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O uso de um conjunto de modelos lineares para descrever um sistema não-linear

tem muitas desvantagens. Para superar essas desvantagens, modelos não-lineares

foram aprimorados. O modelo não-linear usado neste trabalho é o modelo de média

móvel auto-regressiva não-linear com entradas exógenas, do inglês ”Nonlinear Au-

toRegressive Moving Average models with eXogenous inputs” (NARMAX) do tipo

polinomial. Esse tipo de modelo é linear nos parâmetros e considera, no modelo,

o rúıdo, inerente a uma medição em uma planta industrial. Em geral, existem

dois tipos de identificação: a identificação caixa-preta, que é um método t́ıpico de

entrada e sáıda, ou seja, requer apenas dados para identificar o processo; e a iden-

tificação da caixa-cinza, que requer algumas informações sobre o sistema, além de

dados. No presente trabalho, um tipo caixa-cinza é comparado com o tipo caixa-

preta para fins de otimização e controle. A identificação é realizada usando o algo-

ritmo de mı́nimos quadrados ortogonais e método de validação cruzada de k passos

a frente. A otimização dinâmica em tempo real foi definida com base no modelo

fenomenológico e em modelos estimados, e comparadas, para avaliar a melhoria na

aplicação de modelos não lineares identificados. A identificação do tipo caixa-cinza

se mostrou mais representativa em relação à não linearidade do sistema. A aplicação

em otimização e controle gerou instabilidade do algoritmo. Isso pode ser devido ao

fato de que o algoritmo de otimização usado na otimização dinâmica em tempo real

tinha o mesmo valor para horizonte de controle e horizonte de predição. Apesar das

oscilações de um estudo de caso, o algoritmo de identificação caixa-cinza mostrou

sua capacidade de melhorar o modelo.
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The usage of a collection of linear models to describe a nonlinear system has

many disadvantages. In order to overcome these disadvantages, nonlinear models

have been improved. The nonlinear model used in this work is the Nonlinear Au-

toRegressive Moving Average models with eXogenous inputs (NARMAX) of poly-

nomial type. This type of model is linear on the parameters and accounts, in the

model, for the existent noise, that is inherent of a measurement on a industrial plant.

Broadly, there are two types of identification: the black-box identification, which

is a typical input-output method, i.e., only requires data in order to identify the

process; and the gray-box identification, which requires some system information,

besides data. In the present work, a gray-box identification is compared with the

black-box one for optimization and control purposes. The identification is performed

using the Orthogonal Least Square algorithm and validation is made using k-step-

ahead cross-validation method. Dynamic real-time optimization was set based on

both first principle models and estimated models, and compared, in order to eval-

uate improvement on the application of identified nonlinear models. The gray-box

identification was more representative in relation to the nonlinearity of the system.

The application in optimization and control generated instability of the algorithm.

It can be due to the fact that the optimization algorithm used in dynamic real-time

optimization had the same value for control horizon and prediction horizon. Despite

the oscillations of one case study, the gray-box identification algorithm showed its

capacity to improve the model.
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ŷ(k) Predicted output variable at instant k, p. 10

Inf Infinite, p. 43

NaN Not-a-Number, p. 43

xviii



(−∆H) Heat of reaction, p. 20

∆pbhfric Frictional pressure drop in the well tubing below the injection

point, p. 24

∆ptfric Frictional pressure drop above the injection point, p. 24

∆ptfric Frictional pressure drop in the riser, p. 24

∆var Operating range of a generic variable, p. 9

Ψ Matrix of regressors, p. 11

Ψ∗ Matrix of chosen regressors, p. 11

ψj Vector of a regressor candidate, p. 11

θ Estimated parameter vector, p. 10

Ψ̃(k) k Householder transformations made into Ψ̃, p. 12

Ψ̃ Extended matrix, p. 12

` Nonlinearity degree, p. 10

ω Input signal frequency of multisine signal, p. 7

ρ Liquid density, p. 20

ρa Density of gas in the annulus, p. 23

ρo Density of oil in the reservoir, p. 23

ρw Fluid mixture density in the tubing, p. 23

ε Prediction error, p. 10

xix



List of Abbreviations

AIC Akaike’s Information Criterion, p. 4

ANN Artificial Neural Networks, p. 28

ANN-MS Artificial Neural Network identified from Multisine distur-

bance, p. 29

ANN-PRBS Artificial Neural Network identified from PRBS disturbance,

p. 29

ANN-RRSS Artificial Neural Network identified from RRSS disturbance, p.

