable values respecting the constraints, and using the minimal control effort
(QIN and BADGWELL, 2003). Different proposals to set the prediction and con-
trol horizons and the weighting matrices of the objective function can be found in
the literature. Some of these works are presented in a review by RANI and UN-
BEHAUEN (1997), which addressed tuning methods for Dynamic Matrix Control
(DMC) and Generalized Predictive Control (GPC) from 1984–1995. Next, in GAR-
RIGA and SOROUSH (2010), a review of the heuristic and theoretical tunings of the
MPC method is presented up to the year 2009 and, in ALHAJERI and SOROUSH
(2020), a review is presented covering research up to the year 2019.

As indicated in ABRASHOV et al. (2017), the classical MPC-tuning procedure
did not consider the uncertainties in estimating the MPC parameters. These tunings
lack robustness when the system model is not perfectly known. Consequently, model
uncertainties provide an error in future output signal estimation. Some authors have
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worked in this aspect to improve the behavior of the MPC, within which the works
of CHAN and HUA (2015); COETZEE et al. (2010); HAN et al. (2006) can be cited.

According to GARRIGA and SOROUSH (2010), the MPC tuning strategies, as
a general rule, can be divided into two categories: ad-hoc and self-tuning. The first
one determines the controller parameters by explicit expressions or bounds based
on approximation/simulation or parameters of the process dynamic, and the second
one sets tuning parameters through optimization algorithms.

There is still no consensus on which methodology provides the best tuning regard-
ing the controller’s performance and computational cost. For instance, in SHRID-
HAR and COOPER (1997, 1998), ad-hoc systematic expressions were employed
for tuning the parameters of an MPC based on DMC in both SISO and MIMO
systems. Their tuning method was based on a first-order plus dead time (FOPDT)
model approximation of the process with zero-order retention. Based on the FOPDT
approximation, they obtained an equation to calculate the suppression weights of
the controller. The prediction horizon was calculated using an equation based on
the condition number of the matrix A of the process, and the control horizon was
based on the time constant of the model. TRIERWEILER and FARINA (2003)
proposed a robust performance number index to tune the MPC parameters, reflect-
ing the system’s directionality and attainable performance to determine the weight
matrices.

In TRAN et al. (2015), a tuning procedure for GPC was divided into two steps.
The first step matched the GPC gain to an arbitrary linear-time-invariant controller
(the favorite controller) using the transfer function of the control law. Then, the
weight matrices in the cost function were found, resulting in the GPC gain ob-
tained in the first step. A methodology of tuning the control parameters of GPC
with long-time-delay plants was proposed in the work of GARCÍA and ALBERTOS
(2013). Their methodology used an equivalent representation of the Smith predictor
structure. A tuning parameter was provided to reach an intuitive tradeoff between
performance and robust stability using sensitivity transfer functions without delay.

Different self-tuning procedures have also been reported in the literature. For
instance, in AL-GHAZZAWI et al. (2001) expressed a relationship between the MPC
controller’s parameters and the process outputs through a linear approximation
algorithm to analytically obtain the sensitivity functions of Q and W in constrained
problems. The authors used these functions to guide the MPC feedback response
within predefined performance specifications. In VAN DER LEE et al. (2008), fuzzy
goal programming using the integral square error (ISE) criterion was used to find
the MPC tuning parameters through a metaheuristic.

Some contributions were focused on characterizing the set of solutions in the
Pareto front, defining different objectives regarding the required specifications of
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the process, and solving a multi-objective problem to obtain the tuning parameters
of the MPC (REYNOSO-MEZA et al., 2013; VALLERIO et al., 2014). A recursive
multi-objective optimization algorithm was presented in WEI LIU and GEORGE
WANG (2000), which minimized the sensitivity function between the tuning pa-
rameters and the closed-loop performance as the goals of a mixed-integer nonlinear
optimization problem. In NERY JÚNIOR et al. (2014), an MPC tuning method was
proposed using constrained mixed-integer nonlinear programming. In their work, a
particle swarm optimization approach was implemented to solve the tuning problem
for the worst-case model mismatch scenario, employing a comprehensive combina-
tion of the condition number and the Morari resiliency index. In YAMASHITA et al.
(2016), two optimization algorithms, lexicographic optimization tuning and compro-
mised tuning, were used to obtain the weighting matrices of the MPC control law. In
LOZANO SANTAMARÍA and GÓMEZ (2016), a general tuning algorithm for non-
linear model predictive control (NMPC) was presented. The method was based on
the utopia tracking concept in a multi-objective optimization problem to adjust the
objective function weights. Then, closed-loop performance index optimization was
applied to find the horizon lengths. In the work of DE SCHUTTER et al. (2020),
an open-source software framework was introduced to tune an economic nonlinear
model predictive control (ENMPC) process. This tool calculates the optimal stable
states or periodic trajectories for constrained nonlinear systems with an economic
objective, returning the corresponding positive-definite stage cost matrices for a
tracking (N)MPC problem.

Generally, the prediction and control horizons are set following several
rules (GARRIGA and SOROUSH, 2010; TRIERWEILER and FARINA, 2003),
which have shown satisfactory performance. In the academic literature, selecting
single values for control and prediction horizons is common. However, in commer-
cial packages for MPC, the prediction horizon is usually the same for all outputs,
although a different control horizon is defined for each input variable. This pol-
icy has generally been employed in input blocking design, described in RICKER
(1985), and extensively used in industry to reduce computation costs (QIN and
BADGWELL, 2003). With this strategy, the control input determined by the op-
timization stage cannot vary freely at each sampling time of the prediction horizon
but only in predefined patterns.

This section has offered an overview of the challenges and methods in the field
of MPC tuning, from heuristic approaches to optimization-based strategies. In light
of the vast landscape of existing methods, the subsequent chapters will delve into
specific tuning strategies highlighted in the literature. Particular attention will
be paid to self-tuning methods, which form the core focus of this research. By
examining these approaches in detail, this work aims to contribute to the ongoing
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discourse of MPC tuning strategies.

2.3.1 Multi-Objective Optimization Technique for Model

Predictive Control Tuning: Lexicographic Versus Com-

promise Approaches

This tuning method was proposed in YAMASHITA et al. (2016), where two multi-
objective optimizations were implemented to find the weighting matrices of the
MPC. The first approach was called as Lexicographic Tuning Technique (LTT)
where a lexicographic optimization algorithm is solved to rank the importance of the
outputs of the plant. The second one was called as Compromise Tuning Technique
(CTT) which uses a compromise optimization approach to solve a multi-objective
optimization problem by finding the closest feasible solution to the desired trajectory
in terms of the Euclidian distance.

Lexicographic Tuning Technique

This technique arranges the objective function of the MPC in order of importance.
This approach is suitable for several formulations of MPC. The authors considered
a square system where the number of controlled variables is the same as the number
of the manipulated variables to find the MPC parameters in five steps:

1. the user needs to assign the relative importance of the process outputs;

2. an input-output pair is defined for each process output;

3. numerical values of the inputs and outputs, as well as the gains of system
model are normalized;

4. the next objective function is minimized:

Fi(x) =
θt∑

k=1

∣∣∣∣∣∣yrefi (k)− yi(k)
∣∣∣∣∣∣2 , i = 1, 2, ..., ny, (2.34)

where θt is the tuning horizon, yrefi (k) is the discretized reference trajectory of
output i, yi(k) is the closed-loop trajectory of output i, k = 1, 2, ..., θt calcu-
lated using the unconstrained version of optimization problem, with objective
function given by Equation (2.33); xdv is the vector of decision variables or
tuning parameters, xdv = [qδ1 , ..., qδn , qλ1 , ..., qλm ], and n is the number of
input-output pairs.
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5. the Lexicographic optimization is solved:

min
xdv,δ

V =
w′∑
i=1

Fi(x) + ϵTStϵ (2.35)

s.t.

Fi(x)− F ∗
i − ϵi ≤ 0, i = 1, ..., w′ − 1

ϵi ≥ 0, i = 1, ..., w′ − 1

LB ≤ x ≤ UB,

where w′ is the current tuning step and defines the number of the current
output objectives, ϵ is a vector of slack variables, St is a diagonal weighting
matrix, LB and UB are the lower and upper bounds of the decision variables
and F ∗

i is the optimum value of the objective goal (utopia solution).

Compromise Tuning Technique

In this technique, the tuning goals are defined in the same way as LTT, where the
utopia solution is obtained by the following optimization problem:

F ∗
i (x) =min

x
Fi(x), i = 1, ..., w (2.36)

s.t.

LB ≤ x ≤ UB.

With the utopia solution, the CTT try to find the closest feasible solution to it,
in terms of the Euclidian distance.

min
x
||F∗(x)− F(x)||2 (2.37)

s.t.

LB ≤ x ≤ UB.

These two tuning techniques are defined in terms of output reference trajectories,
describing the desired time-domain characteristics. As can be observed in the LTT
method, the degrees of freedom depend on the number of system inputs to define
the goals of the objective function and is more suitable for square processes. The
CTT is independent of the size of the system because it can take into account as
many objectives as necessary. In these methods, the selection of the Pareto optimum
solutions is done automatically once the tuning goals are specified.
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2.3.2 Tuning Strategy for Non-Square Systems and Range

Controlled Variables Based on Multi-Scenarios Ap-

proach for Model Predictive Control

In different engineering branches, such as chemical engineering, it is common to
find non-square systems with more outputs than inputs. Therefore, the system
must operate in zones using the soft-constraint operation to attend to the control
specifications (LIMA and GEORGAKIS, 2006).

SANTOS et al. (2017) proposed a tuning strategy based on decomposing the
non-square system in square sub-scenarios with two or more channels using all per-
mutations of possible combinations of inputs and outputs.

Usually, the original system tends to be reduced to the square concerning avail-
able manipulated and active controlled variables, which violates the soft-constraints.
Nevertheless, a smaller system can bring performance limitations not seen in the
full problem. Therefore, it is necessary to calculate the best attainable performance
function for all scenarios to determine the system’s adequate scaling and the tuning
matrices’ weights.

Since a non-square system is considered, the control of the variables is done by
zones, and every submodel may have attainable or unattainable constraints that
need consideration for the closed-loop performance. Only the important scenarios
are chosen using segmentation techniques, such as operating frequency. This method
determines the attainable closed-loop transfer function matrix for the whole process
model, fulfilling the attainable constraints present in each submodel originating from
the complete model. A desirable deterministic performance is defined to determine
the smallest achievable value for the rise time, respecting the control action limi-
tation and considering maximal sensitivity robustness criterion using the following
objective function:

min
Ω

ϕ(Ω) =min
Ω

nu∑
i=1

(rti)
2 (2.38)

s.t

rRPN(κ) ≤ 1

Ms(κ) ≤ 2.2

Ms(κ) ≥ 1.2

Mk(κ) ≤ 10

where rt is the desired rise time, Ω = [rt1, rt2, ..., rti] with i = 1...nu being the
number of outputs of the complete transfer matrix, κ = 1...nc, the number of possible
square subsystems originated from the full model, rRPN(κ) the relatively robust
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performance number of the scenario κ, Ms(κ) corresponds to the maximal sensitivity
value and Mk(κ) to the maximal value of the function K(s) that relates to ∆u =

K(s)∆yset for each scenario, where ∆yset is the set-point variation.
The rRPN(κ) is obtained as a deviation between the area under the curve of

the function Γ (AT ) and the area under the curve of the function ΓREF (AREF ).

rRPN =
AT − AREF

AREF

(2.39)

Γ is the Robust performance function given by:

Γ(G,T, ω) =

√
σ̄([I−T(jω)]T(jω))

[
β∗(G(jω)) +

1

β∗(G(jω))

]
, (2.40)

RPN = Γmax(G,T, ω) = max [Γ(G,T, ω)] , (2.41)

where β∗(G(jω)) is the minimum condition number of G(jω), σ̄([I−T(jω)]T(jω))

is the maximal singular value of the transfer function matrix [I−T(jω)]T(jω), and
T(s) is the attainable closed-loop transfer function for the model G(s) and the
controller C(s).

The function ΓREF represents the minimal possible value of the function Γ for a
determined desirable performance and the corresponding minimum condition num-
ber of the transfer function matrix. The functions Γ and ΓREF are illustrated in
Figure 2.7.

Figure 2.7: Γ and ΓREF functions (SANTOS et al., 2017).
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This optimization aims to obtain the faster desired closed-loop performance func-
tion, respecting the attainable constraints existing in each scenario. The system is
scaled using as a reference the frequency was found through the following optimiza-
tion function

β∗ = min
L,R
||βκ(LG(iωMax, κ)R)||∞, (2.42)

where R and L are diagonal scaling matrices for inputs and outputs, respectively,
G(iωMax, κ) is the original model of the process evaluated in the frequency ωMax, κ

where the RPN of the attainable trajectory for each scenario κ occurs, β(G) is the
condition number of the matrix G, and ||x||∞ is the infinity norm of x (LIMA and
GEORGAKIS, 2006).

The tuning controller parameters are found to minimize the following optimiza-
tion problem, where the decision variables, x = [ϵ,Q,W], correspond to the weight-
ing matrices Q,W and ϵ, which will penalize the move suppression, the error between
the outputs and the set-point signal, and the soft-constraint violation, respectively.

min
x

ψ(x) =min
x

 nc∑
κ=1

∥∥∥∥∥∥Tκ(s)∆yset − (ŷ − ybias)︸ ︷︷ ︸
∆ŷ

∥∥∥∥∥∥
2

+
nc∑
κ=1

ϵ̂2κ

 , (2.43)

where Tκ(s) is the attainable closed-loop transfer function for the system, ŷ is the
MPC simulated outputs, and ϵ̂κ is the maximal violation of the soft-constraint given
by the controlled variables using the scaled system and controller based on the model
G.

2.3.3 Tuning of MPC for Robust Performance

The modeling of industrial processes is strongly linked to different types of uncer-
tainties, making the closed-loop robustness of an MPC control system indispensable
when using a tuning technique to find its parameters. In the literature, it is possible
to find different MPC tuning strategies. However, few of them present a robustness
guarantee that assures the algorithm’s practical implementation.

Some authors have presented robust MPC schemes to consider model uncertainty
explicitly, such as in SCOKAERT and MAYNE (1998), which used the min-max op-
timization problem, presented in Equation (2.44), to find the proper trajectory of
the input control when the system is operating in the worst condition, where θ

is the magnitude of model uncertainty. This approach improved the performance
compared to the standard MPC scheme and avoided the feasibility problems that
result from using the min-max formulation because it includes the notion that feed-
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back is present. Nevertheless, the computational demands of the feedback min-max
algorithms can be very high.

min
∆u

max
θ

p∑
j=1

||ŷ(k + j|k)− r(k + j)||2Q +
m∑
j=1

||∆u(k + j − 1)||2W (2.44)

Tuning Strategy based on Min-Max optimization

In the work of HAN et al. (2006) is presented a robust tuning strategy based on
Min-Max optimization using Particle Swarm Optimization (PSO) to deal with the
complex optimization problem. This strategy tries to solve the following objective
function:

min
PC

max
PG

EISTWE(PC,PG) (2.45)

s.t.

PC ∈ S

PG ∈ U,

where PC = [p,m, λ1, ..., λnu ], PG is a vector that contains the model parameters
such as the gain, the time constant, the delay and the sampling period; U is a close
set which represents the variation range of model parameters relating to the model
uncertainty θ; S is a predefined problem space; the EISTWE is a performance
index giving by:

EISTWE =

(
1 +

λ (a+ b)

Setpoint

)∫ ∞

0

(
tne(t)2 + δ∆u(t)2

)
dt+ ρr m p, (2.46)

where Setpoint is the final value of r(t), e(t) is the difference between reference
trajectory and process output, e(t) = r(t)− y(t), ∆u(t) denotes the move of ma-
nipulated variables; λ, δ, and ρr are weights, a is the maximum desirable overshoot
and b is the first decay peak of a typical overdamped second-order response.

Faster time response is forced by tn multiplier, where n is fixed at 1, 2, or 3. The
term δ∆u(t)2 avoids sharp and large moves in the manipulated variables.

In the EISTWE index, a combination of a proper p and a proper smaller m is
made, so the last term of Equation (2.46) is to avoid large p and m being selected.

While the methodology employs the EISTWE performance index to favor the
selection of parameters that enhance robustness and reduce real-time computational
burden, a more extensive validation across different systems and operational con-
ditions is warranted. Although the acquired parameters suggest reduced computa-
tional overhead, a rigorous assessment of computational efficiency in broader sce-
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narios would further solidify its contributions. The strategy offers valuable insights
into the design of robust MPC controllers; however, additional research is needed to
confirm its applicability and efficiency across various systems.

Tuning MPC with Anticipation

ABRASHOV et al. (2017) presented a robust MPC tuning method fitting the con-
troller directly in the anticipative mode where the future reference is known.

Initially, the authors established a desired closed-loop transfer function to achieve
a tuning that approximates this dynamic, so the closed-loop transfer function is given
by:

Gref
CL(z

−1) =
RB(z

−1)

RA(z−1)
z−1, (2.47)

where RB(z
−1) and RA(z

−1) are the polynomials of the numerator and denominator
of degree nrb and nra respectively with corresponding coefficients rb, ra.

In scenarios where future reference signals are not known, an alternative approach
is used. The MPC’s actual closed-loop transfer function, GCL(z

−1), is derived based
on the following expression:

GCL(z
−1) =

BCL(z
−1)

ACL(z−1)
z−1, (2.48)

In this equation, BCL(z
−1) and ACL(z

−1) are the numerator and denominator poly-
nomials of the actual MPC closed-loop transfer function. The coefficient vectors
for these polynomials are represented by b and a, respectively, where to ensure the
same performance of the reference transfer function, it must be ensured that the
following function is fulfilled:

fi(x) = 0, f(x) = [b− rb, a− ra], i = 1, ..., L, (2.49)

where L is the length of vector f . If coefficient vectors are of different sizes, the
smaller one is filled with zeros for missing polynomial degrees. To ensure the exact
solution of Equation (2.49), it is necessary to formulate the following optimization
problem:

x = arg min
x

ϵT ϵ (2.50)

s.t. − ϵ ≤ fi(x) ≤ ϵ, i = 1, ...L

Solving the optimization problem given by Equation (2.50) permits the matching
of the closed-loop transfer functions in Equations (2.47) and (2.48). Nevertheless,
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to avoid numerical issues, the problem can be solved in the frequency domain by
replacing f(x) in Equation (2.49) by w(ω) = Gref

CL(ω) − GCL(ω) with Gref
CL(ω),

GCL(ω) which are the frequency domain representations of Gref
CL(z

−1), GCL(z
−1)

respectively.
When the future reference is considered, the MPC closed-loop transfer function

is given by:

y(z) =
GCL(z)

κs
(k1r1(z) + k2r2(z) + . . .+ kprp(z)) (2.51)

where κs =
∑p

i=1 ki, ki are the elements of the vector K1, and ri(z) are the cor-
responding reference signal elements. The vector K1 represents the first row of
the optimal gain matrix K, which is analytically obtained by solving the objective
function of the MPC. Specifically, the optimal gain matrix K is computed as:

K = (GTQG+W)−1GTQ (2.52)

where G is the coefficient matrix, Q is the reference tracking weighting matrix, and
W is the control increment weighting matrix.

The following optimization problem is solved to minimize the variance of gain
vector K1 and obtain a prescribed controller behavior while the reference varies and
consider that the initial system has M parametric states:

x = arg min
x

[
αϵT ϵ+ (1− α)

(
K1 −

κs
p

)T (
K1 −

κs
p

)]
(2.53)

s.t. − ϵ ≤ fi,j(x) ≤ ϵ, i = 1, ...L, j = 1, ...M

fj(x) = [bj − rbj , aj − raj ]

where α is a weighting coefficient.
For the robustness problem, this approach considers that the closed-loop perfor-

mance could be achieved for each M parametric state of the system. A parametric
state refers to a specific set of operating conditions or configurations characterized
by a particular set of parameters. Therefore, any robust controller structure can be
implemented to achieve closed-loop performance for each parametric state. The cor-
responding transfer functions for each parametric state are Gref

CL1
(z), . . . ,Gref

CLM
(z).

MPC closed-loop transfer functions are also calculated for each parametric state
and denoted as GCL1(z), . . . ,GCLM

(z) using the optimization problem presented in
Equation (2.53).

Although the mathematical formulation of this method enhances the MPC ro-
bustness, it is imperative to consider certain limitations. The computational com-
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plexity associated with the optimization problems remains undetermined, which
could impede real-time applications, especially for systems with multiple paramet-
ric states. Furthermore, the authors themselves highlight the restrictive nature of
their parametrization via the weighting matrices Q and W, posing potential chal-
lenges for controller adaptability. The method’s performance under stochastic or
uncertain conditions is not exhaustively discussed. Thus, while contributing sig-
nificantly to robust MPC design, the method raises questions that warrant further
investigation.

2.3.4 Analysis of MPC Controller Tuning Methods

The scientific literature proposes various methodologies for optimizing the tuning
parameters of MPC. Notable among these are LTT and CTT, which rely on pre-
defined reference trajectories and employ optimization algorithms to adjust system
parameters (as mentioned in previous sections). While these methods have been
successful in achieving the desired process behavior, it is important to scrutinize
their limitations. Such trajectory-based methods are inherently susceptible to model
inaccuracies and disturbances, thereby raising questions about their robustness. Ad-
ditionally, these algorithms often result in locally optimal solutions, posing the risk
of suboptimal system-level performance.

The advent of tuning methods for non-square systems has piqued interest, espe-
cially due to its applicability to complex chemical engineering processes. Despite the
constraints in degrees of freedom that these systems present, working in zones, as
discussed in section 2.3.2, appears to be a viable approach. Yet, this approach does
not come without its challenges. The robustness during transitions between differ-
ent zones and the implications for system stability remain critical and unresolved
issues.

It is paramount to note the significance of robust tuning methodologies, such as
those presented in section 2.3.3. Traditional tuning often relies heavily on aggressive
adjustments based on the internal model of the controller. Such aggressive tuning,
although effective under certain conditions, exposes the system to instability risks
in the presence of model-plant mismatches.

In conclusion, while the existing tuning methods offer an array of benefits, none
appear to be universally applicable to all types of systems. Each approach comes
with its own set of limitations and challenges that must be carefully weighed. The
observations indicate a manifest need for future research focused on more versatile
and robust tuning strategies.
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2.4 Control of Processes with Dead Time

Most chemical industrial processes have dead times (or time delays) in their dy-
namics. Typical examples of industrial processes are distillation columns and heat
exchangers. Dead time can be caused, for example, by the time required to transport
mass, energy, or information, by the accumulation of time lag in a great number of
low-order systems connected in series, and even by the necessary time to perform
the algorithm control law (NORMEY-RICO and CAMACHO, 2007).

Two control structures are widely used in industry as ways to address the prob-
lems caused by dead-time in the closed-loop system: dead-time compensator (DTC)
and model-based predictive control (MPC). DTCs use a prediction of the process
output that allows, under some circumstances, a controller to be designed to the
process as if it were delay-free (NORMEY-RICO and CAMACHO, 2008). MPC
also uses predictions, but in this case, the control signal is obtained as the solution
of an optimization problem at each iteration (CAMACHO and BORDONS, 2002).

The forthcoming sections discuss the fundamental principles and mechanisms
of the DTC and MPC control structures for systems with dead time are explored.
The aim is to provide a comprehensive understanding of how these strategies can
effectively tackle the challenges of dead times in controlling chemical industrial pro-
cesses.

2.4.1 Smith Predictor

In 1957, the North-American engineer Otto J. M. Smith proposed the most popular
dead-time compensation algorithm, known as Smith predictor (SP) (SMITH, 1957).
This algorithm uses a linear model identified from the real process to predict the
future behavior of the process output.

The control structure is shown in Figure 2.8. In the figure, Pn(s) = Gn(s)e
−Lns

is the nominal model of the process, Gn(s) is the model without transport delay,
known in the literature as a fast model, Ln is the transport delay of the nominal
model, C(s) is the primary controller, P (s) is the real plant, u(t) is the control
action, y(t) is the process variable, q(t) is the load disturbance, n1(t) is the output
disturbance, n2(t) is the measured noise, ep(t) is the predicted error, r(t) is the
reference trajectory, e(t) is the control error and f(t) is the predicted output.