29

BIC Bayes Information Criterion, p. 4

BSD Bootstrap to Structure Detection, p. 4

CSTR Continuous Stirred-Tank Reactor, p. 18

DRTO Dynamic Real-Time Optimization, p. 2

DRTO-ID DRTO based on first principle model, p. 42

DRTO-NARMAX DRTO based on NARMAX model, p. 42

ELS Extended Least Square algorithm, p. 3

ERR Error Reduction Rate, p. 4

FOLS Forward Orthogonal Least Square, p. 4

FO Fast Orthogonal algorithm, p. 3

FPE Final Prediction Error, p. 4

GH Golub-Householder algorithm, p. 10

MA Moving Average, p. xvi

xx



MIMO Multiple Input Multiple Output, p. 9

MISO Multiple Input Single Output, p. 9

MLP Multi-Layer Perceptron, p. 28

MPC Model-based Predictive Controller, p. 16

NARMAX Nonlinear AutoRegressive Moving Average models with eX-

ogenous inputs, p. 2

NARX Nonlinear AutoRegressive model with eXogenous inputs, p. 13

OH Optimization Horizon, p. 16

OLS Orthogonal Least Square algorithm, p. 3

PH Prediction Horizon, p. 8

PRBS Pseudo-Random Binary Sequence, p. 6

PSO Particle Swarm Optimization, p. 4

RRSS Random Range Step Sequence, p. 6

SQE Sum of Quadratic Errors, p. 28

xxi



Chapter 1

Introduction

1.1 Motivation and Objectives

In most industrial chemical processes, the nonlinear behavior of the plant is evi-

dent and relevant. However, physical models are usually complex or unavailable,

demanding a high effort to be developed or to be solved. These characteristics make

the usage of these models in process control and real-time optimization disadvanta-

geous, leading to a tendency of substituting them by an identified and simpler one.

Thus, system identification is being highlighted, when using input-output type.

High usage frequency of linear mathematical models to represent nonlinear sys-

tems has been reported in the 80’s. However, problems emerged when such systems

were highly nonlinear, generating relevant loss or even instability of the plant. Such

degeneracy is due to the fact that linear models used in controllers can not handle

dynamic behaviors, such as gain signal inversion or large gain variation, etc. Prob-

lems with lack of representativeness of nonlinear behavior demand the development

of simpler nonlinear model structures (in order to be preferred over local linear

models), when compared with physical models.

There are several types of nonlinear identification models that can be divided

into three groups:

� Models in frequency domain;

� Non-parametric models;

� Parametric models.

Models in frequency domain use data that are subjected to Fourier transfor-

mation or data that are naturally in frequency domain. Non-parametric models

are not described explicitly by a finite number of parameters and its structure is

not pre-selected. It can represent time or frequency-domain data (LJUNG, 1999).

Parametric models use parametric mathematical structures aiming to represent the
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dynamic behavior of a nonlinear system in time domain. The parametric mathe-

matical structure considered in this study is the polynomial NARMAX model (Non-

linear AutoRegressive Moving Average models with eXogenous inputs). This model

uses measured discrete data of inputs and outputs of a system, from industrial or

computational source (by means of simulations, as this study).

NARMAX models can be used not only for black-box system identification (sys-

tem information is unknown), but also for gray-box type (system information is used

in the determination of the model structure and/or parameter estimation). The ap-

plication of black-box identification is considered all-embracing as it does not require

prior information of the process. Whereas, for the gray-box approach, the number

of terms, computational cost and possibility of error in capturing systems dynamics

are reduced, due to user interaction that can be used to improve the NARMAX

models.