This structure predicts the output of the real process, y(t), based on the fast
model, Gn(s), predicting the behavior of the system as if it had no transport delay,
e−Lns. Thus, the control can anticipate a probable behavior of the system, P (s),
in a time equal to the transport delay (ZHONG, 2006). Based on this structure, it
is possible to design the primary controller, C(s), considering the process without
delay.
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Figure 2.8: Smith predictor.

Several SP-based control strategies have emerged in recent years to mitigate
the key limitations associated with SP control (PALMOR, 1996). These limitations
include its inapplicability to unstable systems, slow disturbance dynamics, and chal-
lenges in dealing with dead times in the fast model of MIMO systems. While it has
been traditionally thought that dead times cannot be entirely eliminated in MIMO
systems, this notion is not universally valid. As outlined in Chapter 11 of NORMEY-
RICO and CAMACHO (2007), the feasibility of dead time removal is dependent on
specific design steps and the characteristics of the system in question. Therefore,
the difficulty in primary controller design varies according to these factors.

2.4.2 Filtered Smith Predictor

As a result of the inherent limitations of the original Smith Predictor, numer-
ous modifications and tuning procedures have been proposed over the past four
decades. These improvements aim to enhance performance under measurable and
non-measurable disturbances, control integrating or unstable plants, and increase
robustness or simplify tuning. Though generally more complex than the original
Smith Predictor and particularly designed for specific types of processes, these con-
trol techniques are extensively reviewed in relevant literature (NORMEY-RICO and
CAMACHO, 2008; PALMOR, 1996).

A unified SISO Dead-Time Compensator design approach has been suggested in
NORMEY-RICO and CAMACHO (2009), known as the Filtered Smith Predictor
(FSP). Capable of controlling stable, integrating, and unstable dead-time processes,
this novel controller allows for unified design and tuning.

The FSP structure to control a process with dominant time delay is depicted in
Fig 2.9. P (s) is the plant in continuous time, ZOH is a zero-order hold, Ts is the
sampling period, Fr(z) is the predictor filter, C(z) is the primary controller, Gn(z)

is the fast model, Pn(z) = Gn(z)z
−dn is the nominal model (discretized with a zero-
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order hold), dn is the nominal time delay. Moreover, r(k) is the reference trajectory,
e(k) is the control input, u(k) is the control action, y(k) is the output, ŷ(k) is the
model output, yp(k) is the output prediction, q(k) is the load disturbance, and n(k)
is an output disturbance.

Figure 2.9: The Filtered Smith Predictor (FSP).

The predictor filter, Fr(z), allows adjusting the disturbance rejection response
and noise attenuation, which increases the robustness and guarantees internal sta-
bility of the control structure (FLESCH et al., 2011). The prediction error, ep(k), is
zero when the model is perfect, and the structure works appropriately for the stable
process. However, when there is a modeling error in the time delay, the signal ep(k)
starts to oscillate because of the lag of the signals y(k) and ŷ(k), which may lead
the closed-loop system to instability. Therefore, the control structure has improved
its response by designing the filter to attenuate these oscillations, making it more
robust.

In the case that there is no modeling error, i.e., P (z) = Pn(z), the closed-loop
transfer function is represented by Equation (2.54), by Equation (2.55) for load
disturbance, and by Equation (2.56) for output disturbance:

Hyr(z) =
y(k)

r(k)
=

C(z)Pn(z)

1 + C(z)Gn(z)
, (2.54)

Hyq(z) =
y(k)

q(k)
= Pn(z)

[
1− C(z)Pn(z)Fr(z)

1 + C(z)Gn(z)

]
. (2.55)

Hyn(z) =
y(k)

n(k)
=

[
1− C(z)Pn(z)Fr(z)

1 + C(z)Gn(z)

]
. (2.56)

From Equations (2.54) to (2.56), it is possible to see that the filter Fr(z) has
no effect on the reference track but can be used to change the disturbance rejection
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responses in case slow, integrating, or unstable poles appear. The structure of Figure
2.9 is only used for analysis and cannot be used for implementation in the unstable
case since internal instability occurs when the load disturbance appears. For this
reason, it has to be undertaken to implement the unified structure presented in
Figure 2.10.

Figure 2.10: Unified Filtered Smith Predictor.

The S(z) block guarantees the internal stability of the structure and is defined
by:

S(z) = Gn(z)
[
1− z−dnFr(z)

]
. (2.57)

For the new structure to be internally stable, it must be guaranteed that the
S(z) filter and the Fr(z) filter are stable. In the case of the Fr(z) filter, it is easy to
guarantee its stability since its poles are chosen freely by the designer. On the other
hand, in the S(z) filter, given by Equation (2.57), it can be noted that if Gn(z)

has unstable poles, these poles only can be canceled by the Fr(z) filter avoiding
the internal instability. For this reason, the term

[
1− z−dnFr(z)

]
must always be

calculated in a way that cancels the unstable dynamics of the fast plant model,
Gn(z). In this way, the predicted output yp(k) will be a stable prediction of y(k).

2.4.3 Robustness of Filtered Smith Predictor

Small modeling errors in the control structure can lead the system to instability.
This problem can be solved with a proper choice of the Fr(z) filter. The robust-
ness analysis of the system in the presence of modeling errors is typically done by
representing the system through a family of models, Pi(z), rather than representing
the plant with a linear model. Among the models belonging to the family, there
is a model called the nominal model, Pn(z), which is usually employed to repre-
sent the standard or average behavior of the system. This type of representation is
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an unstructured uncertainty description, presented in Equation (2.58), which repre-
sents the unmodeled dynamics by the transfer functions, nonlinearities, and effects
derived from linearization processes. A significant advantage of this procedure is
that it allows a simple and unified representation of uncertainties regardless of their
origin (NORMEY-RICO and CAMACHO, 2007).

Pi(z) = Pn(z) [1 + δPi(z)] = Pn(z) + ∆Pi(z), (2.58)

with:
|δPi(z)| ≤ δPi(z), (2.59)

where δPi(z) defines the frequency domain error shape for each model i, while δPi(z)

is its limiting modulus. The frequency domain representation is obtained by replac-
ing z with ejωTs , where Ts is the sampling period and the term ejωTs is periodic in
frequency with a period of 2π

Ts
. From Equation (2.58), it can also be observed that:

δPi(z) =
Pi(z)− Pn(z)

Pn(z)
. (2.60)

The characteristic equation of the closed-loop system for FSP, defined for Pi(z) ̸=
Pn(z), is described by:

1 + C(z)Gn(z) + C(z)Fr(z) [Pi(z)− Pn(z)] = 0. (2.61)

Thus, to ensure that all the roots of Equation (2.61) are inside the unit circle,
the robust stability condition is given by Equation (2.62) (NORMEY-RICO and
CAMACHO, 2007).

δPi(e
jωTs) < dP (ejωTs) =

∣∣∣∣ 1 + C(ejωTs)Gn(e
jωTs)

C(ejωTs)Gn(ejωTs)Fr(ejωTs)

∣∣∣∣ , 0 < ω < π/Ts, (2.62)

where dP (ejωTs) is the robustness index considering the maximum permissible mod-
eling error magnitude for each frequency to maintain closed-loop stability. From
Equation (2.62), it is possible to see that Fr(z) aims to reduce the gain of dP (ejωTs)

in frequency regions where multiplicative uncertainties threaten the robust stabil-
ity condition. Qualitatively, it means attenuating modeling error expression in the
feedback signal.

In addition to the above discussion, a MATLAB function is also available in
the following repository for calculating and graphing the robustness index of the
Filtered Smith Predictor structure. This function takes the process transfer func-
tion, the model transfer function, the controller, and the robustness filter as inputs:
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https://github.com/sergioacg/MATLAB-Functions/blob/main/robutness.m.
This tool can be a great aid in analyzing the robustness of a control system,

especially when dealing with Filtered Smith Predictors. By utilizing this function,
it is possible to visualize the impact of modeling errors on system stability, aiding in
selecting an appropriate robustness filter. The graphed output can give insights into
the frequency regions where multiplicative uncertainties pose the most significant
threat to the robust stability condition.

2.4.4 Model Predictive Control based in a Dead-Time Com-

pensator

Traditional predictive controllers often have low robustness when the plant to be
controlled has a significant dead time compared to other dynamics involved. As a
way around this problem, CAMACHO and BORDONS (2002) and NORMEY-RICO
and CAMACHO (2007) showed that a prediction structure based on the FSP could
be used in unison with the predictive controller, in this case with the generalized
predictive control (GPC), forming a dead-time compensator generalized predictive
controller (DTC-GPC) structure. This uses the robustification of control systems
for dead-time processes from DTC structure (FSP) into the MPC framework to
facilitate the robust design of the GPC control.

Consider that the process can be represented by a MIMO discrete ny×nu transfer
function P(z−1) with sampling period Ts.

y(k) = P(z−1)u(k), (2.63)

where the variables y(k) and u(k) are the ny×1 output and the nu×1 input vectors
and each element pij(z−1) of P(z−1) is a SISO transfer function:

pij(z
−1) =

z−1B∗
ij(z

−1)

Aij(z−1)
z−dij , (2.64)

with dij as a dead time of the transfer function between the j -th input and i -th
output expressed as a number of sampling times where B∗

ij(z
−1) and Aij(z

−1) are
polynomials in the backshift operator.

The effective dead time of the i -th output is di = min
j
[dij], which allows the

MIMO model to be described as:

P̂(z−1) = D(z−1)A−1(z−1)B(z−1)z−1, (2.65)

where D(z−1) is a polynomial diagonal matrix with elements z−di ; A(z−1) is a diag-
onal polynomial matrix with elements Ai(z

−1) equal to the least common multiple
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of the denominators Aij(z
−1) of the corresponding row of matrix P̂(z−1); B(z−1) is

a polynomial matrix with elements Bij(z
−1) such that

gij(z
−1) =

z−1Bij(z
−1)

Ai(z−1)
, (2.66)

that is, gij(z−1) are the SISO transfer functions without the common delay di of the
corresponding output. The polynomials Ai(z

−1) and Bij(z
−1) are given by

Ai(z
−1) = 1 + ai1z

−1 + ai2z
−2 + ...+ ainai

z−nai ,

Bij(z
−1) = bij1 + bij2 z

−1 + bij3 z
−2 + ...+ bijnbij

z−nbij . (2.67)

The DTC-GPC algorithm applies a control sequence that minimizes the mul-
tistage cost function presented in Equation (2.33). The prediction of the system
output is computed using the following controlled auto-regressive integrated moving
average (CARIMA) model of the plant:

A(z−1)y(k) = D(z−1)B(z−1)u(k) +
1

∆
T(z−1)e(k), (2.68)

where T(z−1) is an ny × ny monic polynomial matrix representing the colouring
polynomials of the noise, but in this work, it is considered as identity matrix,
∆ = 1− z−1. The variable e(k) is the ny × 1 noise vector.

Since A(z−1) is diagonal, it is possible to use a Diophantine equation in the
following ARIMAX model to obtain the optimal predictions of each ny output of
the system as shown below:

Ai(z
−1)yi(k) = z−diBi(z

−1)u(k − 1) +
1

∆
e(k), (2.69)

where Bi(z
−1) = [Bi1, Bi2, ..., Binu ]. The polynomial identity (CAMACHO and

BORDONS, 2002)

1 = Eij(z
−1)∆Ai(z

−1) + z−jFij(z
−1), (2.70)

allows obtaining the following optimal prediction of the system:

ŷi(k + j|k) = Fij(z
−1)ŷi(k) + z−diEij(z

−1)∆Bi(z
−1)u(k − 1), (2.71)

where Eij(z
−1) is of order j − 1 and Fij(z

−1) of order nai.
The DTC-GPC splits the prediction procedure of the output of the plant into

two parts. The first one, the prediction of the output of the plant up to dead time,
is computed using an FSP structure. The second one uses an MPC structure based
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on the CARIMA model for forecasting the behavior of the real process, from dead
time plus one period of time to the defined horizon.

The MIMO Filtered Smith predictor is an extension that uses the same structure
of the SISO version of FSP, and its block diagram is shown in Figure 2.11. In the
figure, P(s) is the plant with multiple time delays, Gn(z) is its fast model, L(z) is
the nominal MIMO delay model, Pn(z) = L(z)Gn(z) is the nominal process model
(discretized with a zero-order hold), Fr(z) is the MIMO predictor filter, and C(z) is
a MIMO primary controller. All discrete-time signals are represented as functions
of the variable k, meaning a multiple of the sampling period Ts. Moreover, r(k) is
the reference trajectory, u(k) is the control action, y(k) is the output, ŷ(k) is the
model output, ep(k) is the prediction error, and n(t) is an output disturbance.

Figure 2.11: MIMO-FSP scheme structure.

From Figure 2.11 of the MIMO FSP, it is possible to obtain the output prediction
equation of the system until the dead time, which is given by:

ŷ(k + di|k) = Gn(z
−1)u(k) + Fr(z

−1)
[
y(k)−Pn(z

−1)
]
, (2.72)

where Fr(z
−1) is a matrix of diagonal transfer functions and ŷ(k + di|k) is the

prediction vector.
It is possible to calculate the predictions, from the dead time plus one period of

time to the prediction horizon, that are used in the cost function J of Equation (2.33)
as a function of a free response fr (which depends on past actions) and the forced
response of the system (which depends on future actions). For this, if Equation
(2.71) is applied recursively, the output prediction of DTC-GPC control can be
reduced to the following matrix expression:

ŷ = Huf +Hpup + Sŷp, (2.73)

where Huf is known as forced response and fr = Hpup + Sŷp is a free response of
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the system. And:

ŷ = [ŷ1, ŷ2, ..., ŷny] (2.74)

uf = [uf1 ,uf2 , ...,ufnu
]

up = [up1 ,up2 , ...,upnu
]

ŷp = [ŷp1 , ŷp2 , ..., ŷpnu
]

H =


H11 H12 · · · H1nu

H21 H22 · · · H2nu

...
... . . . ...

Hny1 Hny2 · · · Hnynu

 ,

where the future control actions are given by

ufj =
[
∆uj(k) ∆uj(k + 1) · · · ∆uj(k +mj)

]T
, mj = min

i
(pi − dij), (2.75)

and the past control actions are

upj
=
[
∆uj(k − 1) ∆uj(k − 2) · · · ∆uj(k − nbij)

]T
. (2.76)

Each block Hij of the matrix H is calculated using the step response of the
subsystem i, j, that is, considering the polynomials Ai(z

−1) and Bij(z
−1).

The matrix Hp(z
−1) has

∑ny

i pi rows and nu columns and each elementH i
pkj

(z−1)

is a polynomial with the same order as Bij(z
−1). Here, i corresponds to the output,

j to the input and k to the instant considered on the horizon, thus, H i
pkj

(z−1) gives
the relation between ∆uj(k) and ŷi(k + di + 1|k).

Because of the independence between the predictions, S is a block-diagonal ma-
trix, each block being of dimension pi × nai .

The optimum of Equation (2.33) can be expressed as

u = K(r− fr), (2.77)

where r represents the future reference and K is given by

K = (HTQH+Q)−1HTW. (2.78)

Only the first nu rows of K (defined as Knu) have to be computed. Knu has
pw columns, where pw = p1 + p2 + ... + pny , which corresponds to the number of
variables in the horizon.
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Now, using the expression of fr

∆u(k) = Knur−KnuHpup −KnuSŷ. (2.79)

For a focus on this MPC algorithm, readers are referred to NORMEY-RICO and
CAMACHO (2007), and an example is presented in Appendix B.

As shown in this section, the dead time in chemical processes represents a diffi-
culty in the control systems design. This difficulty increases in the MIMO systems
due to different delays in the internal interactions of the system variables.

2.5 Detection and Diagnosis of Predictive Con-

troller Issues

Predictive controllers, although robust and effective in handling multivariate control
problems, are not immune to performance degradation due to issues such as model-
plant mismatches, unmeasured disturbances, and inaccuracies in the internal model.
These issues can significantly affect the predictive capability of the controller, lead-
ing to suboptimal performance or even instability. This section reviews the existing
literature on the detection and diagnosis of such issues within predictive controllers.
Emphasis is placed on the strategies and techniques developed to identify and ad-
dress the source of performance degradation to maintain the optimal performance
of the control system.

2.5.1 Model Predictive Control Assessment

The essence of a predictive control is based on the dynamic model of the process,
because through this, the controller manages to predict the future outputs con-
sidering a control action which is optimized throughout the control horizon. This
optimization is calculated at each sampling time according to the receding horizon
concept of the MPC. This optimization problem considers the slack on the pro-
cess constraints, the weight matrices, the control and prediction horizons as tuning
parameters. Therefore, it is possible to observe that in the literature there is no
consensus that specifies which is the best solution for performance assessment of
the MPC. This difficulty of monitoring and diagnosing in the MPC structure is a
direct consequence of the algorithm complexity. Without a doubt, the deterioration
of the dynamic model of the process is one of the causes of poor performance of
the MPC controller, nevertheless, finding this type of degradation is not a simple
task. In addition, the existence of unmeasured disturbances increases this difficulty
(BOTELHO et al., 2016b).
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Several techniques have emerged in industrial and academic processes about the
MPC assessment. Some of these techniques use the minimum variance controller
(MVC) and its extension, the linear quadratic Gaussian (LQG). For example, in LEE
et al. (2008) the authors evaluated the sensitivity of the process variables using the
MVC method to determine which one has a greater economic impact. The effect of
constraints on the quality of the controller operation was proposed in HARRISON
and QIN (2009) using a minimum variance map based on LQG. Some methods are
briefly discussed in the following.

2.5.2 Constrained Minimum-Variance Control

Minimum-variance control is a frequent benchmark for feedback control performance
assessment, especially due to its non-intrusiveness and ability to provide the absolute
lower bound of process variance. Supposing that the process model has a stable
inverse, the constrained minimum variance control approach, proposed in KO and
EDGAR (2001), consists of designing a constrained MVC using the receding horizon
concept of the MPC. Thereupon, it is necessary to estimate the achievable MV
performance bounds in constrained MPC, via disturbance model identification and
closed-loop simulation using the constrained MVC (JELALI, 2013).

The drawback of the minimum variance benchmark, however, is an aggressive
control and the requirement of the interactor matrix that is conceptually difficult
and computationally challenging (HUANG and KADALI, 2008).

2.5.3 Infinite-Horizon Model Predictive Control

Controlled auto-regressive integrated moving average (CARIMA) model is typically
used in the MPC structure to obtain the control law presuming that unmeasured
disturbance is a random signal, i.e.

A(z−1)y(k) = z−dB(z−1)u(k) +
C(z−1)

∆
v(k). (2.80)

The objective of the MPC is to minimize the cost function of Equation (2.32)
using the tuning presented in section 2.1.2 to converge to the LQG objective function.
This solution is known as the infinite-horizon MPC controller.

As the system model is known, because it is explicitly integrated into the design of
a model predictive controller, the MPC performance limit curve can be constructed
as LQG curve by plotting σ2

y vs σ2
∆u with ρg ∈ [0,∞) and σ2

∆u as the process input
variance. Moreover, the infinite-horizon MPC controller has to be expressed in the
Reference Signal Tracking (RST) form to compute the curve. For more details,
readers are referred to JELALI (2013).
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It has been shown in JULIEN et al. (2004) that under certain circumstances it
is possible to identify a system model from normal operating data to update the
internal model of the MPC. A new performance curve can be obtained using the
old controller and the new process model (OCNP). With this curve, it is possible to
re-tune the existing controller to achieve desirable performance region despite the
presence of MPM eliminating the need for a new identification experiment.

Also, it is possible to design a new MPC controller based on the new model
(NCNP) to generate a performance curve. The distance between the NCNP curve
and the OCNP curve indicates the performance deficiency due to the MPM, see
Figure 2.12.

Figure 2.12: MPC performance curves.

When the controller is re-tuned varying the move suppression coefficient, ρg, the
performance shows the OCNP curve. Hence, the OCNP and NCNP curves enable
to differentiate between variance inflation caused by tuning vs MPM. The potential
performance benefit of re-identifying the plant can be justified against the time and
expense associated with a new response test.

While the study is rigorous in theoretical formulation, certain caveats must be
considered. First, although the text alludes to re-tuning of the controller to im-
prove performance, it does not delve into the computational complexity or practical
feasibility of this re-tuning process. Second, it remains unclear how the study ac-
commodates non-linearities or uncertainties intrinsic to real-world systems.

2.5.4 Performance Monitoring of Model-Predictive Con-

trollers via Model Residual Assessment

Proposed in SUN et al. (2013), this technique focuses on evaluating MPC model
quality. It is based on residual assessment and feedback invariant principles, whereby
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disturbance innovations are not affected by the feedback controller. Using the set-
points, denoted as r(k), and the measured outputs y(k), the estimation of stochastic
disturbance error, ed(k), is conducted according to:

y(k) =
∞∑
i=1

A(z−1)y(k − i) +
∞∑
i=1

B(z−1)r(k − i) + ed(k)

≈
M1∑
i=1

A(z−1)y(k − i) +
M2∑
i=1

B(z−1)r(k − i) + ed(k), (2.81)

where A and B are the parameters of the ARX model, and M1 and M2 are the
model orders.

Assume that the plant and disturbance model used in MPC can be represented
as:

y(k) = Pn(z
−1)u(k) +Q0(z

−1)v(k), (2.82)

where Pn(z
−1) is the process model and Q0(z

−1) is the disturbance model. The
prediction error, ep(k), is determined based on one-step-ahead prediction (LJUNG,
1999), being the optimal prediction of the output using past measurements. The
prediction error is represented by:

ŷ(k|k − 1) = Q0(z
−1)−1Pn(z

−1)u(k − 1) + (I−Q0(z
−1)−1)y(k − 1), (2.83)

ep(k) = ŷ(k|k − 1)− y(k), (2.84)

In scenarios where the disturbance model is not present, LJUNG (1999) sug-
gests employing a filter (predictor) to encapsulate the disturbance impact, given by
Q0(z

−1)ed(k). The author recommends a performance indicator, MQI, expressed
as:

MQI =

∑ns

i=1 e
d(k)TQed(k)∑ns

i=1 e
p(k)TQep(k)

, (2.85)

where Q are controlled variables weights in MPC controller and ns is the number of
sampled data. The index MQI varies between 0 and 1. When this index is close to
1, it means that the error is due to stochastic disturbance and the model is perfect
(BOTELHO et al., 2016b).

While the study presents a methodologically sound approach, it assumes that
the disturbance model is perfectly known or encapsulated by a filter, which might
not hold true in practice. Furthermore, the utilization of the MQI index, although
promising, lacks empirical validation in real-world scenarios. This raises questions
regarding the scalability and robustness of the method when subject to model-plant
mismatches or unforeseen disturbances.
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2.5.5 Detection of Model-Plant Mismatch in MPC applica-

tions

This methodology, proposed in BADWE et al. (2009), is based on the analysis of
partial correlations between the model residuals and the manipulated variables. The
use of partial correlation is necessary to avoid false detection of model mismatches
given by the causal relation between the variables.

First, it is necessary to choose a period of data of an output error model, ep(k),
(the difference between output process and output model) and manipulated variables
with sufficient set-point excitation in the process.

Then, the effect of each manipulated variable is isolated according to

ûri (k) = Gui
ũr(k) + ϵui

, (2.86)

where ûri (k) is the evaluated manipulated variable, Gui
is the evaluated model, ũr

contains all manipulated variables except ûri (k), and ϵui
is that component of ûri (k)

that is uncorrelated with the manipulated variables in ũr. Component ϵui
can be

estimated as
ϵ̂ui

(k) = ûri (k)−Gui
ũr(k). (2.87)

The term ϵ̂ui
is that component of the manipulated variables that is free of effect

from disturbances and the other manipulated variables. Similarly, it is necessary to
isolate the effect of each controlled variables from all manipulated variables, except
the one being evaluated. For this, it is calculated the output error model between the
prediction error evaluated from controlled variables and the remaining manipulated
variables.

epj(k) = Gejũ
r(k) + ϵej(k), (2.88)

and obtain an estimate of ϵej(k),

ϵ̂ej(k) = epj(k)−Gejũ
r(k). (2.89)

Model mismatch is detected through the regular correlation of ϵ̂ui
and ϵ̂ej . A non-

zero correlation between these terms indicate the presence of model-plant mismatch
in the ui− yj channels. The more significant this correlation is, the more significant
model-plant mismatch is (BADWE et al., 2009).