This work has the main objective of developing a methodology for identifying

nonlinear systems with prior knowledge using NARMAX models (gray-box identi-

fication), focusing on the determination of the model structure. The specific objec-

tives are to analyze the sensitivity of the output when disturbing the inputs, perform

the identification of a benchmark nonlinear process (non-isothermal Van de Vusse

reactor) and an oil production system with two gas-lift wells, compare with the

results of a black-box approach that uses only polynomial NARMAX structure, val-

idate the models to its purpose, use it on Dynamic Real-Time Optimization (DRTO)

of the studied cases and compare it with an ideal DRTO (that is constituted by first

principle models and discretized using direct collocation method).

1.2 Dissertation Structure

A bibliographic review of the concepts and tools most used on this matter is made

in Chapter 2, emphasizing necessary points for better understanding.

A methodology is proposed in Chapter 3 to identify the models of two case

studies using a gray-box procedure with NARMAX model.

Chapter 4 presents the results and its discussion divided in two sections exposing

and discussing the application results of black-box and gray-box methods.

Final conclusions and suggestions for future work are presented in Chapter 5.
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Chapter 2

Literature Review

The idea of NARMAX model emerged from a model that is based on Volterra series,

whose main issue is the huge quantity of terms (more than 100) (LEONTARITIS

& BILLINGS, 1985). Its concept was developed by BILLINGS & LEONTARITIS

(1981, 1982), when they studied input-output models that could represent a major

class of nonlinear problems. The authors also developed two methods based on

the least square algorithm in order to overcome one of the inherent difficulties of

parameter estimation of NARMAX models (known as polarized results).

BILLINGS & VOON (1983) showed the inefficiency of traditional covariance

tests on nonlinear problems and proposed methods to detect all terms on residuals.

In the following year, the same authors continued their investigation on modified

parameter estimation techniques for nonlinear systems and also discussed about the

importance of choosing data with representative nonlinearity, the system sensitivity

in relation to its inputs, and the selection of input variables (BILLINGS & VOON,

1984). With that, gray-box identification of nonlinear systems using NARMAX

structure emerged. It consists in using available information before obtaining the

final model (not to be mistaken with a priori knowledge, that is knowledge coming

from physical modeling) (CORRÊA & AGUIRRE, 2004).

Specific classes of NARMAX models were given special names regarding its struc-

ture, such as polynomial NARMAX and rational NARMAX (BILLINGS & CHEN,

1989). The difference is evident in the parameter estimation method; polynomial

NARMAX is linear on the parameters, while rational NARMAX is nonlinear on the

parameters.

The parameter estimation step of identification using polynomial NARMAX

received a lot of contributions, as the Extended Least Square algorithm (ELS)

(BILLINGS & VOON, 1984), Prediction error with stepwise regression algorithm

(BILLINGS & VOON, 1986), Fast Orthogonal algorithm (FO) (KORENBERG

et al., 1988), Orthogonal Least Square algorithm (OLS) (CHEN et al., 1989),

OLS with forward subset selection (FOLS - Forward Orthogonal Least Square)
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(BILLINGS & CHEN, 1998), Bootstrap to Structure Detection algorithm (BSD)

(KUKREJA et al., 2004), Genetic algorithm (MARIUS & NICOLAE, 2015), Par-

ticle Swarm Optimization (PSO) (ABDULLAH et al., 2015). The method used in

this work is based on the OLS algorithm due to its simplicity of calculation and its

capacity to mitigate ill-conditioning problems, which are very common in nonlinear

identification.

In order to define the optimal number of terms of the model, there are some

information criteria: Akaike’s Information Criterion (AIC) (AKAIKE, 1974), Final

Prediction Error (FPE) , that is equivalent to AIC in some way (LEONTARITIS &

BILLINGS, 1987b), Bayes Information Criterion (BIC). The most used information

criteria is AIC (AGUIRRE et al., 1998), although it looses effectiveness when it

comes to nonlinear identification (some regressors with low AIC but actually with

high importance to the model are wrongly disregarded) (AGUIRRE, 2000). In this

work, the optimal number of terms was found by doing a wide search and comparing

the objective function value (trade off between accuracy and model simplicity).