A unique aspect of this study is the quantifiable detection of MPM via the
correlation of isolated variables, which offers a numerical metric for the severity
of the mismatch. However, the methodology presupposes the availability of data
with sufficient set-point excitation and makes assumptions about the separability
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and independence of manipulated variables. Moreover, the study does not address
potential challenges linked to computational complexity or real-time application
constraints.

2.5.6 Diagnosis of Unmeasured Disturbance versus

Model–Plant Mismatch in MPC

BADWE et al. (2010) consider an internal model control (IMC) structure presented
in Figure 2.13 to analyze the MPC performance, where P (z) is the plant, C(z) is
the IMC controller, Pn(z) is the nominal model. Moreover, r(k) is the reference
trajectory, e(k) is the error, u(k) is the control action, ud(k) is the designed control
action, y(k) is the output, yd(k) is the designed output, ŷ(k) is the model output,
yp(k) is the output prediction, n(k) is an output disturbance.

Achieved loop

Designed loop

Figure 2.13: IMC structure for the achieved and designed control loops.

In the designed loop, the assumption is made that the model is a precise repre-
sentation of the real plant, i.e., P (z) = Pn(z). Under this assumption, the output
prediction yp(k) equals the output disturbance n(k), and the desired output yd(k)
can be calculated as yd(k) = C(z)Pn(z)ed(k) + n(k).
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Given that the error design signal ed(k) can be written as the difference be-
tween the reference signal and the output disturbance, ed(k) = r(k)−n(k), because
P (z) = Pn(z), so it is possible to substitute this into the equation for yd(k). This is
given by:

yd(k) = C(z)Pn(z)r(k) +

(
1− C(z)Pn(z)︸ ︷︷ ︸

)
Sd(z)

n(k), (2.90)

where Sd(z) is the closed-loop relationship between the controlled variable and the
disturbances known as designed sensitivity.

The function Sd(z) can be determined in several ways. Depending on the in-
tricacy of the controller in use, Sd(z) could be derived analytically or alternatively
identified through an experimental procedure.

In the identification process, the variables y(k), r(k), and yp(k) are
considered. The control error e(k) is given by e(k) = r(k)− y(k) + ŷ(k),
where ŷ(k) = C(z)Pn(z)e(k). Inserting this into the original equa-
tion yields e(k) = r(k)− y(k) + C(z)Pn(z)e(k). Rearranging terms,
(1− C(z)Pn(z)) e(k) = r(k)− y(k). Lastly, it is possible to express r(k)− y(k) in

terms of Sd(z) and e(k):

r(k)− y(k) = Sd(z)

(
r(k)− yp(k)︸ ︷︷ ︸

)
e(k)

. (2.91)

The variability gives a controller performance degradation factor on the con-
trolled variables (MPM effect). Therefore, the authors proposed to compare the
variability observed in the control loop with the variability that would have been
obtained in the case of the perfect model under the same conditions. To ob-
tain the nominal or design output, yd(k), it is necessary to initially estimate the
loop gain, C(z)∆P (z), where ∆P (z) is the MPM given by P (z) − Pn(z). So,
the loop gain can be identified by an output-error model using process data as
yp(k) = C(z)P (z)e(k)− C(z)Pn(z)e(k), so:

y(k)− ŷ(k) = C(z)∆P (z)e(k), (2.92)

where e(k) can also be written as e(k) = r(k) + C(z)Pn(z)e(k)− C(z)P (z)e(k)− n(k),
then:

e(k) =
1

1 + C(z)∆P (z)
(r(k)− n(k)) . (2.93)

Therefore, by augmenting Equation (2.90) with the term r(k)−r(k) and utilizing
process data, the design sensitivity function, and the loop gain, and the Equation
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(2.93) the closed-loop design output is expressed as:

yd(k) = r(k)− Sd(z) [1 + C(z)∆P (z)] e(k). (2.94)

BOTELHO et al. (2015, 2016a) suggested an extension of the BADWE et al.
(2010) work, where application limitations were addressed, especially when working
with MPC with soft constraints and avoiding the two data-based model identifica-
tions. In these works, the authors proposed the control structure shown in Figure
2.14 for evaluating MPM and UD, where Pd(z) is the disturbance model.

(a) nominal system

(b) with model-plant mismatch

(c) with unmeasured disturbance

Figure 2.14: Schematic diagram of closed-loop.
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The designed loop is shown in Figure 2.14a, the system with MPM is shown
in Figure 2.14b, and the system with UD is shown in Figure 2.14c. According to
these structures, the authors proposed to use the nominal output sensitivity transfer
function, So(z), which concentrates information on controller tuning, providing the
speed of response from each control loop. Therefore, the designed closed-loop output
is given by:

yd(k)− y(k) = So(z) [ŷ(k)− y(k)] , (2.95)

where:
So(z) =

1

1 + C(z)Pn(z)
. (2.96)

Depending on the control structure complexity, So(z) can be obtained from the
designed loop analytically or by identification using simulation data. From the
designed closed-loop output, the authors perform a statistical comparison to differ-
entiate the presence of MPM and UD. In order to distinguish the effect of each case,
the nominal output error, e0(k) = y(k)−yd(k), was compared with the nominal out-
put, yd(k) (designed closed-loop output). This comparison shows that if the system
has MPM, the reference changes, r(k), correlate yd(k) and e0(k). However, when
the system is subjected to a UD, e0(k) depends only on the external signal n(k),
while yd(k) depends only on the reference, r(k).

While the methodologies put forward by BADWE et al. (2010) and BOTELHO
et al. (2015, 2016a) have significantly progressed the field of diagnostic and mon-
itoring methods for control systems, they carry assumptions and limitations that
may prevent their application in diverse real-world contexts. Most notably, these
approaches rely on the feasibility of achieving an ideal model and easily deriving the
projected closed-loop output. This assumption might not always hold in practical
scenarios.

In contrast, the present study focuses on the FSP control strategy, a well-
established dead-time compensator. The FSP offers more robustness in the face
of time delay uncertainties, making it a more suitable choice for time-delay domi-
nant processes commonly encountered in industrial settings.

Additionally, the computational resources required by the methods proposed by
Badwe et al. BADWE et al. (2010) and Botelho et al. BOTELHO et al. (2015,
2016a) might be significant, potentially limiting their effectiveness in real-time ap-
plications or systems with computational processing constraints. In response, our
work proposes a novel approach where the algorithm can run on a machine paral-
lel to the one implementing the control system, offering significant computational
advantages.

However, it is also acknowledged that the entire control framework could be
implemented on a single machine. While this might lead to increased computational

49



costs, the FSP control strategy’s robustness and adaptability may outweigh these
potential limitations.

In conclusion, these identified limitations of existing methodologies underscore
the need for a more pragmatic and robust approach, such as the FSP, better suited
to real-world, time-delay dominant processes.

2.6 Final Remarks

This chapter has reviewed the literature concerning model-based predictive control
systems, their performance, and the intricacies involved in their tuning. It has also
addressed how these systems manage processes with dead time and explored the
detection and diagnosis of issues within these systems.

In the literature, various diagnostic techniques have been proposed to enhance
the system’s dynamic behavior, primarily by updating the model or the controller’s
parameters and identifying the causes of control performance degradation. The
chapter also emphasized the detrimental effects that time delay can introduce on
the control structure and the strategies proposed to counter this issue.

Despite the comprehensive body of work on this topic, there is still room for
further research, particularly in developing diagnostic strategies for model-based
predictive controllers affected by dominant time delay. Moreover, the need for cri-
teria to discriminate between the degradation of the internal model and the onset
of unmeasured disturbances is evident.

The subsequent chapters of this thesis introduce and discuss a research method-
ology to address these gaps. This methodology will focus on improving the tuning
process for Model Predictive Control (MPC) systems and diagnosing the Filtered
Smith Predictor structure. This focus is grounded on the understanding that these
areas present significant challenges in the field and require comprehensive investiga-
tion and novel solutions.
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Chapter 3

Tuning of Model Predictive
Controllers Based on
Hybrid Optimization

The first part of this doctoral thesis aims to improve the performance of model-
based predictive controllers (MPC) in linear and non-linear systems, emphasizing
chemical processes. In this chapter, we present an innovative algorithm for tuning
MPC controllers. This approach aims to optimize key tuning parameters, such as
the weighting matrices, prediction horizon, and control horizon, using a hybrid com-
bination of two optimization algorithms. The algorithm has been adapted for direct
use with MATLAB’s Model Predictive Control Toolbox, opening up opportunities
for more efficient use and distribution within the scientific community. This work
was published in:

• Giraldo, S.A.C., Melo, P.A., & Secchi, A.R. (2022). Tuning of Model
Predictive Controllers Based on Hybrid Optimization. Processes,
10(2), 351. https://doi.org/10.3390/pr10020351

3.1 Tuning of model predictive controllers based on

hybrid-optimization

In the first section of the methodology, a tuning procedure for a model predictive
control (MPC) is introduced, specifically designed for multi-input, multi-output sys-
tems. This work proposes a tuning method for MPC that is not restricted to a
specific prediction model or MPC algorithm. The method is based on the use of
two optimization algorithms, forming a hybrid approach: (i) the goal attainment
method (GAM) and (ii) a variable neighborhood search (VNS). The motivation of
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the present work is to address the problem regarding the nature of the integer vari-
ables and the competitive objectives in the formulation of MPC control, without
solving a computationally complex mixed-integer dynamic optimization problem.

3.1.1 Goal Attainment Method (GAM)

The operation of a chemical process usually involves the fulfillment of different
requirements or specifications in order to reach an optimal point. For instance,
low cost, low operating risks, low pollution, high reliability, high quality, and high
productivity are reasonable objectives to be achieved in this process (GIRALDO
et al., 2022). Nevertheless, most of these goals are often in conflict with each other.
Thus, for that reason, a compromise solution must be obtained between them. This
is known as a multi-objective optimization problem.

When there are multiple objectives, usually, there is not only a single solution
but a set of them, each satisfying one objective to the detriment of the others. This is
known as the Pareto set, where the ideal solution is adopted based on the optimiza-
tion problem’s decisions (DEB, 2014). Figure 3.1 shows a geometric representation
of the compromise solution, considering a bi-objective problem.

Feasible Region

Pareto frontier
Compromise 

Solution

Figure 3.1: Compromise optimization in Pareto frontier for the objective functions
f1 and f2. f ∗ is a utopia point.

The major problem in multi-objective optimization can be inferred from Fig-
ure 3.1, i.e., the conflict between the objective functions, where the improvement
in one of the objective functions may cause the degradation of others. Therefore,
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the optimal point in the Pareto curve will depend on a decision for the planned
operation of the process.

The GAM formulation, proposed by GEMBICKI (1974), involves expressing a set
of utopian goals, f∗ = [f ∗

1 , f
∗
2 , . . . , f

∗
n], which is associated with a set of objectives,

f = [f1(x), f2(x), . . . , fn(x)]. f∗ is an unreachable point when minimizing all the
objectives simultaneously. The problem’s formulation is given by:

min
x,γ

γ, (3.1)

subject to

h(x) = 0

g(x) ≤ 0

fi(x)− ωiγ − f ∗
i ≤ 0, i = 1, · · · , n

LB ≤ x ≤ UB,

where h(x) and g(x) are equality and inequality constraints, respectively, and ωi is
the relative weight for the i -th objective function fi(x). LB and UB are the lower
and upper bounds of the decision variables.

The weight vector, ω, measures the relative tradeoffs among the objectives and,
in order to eliminate the rigid constraints of the problem, the term ωiγ is used as a
slackness variable.

Equation (3.1) is a convenient way of expressing the commitments among the
objective functions, giving greater flexibility to the optimization algorithm to find
the best solution. The schematic evolution of this method in the direction of the
solution in two dimensions is presented in Figure 3.2 (FLEMING, 1986), where
f∗ is the goal and fo is the optimal point obtained for a given weight vector, ω,
which defines the search direction. The feasible function space, Λ(γ), shrinks as γ
is reduced.

3.1.2 Variable Neighborhood Search (VNS)

The VNS algorithm is a metaheuristic used to solve combinatorial optimization
problems, with its operation based on the idea of neighborhood change to find
local minima and escape the valleys that contain them (HANSEN et al., 2010).
Initially proposed in MLADENOVIĆ and HANSEN (1997), this metaheuristic has
been developed in terms of its methods and successfully applied to solve several
application problems (ALOISE et al., 2006; HANSEN et al., 2006).

The VNS formulation is given by:

minimize fv(x) such that x ∈ X and X ⊆ S, (3.2)
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Figure 3.2: Geometrical representation of the goal attainment method.

where S is the solution space, X is the feasible set, x is the feasible solution, and
fv is the real-valued objective function. If S is a finite set, then a combinatorial
optimization is established in the VNS algorithm. Otherwise, when S = Rn, the
VNS is a continuous optimization. The optimal solution of x∗ is given if

fv(x
∗) ≤ fv(x),∀x ∈ X. (3.3)

The VNS algorithm operates as follows. Initially, a starting point x is chosen
within the feasible set X. Subsequent to this initialization, the algorithm identifies
a direction in which the objective function fv(x) decreases within a local neighbor-
hood, denoted as Ne(x). Specifically, the "descending direction" is determined by
evaluating fv(x) at different points in Ne(x) and identifying the direction in which
fv(x) exhibits the most significant reduction. The algorithm employs either the best
improvement or the first descent strategies as the criteria for choosing the descend-
ing direction. In the former, VNS examines all possible neighborhoods in Ne(x)

and selects the one that minimizes fv(x). In the latter, the algorithm opts for the
first neighborhood encountered that yields a decrement in fv(x). The first descent
strategy has the potential for rapid improvement if the neighborhoods are searched
systematically and the steps likely to produce better results are prioritized. Nonethe-
less, its worst-case performance equates to that of the best improvement strategy,
which, while effective in yielding short-term gains, offers no long-term guarantees.
Figure 3.3 provides a graphical representation of the VNS methodology.

The VNS algorithm applies random steps in neighborhoods with growing size to
diversify the search into combinatorial problems; this is known as shaking (HANSEN
et al., 2010). The VNS systematically changes the neighborhood elements to find
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Figure 3.3: The VNS algorithm. Adapted from HANSEN et al. (2010).

the optimal one. When the algorithm changes a single neighborhood component,
this is known as a first-order search. If the algorithm changes two neighborhood
components, this is known as a second-order search and so on.

3.2 Model Predictive Control Tuning Approach

(MPCT)

The MPC controller tuning strategy proposed in this work will be called Model
Predictive Control Tuning (MPCT) and is described in this section. Once the MPC
is based on a process model, good tuning is also dependent on the quality of this
model. In most MPC applications, models are derived by applying experiment
design, data collection, and system identification methods. At this stage, the correct
selection of the sampling time (Ts) and the scaling of the multivariable model need
to be highlighted, as detailed in Appendix A, because these selections strongly affect
the tuning performance.

As the MPCT uses a hybrid optimization formulation, it can find the integer
and real variables of the tuning problem. The decision variables of the algorithm
are xdv = [p,m, diag(Q), diag(W)], where integer variables p and m are determined
using the VNS method, and Q and W are real-valued diagonal matrices to be
found by the GAM algorithm. The lower and upper bounds of the xdv are LB =

[1,1nu ,1ny+nu × 10−5] and UB = [2Hp ,1nu(2
Hc),1ny+nu(∞)], respectively, where

The symbols 1nu and 1ny+nu refer to row vectors of ones of sizes nu and ny + nu,
respectively, and Hp and Hc are given values such that 2Hp and 2Hc are the upper
bounds of p and m.

The MPCT algorithm executes the hybrid optimization (i.e., GAM and VNS
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algorithms) sequentially. For this purpose, GAM is the first algorithm to be ex-
ecuted. Minimizing the square error between the closed-loop responses and the
pre-established reference trajectories is a common tuning objective reported in di-
verse MPC tuning procedures (AL-GHAZZAWI et al., 2001; EXADAKTYLOS and
TAYLOR, 2010; YAMASHITA et al., 2016). This strategy is employed in the GAM
algorithm, where the reference trajectory is set as a tuning parameter. This refer-
ence trajectory defines the desirable closed-loop dynamics as a first- or second-order
transfer function system with dead-time. Therefore, the multi-objective GAM for-
mulation is given by:

fi(xdv) =

ϕ∑
k=1

[
yRi (k)− yi(k,xdv)

]2
, i = 1, · · · , ny, (3.4)

where yRi (k) is the discretized reference trajectory of the MIMO output, defined by
the user for performance requirements or desirable control behavior; yi(k,xdv) is the
MPC closed-loop trajectory of output i; and ϕ is a predefined tuning horizon, which
is large enough to capture the system dynamics.

One may note that the reference trajectory, yR(k), is different from the refer-
ence tracking signal, r(k). The reference tracking signal is necessary to obtain the
closed-loop trajectory when Equation (2.33) is solved. Due to the MIMO system
features, the interactions between the plant variables affect the desired performance
for each pre-established variable in the reference trajectory. Therefore, in the GAM
algorithm, it is recommended to establish a similar reference tracking signal to that
established in the real plant in both the reference trajectory and the closed-loop tra-
jectory because the algorithm minimizes the effect of the MIMO system interactions
by minimizing Equation (3.4).

The utopian solution was initially proposed in GIRALDO et al. (2019) by solving
the optimization problems defined as:

f ∗
i (xdv) =min

xdv

fi(xdv), i = 1, · · · , ny (3.5)

subject to

LB ≤ xdv ≤ UB.

Nevertheless, a utopian solution is infeasible because not all the tuning objec-
tives have the same optimal point. We propose removing this optimization stage to
improve the computational cost of the GAM algorithm. In this case, a reasonable
selection of the utopia point is to select it as zero because the set of objectives,
shown in Equation (3.4), are positive functions and because it meets the criteria of
being a utopia point. Equation (3.4) can only be zero when each objective follows
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the reference trajectory perfectly. Thus, the optimization problem of the GAM al-
gorithm, shown in Equation (3.1), is solved using sequential quadratic programming
to find the tuning parameters. Once GAM predetermines the weight matrices, the
MPCT searches the prediction and control horizons using VNS.

p and m are integer parameters of the objective function J , Equation (2.33).
These parameters are converted into binary numbers of which the maximum sizes
in bits are Hp and Hc, respectively; for instance, if p is a Hp = 4-bit variable, then
it has a maximum prediction horizon size of 15.

The MPCT finds only one prediction horizon for the system and different control
horizons for each manipulated variable. The algorithm takes the slowest dynamics
to define the prediction horizon in this context. If a linear system transformation
is made and then diagonalized, slow eigenvalues dominate the system’s dynamic
modes. Moreover, since the process is a MIMO system with interactions between
variables, the algorithm needs to simulate the system until the slowest dynamics are
captured; therefore, only one prediction horizon is defined. For each manipulated
variable, it is possible to define a different control horizon to manipulate the process,
minimize the computational cost, and improve the system’s dynamic response.

3.2.1 Obtaining Optimal Horizons

The selection of the control and prediction horizons within an MPC strategy depends
largely on the system’s dynamics to be controlled; that is, it depends on whether
the system is stable, unstable, oscillatory, non-minimal phase, etc. Intuitively, it
can be noted that the design of an MPC controller in an unconstrained way must
show a good performance. Therefore, if the desired performance is not achieved, this
controller tuning will most likely not control the system with the active constraints.

To obtain a good selection of the MPC horizons, one should ask what is a well-
posed optimization problem. To answer this question, one may start from the fun-
damental concept of an MPC controller, where the controller uses the system model
(linear or nonlinear) to solve the objective function (with or without constraints)
shown in Equation (2.33). In this context, the MPC, in a given Pareto front, finds an
optimal trajectory (open loop) to be applied in the control law. However, as stated
before, only the first action is applied to the process because there will be updated
process measures in the next sampling time that allow the trajectory correction,
solving Equation (2.33) again. This is known as the receding horizon (CAMACHO
and BORDONS, 2002). However, if one only considers this first calculation, in
k = 1, and if the prediction and control horizons are poorly selected, the prediction
of this first trajectory will differ significantly from the closed-loop behavior of the
system when the receding horizon concept is applied. The predictions do not make
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sense because the optimization does not represent what will happen in the future.
Optimizing the objective function J , as shown in Equation (2.33), will be espe-

cially useful if the trajectories are close to the response of the closed-loop system,
both of which are calculated with the internal model of the controller. For this, the
internal model of the MPC is taken, with the VNS algorithm establishing a refer-
ence, rs(k), for the internal model. Finally, the controller algorithm is solved. With
this solution, it is possible to obtain the output response and the control action in
a closed loop, y(k) and u(k), respectively, using the receding horizon concept and
remembering that u(k) = ∆u(k) + u(k − 1). However, it is also possible to calcu-
late the trajectories of the outputs and inputs of the system (open-loop responses)
yo(k|1) and uo(k|1), respectively, which is the first optimization that the MPC made
at the first sampling time.

3.2.2 Variation on the Prediction and Control Horizon

To illustrate the influence of the horizons on the closed-loop dynamics of the MPC
controller, 4 SISO systems were chosen to perform a preliminary analysis.

Stable system:

G1(z
−1) =

z−1 + 0.3z−2

1− 1.2z−1 + 0.32z−2
. (3.6)

Non-minimal phase system:

G2(z
−1) =

z−1 − 2z−2

1− 1.7z−1 + 0.72z−2
. (3.7)

Unstable system:

G3(z
−1) =

z−1 + 0.4z−2

1− 1.7z−1 + 0.6z−2
. (3.8)

Oscillatory system:

G4(z
−1) =

z−1 + 0.4z−2

1− 0.9z−1 + 0.6z−2
. (3.9)

Intuitively, it can be noticed that the design of an MPC controller in an uncon-
strained way must show a good performance. Therefore, if the desired performance
is not achieved, this controller tuning will most likely be unable to control the system
with the active constraints.

The first tests on these systems considered a short prediction horizon with a
control horizon equal to 1 and weight matrices equal to the identity matrix. Figure
3.4 shows the response of the systems to the variation of the prediction horizon.
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This figure compares the closed-loop behavior of the MPC controller, [y(k), u(k)],
with a receding horizon, with the trajectory calculated at the first sampling time,
[yo(k|1), uo(k|1)]. One may note that uo(k|1) is an nu × m vector, so the last
value is repeated to complete the simulation time, as one can see in the projection
of uo(k|1). In this specific scenario, due to m = 1, there is only a singular control
action.

Figure 3.4: Optimized prediction vs closed-loop behavior with p = 5 and m = 1.

As shown in Figure 3.4, the systems’ predictions appear adequate within the
specified prediction horizon, spanning from the step change at k = 4 until the end
of the prediction horizon at k = 9. However, across all four scenarios, the predictive
strategy is generally weak. The discrepancy between the closed-loop and open-loop
behaviors is evident, even within the prediction horizons, indicating an ill-structured
optimization. Any effective performance of the closed-loop system appears more
coincidental than a result of deliberate design. This suggests the system’s initial
forecast to reach the reference is flawed. With each sampling period, the system is
forced to alter the previously taken direction and decision.

This pattern reveals that the performance index J only penalizes the tracking
errors within p samples without considering the implicit follow-up after that point.

Figure 3.5 presents the systems’ behavior when the prediction horizon is ex-
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tended to p = 15. The prediction appears to mirror its open-loop behavior in this
scenario more closely. It can be observed that the prediction of the steady-state
error diminishes as the prediction horizon increases, indicating a reduced impact on
future terms.

Figure 3.5: Optimized prediction vs closed-loop behavior with p = 15 and m = 1.

This tuning yields close optimal control movements to the desired steady-state
in stable, oscillatory, and non-minimal phase processes. The closed-loop behavior
closely mirrors the dynamics of the open-loop. However, a single control action in
unstable processes leads to a divergent prediction. As a result, achieving a prediction
close to the goal becomes infeasible, rendering any optimization ill-posed. Thus,
selecting a large p is advantageous, except in unstable systems, where the risk lies
in steady-state errors, potentially saturating transient errors.

Figure 3.6 showcases the effect of increasing the control horizon to m = 4. It
becomes clear that a higher m value enhances the prediction, and if the prediction
horizon is large, the steady-state error is minimal.

Nevertheless, while a larger control horizon generally improves prediction, the
same cannot be said for situations where the prediction horizon is small, as can
observed in Figure 3.7. In such cases, the prediction often lacks a clear direction,
making selecting these horizons unwise, especially in non-minimum phase and un-
stable systems.
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Figure 3.6: Optimized prediction vs closed-loop behavior with p = 15 and m = 4.

Figure 3.7: Optimized prediction vs closed-loop behavior with p = 4 and m = 4.
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Figures 3.6 and 3.8 show that larger p and m values can improve prediction.
This usually leads to good results both within and beyond the prediction horizon,
except in unstable systems. However, making m too large may not bring further
benefits, as the control steps uo(k|1) become more and more similar. This causes
only minor changes to the manipulated variable ∆u(k), providing little additional
information and increasing the computational load for the MPC. As depicted in
Figure 3.8, an overly large control horizon m makes the optimization algorithm
more computationally demanding.

Figure 3.8: Optimized prediction vs closed-loop behavior with p = 15 and m = 15.

In conclusion, it is imperative to properly tune sufficiently large prediction and
control horizons to ensure a well-posed optimization. The prediction horizon should
encapsulate adequate information about steady-state errors, allowing long-term pre-
dictions to adhere to the desired trajectory. Evidence of this can be seen as predic-
tions approach the steady-state. Meanwhile, the control horizon ought to incorpo-
rate enough terms to: (i) adjust the stationary state, (ii) counteract any external
dynamics from the open loop, and (iii) maintain flexibility in optimizing transient
performance.
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3.2.3 Tuning Prediction and Control Horizons via VNS Al-

gorithm

The VNS algorithm must find the appropriate sizes for the prediction and control
horizons to match both trajectories. The algorithm uses the first-descent direction
with a first-order search, that is, modifying a single bit from the initial condition
and solving Equation (3.10). When the algorithm does not find other solutions, a
second-order and then third-order search are applied to escape from local minima. If
the third-order search is executed and the algorithm does not find another solution,
then the VNS method selects the horizons with the lowest cost found in its search.

min
p,m

{
fv(xdv) =

ny∑
i=1

[
ϕ∑

k=1

(
{yi(k)− yoi(k|1)}

2 +
{
yRi (k)− yi(k)

}2)] (3.10)

+ p+
nu∑
j=1

[
mj∑
k=1

|uoj(1|1)|
|uoj(k + 1|1)− uoj(k|1)|

]2}
subject to

Equations (2.33b) to (2.33g)

uoj(k + 1|1) ̸= uoj(k|1)

m < p,

where the first term of the objective function seeks to minimize the distance be-
tween the closed-loop, yi(k), and the trajectory calculated at the first sampling
time, yoi(k|1), of the output i. This term is used to establish the performance cri-
teria desired by the user. It can be used to ensure the robustness of the controller
against model uncertainties by establishing more conservative dynamics. The sec-
ond term seeks to minimize the distance between the reference trajectory, yRi (k),
and the closed-loop response, yi(k), and the last two terms of the function avoid
the selection of large p and m, respectively. One may note that this method avoids
selecting a large control horizon in the last term as long as the rate of change in the
denominator is significant. For instance, if the rate of change is close to zero, this
term is penalized.

The VNS algorithm is presented in Algorithm 1 where ẋ is the process model
(state-space representation), and ẋR is the state-space model for the reference trajec-
tory. The algorithm optimizes two primary parameters in the provided pseudocode:
prediction and control horizons. Initiating with a first-order search, the algorithm
modifies specific bits of these parameters sequentially. For each order of investi-
gation, both p and m are transformed into their respective binary representations.
Subsequently, distinct bits are altered based on the current order to generate new
configurations. Each such configuration undergoes evaluation against the objective

63



function presented in Equation (3.10). If a configuration proves optimal relative to
the function, it is preserved. This systematic approach facilitates a thorough explo-
ration of potential configurations, seeking the most efficacious arrangement for both
p and m.

Algorithm 1: VNS algorithm
Input : ẋ, ẋR, rs, p0, m0, Q0, W0, ϕ, Hp, Hc, fa

v

Output: p, m, fv
1 order ← 1 ; // first-order search
2 while order ≤ 3 do
3 tt← 1 ; // tt = 1 varies p, tt = 2 varies m
4 while tt ≤ 2 do
5 if tt == 1 then
6 X1 ← bits(p0) ; // convert p0 to bits
7 kmax ← Hp ; // max. p neighborhood
8 else
9 X1 ← bits(m0) ; // convert m0 to bits

10 kmax ← Hc ; // max. m neighborhood
11 end
12 k ← 1;
13 while k ≤ kmax do

// varies "order" bits
14 X2 ← NeighborhoodChange(X1, k, order) ;

// evaluate Equation (3.10)
15 fv ← Obj_Function(X2, rs, ẋ, ẋ

R,Q0,W0, ϕ,Hp, Hc) ;
16 if fv ≤ fa

v then
17 fa

v ← fv; X1 ← X2; k ← 1;
18 [p, m]←SaveSolution(X1,tt);
19 else
20 k ← k + 1;
21 end
22 end
23 tt← tt+ 1;
24 end
25 order ← order + 1;
26 end

3.2.4 Variation on the Weight Matrices

This section evaluates how variations in the weight matrices Q and W, adjusted by
the GAM algorithm, impact the dynamics and control responses of the discussed
systems. Initially, it is considered the prediction horizon p = 15 and the control
horizon m = 4. The weight matrix W is increased, which is responsible for weighing
the increments of control of the MPC, while the weighting matrix Q is set equal to
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the identity matrix. This result can be observed in Figure 3.9.

Figure 3.9: Optimized prediction vs closed-loop behavior with Q = I and W = 50I.

Figure 3.9 illustrates that a larger W results in smaller control increments and a
slower tracking of the reference trajectory. The predictions outside the horizon are
suboptimal, suggesting that optimizing the J index may not be appropriate.

In Figure 3.10, the weight matrix Q is increased, and the matrix W is set to
the identity matrix. As the Q weighs the reference tracking, it is clear that the
control actions on the system are more aggressive, which may consume more energy,
and tend to minimize the error in the steady-state. This causes an acceleration in
the transient response, and the predictions seem to improve inside and outside the
prediction horizon. In this case, the prediction is close to the closed-loop dynamics,
indicating a well-posed optimization.

In light of the earlier discussion on the MPCT approach, the results obtained
with varying weight matrices Q and W underline the importance of these parameters
in the MPC optimization process. In particular, the adjustment of these matrices
directly impacts the controller’s ability to minimize the error between the system
response and a user-defined reference trajectory, as expressed in Equation (3.4).
As shown, larger Q and W values yield distinct control behavior and prediction
performance, emphasizing the need for a well-defined tuning strategy such as MPCT.
The implications of these behaviors are tackled by the GAM algorithm, where the
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Figure 3.10: Optimized prediction vs closed-loop behavior with Q = 50I and W = I.

optimal weight matrices are determined. This interplay between parameter tuning
and system performance underscores the necessity of comprehensive optimization
approaches in achieving desired control outcomes.

Robust Stability Analysis

An important point about tuning methods is performance/robustness requirements.
Heuristic methods generally have pre-set adjustment criteria, whereas self-tuning
methods are based on the desired response information (FONTES et al., 2019).
Since two optimizers are working together, as shown in Figure 3.11, robustness is
not an exclusive task of the tuning algorithm. The MPCT works in conjunction with
the MPC controller, where the primarily responsible for dealing with the problem’s
robustness is the optimizer of the MPC controller. In this context, the robustness
project must be considered in the MPC formulation if fast tuning is required. How-
ever, to meet either the robustness or the performance criteria on the MPCT, the
robustness in the tuning method will be explicitly considered.

To ensure a robust method, the tuning parameters in this work can be adjusted
in different ways since GAM and VNS algorithms use the internal model of the
MPC: (i) it is possible to use the same robust formulation of the MPC in the MPCT
to find the tuning parameters, e.g., through minimax optimization formulations in
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Figure 3.11: MPC + MPCT structure.

both algorithms; (ii) it is possible to estimate the tuning parameters under a worst-
case control problem using a family of models that represent the dynamic behavior
of the process, and finally; (iii) robustness can be considered through the result of a
conservative performance since the MPCT algorithm employs a reference trajectory
defined by the user.

Problem constraints are also considered by the tuning algorithm, limiting the
search region of the controller parameters. In general terms, the same optimizer
used in the controller is employed within the optimization of the MPC tuning algo-
rithm, provided that the optimization problems are similar. Should the optimization
problems of the MPC and MPCT differ in nature, as could occur if one is quadratic
and the other non-linear, appropriate adaptations will be required to ensure robust-
ness against modeling errors.

3.2.5 MPCT Algorithm

The Model Predictive Control Tuning (MPCT) implementation is presented in the
Algorithm 2. The initialization phase encompasses the scaling of the system model,
resulting in ẋe, and the setting of initial cost values to a high magnitude to facilitate
improved approximations in subsequent iterations. Central to the algorithm are two
intertwined sub-algorithms: the GAM and the VNS. In each cycle, the GAM algo-
rithm optimizes the weight matrices Q and W, considering the objective function
presented in Equation (3.4). Subsequently, the VNS algorithm refines the predic-
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tion and control horizons while incorporating the updated weight matrices. The
overarching MPCT algorithm undergoes iterative loops until a pre-defined stopping
criterion, predicated on the iteration count surpassing a threshold ‘Stop’, is satisfied.
The culminating output consists of the optimized values for the prediction horizon,
control horizon, and the weight matrices Q and W.

Algorithm 2: MPCT algorithm
Input : ẋ, ẋR, r, rs, ω, ϕ, x0dv , Hp, Hc, Stop
Output: p, m, Q, W

1 [p0,m0,Q0,W0]← x0dv ; // Initialization
2 ẋe ← scale(ẋ) ; // scale the system model
3 fa

v ← 108; FT ← 108 ; // Initialization of the costs
4 k ← 1; Ite← 0;
5 while k == 1 do
6 [Q,W, fg]← GAM(ẋe, r, p0, m0,Q0,W0, ϕ) ; // GAM Algorithm
7 [Q0,W0]← [Q,W];

// VNS Algorithm
8 [p,m, fv]← VNS(ẋe, ẋR, rs, p0, m0,Q0,W0, ϕ, Hp, Hc, fa

v )
9 [p0,m0, fa

v ]← [p,m, fv];
10 if fg ≤ FT then
11 FT ← fg;
12 end

// Stopping criterion
13 if Ite > Stop then
14 k ← 2;
15 end
16 Ite← Ite+ 1;
17 end

As an added contribution, the source code for the MPCT algorithm is made
readily available for anyone interested in utilizing this methodology. Specifically,
a MATLAB adaptation is provided, facilitating seamless implementation alongside
the MATLAB MPC Toolbox. Notably, this MATLAB version presents a specific
approach to the proposed method, where selecting multiple control horizons m is not
possible. Importantly, this simplification does not compromise the effectiveness of
the proposed solution; instead, it eases the problem’s complexity while maintaining
the fundamental essence of the MPCT approach.

A Matlab routine fgoalattain was used for the GAM optimization problem. The
termination tolerance for the function value, the constraint violation, and the first-
order optimality were set to 10−6. The problems described here were solved using
an Intel®Core i7 8750H 2.2GHz, 16 GB RAM computer.

The MATLAB adaptation of the MPCT algorithm can be accessed directly from
the following GitHub repository: https://github.com/sergioacg/Model-Predictive-
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Control/tree/main/MPC-Tuning.

3.3 Simulation Case Studies

This section presents a series of case studies conducted using a range of benchmark
processes from the literature. These cases will provide an in-depth exploration of
the Model Predictive Control Tuning (MPCT) methodology, demonstrating its im-
plementation, performance, computational cost, and adaptability to various scenar-
ios. By employing different MPC formulations and applying the MPCT to linear,
nonlinear, square, and non-square systems, the aim is to offer a comprehensive un-
derstanding of its versatility and effectiveness.

Furthermore, as an added resource, the source code for the simulations of these
case studies, as well as the MPCT algorithm itself, is made readily available in
the following GitHub repository: https://github.com/sergioacg/Model-Predictive-
Control/tree/main/MPC-Tuning. It should be noted that the simulations in the
repository utilize the specific MATLAB adaptation of the MPCT. This particu-
lar adaptation is designed for direct implementation alongside the MATLAB MPC
Toolbox, which only accepts a single control horizon, yet this does not compromise
the effectiveness of the proposed solution.

3.3.1 The Subsystem of the Shell Heavy Oil Fractionator —

A Square MIMO System with Linear MPC Formulation

A 3 × 3 MIMO subsystem of the Shell Heavy Oil Fractionator (HOF) benchmark
system presented in MACIEJOWSKI (2002) was tuned to demonstrate the perfor-
mance of the MPCT algorithm. For this case study, a linear MPC formulation
known as generalized predictive control (GPC) was selected. It should be noted
that while other linear formulations are also applicable for this problem, stability
guarantees, particularly in the absence of terminal ingredients, should be carefully
addressed and verified.

The three inputs of the system, u1, u2, and u3, are the top draw flow rate, the
side draw flow rate, and the bottom reboiler heat duty, respectively. The three
controlled outputs, y1, y2, and y3, are the top end point composition, the side end
point composition, and the bottom reboiler temperature, respectively. This system
is represented by the following transfer functions:
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Pn(s) =



4.05 + 2.11ϵ1
50s+ 1

e−27s 1.77 + 0.39ϵ2
60s+ 1

e−28s 5.88 + 0.59ϵ3
50s+ 1

e−27s

5.396 + 3.29ϵ1
50s+ 1

e−18s 5.72 + 0.57ϵ2
60s+ 1

e−14s 6.90 + 0.89ϵ3
40s+ 1

e−15s

4.38 + 3.11ϵ1
33s+ 1

e−20s 4.42 + 0.73ϵ2
44s+ 1

e−22s 7.20 + 1.33ϵ3
19s+ 1


, (3.11)

where ϵi are the uncertainties in the gain model and the time constants are given in
minutes.

The first step of the algorithm is to scale the process model using the following
diagonal matrices: L = diag[0.617; 0.595; 0.840] and R = diag[1.0; 0.416; 0.622],
which are found through the solution of Equation (A.1). The scaled gain matrix for
the nominal case is given by:

K =

2.4983 0.4546 2.2563

3.2087 1.4179 2.5552

3.6784 1.5457 3.7614

 . (3.12)

A zero-order hold discretization of the scaled process transfer function is used
with a Ts = 4 min sampling period.

The MPCT parameters are set as: p = 255 (8-bits), m = [15, 15, 15] (4-bits
each), and ϕ = 400.

Two reference trajectories for the HOF are established to demonstrate the desired
performance and robustness of the MPC tuning parameters. Therefore, the two
reference trajectories are commanded by first-order plus dead-time systems with
static gain kR = [1.0, 1.0, 1.0] and dead-time LR = [27.0, 14.0, 0.0]. The difference
between the two references is in the time constant. The first one, named case 1,
has an aggressive dynamics with the time constant τaR = [5.0, 9.0, 5.7]. The second
one, named case 2, has a conservative dynamics with the time constant τc

R =

[30.0, 30.0, 30.0]. The relative weight for GAM was set as ω = [0.40, 0.05, 0.55].
Table 4.1 presents the solution of the MPCT tuning procedure for the two sce-

narios.
The required computational time was 35 min for case 1 and 40 min for case 2.

Tuning the MPC controller for the HOF benchmark was reported in VALLERIO
et al. (2014); YAMASHITA et al. (2016), in which the computational time required
for the lexicographic tuning technique optimization method was 4.27 h, for the com-
promise tuning technique it was 53 min, and for the normal boundary intersection
it was 20.1 h.
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Figures 3.12 - 3.14 show the resulting trajectories for the MPCT, where one may
notice that the VNS algorithm estimated an adequate size for prediction and control
horizons since the closed-loop response, y(k), is as close as possible to the output
trajectory at the first optimization, yo(k|1), in both scenarios obtaining small values
for both horizons.

Figure 3.12: Determination of the prediction and control horizons of the HOF output
y1 and input u1.

The same setpoint has been configured for the GAM algorithm and the plant to
consider the internal interaction between the variables of the MIMO system. The
lower and upper bounds of the input and the minimum and maximum input incre-
ments of the MPC controller are umin = [−0.5,−0.5,−0.5], umax = [0.5, 0.5, 0.5],
∆umin = [−0.05,−0.05,−0.05], and ∆umax = [0.05, 0.05, 0.05]. The setpoints are
changed to r = [0.2, 0.2, 0.2] at 70 min, then to r = [0.0, 0.4, 0.1] at 315 min, then
to r = [0.1, 0.3, 0.0] at 800 min, and finally to r = [0.0, 0.0, 0.0] at 1600 min, with
unknown pulse disturbances of intensity −0.05 on input u1 from 1100 min to 1120
min, and intensity 0.1 on input u2 from time 1400 min to 1420 min. Figures 3.15 -

Table 3.1: MPC tuning parameters for HOF study cases

MPCT Scenario xdv

case 1 [ 34︸︷︷︸
p

, 2, 2, 3︸ ︷︷ ︸
m

, 0.38, 0.08, 0.12︸ ︷︷ ︸
diag(Q)

, 0.075, 0.00036, 0.61︸ ︷︷ ︸
diag(W)

]

case 2 [ 8︸︷︷︸
p

, 2, 2, 3︸ ︷︷ ︸
m

, 0.29, 0.10, 0.08︸ ︷︷ ︸
diag(Q)

, 0.27, 0.02, 2.28︸ ︷︷ ︸
diag(W)

]
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Figure 3.13: Determination of the prediction and control horizons of the HOF output
y2 and input u2.

Figure 3.14: Determination of the prediction and control horizons of the HOF output
y3 and input u3.
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3.18 show the behavior of the MPC with tuning parameters shown in Table 4.1 for
both cases. Two scenarios are considered for every case: (i) the nominal case with
ϵ1 = ϵ2 = ϵ3 = 0 and (ii) the modelling error case with ϵ1 = ϵ2 = 0.2, and ϵ3 = 0.3.

Figure 3.15: Case 1—Response of the HOF outputs to setpoint changes and distur-
bance rejections.

Both tunings seek to adjust the response with the reference trajectory to attend
to the performance established by the user in the nominal case, as exhibited in
Figures 3.15 and 3.17. These dynamics are especially evident in the first setpoint
change at 70 min, when the response complies with the established accommodation
time. However, it is also fulfilled at other simulation points, such as 800 min. In
this case study, the setpoint changes were intentionally set in opposite directions, as
shown in Figures 3.15 and 3.17 at 315 min, to increase the influence of the interac-
tion between variables. At the points where the interaction is strong, the response
cannot adjust to the reference trajectory; however, it manages to track the setpoint
without an offset. Moreover, the MPC controller rejects the load of unknown pulse
disturbances on the three manipulated variables faster than the tracking accommo-
dation time. Additionally, it is observed that y3, which has the minimal effective
time delay, is the variable that suffers most with the effect of the interactions of the
MIMO system caused by y1 and y2. Therefore, this variable presents the highest
overshoot in the reference changes, mainly if these changes are also applied to the
other two variables simultaneously.

It is also possible to observe the robustness of the tuning parameters, which are
directly related to the performance desired by the user. The robustness is guaranteed
only for case 2 because it establishes a conservative desired dynamics compared to
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Figure 3.16: Case 1—Manipulated variables of the HOF.

Figure 3.17: Case 2—Response of the HOF outputs to setpoint changes and distur-
bance rejections.
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Figure 3.18: Case 2—Manipulated variables of the HOF.

case 1. The MPCT algorithm maintains robustness in case 2 because it searches
for the weighting matrices of the objective function using the GAM optimization
algorithm for a conservative dynamic that presents a slow change and a moderate
control action. This concept can be extended to a practical level, where a family of
models can represent the real process so the tuning parameters can be calculated
using the worst case.

It is important to remember that robustness is not the exclusive task of the
MPCT optimization algorithm. Rather, it can work with the MPC control algorithm
to obtain better results in a robust configuration. To demonstrate this, Figures 3.19
- 3.22 show the dynamic behavior of the two cases, further increasing the modeling
error for ϵ1 = ϵ2 = ϵ3 = 1, using a robust version of the GPC control. This robust
version can be achieved using a T filter in the controlled auto-regressive integrated
moving average model or a low-pass filter in the optimal predictor stage, known as
DTC-GPC (GIRALDO et al., 2021; NORMEY-RICO and CAMACHO, 2007). For a
practical understanding of the DTC-GPC algorithm implementation, an illustrative
example is provided in Appendix A. For this case, DTC-GPC is implemented with
a discrete second-order low-pass filter, as shown in Equation (3.13), using α = 0.85

for case 1 and α = 0.5 for case 2:

Fri(z) =
(1− α)2

(z − α)2
. (3.13)

Implementing a robust control method allows the stabilization of both cases,
even with a greater modeling error. The user must establish a compromise between
performance and robustness. For case 1, the desired dynamics are very aggressive;
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Figure 3.19: Case 1 - Response of the HOF outputs to setpoint changes and distur-
bances rejections with uncertainties.

Figure 3.20: Case 1 - Manipulated variables of the HOF with uncertainties.
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Figure 3.21: Case 2 - Response of the HOF outputs to setpoint changes and distur-
bances rejections with uncertainties.

Figure 3.22: Case 2 - Manipulated variables of the HOF with uncertainties.
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therefore, it is impossible to meet this specification in the robust control project
without sacrificing the system’s stability. In case 2, the accommodation time is
close to the desired trajectory, excluding the high interaction sections of the MIMO
system; however, the high degradation of the model prevents a similar behavior to
that shown in the nominal case.

In the cases presented above, the tuning parameters of the MPCT are evaluated
under scenarios of model uncertainty, which contribute to the robustness of the
proposed method.

Given the focus of this work on the tuning of Model Predictive Controllers, the
optimization objective J takes on added significance. It serves not only as the cost
function that the MPC aims to minimize but also as a primary indicator of the
effectiveness of various tuning schemes. Therefore, to assess the performance of dif-
ferent tuning parameters objectively, the accumulated value of J over the simulation
time or a specified time horizon is calculated. This aggregated J value serves as the
primary metric for performance comparison among different tuning cases, directly
aligning the evaluation criteria with the optimization objective of the MPC.

In Table 3.2, the closed-loop responses are compared against the user-defined
desired reference trajectories solely through the lens of the MPC objective function
J . For this comparative study, both the nominal and robust control scenarios are
considered. A global analysis based on the J values reveals that Case 2 outperforms
Case 1. Specifically, in the nominal control scenario, Case 2 exhibits a less negative
J value, thereby implying a more balanced optimization of the dual objectives:
reference tracking and control effort minimization. Similarly, under robust control
conditions, Case 2 manifests superior performance as evidenced by a less negative J
value, indicating its designed ability to effectively manage uncertainties and follow
the desired trajectory while concurrently rejecting load disturbances.

Table 3.2: Accumulated Objective Function J for the Shell Heavy Oil Fractionator

Accumulated J
Nominal case 1 -39.1665
Nominal case 2 -0.29555
Robust case 1 -388.0707
Robust case 2 -0.3726
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3.3.2 The Van de Vusse Reactor — A Square MIMO System

with Nonlinear MPC Formulation

A nonlinear continuously stirred tank reactor conducting the well-known Van de
Vusse reactions was chosen to test the behavior of the MPC controller using the
tuning proposed in this work. In this case, a Nonlinear Model Predictive Control
(NMPC) formulation was selected to control the system. The NMPC formulation
employed utilizes a Single Shooting method.

The Van de Vusse scheme (A k1→ B
k2→ C and 2A

k3→ D) comprises two reactions
of the reactant A, producing the desired product B and to the undesired byproducts
C and D (GRAICHEN et al., 2004).

The reaction rates parameters ki, i = 1, 2, 3 depend on the temperature, T , and
they are represented by the Arrhenius equation:

ki(T ) = ki0exp

(
−Ei/R

T (◦C) + 273.15

)
, (3.14)

where Ei, i = 1, 2, 3, are the activation energies of the three reactions and R is the
universal gas constant.