The detection of terms of the model can be executed by several methods, some of

them are described in AGUIRRE et al. (1998). Besides those cited methods, some

authors use statistic models to choose its structure and validate the model through

the usage of the confidence interval method. Although most articles showed its ef-

ficiency, it also can be an exhaustive method, as the number of possible terms can

increase a lot depending on the nonlinear constants that are inherent to the model

(BILLINGS & FADZIL, 1985). Besides, adding or removing terms do not affect

estimated parameters in some of estimation methods (as for the OLS algorithm).

Therefore, criteria of structure detection have been developed, such as Error Re-

duction Rate (ERR) (CHEN & BILLINGS, 1989), algorithms of forward regression

(BILLINGS et al., 1988), backward regression (DRAPER & SMITH, 1998), stepwise

regression (BILLINGS & VOON, 1986). It is necessary to highlight that AGUIRRE

et al. (1998) used a detection method called term cluster, which has been defined

in AGUIRRE & BILLINGS (1995). It reduces the quantity of candidate terms to

the final model by eliminating clusters with much smaller coefficient than effective

clusters’ coefficients. As the parameter estimation algorithm used in this work was

based on the OLS algorithm, the chosen criteria of structure detection was the ERR

as in THOMSON et al. (1996), where the authors presented an out of the ordinary

methodology, identifying the model of a parallel-tube heat exchanger. This method-

ology uses an algorithm that is based on orthogonal estimator from BILLINGS et al.

(1988) and validates the model by one-step-ahead prediction, 95% confidence inter-

val of all normalized function correlations and step response (also called dynamic

simulation method). Unlike most of other authors, they do not use AIC, because the

algorithm has already an objective function, that is the quadratic error, to optimize
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the number of terms.

CORRÊA & AGUIRRE (2004) made an extended review about system identifi-

cation with gray-box nonlinear identification. They described how to use auxiliary

information on structure detection of identification using polynomial NARMAX

models (based on static gain, number of stationary states on the output variables,

qualitative characteristics with respect to dynamic behavior of the system) and on

parameter estimation, both using term cluster method.

The gray-box identification was highlighted in JOHANSEN (1996). The author

used different types of knowledge of the system, like a basic model that represents

the system within operating conditions; noise with linear model; mass balance on

stationary state; stability of the system. The author applied each of these types to

a pH neutralization tank and compared them in order to observe how the type of

information affects the number of parameters of identified polynomial NARMAX

model.

In JÁCOME (1996), the author identified the model using a gray-box type iden-

tification with OLS algorithm, Householder transformations and term cluster. The

auxiliary information helped in selecting polynomial structure.

When the type of auxiliary information arises from the static behavior of the

system, gray-box nonlinear identification methods use a multi-objective algorithm,

because it searches a mid term between dynamic and static modes of a system so

it can be represented by the identified model in any of these situations (BARBOSA

et al., 2011). This type of identification has advantages over the black-box type only

when the data set of the system do not represent all desired system information

(TEIXEIRA & AGUIRRE, 2011).

A gray-box problem can be classified into several shades of gray (KARPLUS,

1977). The model is labeled as light gray when its structure is defined and has

physical meaning. Nevertheless, its parameters still need to be estimated. The dark

gray is when some auxiliary information, such as based on static gain, number of

stationary states on the output variables, mass balance, energy balance, are used to

select the structure of the polynomial model. Finally, there is a middle gray, that is

not much investigated. It uses auxiliary information, such as qualitative characteris-

tics with respect to dynamic behavior of the system, to form non-polynomial-based

structures, which is the case of this work.
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Chapter 3

Proposed Methodology

System identification is executed in five main steps (AGUIRRE, 2000):

� Dynamic tests and data acquisition;

� Choice of mathematical structure to be used;

� Model structure determination;

� Parameter estimation;

� Model validation.

This work focused on the model structure determination, presented in Section

3.3.

3.1 Type of Disturbances

Many studies on linear identification have used Pseudo-Random Binary Sequence

(PRBS) to generate input signals. However, when this type of disturbance is used

for nonlinear identification, inaccurate models are generated (LEONTARITIS &

BILLINGS, 1987a).