The process is described by the non-adiabatic model, represented by the following
mass and energy balance equations in the reactor:

dCA

dt
=
F

V
(CAf − CA)− k1(T )CA − k3(T )C2

A, (3.15)

dCB

dt
= −F

V
CB + k1(T )CA − k2(T )CB, (3.16)

dT

dt
=

1

ρCp

[k1(T )CA(−∆HRAB) + k2(T )CB(−∆HRBC)+

k3(T )C
2
A(−∆HRAD)

]
+
F

V
(T0 − T ) +

KwAR

ρCpV
(Tk − T ), (3.17)

where the concentration of A in the reactor and in the feed are, respectively, CA and
CAf ; CB is the desired output of the concentration of B; the manipulated inputs are
the dilution rate, F/V , and the reactor jacket temperature, Tk; V is the constant
reactor volume; T0 is the feed temperature; ρ is the liquid density; Cp is the heat
capacity. Q = KwAR(T − Tk) is the heat transferred from the reactor to the jacket,
where Kw is the heat transfer coefficient and AR is the surface area for heat transfer;
reaction enthalpies are given by (−∆HRAB), (−∆HRBC), (−∆HRAD).

The parameter values of the system were obtained from TRIERWEILER (1997)
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and are presented in Table 4.3.

Table 3.3: Van de Vusse parameters (TRIERWEILER, 1997)

Parameters Value Unit
k10 1.287× 1012 h−1

k20 1.287× 1012 h−1

k30 9.043× 109 L/(mol h)
−E1/R −9758.3 K
−E2/R −9758.3 K
−E3/R −8560.0 K

(−∆HRAB) −4.20 kJ/mol
(−∆HRBC) 11.00 kJ/mol
(−∆HRAD) 41.85 kJ/mol

ρ 0.9342 kg/L
Cp 3.01 kJ/(kg K)
Kw 4032.0 kJ/(h K m2)
AR 0.215 m2

V 10 L
Tk 128.95 ◦C
T0 130.0 ◦C
CAf 5.10 mol/L

The two system inputs, u1 and u2, are the dilution rate F/V and the reactor
jacket temperature Tk, respectively. The two controlled outputs, y1 and y2, are the
concentration in CB and the reactor temperature T , respectively. The input/output
variable pairs of the Van de Vusse reactor were established as u1:y1 and u2:y2. The
NMPC sampling period is set to Ts = 0.05 h. The prediction horizon was set as
p = 32 (5-bits), the control horizon was set as m = [7, 7] (3-bits each) and the
tuning horizon was set as ϕ = 60.

Prior to implementing the MPCT algorithm on the Van de Vusse reactor, it
is crucial to establish the scale factors. These are calculated as the span (maxi-
mum - minimum) of the variables, ensuring normalization of the quantities involved.
For this process, the scale factors for the manipulated variables are [150, 110], for
the output variables [1.2, 110], and for the state variables [6, 1.2, 110]. Ensuring
these factors are determined at the onset of the controller design and kept constant
throughout, promotes numerical stability.

To show the competitive objectives of the GAM formulation presented in
Equation (3.4), Figure 3.23 depicts the compromise optimization results in the
Pareto frontier for the Van de Vusse problem.

Two cases for the reference trajectory are also considered here, governed by first-
order systems, where the static gains are kR = [1, 1] and the two time constants

80



Figure 3.23: Compromise optimization in the Pareto frontier for the Van de Vusse
problem.

are τa
R = [0.05, 0.0875] hours and τc

R = [0.3, 0.4] hours for the aggressive and
conservative dynamics, respectively.

One may note that the orders of magnitude between the concentration and the
temperature are different; therefore, Equation (A.2) is used to scale the variables
between 0 and 1. The relative weight for the GAM was set as ω = [1, 1]. The
step references for the VNS algorithm are set as rs = [0.1, 4] from the steady-state.
Table 3.4 presents the solution of the tuning procedure for both cases.

Table 3.4: Tuning parameters for Van de Vusse reactor

MPCT Scenario xdv

case 1 [ 15︸︷︷︸
p

, 2, 2︸︷︷︸
m

, 1, 1︸︷︷︸
diag(Q)

, 1× 10−5, 1× 10−5︸ ︷︷ ︸
diag(W)

]

case 2 [ 14︸︷︷︸
p

, 3, 2︸︷︷︸
m

, 0.484, 1.220︸ ︷︷ ︸
diag(Q)

, 6.050, 1.44× 10−4︸ ︷︷ ︸
diag(W)

]

The required computational time was 7 min for case 1 and 140 min for case
2. In Figures 3.24 and 3.25, it is possible to see the approximation of the closed-
loop response, y(k), with the output trajectory at the first optimization, yo(k|1),
resulting in a suitable horizon size.
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Figure 3.24: Determination of the prediction and control horizons for Van de Vusse
Reactor output y1 and input u1.

Figure 3.25: Determination of the prediction and control horizons for Van de Vusse
Reactor output y2 and input u2.
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In this case study, the controlled variables are affected by measurement noise
and unknown pulse disturbances with an intensity of −5 ◦C on input u2 from 6 h
to 6.25 h. The response of the tuning of the MPCT on the NMPC can be seen in
Figures 3.26 - 3.29. The reference for y1 changes from 0.9052 mol/L to 1.0 mol/L at
0.3 h and y2 changes from 134.95 ◦C to 140 ◦C at 1.85 h. Additionally, constraints
on the process inputs of 0.1 h−1 ≤ u1 ≤ 140 h−1 and 90 ◦C ≤ u2 ≤ 200 ◦C are
established.

Figure 3.26: Case 1—Response of Van de Vusse reactor outputs to setpoint changes
and disturbances rejections.

Figure 3.27: Case 1—Manipulated variables of Van de Vusse reactor.

Both tuning strategies exhibit dynamics closely aligned with the user-defined
desired reference trajectories. The control mechanisms in both cases successfully
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Figure 3.28: Case 2—Response of Van de Vusse reactor outputs to setpoint changes
and disturbances rejections.

Figure 3.29: Case 2—Manipulated variables of Van de Vusse reactor.
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mitigate the noise in the controlled variables and accommodate load disturbances.
The value of the multi-objective function J , which combines reference tracking and
control effort, is examined to evaluate the different tuning schemes’ performance.
Table 3.5 shows that Case 1 outperforms Case 2 regarding the accumulated J value.
This suggests that Case 1 reaches the setpoint more quickly and offers superior
disturbance rejection dynamics, thus fulfilling the dual objectives more efficiently.

Table 3.5: Accumulated Objective Function J for the Van de Vusse Reactor

Accumulated J
Case 1 2.1538× 10−5

Case 2 0.21654

3.3.3 The Shell Heavy Oil Fractionator — A Non-square

MIMO System with Linear MPC Formulation

In order to evaluate the MPCT’s performance in tuning MPC controls applied to
non-square systems, a full configuration of the Shell Heavy Oil Fractionator (FHOF)
as depicted in Figure 3.30 is examined. This system constitutes a distillation column
presenting significant control challenges due to interaction between inputs and out-
puts as well as long time delays. The original system involves 7 monitored variables
and 5 inputs, of which 3 are manipulated variables, and 2 are disturbances. The
objective is to control the top output composition (y1), the side output composition
(y2), the top temperature (y3), the top reflux temperature (y4), the side draw tem-
perature (y5), the mid reflux temperature (y6), and the bottom reflux temperature
(y7) by manipulating the top draw (u1), side draw (u2), and bottom reflux rate (u3),
while rejecting disturbances provided by the mid reflux rate (d1) and top reflux rate
(d2).

Each channel of the model is represented by a first-order function with time
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Figure 3.30: Representation of the Shell heavy oil fractionator.
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delay, expressed as:

Pn(s) =



4.05e−27s

50s+ 1

1.77e−28s

60s+ 1

5.88e−27s

50s+ 1

1.20e−27s

45s+ 1

1.44e−27s

40s+ 1
5.39e−18s

50s+ 1

5.72e−14s

60s+ 1

6.9e−15s

40s+ 1

1.52e−15s

25s+ 1

1.83e−15s

20s+ 1
3.66e−2s

9s+ 1

1.65e−20s

30s+ 1

5.53e−2s

40s+ 1

1.16

11s+ 1

1.27

6s+ 1
5.92e−11s

12s+ 1

2.54e−12s

27s+ 1

8.10e−2s

20s+ 1

1.73

5s+ 1

1.79

19s+ 1
4.13e−5s

8s+ 1

2.38e−7s

19s+ 1

6.23e−2s

10s+ 1

1.31

2s+ 1

1.26

22s+ 1
4.06e−8s

13s+ 1

4.18e−4s

33s+ 1

6.53e−1s

9s+ 1

1.19

19s+ 1

1.17

24s+ 1
4.38e−20s

33s+ 1

4.42e−22s

44s+ 1

7.2

19s+ 1

1.14

24s+ 1

1.26

32s+ 1


In this case study, the main novelty lies in the application of the MPCT algorithm

to non-square systems, thereby extending its potential uses. This objective is ac-
complished by incorporating the slack variable, ϵk, from the MPC’s soft constraints
as defined in Equation (2.33), into the GAM’s objective function. In contrast to pre-
vious studies, where the focus of the MPC controller was to track a setpoint based
on a reference trajectory, this study adopts a different strategy for cases with fewer
degrees of freedom (specifically, 7 controlled variables for 3 manipulated variables).
The control strategy is set to operate within defined ranges, allowing temporary
minor violations of constraints using the slack variable but endeavoring to keep the
controlled variables within their designated ranges during steady-state operation. In
this context, the reference trajectory for the MPCT algorithm is designed to guide
the controlled variables to stay within their permissible ranges. This is accom-
plished by assigning zero weights in the Q matrix for those variables that operate
within these ranges. As a result, the system outputs are allowed to deviate from the
reference trajectory, provided they remain within the soft constraints. Normally,
soft constraints are applied to the controlled variables, while hard constraints are
enforced on the manipulated variables.

The outputs y1 and y2 should remain within ±0.005 specifications, while y3, y4,
y5, y6, and y7 should remain within ±0.5 in steady state. All manipulated variables
have hard constraints of ±0.5.

The process model is appropriately scaled using the diagonal matri-
ces L = diag[0.4401; 0.2319; 0.6265; 0.5431; 0.6006; 0.2069; 0.3942] and R =

diag[0.2640; 0.1351; 0.1156; 0.7819; 0.4665] where the first three diagonal values of
matrix R correspond to the manipulated variables, and the last two diagonal values
are associated with the measured disturbances.
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The scaled gain matrix for the nominal case is given by:

K =



0.4705 0.1052 0.2992 0.4129 0.2956

0.3300 0.1792 0.1851 0.2756 0.1980

0.6053 0.1397 0.4007 0.5682 0.3712

0.8488 0.1864 0.5088 0.7347 0.4536

0.6548 0.1931 0.4327 0.6152 0.3531

0.2218 0.1169 0.1563 0.1925 0.1130

0.4557 0.2354 0.3282 0.3513 0.2317


. (3.18)

Setting the scale factors before employing the MPCT algorithm for the FHOF is
crucial. These factors normalize the quantities involved and are derived as the span
of the variables. In this case, the scale factors for the manipulated variables are
set as [1,1,1], for the output variables as [0.01,0.01,1,1,1,1,1], and for the measured
disturbance variables as [0.5,0.5].

For the discretization of the process transfer function, a zero-order hold method
is employed with a sampling period of Ts = 4 minutes. The parameters for the
MPCT are established as follows: the maximum prediction horizon p is set to 128,
equivalent to 7 bits; the maximum control horizon m is set to 15, corresponding to
4 bits; and the tuning horizon ϕ is fixed at 200. The relative weight for GAM is
defined as ω = [0.0001, 0.0001, 1, 0.5, 1, 0.5, 1].

First-order plus dead-time systems govern the reference trajectory of the MPCT
with a static gain denoted by kR = [−1,−1, 1, 1,−1,−1,−1]. The associated dead-
time is LR = [27, 14, 0, 0, 0, 0, 0], and the time constant for all outputs are set at
τR = 50. To generate the reference trajectory, the reference transfer function is stim-
ulated with steps represented by uR = [0.0150, 0.0150, 1.5, 1.5, 1.5, 1.5, 1.5], which is
thrice the magnitude of the maximum constraint of the plant’s output. This specific
stimulation was chosen through experimental simulation of the process to establish
a reference dynamic that aligns with the magnitude appropriate to each controlled
variable.

The tuning parameters for the MPC controller, determined through the use of
MPCT, were found to be p = 23, m = 2, and W = [0.012341, 9.999×10−6, 1×10−5].
The required computational time was approximately 12 minutes.

As depicted in Figures 3.31 and 3.32, the close approximation between the closed-
loop response, y(k), and the output trajectory from the initial optimization, yo(k|1),
can be observed. This showcases the effectiveness of the selected horizon size in
capturing the system dynamics.

Figures 3.33 - 3.34 show the MPC by band behavior. In these simulations,
it was hypothesized that all inputs and outputs start at zero. However, at time
t = 100 min, the system was subjected to a step disturbance of d1 = d2 = 0.5. As

88



can be seen in these figures, the controlled variables successfully remain within the

Figure 3.31: Determination of the prediction horizon of the FHOF.

Figure 3.32: Determination of the control horizon of the FHOF.
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tracking zone region when the system reaches the steady state, confirming the effec-
tiveness of the proposed methodology in achieving satisfactory process performance.

The controller manages to keep the variables y1 and y2 within the bands, which
present the most significant restrictions. The reference trajectory was instrumental
in determining the controller parameters so that the dynamics could follow this
reference. This objective is largely achieved in most of the trajectories. However,
the control’s priority is to keep all variables within the band, necessitating some
variables to stabilize over the soft constraints, as seen in the cases of y1, y6, and y7.

Figure 3.33: Controlled variables of the FHOF.

3.3.4 Production of Butyl Lactate in a Pilot Plant at the

National University of Colombia — Linear MPC For-

mulation

This case study examines the effectiveness of the MPCT applied to a linear MPC
implemented in a pilot plant at the National University of Colombia. The plant’s
purpose is to assess the production of butyl lactate from lactic acid and butanol.
The kinetic and thermodynamic information integral to this process can be found
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Figure 3.34: Manipulated variables of the FHOF.

in GARCÍA et al. (2021) and VELANDIA et al. (2021). The plant’s representation
is a phenomenological model implemented in Simulink and validated with previous
experimental runs in the pilot plant and literature data. This model replicates the
functionality of a multistage reactive distillation column.

The reactive distillation column (RDC), depicted in Figure 3.35, is theoretically
divided into N equilibrium stages for modeling. The first stage is the decanter, the
second stage is the condenser, and the N th stage is the reboiler.

Model Assumptions

The modeling of the reactive distillation column has the following assumptions:

• The Non-Random Two-Liquid (NRTL) model is employed for modeling the
liquid phase, while the ideal-gas law represents the vapor phase.

• There is no resistance to internal and external diffusive transport over the
catalyst, and there is no resistance to transport over the fluid phases. Thus,
phase equilibrium is achieved homogeneously.

• A pseudo-homogeneous kinetic model is assumed.

• In the Decanter, the NRTL model is utilized for predicting liquid-phase behav-
iors, and the k-value method is used to ascertain compositions in the extracted
and refined flows.
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Figure 3.35: Representation of the multistage reactive distillation column.

• The presence of oligomers is neglected.

• The reboiler and condenser are modeled as ideal stages.

• Variations in kinetic and potential energy are ignored.

• Equilibrium is assumed to be controlled by kinetics.

• Physical properties are constant.

• There is no heat loss from the column.

• Column pressure drop is neglected.

• Two phases (vapor-liquid) and a reaction in the liquid phase are considered.

Within the primary focus of this study lies the challenge of accurately tuning a
linear MPC controller for a 2×2 system. The manipulated variables, represented as
u1 and u2, correspond to the feed and boil-up ratios, commonly called "RR". The
primary objective is to control these ratios to effectively manage the condenser and
reboiler temperatures, represented as y1 and y2, respectively. All controller tuning
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and subsequent operations are based on the validated model of a pilot plant-scale
reactive distillation column.

Managing these variables proves to be a significant challenge due to the system’s
non-linearity, the over-dimensioning of specific column equipment, and the presence
of multiple steady states within this process. Therefore, the condenser tempera-
ture, y1, is maintained within an operational range between 359.3 K and 361 K, and
the reboiler temperature, y2, is set between 430 K and 440 K. These regions are
implemented to ensure the production of the target product, Butyl Lactate, with
a desirable composition exceeding 93%. Additionally, rigid constraints on the con-
trolled variables are established to ensure the stability of the column: the feed ratio,
u1, varies between 0.1185 and 0.1449, and the boil-up ratio, u2, ranges from 13.3850
to 26.77.

The simplified model in the form of a transfer function is given by:

Pn(s) =


2.687× 10−5s+ 8.43× 10−9

s2 + 0.0001108s+ 2.271× 10−8

−1.495× 10−5s+ 7.807× 10−9

s2 + 0.0004505s+ 7.777× 10−8

0.0161s− 7.563× 10−6

s2 + 0.0001978s+ 1.688× 10−8

2.591× 10−5

s+ 2.531× 10−5

 .
(3.19)

MPC Controller

The process model is appropriately scaled by the minimum conditioning number
using the diagonal matrices L = diag[0.7075; 0.0064] and R = diag[0.0156; 0.6286].

For the nominal case, the scaled gain matrix is defined as:

K =

[
0.0041 0.0446

−0.0446 0.0041

]
. (3.20)

The manipulated variables’ scale factors are designated as [0.0132; 13.3850],
and the controlled variables as [1.5; 40]. The nominal values for the manipulated
variables are defined as [0.1396; 13.3850], while for the controlled variables they are
[359.8552; 407.2594]. Regarding the controller constraints, the controlled variable
y is subject to ±[1,∞]. The manipulated variables are bounded within specific
limits: the lower bound umin is defined as [0, 0], and the upper bound umax is
[0.0132, 13.3850]. It is pertinent to note that the scale factors, nominal values,
and controller constraints are pre-multiplied by L and R−1, following the procedure
elaborated in Appendix A.

The tuning parameters giving by the MPCT include a sampling pe-
riod of Ts = 1000 s, a prediction horizon of p = 100, a control horizon of
m = [2, 4], and the semi-definite weighting matrices are Q = diag([0; 0.1127]) and
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W = diag([0.6013; 0.4027]). As the system output can operate within a range, as
long as it abides by flexible constraints, the first element of the Q matrix diago-
nal is set to zero. Consequently, the flexible constraint violation penalty weight is
ρϵ = 10000.

In Figure 3.36, the adjustments made by the MPCT algorithm to fit the pre-
diction and control horizons can observed. Notably, the closed-loop dynamics align
closely with the dynamics of the MPC’s first optimization, thus providing a reliable
estimate of the process trajectory and ensuring appropriate sizing of both horizons.

Figure 3.36: Determination of the prediction and control horizons for RDC.

Figure 3.37 illustrates the control response of the condenser and reboiler tem-
peratures by manipulating the feed and boil-up ratios. The results from the linear
MPC control implementation on the reactive distillation column show the system
initiating from a steady state, with the condenser temperature at 359.86 K and the
reboiler temperature at 407.26 K. An initial setpoint is set for the reboiler temper-
ature at 430 K. Based on this specification, the linear MPC controller adjusts the
manipulated variables, reducing the feed ratio to approximately 0.12 and increasing
the boil-up ratio to 22. This adjustment results in a temperature increase of 0.5 K in
the condenser, ensuring the controlled variable remains within the established range.
At the same time, the reboiler temperature reaches the desired setpoint around the
15-hour mark.

Following 50 hours, a new setpoint of 440K is set for the reboiler temperature,
and the MPC increases the boil-up ratio until it stabilizes at 23, simultaneously
reducing the feed ratio during the reboiler temperature transient, but it eventually
settles around 0.12. The reboiler temperature reaches the new setpoint around the
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65-hour mark. The condenser temperature remains within the soft constraints at
all times, a significant consideration given the over-dimensioning of the equipment
controlling this variable, making the column control highly challenging.

These results prove that the linear MPC controller efficiently regulates the con-
denser and reboiler temperatures according to system specifications, even when the
system exhibits high nonlinearities and potentially multiple steady states.

Figure 3.37: Responses of the MPC on the reactive distillation column.

3.4 Final Remarks

This chapter has introduced the Model Predictive Control Tuning Approach
(MPCT). This novel hybrid optimization method uses both the Goal Attainment
Method (GAM) and the Variable Neighborhood Search (VNS) to adjust the predic-
tive and control horizons and the weight matrices of an MPC.

The strength and versatility of the MPCT algorithm have been showcased
through simulation case studies applied to different process systems. These cases
included both square and non-square MIMO systems, linear and nonlinear MPC
formulations, demonstrating the wide-ranging applicability of the MPCT approach.
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Notable cases included the subsystem of the Shell Heavy Oil Fractionator, the Van de
Vusse Reactor, and the production of Butyl Lactate in a pilot plant at the National
University of Colombia.

These diverse applications illustrated the MPCT’s effectiveness in tuning MPCs
applied to complex processes, achieving desirable steady states, maintaining system
variables within safe operation bands, and responding efficiently to setpoints or dis-
turbance conditions changes. These case studies have substantiated the strength of
MPCT in handling systems with inherent non-linearities, over-dimensioned equip-
ment, and potential multiplicity of steady states, which are frequently encountered
in real-world process systems.
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Chapter 4

Filtered Smith Predictor Monitoring,
Diagnosis, and Self-tuning due to
Unmeasured Abrupt Load
Disturbance or Model Plant
Mismatch

The second part of the doctoral thesis focuses on providing real-time diagnostics
for the current control loop state in single-input, single-output systems, specifically
when using dead-time compensators (DTC) for filtered Smith predictors (FSP).
This chapter introduces a novel algorithm that offers not only model error (MPM)
and unmeasured disturbance (UD) detection but also auto-tuning of the robustness
filter to ensure system stability. This algorithm opens up the potential for utilizing
internal model parameters for model updates or the implementation of other control
methods documented in the literature, thus facilitating adaptive control.

4.1 Introduction

Monitoring and maintaining the performance of control systems is a critical task in
various industrial applications. Over the years, researchers have proposed various
techniques for monitoring and diagnosing the performance of control systems. DING
and LI (2021) provide a comprehensive review of existing techniques for control
performance monitoring and degradation recovery, including some new results and
future perspectives. SHEIKHI et al. (2021) propose an approach to monitoring
the performance of nonlinear control systems by projecting a nonlinear predictive
generalized minimum variance control onto a second-order Volterra structure. The
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proposed control scheme can handle constrained problems and use more adjustment
knobs to improve closed-loop performance. BOTELHO et al. (2021) propose an
MPC model monitoring and diagnosis approach for non-square systems, which can
improve the performance and reliability of such systems. These authors propose a
methodology that combines residual analysis, fault diagnosis, and reduced modeling
techniques to monitor and improve control system performance. The results show
that the proposed methodology can detect performance problems in the MPC model
and adjust the model to improve the stability and efficiency of the control system.

A fundamental factor in model-based controllers assessment in the closed-loop
control is identifying the source of the model’s predictive capacity loss, which could
be a model-plant mismatch (MPM) or an unmeasured disturbance (UD). An MPM
occurs when the dynamic model cannot correctly represent the evolution of the
process variables, and a reidentification is required. A UD happens when any input
variable was not considered in the process model (BOTELHO et al., 2016a). Both
MPM and UD can negatively affect the system’s performance, and distinguishing
between the two is not trivial. The MPM may result in performance degradation or
instability of the control system, as the model fails to accurately represent the real
system dynamics. This mismatch can be caused by system behavior changes over
time or inaccuracies in the model’s initial identification. On the other hand, the UD
may not induce instability in linear systems; however, in nonlinear systems, a UD
could drive the plant to an unstable operating point where the controller may not
stabilize the system. Still, they can induce sustained errors or significant deviations
in the process outputs, adding extra, unmodeled input to the system. A classic
example of MPM occurs when some process actuator begins to lose its capacity to
manipulate the system due to lack of maintenance or wear of its mechanical parts.
This causes the relationship between the inputs and outputs of the process to be
not the same as those represented by the identified model. On the other side, the
UD can occur, for example, by entering some noise on the signal of some sensor that
affects the capacity of action of the controller.