A prior study of types of disturbances was necessary because of divergence in

literature on what would be the best one to perform a nonlinear identification. Three

types of signals were tested in the identification of the non-isothermal Van de Vusse

reactor using neural networks: PRBS, multisine and random range step sequence

(RRSS). The first one is mostly used in linear identification, the second one is used

in linear and nonlinear cases and the third one is proposed in this study. They were

applied to both input variables of the Van de Vusse reactor, which is described in

Section 3.8.1.
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PRBS, as the name suggests and Figure 3.1 shows, has only two values. It is

generated by choosing range and order (n, which is an integer number). The order

n defines the maximum period, which is given by 2n − 1.

Figure 3.1: Pseudo-Random Binary Sequence.

Multisine signal (SCHMITZ & GREEN, 2012), in Figure 3.2, was generated by

a linear combination of sines with random argument between 0 and 2πωt, where ω

is the input signal frequency, t is the vector of the time samples.

Figure 3.2: Multisine signal.

RRSS, as shown in Figure 3.3, is generated by setting random numbers between

0 and 1 to the magnitude of each step and specifying how long the step value is kept

constant.
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Figure 3.3: Random Range Step Sequence.

3.2 Data Acquisition

Data acquisition is an important task as it can determine the accuracy of a model.

The data must have the same nonlinearity degree of the process, enough time on

each excitation to a stable dynamic response and a large enough range to represent

a larger operating region.

In order to know all this information about the process, a study of the process

was made. A pulse was applied on each input, once at a time, and its response was

recorded. The time constant can be taken and the prediction horizon (PH) can be

calculated, as 5 times the time constant.

The real system was emulated by using first principle model. Simulations were

performed in the software MATLAB version 2016b. To simulate the data acquisition

procedure, each input variable was disturbed. Due to measurement uncertainty,

white noise was added to the measured variables. In the case of flow rate, uncertainty

was generally around 2%, while for temperature, uncertainty was between 0.5 and

1 �.

An additional procedure is the normalization of data. This is important to mit-

igate ill-conditioning problems, which are characteristic of NARMAX model identi-

fication. Normalization was performed in terms of Equation 3.1:

var =
var− varmin

∆var
(3.1)

where var represents any of the acquired data (measured data) to be normalized,

var is the variable vector after normalization, varmin is the minimum value of the

original values and ∆var is the operating range of var.
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3.3 Model Structure

NARMAX models can be multiple input multiple output (MIMO), when an esti-

mated output variable depends on other output variables. However, the NARMAX

model that is used in this work has multiple input and single output (MISO), with

the predicted output variable depending on its past values, past values of input

variables and noise, generally represented by Equation 3.2.

y(k) = P `[y(k−1), ..., y(k−ny), ui(k−d), ..., ui(k−d−nui), e(k−1), ..., e(k−ne)]+ε(k)

(3.2)

where P is a polynomial function with nonlinearity degree ` in relation to all vari-

ables (inputs - ui, with i referring to the number of input variables, output - y, noise

- e), with k = 1, ..., N , N is the number of samples, ny, nui , ne are maximum lags

of system output, inputs and noise, respectively, d is the time delay of the model, ε

is the prediction error, or residual, that is defined in Equation 3.3.

ε(k) = y(k)− ŷ(k) (3.3)

where y(k) is the output variable at instant k and ŷ(k) is the predicted value of the

same variable at the same instant.

For polynomial NARMAX models, Equation 3.2 is expanded into Equation 3.4:

y(k) =
n∑

m1=1

θm1xm1(k) +
n∑

m1=1

n∑
m2=m1

θm1m2xm1(k)xm2(k) +

n∑
m1=1

...
n∑

m`=m`−1

θm1...m`xm1(k)...xm`(k) + ε(k)

(3.4)

Equation 3.4 can be rewritten in a matrix form, as in Equation 3.5:

y = Ψ∗θ + ε (3.5)

where θ is the estimated parameter vector, with np terms.

y =


y(1)

y(2)

:

y(N)

 Ψ∗ =
[
ψ1 ψ2 · · · ψnp

]
ψj =


ψ1j

ψ2j

:

ψNj

 ε =


ε(1)

ε(2)

:

ε(N)
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Some definitions of specific nomenclature are described below.

Definition 1: Candidates to be regressors are all possible combinations between

variables (inputs, output and noise lags) and it generates the matrix of regressors,

Ψ, of dimension N×nθ. In Ψ∗, the asterisk refers to the matrix of chosen regressors

that compose the estimated model (with np features).

Definition 2: Features are the candidates to be regressors, ψj , multiplied by the

estimated parameter, θj, with j = 1, 2, ..., np.

The polynomial regressors are linear and nonlinear combinations among all the

variables in a way that the maximum nonlinearity degree is `. Meanwhile, change in

coordinates does not have this limitation of degree nor has to be polynomial at all,

as it can be exponential, logarithmic, sinusoidal, etc. It does not affect the linearity

on the parameters, so it does not affect the solving algorithm. Also, it makes the

user experience with the system very important in the application of this type of

methodology.

3.4 Parameter Estimation

There are three types of parameter estimation. One is known as batch estimation.

It uses all the data at once to identify the system. It is an off-line technique and the

estimated parameters are time-invariant. A second type is a recursive estimation,

which is on-line and the parameters are time-variant (ZHU & BILLINGS, 1991).

The third one is a mixture between the batch and recursive approaches. It is called

moving horizon estimation (MHE), which uses batch estimation in a moving window

of data (JØRGENSEN, 2004). in the present work, the batch estimation is used.

Some classic parameter estimation algorithms face ill-conditioning problems, if

the system presents high nonlinearity. There are modifications for such cases de-

scribed in AGUIRRE (2000). One of the methods is the Golub-Householder algo-

rithm (GH), which is an orthogonal least square algorithm with Householder trans-

formations and error reduction rate (ERR), aiding the regressors selection. This one

is the implemented method in this part of identification; a brief description follows.

3.4.1 Golub-Householder Algorithm with ERR

The number of candidates to be regressors, nθ, is given by the equations below:
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nθ = M + 1 (3.6)

M =
∑̀
i=1

ni (3.7)

ni =
ni−1(ny + nu1 + nu2 + ...+ nuj + ne + i− 1)

i
, n0 = 1 (3.8)

An extended matrix is set (matrix Ψ̃, of dimension N × (nθ + 1)) with all the

candidates (matrix Ψ, of dimension N × nθ) and the vector of output data (y),

represented in Equation 3.9:

Ψ̃ = Ψ̃(0) = [Ψ y] (3.9)

where the index (0) makes reference to the number of Householder transformations

made into the extended matrix.

After (k − 1) Householder transformations, the extended matrix is shown in

Equation 3.10.

Ψ̃(k−1) =

[
Vk−1

0
ψ̃

(k−1)
j · · · ψ̃(k−1)

nθ
y∗,(k−1)

]
(3.10)

where Vk−1 is an upper triangular matrix of dimension (k−1)×(k−1), the superscript

* in y∗ refers to the vector y with some lines changed by the (k − 1) householder

transformations.

The ERR is calculated using the equations below:

a
(k)
j =

N∑
i=k

(ψ̃
(k−1)
ij )2, j = k, ..., nθ (3.11)

b
(k)
j =

N∑
i=k

ψ̃
(k−1)
ij y

(k−1)
i , j = k, ..., nθ (3.12)

ERR
(k)
j =

(
b
(k)
j

)2
a
(k)
j 〈y, y〉

(3.13)

where 〈., .〉 indicates the inner product, k refers to transformation number k and j

refers to term number j.

The GH with ERR algorithm has four main steps, which are described below.

Algorithm:
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1. Calculate ERR of the other candidates (for all of them, at the

beginning);

2. Determine the next candidate with highest ERR and add it to the

model, recording its position on the extended matrix;

3. Make the Householder transformation nθ times;

4. Repeat the cycle until np features have been chosen to the model

(number of terms of the model, determined by the user or by an

external determination algorithm).

The result of making the Householder transformations nθ times is an orthogonal

matrix Q, as shown in Equation 3.15. The Householder transformation is detailed

in the Appendix A.