If the process to be controlled has a dominant time delay, the Filtered Smith
Predictor (FSP), proposed by NORMEY-RICO and CAMACHO (2007), is an effi-
cacious DTC can be used to control stable, integrating, and unstable processes. The
FSP employs a process model to generate a control signal, effectively compensating
for dead time in the process. Therefore, the knowledge of the predictive capacity of
the FSP given by the internal model and the detection of the UD effects is vital for
the controller performance and robustness assessment.

Every predictive structure that uses the open-loop model as a reference, such as
the FSP or MPC, to forecast the future dynamic of the process and make corrective
feedback actions need to analyze two main different scenarios (BOTELHO et al.,
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2015), (i) faster tuning: the controller is more sensitive to the MPM on the transient
response and less sensitive to the steady state; (ii) slower tuning: the entire system
response is relevant, and the controller is less sensitive to the MPM due to the slower
control action.

BADWE et al. (2010) proposed a performance assessment method to a model-
based predictive control (MPC). They incorporated the concept that the model
error effects on controller performance depend not only on the MPM, but are also a
function of the controller tuning and disturbances. The authors proposed identifying
the design plant behavior in a closed-loop, known as the design sensitivity function
(Sd), to quantify the impact of the MPM on controller performance. As this method
requires two data-based model identifications, an expensive procedure, BOTELHO
et al. (2015) proposed an approach that relies on the nominal sensitivity function for
MPM evaluation in an MPC controller. The authors employed the measured data,
the simulated outputs, and the complementary sensitivity function (via identification
procedures) to estimate the design plant behavior. With this method, the authors
could assess the actual control closed-loop performance.

Despite the significant advances in the cited literature, the development of di-
agnostic, monitoring, and self-tuning algorithms that can detect model degradation
or sudden entry of an abrupt disturbance in the Filtered Smith Predictor structure
has not been fully addressed. Also, the precise distinction between model predic-
tive capacity loss due to a model-plant mismatch and an unmeasured disturbance
remains a challenge in the field. There is an opportunity to enrich the existing per-
formance monitoring and diagnostic techniques and improve their effectiveness in
real-life situations. Therefore, this work aims to contribute to this effort, proposing
a new methodology to enhance the robustness and effectiveness of control systems.

As the sensitivity transfer function makes it possible to obtain the nominal
closed-loop performance (without MPM or UD) and investigate the real effects of
model-plant mismatch and unmeasured disturbances. This work proposes an algo-
rithm that establishes a time window and an operating range as tuning parameters
over the nominal closed-loop output and the system’s output to verify the model’s
predicted capacity and the presence of unmeasured disturbances. When a setpoint
change is implemented, the algorithm detects MPM by verifying an output error.
If MPM is detected, the algorithm checks if the system response is oscillatory due
to a significant time delay MPM problem. In that case, the algorithm adjusts the
FSP robustness filter to avoid a highly oscillatory response and make the controller
more conservative. Finally, the algorithm interprets this behavior as an unmeasured
disturbance if the controlled variable is in regular operation and goes out of range
for more than k samples without setpoint change.

In addition to monitoring the process signals, this approach employs three op-
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timization algorithms to (i) determine the possible actual plant parameters; (ii)
find the magnitude of the unmeasured disturbance; (iii) adjust the robustness filter,
Fr(z), in case of excessive oscillations caused by a high discrepancy between the
system delay and the model delay.

Until now, there has been no open literature on diagnostic, monitoring, and
self-tuning algorithms that can detect model degradation or the sudden entry of an
abrupt disturbance applying specifically in the Filtered Smith Predictor structure.
The necessity to tackle this gap in the literature is of paramount importance and
should not be underestimated. Poor model quality or unmeasured disturbances can
lead to significant performance degradation in the closed-loop control system, espe-
cially when the dead-time parameter is affected. Thus, this work aims to fill this
gap, particularly in SISO (single input single output) dominant time delay processes,
by proposing an algorithm to diagnose, monitor, and self-tune the Filtered Smith
Predictor structure under different scenarios, including model-plant mismatches and
unmeasured disturbances. This algorithm aims to improve the robustness and ef-
fectiveness of the control system, ensuring reliable and stable operation even in the
presence of these issues.

4.2 Methodology

The proposed method in this work is based on creating an envelope around the de-
signed closed-loop output yd(k), referred to as the benchmark output and introduced
in section 2.5.6. The width of the envelope is defined as an algorithm parameter.
The method detects model discrepancies and abrupt load disturbances by compar-
ing the dynamics with the benchmark signal. Additionally, to guarantee robustness
in the control structure, the algorithm adapts the filter Fr(z) if high-risk scenarios
exist, especially in the time delay mismatch scenario. The proposed approach has
three objectives: (i) to alert the user if an MPM or a UD has occurred, (ii) to show
the possible parameters of the actual transfer function for future structure main-
tenance or to make an adaptive control strategy, and (iii) to adjust the robustness
filter automatically in a critical MPM case.

Figure 4.1 depicts the control structure proposed in this work, where yn(k) rep-
resents the disturbance output and f is the vector containing the parameters used
to tune the primary controller with the internal model (if sc = ON) and the ro-
bustness filter. In this work, based on the presented background, the proposal is
to obtain the designed closed-loop output, yd(k) (without MPM, ∆P (z) = 0, and
without UD, n(k) = 0), by employing parallel simulation of the designed loop. This
approach avoids offline identification of So(z) independently of the control complex-
ity used in the structure, such as an MPC. From this nominal closed-loop response,
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the performance monitoring and diagnosis of FSP for SISO systems with dominant
time delay concerning MPM and UD is developed.

Remark 1. Note that the nominal closed-loop can be executed on the same
machine where the controller is implemented or on a different machine to reduce the
computational load.

Nominal closed-loop performance

MPM and UD
detection

MPM flag

UD flag

Figure 4.1: Performance monitoring and diagnosis of the FSP structure.

The approach starts with the realistic hypothesis that the controller began its
operation with an accurate model so that it would perform well in the first days,
weeks, or months. Based on this, in Figure 4.2, it is possible to see the three
different scenarios independently: (a) ideal case, P (z) = Pn(z) and n(k) = 0; (b)
UD case, P (z) = Pn(z) and n(k) ̸= 0; (c) MPM case, P (z) ̸= Pn(z) and n(k) = 0.
All scenarios have noise on the sensor signal. Notably, these responses represent a
generalized system, and the depicted discrepancies illustrate potential effects on the
system. Each specific system can exhibit a wide array of dynamics, and as a result,
the impact of MPM or UD may differ. Because of the vast diversity of systems
and the wide range of possible operating conditions, it is vital to understand that
these representations are simplified models that help one conceptualize potential
performance issues.
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Figure 4.2: Scenarios: (a) ideal case; (b) UD case; (c) MPM Case.

• In ideal case (a), the controller operates with an accurate model and no un-
expected disturbances. This scenario serves as a reference for the system’s
nominal performance, and any deviations from this behavior may indicate the
presence of MPM or UD.

• In the UD case (b), the system experiences unexpected disturbances. Although
the plant dynamics remain the same as the nominal model, the control action
differs due to the unmeasured disturbance. It is possible to use this information
to detect and diagnose the presence of UD in the system, as the plant dynamics
go outside the envelope without a setpoint change.

• In the MPM case (c), the plant dynamics changed due to process changes
or modeling errors. This scenario can be challenging to diagnose because it
requires identifying the nature and magnitude of the changes in the plant
dynamics. However, the proposed method can still detect and diagnose MPM
by comparing the system’s dynamics with the benchmark output.

The details of the proposal are described below.

4.2.1 MPM Detection

A previous study of the system’s dynamic behavior is the first stage in designing an
adequate control system. This knowledge allows tuning the controller parameters to
meet the desired specifications. Therefore, the discrepancy between the plant and
the model can be considered low at the beginning of the operation. Based on this, a
p-band is established over the benchmark signal as a tuning parameter. This p-band
must be wide enough to contain the signal of the controlled variable with its noise
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at the beginning of the control system operation, that is, when the MPM and UD
are low, as shown in scenario (a) in Figure 4.2. A time window, ϕ, is established in
the algorithm as a second tuning parameter. During that time window, the analysis
of the MPM of the control structure will be carried out. ϕ needs to be large enough
to capture the transient and steady-state of the system.

Over time, the model is expected to lose its predictive capacity, causing the
controller’s performance to decline. Since the setpoint strongly correlates between
yd(k) and e0(k), this approach can detect the MPM whenever a setpoint change is
inserted into the system.

When the setpoint change occurs, the algorithm captures the number of samples
configured in the time window ϕ. Once all the samples are collected, the MPM is
identified by applying the Algorithm 3.

Algorithm 3: Check if y(k) is within p-band of yd(k)
Input: yd(k), y(k), p, ϕ
Output: Whether y(k) is within p-band of yd(k)

1 e0(k)← y(k)− yd(k);
2 upper_index← indices of values in e0(k) greater than p;
3 lower_index← indices of values in e0(k) less than −p;
4 outside_data← length of upper_index plus length of lower_index;
5 threshold← 0.5 ϕ;
6 std_dev ← standard deviation of y(k);
7 mse← mean squared error between y(k) and yd(k);
8 if mse > 2 std_dev OR outside_data > threshold then
9 return False;

10 else
11 return True;
12 end

The algorithm compares the two signals y(k) and yd(k), calculates the difference
between them, and identifies the data points that exceed the threshold. The code
also calculates the percentage of data points outside the threshold and compares
it to a predefined threshold (set to 50%). If the percentage of data points outside
the threshold exceeds the predefined threshold, then the code considers the signals
significantly different.

In addition, the code calculates the standard deviation of y(k) and the mean
squared error (MSE) between the two signals. If the MSE is greater than two times
the standard deviation or the percentage of data points outside the p-band is greater
than the predefined threshold, the code considers the signals to be significantly
different, and an alarm is sent to alert the user about the existence of a significant
MPM that degrades the controller’s performance.

Using the standard deviation and the MSE is a common approach for detecting
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significant signal differences. The standard deviation measures the dispersion of the
data points from the mean, and the MSE measures the average squared difference
between the two signals. These measures help identify when the difference between
two signals is statistically significant.

Additionally, the algorithm can estimate and display the optimized parameters
of the transfer function in the internal model by utilizing the following optimization
algorithm:

JMPM(x) =min
x

ϕ∑
k=1

[y(k)− ŷ(k)]2 (4.1)

subject to

LB ≤ x ≤ UB,

where x is the decision variable vector containing the parameters of the transfer
function model, Pn(z). Note that Pn(z) is a previously known structure. For ex-
ample, suppose that a first-order plus dead time transfer function, Pn(s), on the
continuous domain, represents the model. In that case, the decision variables are
x = [K, τ, L], where K is the model gain, τ is the time constant, and L is the
dead time. The initial condition of the optimization algorithm, x0, are the same
parameters of the transfer function model found at the start of the operation, which
is updated if a new model is found. Since this commissioning system constantly
monitors the closed-loop control, x0 provides a good starting point to accelerate
the algorithm’s convergence. Finally, the search region is bounded by LB and UB,
which are the lower and upper limits of the decision variables, respectively. These
limits can be established from the initial condition as x0i(1±αi) with i = 1, 2, ..., nx,
where nx is the maximum number of decision variables, and αi is the percentage
variation of each parameter of the transfer function model.

Remark 2. Pn(z) is a proper model with any order capable of representing the
dynamic process.

The parameters obtained from the process model can be used in various appli-
cations, such as implementing any adaptive control technique proposed in the liter-
ature. By utilizing the parameters, the controller can adapt itself to the dynamic
behavior of the process, resulting in better control performance. Additionally, the
parameters can be used for offline configuration of the controller in the plant during
future maintenance. This can reduce the plant downtime and improve the control
system’s efficiency. Overall, the knowledge of the process model parameters can
significantly enhance the performance and maintenance of the control system.
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4.2.2 UD Detection

One of the primary objectives of process control is to mitigate load disturbances
that arise when a system is in a stable state. Load disturbances can include, for
instance, changes in the inlet concentration of a reactor with exothermic reactions,
changes in road slope while using cruise control in a car, or fluctuations in the water
flow rate entering a heat exchanger. Low frequencies are typically dominant in load
disturbances and are often modeled using step or ramp signals.

The algorithm introduced in this study can identify sudden load disturbances
(as a step function) within a system. The primary objective is to determine if a
load disturbance excites the dynamics of the closed-loop system enough to generate
an alert for the operator, indicating the potential magnitude of the abrupt load
disturbance.

As reported by VERONESI and VISIOLI (2008), to describe different dynamics
of the load disturbance, it is supposed that the signal yn(k) is the step response of
a first-order filter Pd(z), namely,

Pd(z) =
yn(k)

n(k)
=

1− a
z − a

, Ts (4.2)

where a = e−Ts/τn , Ts is the sampling time and τn is the filter time constant. Note
that the more the filter time constant τn is small, the more abrupt the load distur-
bance over the system is.

After the MPM detection stage has been executed at least once, the diagnos-
tic system is primed for UD detection. Suppose the algorithm identifies that the
controlled variable y(k) has exceeded the p-band while superimposed on the signal
yd(k). In that case, this scenario may be interpreted as an unmeasured disturbance
(UD) entering the system. To prevent false positives, the algorithm verifies the
following conditions:

Condition 1 : The signal of the controlled variable y(k) is often contaminated by
measurement noise. Therefore, the algorithm employs a filtered signal, ȳ(k), rather
than the raw signal y(k). Several filtering techniques can be used, and in this study,
a moving average filter was selected. A tuning parameter, hs, determines the filter’s
horizon and yields the filtered output signal ȳ(k):

ȳ(k) =
1

hs

hs−1∑
m=0

y(k −m), (4.3)

when the signal ȳ(k) deviates from the p-band, and a setpoint change does not exist,
the algorithm collects data for the controlled variable y(k) and records the times
when ȳ(k) remains outside the p-band.
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Note: It is imperative to exercise caution when selecting the value of hs, the
filter horizon. An excessively large value for hs may dampen the system dynamics,
leading to attenuated response and potentially the inability to detect disturbances in
a timely manner. It is initially suggested to consider a value of hs that is proportional
to the system’s time constant (τ) and sampling time (Ts). For this purpose, a factor
χ, ranging between 0.5 and 2, can be utilized to adapt hs as hs = χ τ

Ts
.

Condition 2 : When the signal ȳ(k) returns within the p-band, the algorithm
waits a while to verify if this signal effectively remains within the p-band. In this
way, it is guaranteed that the rejection of the disturbance has been carried out. At
that moment, the data collection started in Condition 1, is finished, and the abrupt
load disturbance is estimated.

Figure 4.3 illustrates an example of an abrupt unmeasured load disturbance.
Between the time steps 140 and 150, both the controlled variable y(k) and its filtered
mean ȳ(k) reside within the p-band. The span between time steps 150 and 159,
highlighted in green, signifies a phase where ȳ(k) fluctuates outside the p-band,
prompting the algorithm to initiate data collection. After this, at time step 159,
ȳ(k) returns inside the p-band. The algorithm then performs a conditional check
based on a combination of multiple criteria. These criteria involve evaluating the
recent hs samples of y(k), as well as computing a mean squared error (MSE) over a
window of ϕ/2 recent samples. If these criteria indicate that the signal has returned
to and remained within the p-band, the algorithm concludes that the disturbance
has been successfully mitigated. Data collection is then terminated, the magnitude
of the disturbance is estimated, and an alarm is issued to inform the operator of the
presence of the unmeasured disturbance.

The estimation of the abrupt load unmeasured disturbance is done with the
following equation:

JUD(w) =min
w

η∑
k=1

[y(k)− yd(k)− ŷn(k)]2 (4.4)

subject to

LB ≤ w ≤ UB,

where w = [τn, n(k)] is the decision variable vector. A time window, η, is established
to capture the time during which the filtered signal ȳ(k) oscillates outside of the p-
band. This window begins at the moment ȳ(k) surpasses the boundaries of the
p-band and ends when ȳ(k) returns and stabilizes within the p-band. The value of
η can vary from system to system and is determined dynamically based on signal
behavior. The search region is bounded by LB and UB, which are the lower and
upper limits of the decision variables, respectively, where τn > 0. The estimation of
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Figure 4.3: Abrupt load unmeasured disturbance.

yn(k), represented as ŷn(k), which is illustrated in Figure 4.1 is computed using the
following equation:

ŷn(k) = Pd(z)

[
1− C(z)Pn(z)Fr(z)

1 + C(z)Gn(z)

]
n(k). (4.5)

4.2.3 Robustness Self-tuning Filter

When there is a substantial discrepancy between the process and the model, the
dynamic response of the closed-loop control can become oscillatory. This is especially
true if the process has a dominant time delay. Therefore, the algorithm performs
a self-tuning on the robustness filter to smooth the system’s response in case the
oscillations caused by the MPM appear.

Two conditions must be met when designing the prediction filter, Fr(z): (i) the
static gain of the filter should be unitary, i.e., Fr(1) = 1, and (ii) the filter should be
designed to eliminate the undesired dynamics of the plant model (NORMEY-RICO
and CAMACHO, 2009).

The nominal model process, Pn(z), can be written explicitly in terms of the
numerator and the denominator, as in Equation (4.6), where the denominator is
divided into two parcels, D+

n (z) and D−
n (z). The roots D+

n (z) are the undesired
poles of the model plant, and the roots D−

n (z) are the fast and stable poles of
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the model plant. The undesired poles are all those not allowed to appear in the
disturbance response.

Pn(z) = Gn(z)z
−dn =

Nn(z)

Dn(z)
z−dn =

Nn(z)

D+
n (z)D

−
n (z)

z−dn (4.6)

The predictor filter can also be written explicitly in terms of the numerator and

denominator, such as Fr(z) =
Nf (z)

Df (z)
. The denominator, Df (z), may be arbitrarily

chosen by the designer with roots within the unitary module circle, considering the
desired dynamics in the disturbance rejection and the system’s robustness. Note
that the roots of Df (z) are also roots of the disturbance transfer function presented
in Equation (2.56). Therefore, slow roots on the filter become the system more
robust since the filter module Fr(e

jωT ) decay in lower frequencies.
According to NORMEY-RICO and CAMACHO (2009), it can be established

that a reasonable choice for the filter’s denominator is given by:

Df (z) = (z − β)v, (4.7)

where β ∈ (0, 1) and v is an integer such that v ≥ 1. The parameter v must
be selected at least equal to the number of undesired roots of the plant model to
be eliminated from S(z) filter presented in Equation (2.57). If v is greater than
this number, the robustness increases in the presence of MPM and decreases the
disturbance rejection speed.

From Equation (2.57), where S(z) = Gn(z)
[
1− Fr(z)z

−dn
]
, one can isolate the

term 1−Fr(z)z
−dn and rewrite it in terms of the filter’s numerator and denominator

as follows:

1− Fr(z)z
−dn = 1− Nf (z)

Df (z)
z−dn =

Df (z)−Nf (z)z
−dn

Df (z)
. (4.8)

Note that the numerator of Equation (4.8) is a polynomial. Its roots are meant
to cancel out the undesirable poles of the model Gn(z), in other words, the roots of
D+

n (z). Therefore, the polynomial of the filter’s numerator can be written as:

Df (z)−Nf (z)z
−dn

Df (z)
=

(z − 1)(z − z1)...(z − zn)pr(z)z−dn

Df (z)
, (4.9)

here, z1, z2, ..., zn are the undesired poles of Gn(z), pr(z) is the polynomial residue,
and the root in (z − 1) satisfies the criterion Fr(1) = 1 (applying the limit of z
tending to 1 in Equation (4.9)). The numerator from Equation (4.9) is equated to
the poles to be eliminated from the fast model, Gn(z). Thus, the filter’s numerator
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can be obtained from the following equation:

Df (z)−Nf (z)z
−dn = (z − 1)D+

n (z)pr(z). (4.10)

This procedure guarantees the stability of S(z) since it effectively eliminates the
undesired poles from the plant model. This can be seen in the following equation:

S(z) =
Nn(z)

D−
n (z)

pr(z)(z − 1)

Df (z)
, (4.11)

by substituting Equation (4.9) into Equation (2.57), the above equation is obtained,
clearly showing how the procedure leads to a stable S(z) by removing the undesired
dynamics from the system.

In general, the tuning of the predictor filter of the FSP structure is fixedly defined
with an a priori design that considers the relationship between robustness and
disturbance rejection speed. NORMEY-RICO and CAMACHO (2007); NORMEY-
RICO et al. (2014) proposed tuning methods for the filter that emphasize robustness
or disturbance rejection dynamics, depending on the desired characteristics of the
process.

Automatic tuning methods for the robust filter were proposed by DE LIMA and
SANTOS (2015) and GIRALDO et al. (2016). These methods used online iden-
tification of model uncertainties via the fast Fourier transform to adjust the filter
parameters and accelerate the disturbance rejection dynamics while ensuring robust
stability. In the present work, it is proposed to modify this automatic tuning proce-
dure for the robust filter Fr(z) and integrate it into the diagnosis algorithm of the
FSP. Our contribution lies in incorporating a criterion for selecting the parameter
that determines the degree of robustness of the filter Fr(z), which enhances the diag-
nosis algorithm’s accuracy and robustness. The estimation of model uncertainties,
presented in Equation (2.60), is obtained using the result of Equation (4.1), where
Pi(z) is the estimation given by the optimization algorithm, and Pn(z) is the actual
internal model of the structure.

Drawing on the concepts introduced in section 3.2.4, the appropriate tuning of
the filter Fr(z) to achieve a balance between the robustness of the structure and
the speed of the disturbance rejection response is achieved through the definition
of the poles in Df (z). In analytical terms, this involves satisfying Equation (2.62)
condition. However, in the context of this proposal, the robustness filter needs to
be adjusted conservatively to reduce the oscillations caused by the MPM and allow
the dynamic response of the process to stay within the p-band. Consequently, the
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robust stability condition is modified to fulfill the following equation:

δPi(e
jωTs) + γ ≤ dP (ejωTs), 0 < ω <

π

Ts
, (4.12)

where γ is a parameter that affects the system’s robust stability margin and can vary
between 0 and 1. The closer γ is to one, the greater the increase in the system’s
robust stability. This work proposes Equation (4.13) as the margin in magnitude
measurement to maintain a conservative response:

γ =
(
1− δPi(ωmin)

) ωdP

10⌈log10(ωdP)⌉
, 0 ≤ γ ≤ 1 (4.13)

where ωdP is the frequency at which magnitude of the robustness index, dP (ejωTs),
is minimum, and ⌈log10(ωdP)⌉ denotes the ceiling of the logarithm base 10 of ωdP.
δPi(ωmin) is used as a reference to represent the low frequency of the error shape.
This means that the robust stability condition is adjusted based on the deviation of
the low frequency of the error shape at the frequency that is a certain percentage of
the frequency where the magnitude of the robustness index is minimum, concerning
the frequency decade that contains this minimum.

The zeros and poles of Fr(z) are estimated using the bisection numerical method
to meet the specifications presented in Equation (4.9). For a stable open-loop sys-
tem, incrementing the filter poles always increases the system’s robustness, present-
ing a monotonic behavior. This behavior is helpful when the bisection method is
employed because the technique can find the optimal global value that guarantees
a compromise between performance and robustness.

To achieve a disturbance rejection response different from the closed-loop system
dynamics, one of the roots of the robustness filter numerator must be set equal to the
dominant pole of the closed-loop system. This ensures that the closed-loop filter pole
dominates the disturbance rejection speed. For example, let Nf (z) = (z − λ)pn(z),
where λ is the dominant pole of the closed-loop transfer function and pn(z) is the
polynomial residue of the filter numerator.

To determine the β parameter, Equation (4.7), of the robustness filter, the bisec-
tion algorithm proceeds as follows: since systems that employ the FSP are typically
delay-dominant systems, an interval such as [a, b] is defined. This interval is chosen
to have two extremes concerning the parameter β. The low extreme value for β is
selected in a way that does not guarantee the robust stability of Equation (4.12),
and the high extreme value for β is chosen as too robust. The optimal value of the β
parameter is reached by reducing the interval in successive halves, verifying that the
right endpoint maintains the robust stability condition. This procedure is repeated
until reaching a value equal to or less than the stop condition, ε, evaluated by the
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difference between a and b. Finally, the right endpoint is selected as the pole of
the robustness filter, which presents a compromise between robustness and speed to
reject disturbances. Algorithm 4 shows the pseudo-code of the bisection algorithm
to find the robust filter.

Algorithm 4: Pseudo-code of the bisection algorithm.
Input : λ, ε, δPi(ω), C(ω), Gn(ω), Fr(ω), ω
Output: Fr(z)
// value that does not respect Equation (4.12)

1 a← 0.001;
2 Fra(z)← get_filter(β = a, λ) ; // aggressive filter
3 Fa ← robust_stability(δPi(ω), C(ω), Gn(ω), Fr(ω), ω) ; // check Equation

(4.12)
// value that respects Equation (4.12)

4 b← 0.99;
5 Frb(z)← get_filter(β = b, λ) ; // conservative filter
6 Fb ← robust_stability(δPi(ω), C(ω), Gn(ω), Fr(ω), ω) ; // check Equation

(4.12)
7 if Fa == 0 and Fb == 1 then
8 while b− a ≥ ε do
9 c← (a+ b)/2;

10 Frc(z)← get_filter(β = c, λ);
11 Fc ← robust_stability(δPi(ω), C(ω), Gn(ω), Fr(ω), ω) ; // check

Equation (4.12)
12 if Fc == 1 then
13 b← c;
14 else
15 a← c;
16 end
17 end
18 β ← b;
19 else
20 β ← b;
21 end
22 Fr(z)← get_filter(β, λ)

The complete repository for the MPM_UD Algorithm can be found on GitHub
at the following link: https://github.com/sergioacg/MPM_UD_Algorithm.git.

This repository contains various examples that will be discussed in the following
sections. All code has been developed using MATLAB and Simulink, providing a
visual representation of MPM and UD alarms directly in the Simulink diagrams. In
order to construct the algorithm, S-Functions have been employed. These functions
are powerful tools that allow users to create their own blocks in Simulink using
MATLAB code. The open-source repository is available to anyone interested in
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understanding and implementing the MPM_UD Algorithm in their control system
projects.

4.2.4 Algorithm Priorities

Since the FSP commissioning algorithm is divided into three stages, some rules are
considered to diagnose the control structure:

1. The diagnostic algorithm only starts operating when the system’s first set-
point change occurs. In this case, the algorithm prioritizes the execution of
the Algorithm 3 and Equation (4.1) to verify the absence of a significant dis-
crepancy between the process time delay and the model time delay. This
verification is necessary because a high MPM on the time delay implies an os-
cillatory response of the system. Consequently, detecting an abrupt UD would
be challenging.

2. The UD detection stage is only activated if the MPM detection stage has been
executed at least once. The algorithm saves the instant of time in which the
first execution of the MPM detection stage was performed. After that, it waits
for at least four-time constants before activating the UD detection stage. This
allows the process to return to the operating point within the p-band and avoid
generating a false positive detection of UD. For example, the process response
would be highly oscillatory if the system had a time-delay model discrepancy.
These oscillations cause the measured variable to constantly leave the p-band,
thus causing false positives of UD detection. However, if the detection stage
MPM is activated at least once, this discrepancy can be detected, and the
robustness filter Fr(z) is tuned to reduce the oscillations.

4.2.5 Overview of the Proposed Algorithm: MPM and UD

Detection, and Auto-Tuning of Robustness Filter

Figure 4.4 provides a comprehensive visualization of the algorithm proposed in this
study. This flowchart presents the logical steps the algorithm follows to execute
the critical tasks of monitoring, diagnosis, and self-tuning in the context of the
FSP control structure, as illustrated in Figure 4.1. The algorithm is designed to
emphasize the detection of the MPM, UD, and the self-tuning of the robustness
filter.

The monitoring phase is continuous and involves constant observation of the con-
trol structure’s signals, specifically the reference signal r(k), the benchmark signal
yd(k), and the plant output signal y(k), obtained from the sensor. This constant
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monitoring ensures that the system operates within the expected regions during the
controller’s design phase, thereby mitigating any abnormal behavior.

The diagnosis phase is triggered if the system begins to deviate from the bench-
mark signal yd(k) and the signals extend beyond the p-band. Utilizing the monitor-
ing data, a diagnosis is made to identify if the deviation is due to the MPM or an
abrupt UD. If either of these scenarios is detected, the algorithm sends an alert to
the operator, providing valuable information for scheduling maintenance or possibly
tuning the control more conservatively. Furthermore, it offers an estimation of the
potential new parameters of the model, which could be beneficial if adaptive control
strategies need to be implemented.

Upon the detection of MPM, the auto-tuning phase of the robustness filter is
activated. The robustness filter parameters are tuned according to the methodology
proposed in this paper, detailed in Algorithm 4. This auto-tuning process, a novel
aspect of our proposed algorithm, ensures the internal stability of the control loop
when there is a significant MPM, particularly when there is a significant discrepancy
in the dead-time parameter.

In summary, the crux of the algorithm is to continuously monitor the system, di-
agnose potential issues and tune the robustness filter in response to detected anoma-
lies. This proposed method, capable of handling stable systems, integrating or un-
stable in open-loop, is novel and unmatched in the current literature dealing with
the FSP control structure, especially for time-delay dominant processes. The algo-
rithm offers a significant contribution to enhancing the stability and performance of
the FSP control structure.

4.3 Case Studies

4.3.1 Application of Proposed Method

A SISO FSP structure was configured in Matlab to illustrate the application of the
proposed approach. Table 4.1 shows the real plants and their corresponding models
within the FSP structure. Each model presents a mismatch concerning the plant
in different dynamic regions. This work presents the systems and their models in
continuous time (Laplace domain) to evidence these differences.

The continuous stirred tank reactor with Van de Vusse reactions is chosen for
the nonlinear case study. The isothermal Van de Vusse reaction system involves a
series and parallel reactions between the feed product A and the obtained product
B. The differential equations that govern the concentration inside the reactor are:

dCa

dt
= −k1Ca − k3C2

a + (Cai − Ca)
F

V
(4.14)
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Figure 4.4: Flowchart illustrating the procedure of the proposed algorithm for MPM
and UD detection, along with the self-tuning of the robustness filter for the FSP
control structure.
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Table 4.1: Case Studies

System Plant Model

First order
0.02 e−3s

s+ 0.1667

0.0183 e−3.6s

s+ 0.138

Non-minimum phase
1− s

s2 + s+ 1
e−3s 1.2− s

s2 + 1.1s+ 1.042
e−3.6s

Oscillatory
0.75 e−3s

s2 + 0.6s+ 0.25

0.827 e−2.5s

s2 + 0.63s+ 0.2756

High order
0.75 e−10s

(s+ 0.5)5
5.2 e−13s

s+ 0.22

Nonlinear Eqs. (4.14)-(4.15)
3.147− 1.12s

s2 + 4.643s+ 5.382
e−3.6s

dCb

dt
= k1Ca − k2Cb − Cb

F

V
, (4.15)

where Cb is the concentration of B [mol/l], which is the controlled variable, Ca is
the concentration of A [mol/l], and Cai is the concentration of A [mol/l] in the
feed. The manipulated variable is the dilution rate F/V [min−1], where F [l/min]
is the feed flow rate, and V is the constant reactor volume [l]. The reaction rate
constants are given by k1 = 5/6 [min−1], k2 = 5/3 [min−1], k3 = 1/6 [L/(mol min)]
(NORMEY-RICO and CAMACHO, 2007).

In the given case study, the system is initially set to an optimal steady state
where the production of Cb is maximized. The operating conditions for this optimal
steady state are a dilution rate of F/V = 4/7 [min−1], Ca = 3 [mol/l], Cai = 10

[mol/l], and Cb = 1.117 [mol/l]. In this process, the time the analyzer takes to give
the measured concentration value is the time delay of the structure.

It should be noted that the controlled variable is the concentration of B, Cb,
and the manipulated variable is the dilution rate F/V . These variables are not
normalized or represented as deviations from the steady state. Consequently, the
gain of the control structure, Kc carries the units of [min−1/(mol/l)]. This non-
normalization is a choice made in this study to reflect the actual behavior and
control challenges of the system.

The UD estimation was implemented in each case study using the transfer func-
tion from Equation (4.2). Notably, for the nonlinear Van de Vusse system, the
disturbance was introduced as a step change in n(k), added directly to the process
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output while keeping Cai constant.
The primary controller for the structure is the PI control, where Kc represents

the proportional gain, and τi represents the integral time. In each case study, the
parameters of the PI controllers were adjusted using the MATLAB auto-tuning tool-
box. This widely-accepted toolbox employs well-established methods for controller
tuning, ensuring optimal controller performance across various systems. While the
study did not adhere to a specific tuning methodology, applying the auto-tuning
toolbox secured the selection of appropriate parameters for each system.

A second-order robustness filter Fr(z) was employed in all case studies to ac-
celerate the disturbance rejection. The filter was designed following the procedure
outlined in the filter tuning section. Specifically, a second-order filter was selected,
with v = 2 and β = e−2Ts/Ln , where Ln is the time delay suggested in NORMEY-
RICO et al. (2014). The numerator of the filter seeks to eliminate the dominant
closed-loop dynamics, λ, finding the second zero as part of the residual polynomial
pn(z). Table 4.2 presents the tuning parameters of the controllers, the sampling
time, and the filters used for each case. The tuning parameters for the monitoring
algorithm are presented in Table 4.3. The parameter ϕ was selected in such a way as
to capture both the transient and the steady state of each case study. The p-band
was chosen to contain the process signal and the noise associated with this signal,
preventing false positives from the signal moving outside of this band. The parame-
ter α was set to 20% (50% for high order system) variation up and down to find the
transfer function parameters in the objective function estimation of Equation (4.1).

Lastly, the horizon of the moving horizon filter, represented as hs, plays a crucial
role in effectively filtering the noise in the system signal. Its selection is based
on the noise’s nature and the system’s dynamic characteristics. Specifically, a more
extensive hs provides a greater degree of noise smoothing, but it might also attenuate
sharp changes in the signal caused by sudden disturbances. Conversely, a smaller hs
can capture abrupt changes more quickly, but it might be less effective in filtering
out high-frequency noise. Therefore, it’s essential to balance these factors and select
an hs that allows for sufficient noise filtering without suppressing the dynamics of
interest.

Scenario 1: MPM + UD Detection

The first scenario tests the monitoring and diagnosing of the control structure and
self-tuning filter. In this scenario, it is assumed that the monitoring system was
initially disabled at the start-up of the control structure. This represents a situation
where the monitoring algorithm has not been immediately activated, leading to the
presence of MPM in the system from the start of the control structure operation,
which deviates from the initial hypothesis considered in the methodology of this
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Table 4.2: PI controller parameters, sampling time, and robustness filter of each
case study

Case Kc τi [min] Ts [min] Fr(z)

First order 15.15 7.2 0.4
5.275(z − 0.936)(z − 0.882)

(z − 0.801)2

Non-minimum phase 0.1142 0.4821 0.4
1.371(z − 0.924)(z − 0.618)

(z − 0.801)2

Oscillatory 0.3774 2.8302 0.4
3.721(z − 0.932)(z − 0.870)

(z − 0.801)2

High order 0.159 5 1
0.77(z − 0.819)(z − 0.652)

(z − 0.779)2

Nonlinear 0.6443 0.6782 0.1
2.742(z − 0.980)(z − 0.946)

(z − 0.801)2

Table 4.3: Tuning parameters for the monitoring algorithm used in each case study

Case ϕ p α hs

First order 100 6% 0.2 7

Non-minimum phase 100 6% 0.2 5

Oscillatory 100 8% 0.2 5

High order 100 6% 0.5 7

Nonlinear 150 0.12% 0.2 15
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algorithm. The simulation scenario presented here shows how the algorithm behaves
when activated in a control structure with MPM presence. Additionally, the auto-
tuning of the primary controller is disabled (sc = OFF ). Therefore, the monitoring
algorithm only performs the auto-tuning of the robustness filter and displays alarms
in the presence of a possible MPM or UD. Figures 4.5 - 4.9 show the dynamic
responses of the control system and the robust stability condition for each case
study.

A square pulse generator is applied to the setpoint (varying between 1 and 2 for
all systems, but the nonlinear one that was varied between 0 and 0.01 to maintain
the system close to the linearization point) every 100 sampling times to create a
dynamic response, as shown in subfigures (a). In all cases, at the beginning of the
operation, the response is oscillatory and deviates from the p-band. The presence
of MPM causes this behavior, and the MPM flag is activated. Despite the presence
of MPM, as observed in subfigures (b), the robust stability of the controller is
guaranteed for the cases of first-order and non-minimum phase systems, complying
with the criterion of Equation (2.62) because the initial robustness index, dPi(ω),
is greater than the modulus of the domain error shape in the frequency domain,
|δP (ω)|. However, this criterion is not met in the case of high-order, oscillatory and
nonlinear systems.

Note that to facilitate comparison and provide a clearer understanding of the per-
formance improvement offered by the proposed monitoring algorithm, the dynamic
responses of the control systems with only the PI controller, without the applica-
tion of the monitoring algorithm, are included. These responses are presented in
Appendix C. The comparison between the baseline PI controller responses and the
responses obtained with the addition of the monitoring algorithm offers insightful
information about the algorithm’s effectiveness. It illustrates how introducing the
monitoring algorithm and auto-tuning the robust filter can improve the system’s
behavior, especially in cases where the MPM is present from the start.

The algorithm utilizes the robustness self-tuning filter to reduce the oscillations
caused by the MPM during the activation of MPM algorithm detection. In doing
so, it adjusts the parameter γ such that the sum of γ and |δP (ω)| is always less than
dP (ω), ensuring the robust stability of the system (Equation (4.12)). In all cases,
this reduces the final robust stability margin, dPf (ω). The sum of γ and |δP (ω)|
is depicted as the dashed line in the plots, resulting in a conservative dynamic
response, oscillating within the p-band, which allows for estimating the transfer
function parameters during the next setpoint change. Additionally, it should be
noted that an unmeasured abrupt disturbance, n(k) = 0.5, is applied in the middle
of the first descending setpoint for the first 4 case studies. The nonlinear system’s
magnitude of the unmeasured abrupt disturbance is n(k) = 0.003. The algorithm
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promptly activates the UD flag and estimates the gain of this disturbance.

Figure 4.5: First order system: (a) dynamic response; (b) robust stability condition.

This first simulation scenario aims to verify that the proposed algorithm detects
the MPM and the presence of an abrupt UD, activating the flags to show the exis-
tence or absence of these events in the FSP structure. While monitoring the control
structure, this proposal also estimates the internal model parameters. The transfer
function parameters are expressed as a continuous-time transfer function with the
format presented in Equation (4.16) to generalize the system identification. The
estimated parameters of the transfer functions and the MPM flags are summarized
in Table 4.4 while the estimation of the magnitude of the abrupt unmeasured dis-
turbances, employing Equation (4.2), and the UD flags are in Table 4.5.

Pn(s) =
b0s+ b1

a0s2 + a1s+ a2
e−Lns (4.16)

According to Table 4.4, the estimated parameters align well with the nominal
model for the first-order system. The time delay Ln is estimated with reasonable
accuracy, and the presence of MPM is correctly detected.

The algorithm’s performance in estimating the parameters of the non-minimum
phase system also has a good agreement. Despite the inherent difficulties of model
parameter estimation in the presence of MPM, the estimated parameters approxi-
mate well the nominal model parameters. Notably, the time delay Ln is accurately
estimated, and the presence of MPM is appropriately identified.

For the oscillatory system, the estimated parameters closely match those of the
nominal model. The algorithm successfully identifies the presence of MPM and
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Figure 4.6: Non-minimum system: (a) dynamic response; (b) robust stability con-
dition.

Figure 4.7: High order system: (a) dynamic response; (b) robust stability condition.
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Figure 4.8: Oscillatory system: (a) dynamic response; (b) robust stability condition.

Figure 4.9: Nonlinear system: (a) dynamic response; (b) robust stability condition.
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Table 4.4: Estimated parameters of the transfer functions and the MPM flags

System b0 b1 a0 a1 a2 Ln [min] MPM

First order 0 0.02 0 1 0.166 2.98 1

Non-minimum phase -1.004 1.002 1 1.003 1.002 3 1

Oscillatory 0 0.75 1 0.601 0.25 3 1

High order 0 3.56 0 1 0.137 14.5 1

Nonlinear -1.135 3.15 1 4.833 5.515 3.09 1

Table 4.5: Magnitude estimation of the abrupt unmeasured disturbances and the
UD flags.

System τn [min] n(k) UD

First order 0.026 0.456 1

Non-minimum phase 2.79 0.505 1

Oscillatory 0.202 0.498 1

High order 6.2 0.52 1

Nonlinear 0.025 0.0027 1
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provides a conservative estimation of the time delay Ln.
In the case of the high-order system, the estimated first-order model presents dy-

namic characteristics similar to the fifth-order plant. In comparing the two models,
emphasis was placed on performance metrics such as the gain, time delay, and time
constant rather than the order of the system. Specifically, the estimated parameters
yield a model with a gain of 24.67, which closely approximates the gain of the high-
order system. Similarly, the time delay Ln in the estimated model is 15.2 [min],
which, while slightly greater than that of the high-order system, still provides an
adequate representation of the system’s dynamic response. Moreover, the time con-
stant of the estimated first-order system is approximately 6 [min], closely mirroring
the time constant of the high-order system, which is about 6.25 [min]. This further
attests to the comparable dynamics between the two systems.

Finally, the algorithm provides a satisfying estimation of the model parameters
for the nonlinear system. The time delay, Ln, is estimated as 3.09 [min], which
is quite close to the real plant’s time delay of 3.1 [min] and notably less than the
original model’s time delay of 3.6 [min]. The other parameters of the transfer func-
tion are accurately estimated, matching those obtained through linearization of the
differential equations of the Van de Vusse reactor system. The presence of MPM,
in this case, is solely due to this time delay and not due to any inherent nonlin-
earity, which underscores the algorithm’s robustness in effectively handling complex
systems like this.

Scenario 2: UD Detection

The second scenario shows that the algorithm performs well when there is no MPM,
and the system is impacted only by measurement noise and abrupt unmeasured
disturbances. The higher-order system is selected to verify this second scenario. In
this case, the transfer function parameters presented in Table 4.4 are placed in the
internal model of the FSP structure. The dynamic response of this case is given
in Figure 4.10a. The monitoring algorithm shows that the system does not present
MPM and only activates the UD flag, providing an estimate of the magnitude of the
disturbance, n(k) = 0.51 and τn = 2.2 [min]. For this case, the controlled variable’s
noise is increased 20 times, causing the signal to leave the p-band constantly, so
adjusting the p-band for 12%, as shown in Figure 4.10b, it was possible to estimate
the magnitude of the UD, n(k) = 0.51 and τn = 0.98 [min].

4.3.2 Experimental Application

The Arduino-based Temperature Control Laboratory (TCLab) proposed by
HEDENGREN (2023); HEDENGREN et al. (2019) was used in this work to test
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Figure 4.10: High-order system: (a) without MPM; (b) without MPM + higher
noise.

the proposed algorithm in an experimental plant. The TCLab, presented in Figure
4.11, has two actuator heaters (NPN Bipolar Junction Transistor), three temper-
ature sensors (thermistor), and two current sensors. This is a modification of the
original TCLab, and it is helpful to carry out feedback control practices. Additional
information about the TCLab can be found in Appendix E.

For this case study, only one heater and one temperature sensor are considered
for the SISO control. The dynamic model between input power to the transistor
and the temperature sensed by the thermistor is represented by the following energy
balance:

mcp
dT

dt
= UA(T∞ − T ) + ϵσA(T 4

∞ − T 4) + αQ, (4.17)

where m = 0.004 [kg] is the mass, cp = 500 [J/kg K] is the heat specific capacity, T
is the temperature in Kelvin, U = 4.1183 [W/m2 K] is the heat transfer coefficient,
A = 1.2× 10−3 [m2] is the heat transfer area, T∞ = 298 [K] is the ambient temper-
ature, ϵ = 0.9 is the emissivity, σ = 5.67×10−8 [W/m2 K4] is the Stefan-Boltzmann
constant, and Q is the percentage heater output in Watts. The parameter α is a
factor that relates heater output (0-100%) to the power dissipated by the transistor
in Watts (HEDENGREN, 2023).

The algorithm for this case study was implemented in Simulink. An artificial
time delay of 25 seconds was considered for the thermistor reading in Simulink to
increase the time delay. An accurate linear model of the process is presented in
Equation (4.18). The good agreement of the model with the temperature control
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Figure 4.11: TCLab - Temperature Control Lab.

lab is shown through the 33-minutes experiment shown in Figure 4.12, where the
average sum of squares error between the model and each observation was 0.30 [oC].

Pn(s) =
1.9386

151.744s+ 1
e−44s. (4.18)

A PI controller tuned by the pole assignment method is used as the primary
controller of the TCLab. The design criteria were selected for a settling time of
300 [s] and a damping factor of 0.6. Thus, the proportional gain is Kc = 1.5256,
and the integral time is τi = 40.35 [s]. For the Fr(z), it was employed a second-order
robustness filter to accelerate the disturbance rejection presented in the following
equation:

Fr(z) =
0.119z2 − 4.99z + 1.962

(z − 0.6967)2
, Ts = 8 [s]. (4.19)

Note that the initial hypothesis addressed in this work is being respected in this
case, where the system starts its operation with an accurate mathematical model.
With time, the model will gradually lose its predictive capacity, so the monitoring,
diagnosis, and self-tuning system must respond adequately to this event as well as
if an unmeasured disturbance is detected. Furthermore, the primary controller’s
auto-tune feature is enabled (sc = ON), allowing the use of any model-based PID
controller design strategy from the literature. Therefore, the tuning parameters for
the monitoring algorithm were Ts = 8 [s], ϕ = 80, p = 1.5, α = 0.8, and hs = 9.

Figure 4.13 shows the 83 [min] experiment where the dynamic response of the
TCLab can be seen. In the first 500 seconds, the plant response, y(k), is similar to
the designed response, yd(k), due to the minimum MPM in the control structure.
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Figure 4.12: Comparison between the measured data and the linear model.

After 500 seconds, a degradation of the real system was simulated. To simulate a
decrease in the gain and the time constant in the TCLab plant, the second heater of
the system was gradually energized with a ramp with a slope of 0.025 [%/s] in the
time interval between 500 [s] - 900 [s]. This decrease in gain and time constant can be
justified as an increase in the power supply voltage of the plant over a certain period.
Additionally, an artificial time delay of 8 seconds from 600 seconds was inserted into
Simulink, another time delay of 8 seconds from 700 seconds, and finally, a third-time
delay of 9 seconds from instant 850 [s]. These artificial time delays can be justified
as the delay added by the controller and plant communication system.

At 1,200 seconds, a modification in the setpoint takes place, indicating the onset
of an oscillatory reaction caused by MPM. Following the expiration of the ϕ time
window, equivalent to 80 sample periods, at 1,840 seconds, the new model estimation
begins due to the plant response remaining outside the p-band for a long time. The
MPM flag is triggered to warn the user of a model failure. The updated estimated
transfer function is presented in Equation (4.20):

Pn(s) =
1.66

128s+ 1
e−74s. (4.20)

At 1,840 seconds, the self-tuning algorithm for the robustness filter is executed in
parallel to reduce the oscillations caused by MPM. Figure 4.14 presents the robust
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Figure 4.13: Dynamic response of the TCLab.

stability margin of the control structure in the TCLab. The figure illustrates that
once the new filter is estimated using |δP (ω)| + γ as a reference, the final robust
stability margin dPf (ω) ensures the condition given by Equation (4.12). By im-
plementing this procedure, a conservative dynamic response that oscillates within
the p-band can be achieved. The new robustness filter is presented in the following
equation:

Fr(z) =
0.7298z2 − 1.177z + 0.4632

(z − 0.8724)2
, Ts = 8 [s]. (4.21)

Finally, the new parameters of the PI controller tuned by pole assignment are
updated, where Kc = 1.45 and τi = 38.18 [s].

From Figure 4.13, at 3,000 seconds, a new setpoint change is introduced. It is
observed that the behavior of the controlled variable is consistent and similar to the
desired response, indicating that the updated tuning of the model, controller, and
filter has successfully adapted to the plant’s new dynamics. The response always re-
mains within the p-band, so the algorithm does not require new estimates within the
control structure. At 4,000 seconds, a sudden and constant disturbance is induced
by introducing a flow of cold air, which attempts to lower the temperature of the
heaters. The FSP structure effectively rejects this disturbance within 500 seconds.
After eliminating this new dynamic, the diagnostic algorithm activates the UD flag,
signaling to the user the presence of abrupt disturbances in the control loop. More-
over, the algorithm presents an estimate of the magnitude of the disturbance, given
by n(k) = −13.10 [oC] and τn = 19.5 [s], in the control panel.
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Figure 4.14: Robust stability condition of the TCLab.

The implementation and testing of the proposed algorithm provide valuable in-
sights into its real-time performance and adaptability. The reader is referred to Ap-
pendix D for a comparative analysis of the system response when only the primary
PI controller is employed, without applying the MPM and UD monitoring system.
This comparative analysis is essential to understand the significant improvements
in the control system’s performance by implementing the proposed algorithm.

4.4 Final Remarks

This chapter has presented a novel algorithm designed for real-time diagnostics in
single-input, single-output systems when using dead-time compensators with Fil-
tered Smith Predictors. The unique aspect of this algorithm is its ability to detect
model errors and unmeasured disturbances and tune the robustness filter to maintain
system stability automatically.

A significant part of the presented approach is the self-tuning robustness filter.
The effectiveness of this filter was demonstrated by its ability to produce a smooth
and less oscillatory response in the closed-loop control system, thereby ensuring
robust stability. The filter and the algorithm’s capability to identify and adapt
to changes provide an effective solution for high-risk scenarios such as time-delay
mismatches.

The validity of the method has been confirmed through several simulated case
studies and a real-world temperature control experiment. These tests showed the
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method’s proficiency in detecting and diagnosing changes in process dynamics and
adjusting the controller’s parameters to maintain system stability and performance.
The simplicity and low computational cost of the algorithm make it a feasible option
for real-time applications in any single-input, single-output control system.

For future research, the applicability of the method to multi-input, multi-output
systems could be explored. This would further reveal the benefits of the proposed
method for designing control systems on a larger scale. By contributing to developing
more efficient and reliable control systems, the work presented in this chapter offers
a promising path for future advancements in adaptive control.
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Chapter 5

Conclusions

In this doctoral research, two significant methodologies have been developed and
validated to enhance the performance of model-based predictive controllers. Both
the methodologies focus on Model Predictive Control (MPC) and Dead Time Com-
pensator (DTC) systems, but they tackle different aspects of their functioning.

The first part of the research presents an innovative tuning algorithm for MPC
controllers. A unique feature of this algorithm is its hybrid nature, as it combines two
optimization algorithms to ascertain the best tuning parameters. These parameters
include the weighting matrices, prediction, and control horizon. Importantly, the
efficacy of this algorithm is not limited to a specific type of system. The versatility
of the algorithm is highlighted by its successful application across a range of system
types, from linear to non-linear and square to non-square systems.

An essential aspect of the developed algorithm is its resilience against model-
ing errors or measurement noise. Despite these factors that typically impede the
performance of controllers, the algorithm has demonstrated its robustness. Another
notable attribute of the algorithm is its adaptability. It can conform to the trajectory
defined by the user, offering flexibility in its application. Lastly, the low computa-
tional cost of the algorithm adds to its practicality. It enables the efficient finding
of MPC tuning parameters without taxing computational resources excessively.

The second half of the thesis sheds light on a novel algorithm developed for
real-time diagnostics in single-input, single-output systems, focusing on Dead Time
Compensators for Filtered Smith Predictors. This algorithm has proven to be multi-
functional. It not only detects model errors and unmeasured disturbances, but it
also fine-tunes the robustness filter. In doing so, it guarantees system stability, a
critical factor in maintaining the performance of any system.

This algorithm is a significant step in improving industrial process control as it
allows real-time monitoring and makes necessary adjustments to ensure the system
always operates optimally. This is particularly vital in high-risk scenarios such as
time-delay mismatches, where the system’s stability can be severely compromised
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without the proper corrective measures.
Both the methodologies, with their respective algorithms, have undergone thor-

ough validation through simulated and real-world case studies. These studies have
emphasized their practical applicability and effectiveness in enhancing control sys-
tem performance.

The methodologies and algorithms proposed in this thesis hold promise for
broader applications. These could include exploring their functionality in multi-
input, multi-output systems and their potential advantages for control system design
in large-scale control systems.

In conclusion, this doctoral thesis has achieved its objective of developing and val-
idating methodologies that can effectively enhance the performance of model-based
predictive controllers. The proposed approaches and algorithms have demonstrated
their potential to improve control system performance and robustness, provide use-
ful real-time diagnostics, and offer adaptability to different system types and user
requirements. These achievements hold considerable promise for advancing the field
of adaptive control, offering valuable insights and tools to address ongoing challenges
in control systems engineering.

Regarding the ’Tuning of Model Predictive Controllers Based on Hybrid Opti-
mization’, several avenues for future research present themselves. A valuable next
step might involve extending the hybrid optimization approach to include alter-
native optimization techniques, further fortifying the algorithm’s resilience against
complex disturbances. Additionally, testing and validating this approach across var-
ious domains beyond chemical processes, such as mechanical or electrical systems,
would offer broader insights into its adaptability and efficiency. The potential to
optimize additional tuning parameters, or to integrate real-time adaptive feedback,
might further refine its utility in complex control scenarios

Turning to the ’Filtered Smith Predictor Monitoring, Diagnosis, and Self-tuning
due to Unmeasured Abrupt Load Disturbance or Model Plant Mismatch’, there
exists an exciting potential to enhance real-time system monitoring through the
incorporation of more comprehensive fault detection and diagnostic mechanisms.
It would be particularly beneficial to extend the algorithm to detect and diagnose
disturbances of varying natures, not limited to abrupt disturbances represented by
step changes. A significant advancement would be achieved by adapting the algo-
rithm for multi-input, multi-output systems, expanding its practical applications.
Further exploration into integrating this method with modern control paradigms,
particularly those driven by artificial intelligence, promises innovative solutions to
longstanding adaptive control challenges. Pursuing these lines of investigation will
undoubtedly propel forward the domain of control systems engineering.
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Appendix A

Adequacy of the Process Model to
Be Controlled

Selection of the sampling time (Ts) is performed in the experiment design stage
and is a very important step for modeling. This parameter has a direct impact on
the tuning procedure and on the MPC controller performance. A short sampling
time will unnecessarily overload the processor. This generates an MPC with a high
computational cost because p and m will be elevated. On the other side, a long
sampling time will miss the dynamics of the plant to be controlled, generating an
MPC with poor or even unstable performance. According to the Nyquist criterion,
the sampling frequency should be at least twice as high as the bandwidth of the
error signal. This bandwidth is bounded by the system bandwidth. However, to
guarantee a satisfactory response, a factor of 10 to 20 may be required VAN DER
LAAN (1994). Therefore, a rule of thumb is to sample at least 10 times faster than
the settling time of the plant.

Once the system model is obtained, it is important to mention that multivariable
systems may have ill-conditioned matrices. Therefore, the MPCT algorithm scales
the internal model of the controller to avoid this problem.

For instance, when a linear MPC is implemented, it is possible to use the follow-
ing optimization problem to scale the system model by minimizing the conditioning
number of Pn(z) (TRIERWEILER and FARINA, 2003), where Pn(z) represents the
linear model of the system, y(z) = Pn(z)u(z):

min
L,R

β[LPn(z)R], (A.1)

where L and R are diagonal matrices and β[Pn] is the conditioning number of
matrix Pn. The scaled model, ys(z) = Ly(z) and us(z) = R−1u(z), obtained
from Equation (A.1), is used for simulation and controller design. The MATLAB
function for obtaining the minimum conditioning number for linear processes (both
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square and non-square systems) can be found in the following GitHub repository:
CondMin.m.

Following the scaling of the linear system model, it’s paramount to apply the
same scaling to other controller parameters to maintain consistency. Specifically,
these include the constraints of the manipulated variables, umin and umax, the
increments of the manipulated variables, ∆umin and ∆umax, the measured distur-
bances, and the nominal input values of the model. These should be pre-multiplied
by R−1. On the other hand, the controlled variables, ymin and ymax, the nominal
output values of the model, and the scale factors should be pre-multiplied by L.

This additional scaling step is vital as it ensures uniformity across all the param-
eters involved, thereby enhancing the overall controller performance and stability.
Without this crucial scaling step, mismatches in variable magnitudes could lead to
suboptimal controller behavior and, in extreme cases, might result in ill-conditioned
matrix problems.

For a nonlinear MPC (NMPC) case, it is important to scale the model due to the
orders of magnitude between the different MIMO system variables, i.e., temperature,
level, pressure, etc. Scaling the model allows one to quantify the margin of error of
the variables in relation to references. In this paper, the input and output variables
of the model are scaled between 0 and 1 using the following equation:

zs =
z − zmin

zmax − zmin

, (A.2)

where zs is the scaled variable, z is the original variable, and [zmin, zmax] is the
interval between the minimum and the maximum variable value.
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Appendix B

DTC-GPC Implementation Example

The Dead Time Compensator Generalized Predictive Control (DTC-GPC) is ap-
plied to the water-methanol distillation column, originally modeled by WOOD and
BERRY (1973). This process is a MIMO (Multiple Input Multiple Output) system
with strong interactions and inherent time delays. The transfer function matrix of
the system is represented as follows:

P(s) =


12.8e−s

16.7s+ 1

−18.9e−3s

21s+ 1

6.6e−7s

10.9s+ 1

−19.4e−3s

14.4s+ 1

 , Pq(s) =


3.8e−8.1s

14.9s+ 1

4.9e−3.4s

13.2s+ 1

 . (B.1)

The MATLAB code implementation of the DTC-GPC for this example can be
found in the GitHub repository: https://github.com/sergioacg/Model-Predictive-
Control/tree/main/DTC-GPC

Here, the relationship is defined as y(s) = P(s)u(s) + Pq(s)q(s), where y(s) =

[y1(s), y2(s)]
T and u(s) = [u1(s), u2(s)]

T . The variables y1(s) and y2(s) represent
the overhead and bottom product mole fractions of methanol, respectively, and q(s)
is the feed flow rate. Meanwhile, u1(s) and u2(s) are the reflux and reboiler steam
flow rates, respectively. The time delays and constants are in units of minutes, mole
fractions are expressed as a percentage, and the flow rates are in units of pounds
per minute.

First, it is necessary to scale the process model using the following diagonal
matrices: L = diag[0.4103, 0.5640] and R = diag[0.6120, 0.2937] found through the
solution of Equation (A.1). The scaled model process is given by:

143

https://github.com/sergioacg/Model-Predictive-Control/tree/main/DTC-GPC
https://github.com/sergioacg/Model-Predictive-Control/tree/main/DTC-GPC


Pn(s) =


3.214e−s

16.7s+ 1

−2.278e−2s

21s+ 1

2.278e−2s

10.9s+ 1

−3.214e−s

14.4s+ 1

 . (B.2)

Pn(z
−1) is obtained from a zero-order hold discretization of Pn(s) with a sam-

pling period of Ts = 1 min, and is given by:

Pn(z
−1) =


0.1868z−1

1− 0.9419z−1
z−1 −0.1059z−1

1− 0.9535z−1
z−2

0.1997z−1

1− 0.9123z−1
z−2 −0.2156z−1

1− 0.9329z−1
z−1

 , (B.3)

where y(k) = Pn(z
−1)u(k). The effective dead time of the i output is

d1 = 1 and d2 = 1, which allows the MIMO model to be described as
y(k) = L(z−1)Gn(z

−1)z−1u(k) or simply y(k) = L(z−1)Gn(z
−1)u(k − 1), so the

output prediction of the model can be calculated with:

y(k) =

z
−1 0

0 z−1




0.1868

1− 0.9419z−1

−0.1059
1− 0.9535z−1

z−1

0.1997

1− 0.9123z−1
z−1 −0.2156

1− 0.9329z−1

u(k − 1). (B.4)

The least common multiples of the denominators are:

A1(z
−1) = 1− 1.8954z−1 + 0.8981z−2

A2(z
−1) = 1− 1.8453z−1 + 0.8511z−2

(B.5)

The corresponding numerators are:

B11(z
−1) = 0.1868− 0.1781z−1, B12(z

−1) = −0.1059z−1 + 0.0998z−2

B21(z
−1) = 0.1997z−1 − 0.1863z−2, B22(z

−1) = −0.2156 + 0.1967z−1.

(B.6)

The output prediction of the process is computed using the diophantine equation
and considers a prediction horizon as p = 3 and a control horizon as m = 3. So, the
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output prediction is expressed as Equation (2.73), which in its expanded form is:

ŷ1(k + 2|k)
ŷ1(k + 3|k)
ŷ1(k + 4|k)
ŷ2(k + 2|k)
ŷ2(k + 3|k)
ŷ2(k + 4|k)


=



0.1868 0 0 0 0 0

0.3628 0.1868 0 −0.1059 0 0

0.5285 0.3628 0.1868 −0.2069 −0.1059 0

0 0 0 −0.2156 0 0

0.1997 0 0 −0.4168 −0.2156 0

0.3819 0.1997 0 −0.6045 −0.4168 −0.2156





∆u1(k)

∆u1(k + 1)

∆u1(k + 2)

∆u2(k)

∆u2(k + 1)

∆u2(k + 2)



+



−0.1781z−1 −0.1059z−1 + 0.0998z−2

−0.5157z−1 −0.2069z−1 + 0.2889z−2

−0.9957z−1 −0.3033z−1 + 0.5577z−2

0.1997z−1 − 0.1863z−2 0.1967z−1

0.3819z−1 − 0.5301z−2 0.5597z−1

0.5481z−1 − 1.0058z−2 1.0622z−1


[
∆u1(k)

∆u2(k)

]

+



2.8954z−1 − 2.7935z−2 + 0.8981z−3 0

5.5897z−1 − 7.1900z−2 + 2.6003z−3 0

8.9944z−1 − 13.0144z−2 + 5.0200z−3 0

0 2.8453z−1 − 2.6964z−2 + 0.8511z−3

0 5.3991z−1 − 6.8208z−2 + 2.4217z−3

0 8.5410z−1 − 12.1363z−2 + 4.5953z−3


[
ŷ1(k + 1|k)
ŷ2(k + 1|k)

]
.

(B.7)

The following step is to calculate the matrix K with Q = W = I:

K =



0.1321 0.2106 0.2662 −0.0339 0.0577 0.1040

−0.0293 0.1028 0.2158 −0.0136 −0.0651 0.0623

−0.0093 −0.0260 0.1401 −0.0009 −0.0117 −0.0284
0.0293 −0.0058 −0.0216 −0.1517 −0.2265 −0.2716
0.0157 0.0544 −0.0027 0.0354 −0.1056 −0.2203
0.0042 0.0169 0.0327 0.0126 0.0391 −0.1425


, (B.8)

where only the first m rows of K (defined as Km) have to be computed:

Km =

[
0.1321 0.2106 0.2662 −0.0339 0.0577 0.1040

0.0293 −0.0058 −0.0216 −0.1517 −0.2265 −0.2716

]
. (B.9)

The Fr(z) filter is specifically designed to effectively reject disturbances over a
time span of around 15 minutes. This is achieved by canceling out all the open-loop
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poles of the plant model that reside outside a circle with a radius of e−(3/15)Ts ≈ 0.8

through the utilization of the predictor filter (Equation (4.9)). The selection of the
filter’s poles deliberately aims for slightly faster dynamics compared to the desired
response, represented by α1 = α2 = 0.7. Consequently, the predictor filter can be
represented as follows:

Fr(z
−1) =


1.495− 2.303z−1 + 0.8981z−2

(1− 0.7z−1)2
0

0
1.445− 2.206zz−1 + 0.8511z−2

(1− 0.7z−1)2

 .
(B.10)

For the simulation, the reference of the overhead mole fraction (y1) is increased
by 0.8 mol/mol at t = 10 min, the reference of the bottom product mole frac-
tion (y2) is increased by 0.5 mol/mol at t = 60 min, and the feed flow rate (q)

is decreased by 0.25 lb/min at t = 140 min. The references are plotted in dotted
lines. Simulation results are presented in Figure B.1 and show how the use of the
DTC-GPC can improve the disturbance rejection response. In the nominal case,
the set-point tracking responses of DTC-GPC are fine-tuned to avoid pole-zero can-
cellations, thus the disturbance rejection response can be faster than the open-loop
dynamics of Pn(z

−1).

Figure B.1: Behavior of the DTC-GPC.
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Appendix C

Comparative Performance
Evaluation of PI Control With and
Without MPM and UD Monitoring
Structure

This appendix presents the dynamic responses of various control systems operating
with only a Proportional-Integral (PI) controller without applying the proposed
monitoring algorithm presented in Chapter 4. This provides a baseline for the
performance comparison of the systems with and without the monitoring algorithm,
which is discussed in detail in the main body of the paper.

Figure C.1 depicts the response of the first-order system. Although presenting
poor performance, this system maintains stability without applying the monitoring
algorithm. Similarly, the non-minimum phase system, portrayed in Figure C.2,
remains stable without the monitoring algorithm.

However, the high-order, oscillatory, and nonlinear systems do not exhibit the
same stability. Presented in Figures C.3, C.4, and C.5, respectively, these systems
become unstable without the implementation of the monitoring algorithm, which
underscores the negative impact of the MPM and UD on the system performance if
not adequately addressed.

The comparative evaluation between these responses and those provided in the
main body of the work, where the monitoring algorithm is implemented, unequivo-
cally highlights the effectiveness of the proposed methodology in counteracting the
effects of MPM and enhancing the overall stability and performance of the system.

Table C.1 reports the performance metrics for the PI control with the Monitoring
Structure. The metrics include the Integral of the Squared Error (ISE), the Integral
of the Time-weighted Squared Error (ITSE), the Integral of the Absolute Error
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Figure C.1: PI controller for the first-order system.

Figure C.2: PI controller for the non-minimum system.
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Figure C.3: PI controller for the high-order system.

X 135.2

Y 0.999898

Figure C.4: PI controller for the oscillatory system.
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Figure C.5: PI controller for the non-linear system.

(IAE), and the Integral of the Time-weighted Absolute Error (ITAE). These metrics
provide different perspectives on the overall control system performance.

Table C.1: Performance metrics for the PI control with the MPM and UD Monitor-
ing Structure.

System ISE ITSE IAE ITAE
First-Order 40.4937 4.5617e+03 83.4652 1.3057e+04
Non-Minimum Phase 27.6742 2.6255e+03 43.5270 5.9989e+03
High-Order 14.8469 1.4733e+03 40.6700 5.2639e+03
Oscillatory 27.1803 1.4070e+03 39.0938 3.1570e+03
Non-Linear 0.0011 0.0623 0.2749 18.1000

Table C.2 shows the performance metrics for the PI control without the Moni-
toring Structure. These metrics can be compared with those presented in Table C.1
to evaluate the improvement achieved using the Monitoring Structure.

For all systems, there is a noticeable reduction in error metrics (ISE, ITSE, IAE,
and ITAE) when the monitoring structure is applied, highlighting the effectiveness
of the proposed algorithm in improving control performance.

For instance, in the case of the first-order system, implementing the monitoring
algorithm leads to a reduction of about 48% in ISE and 38% in ITSE. Similar trends
are observed for the non-minimum phase and high-order systems.

The high-order system’s most significant improvement is observed, with a reduc-
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Table C.2: Performance metrics for the PI control without the MPM and UD Mon-
itoring Structure.

System ISE ITSE IAE ITAE
First-Order 77.6224 1.1907e+04 133.6909 2.3735e+04
Non-Minimum Phase 29.7460 3.0123e+03 51.0136 7.5649e+03
High-Order 214.1207 6.1301e+04 240.1792 5.9540e+04
Oscillatory 359.5304 8.1906e+04 328.7841 7.1103e+04
Non-Linear 39.8682 6.5075e+03 44.3912 6.6916e+03

tion of approximately 93% in ISE and 98% in ITSE. This substantial improvement
illustrates the benefits of the proposed methodology for managing complex high-
order systems.

The performance improvements are also noteworthy for the oscillatory and non-
linear systems, with reductions in ISE and ITSE of more than 92% and 99%, re-
spectively.
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Appendix D

PI Controller Performance on the
Temperature Control Lab (TCLab)
System

This appendix exhibits the response of the Temperature Control Lab (TCLab) op-
erating solely with a Proportional-Integral (PI) controller, as shown in Figure D.1.
This serves as a baseline for comparison with the system’s performance when the
proposed monitoring algorithm is applied, which is extensively discussed in the main
body of the paper.

Figure D.1: PI controller for the TCLab.

From Figure D.1, the system performs appropriately at the start, closely tracking
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the benchmark signal as there is no MPM. However, as the MPM is gradually
introduced into the system’s time delay, gain, and time constant, the system begins
to oscillate. This oscillatory behavior becomes more prominent when introducing
the second and third steps.

At 4000 seconds, a flow of cold air is introduced as a disturbance. Interestingly, in
this case, the disturbance helps to counterbalance the effects of the MPM, allowing
the FSP to bring the variable back to the setpoint. It is important to clarify that
such an occurrence may not always happen. Relying on an external disturbance to
improve the system’s performance would be impractical and unpredictable, as the
improvement observed in this experiment was coincidental.

The difference in the system’s performance with and without the monitoring
algorithm is evident. The monitoring algorithm allows the system to adapt and re-
spond effectively to changes in system dynamics and disturbances, thereby ensuring
the system’s stability and performance.

Several integral error metrics were computed for each case to assess the control
system’s performance with and without the monitoring structure and are presented
in Table D.1. The results indicate a noticeable improvement in the system’s control
performance when the monitoring structure is employed.

Table D.1: Performance Metrics Comparison for the TCLab

Metric Without Monitoring With Monitoring
ISE 1.2977e+05 5.2700e+04

ITSE 3.5486e+08 6.9347e+07
IAE 2.0138e+04 9.0355e+03
ITAE 5.3664e+07 1.5153e+07

Specifically, the ISE shows a reduction of more than 50% when the monitoring
structure is applied. This substantial decrease shows the monitoring structure’s
ability to reduce the accumulated error over the entire control period, reflecting a
better tracking performance of the desired setpoints.

The ITSE also witnesses a significant reduction in the monitoring structure. This
metric emphasizes the impact of errors that occur later in the process, making it a
critical measure in systems where long-term performance is vital. The substantial
reduction in ITSE indicates that the control system with monitoring effectively
manages to decrease the error over time, providing a more stable long-term response.

The decrease in the IAE and ITAE is also significant when the monitoring struc-
ture is used. Both metrics give more weight to significant errors, so the reduction
in these metrics implies that the monitoring and self-tuning structure has succeeded
in minimizing significant errors, which can be detrimental to the system’s stability
and performance.
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Appendix E

TCLAB Board

The circuit detailed in this appendix shares many features with the original Temper-
ature Control Laboratory (TCLab) design, including two sensors and two actuators.
Additionally, it incorporates a pair of current sensors and a temperature sensor,
increasing the total to five sensors and two actuators. These extensions enhance the
functionality of the system and enable a wider range of didactic activities.

The system is a control scheme that uses a microcontroller mounted on an Ar-
duino Uno platform. This microcontroller connects to a personal computer on one
side and a thermal system on the other. The thermal system comprises two actua-
tors, two direct temperature sensors on the actuators, and an ambient temperature
sensor. Moreover, two current sensors measure the current consumed by the actua-
tors.

This setup allows for practices in modeling, identification, and multivariable
control. It provides students with a portable system that can interact with software
written in Matlab, Simulink, Python, or C (Arduino). The circuit is shown in Figure
E.1.

Further information about the board can be found in the GitHub repository:
https://github.com/sergioacg/TCLAB_CAE. This repository contains Gerber files
for producing the circuit board. Gerber files are standard files used in PCB man-
ufacturing to provide comprehensive layout information, including copper layers,
solder mask, legend, and drill and route data.

The repository also contains Matlab scripts and Simulink diagrams to carry out
initial control practices using the TCLAB board. This collection of resources is de-
signed to aid users in effectively utilizing the TCLAB for various control engineering
tasks. Also included is the Arduino code, which reads the sensor data and provides
for temperature and current levels. It controls the transistors by PWM signals. And
it allows the board to communicate with the computer. This way, the board can
work with other software like Matlab, Simulink, or Python. This Arduino code is a
key part of how the TCLAB board works.
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