Ψ̃(nθ) =

[
Vnθ y∗

1

0 y∗
2

]
(3.14)

QΨ =

[
Vnθ
0

]
(3.15)

where Vnθ is an upper triangular matrix of dimension nθ × nθ and the null matrix

has dimension of (N − nθ)× nθ.
The estimated parameters are given by Equation 3.16 with objective function

given by Equation 3.17.

θOLS = V −1
nθ
y∗
1 (3.16)

JOLS = y∗,T
2 y∗

2 (3.17)

3.4.2 NARX and MA Parameter Estimation

The GH with ERR algorithm is used in two parts of the parameter estimation.

The decomposition of the original problem, Equation 3.2, is a way of reducing the

complexity of NARMAX estimation, by transforming that equation into Equation

3.18. In BILLINGS (2013), this decomposition is made with a different estimation

algorithm (FOLS) and uses a different stopping criterion (ERR), but here, it is used

with OLS, that chooses the iteration by comparing the objective function value with

the previous one, when a tolerance is reached.
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y(k) = F `[y(k − 1), ..., y(k − ny), ui(k − d), ..., ui(k − d− nui)]+

G`[y(k − 1), ..., y(k − ny), ui(k − d), ..., ui(k − d− nui), e(k − 1), ..., e(k − ne)] + ε(k)

(3.18)

where G is a polynomial function that contains only the combinations of input and

output variables, defined here as NARX part of the model; and H is a polynomial

function that contains all combinations of input and output variables with noise,

defined here as the MA part.

First, it estimates the parameters of the NARX part, using a wide search of the

model order parameters (nui and ny), which have maximum value given by the user.

Within each combination of these values, it chooses the optimal number of features

npNARX considering the objective function value (JOLS), and varying from 1 to 15,

which is an average value for nonlinear chemical process identification. After that,

the combination with minimum objective function value is chosen. This procedure

is done with constant nonlinearity degree (`), which varies from 1 to 3, which is also

an average value for nonlinear chemical process identification. After choosing the

model order parameters for each `, the choice of the nonlinearity degree is carried

out with the cross-validation method using the R-squared as comparison criterion.

Second, the noise model is identified using the residuals. The parameters are

estimated changing ne. If the objective function is reduced, the MA part with npMA

features is added to the model.

3.5 Validation of the Model

There are a variety of model validations, such as correlation-based validity tests,

cross-validation, step-response testing THOMSON et al. (1996). In this present

work, cross-validation was performed with different data set than the one used for

parameter estimation, and evaluated by calculating the determination coefficient

(R-squared) given by Equation 3.19. It needs to be pointed out that the R-squared

may happen to not be between 0 and 1, in the case of a nonlinear identification. This

happens when the identification is very poor and do not represent the system at all.

The cross-validation was made by comparing the new data set with the predicted

output generated in each prediction horizon.

R2 = 1−
∑N

k=1 (y(k)− ŷ(k))2∑N
k=1 (y(k)− ȳ(k))2

(3.19)

where ȳ is the output average and N is the number of samples.
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The validation can be also divided into three types regarding to the length of

the prediction trajectory.

Definition 3: A one-step-ahead validation consists in the prediction values of one

step ahead calculated using past original data, i.e., each prediction trajectory has

length of one point.

Definition 4: A k-step-ahead validation consists in a prediction trajectory calcu-

lated using a few points of the past original data in a way that predicted values are

calculated with predicted data, but after a number of points (prediction horizon) it

uses past original data again to restart the prediction trajectory, so each prediction

trajectory has length of k points.

Definition 5: An infinite-horizon validation consists in a prediction trajectory

calculated using only predicted values, except the starting points, that use past

original data, i. e., it is a recursive calculation with only the starting point depending

on the original data. The prediction trajectory, in this case, has infinite length.

The chosen validation method was the cross-validation with k steps ahead, be-

cause the proposed identification methodology is directed to optimization and con-

trol purposes, which needs the identified model to represent the process within a

certain prediction horizon.

3.6 Identification Summary

The identification algorithm used in this work can be summarized by Figure 3.4.
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Figure 3.4: Block diagram of batch estimation.

where JnpNARX is the OLS objective function of npNARX -term model (NARX part)

and JnpMA
is the OLS objective function of npMA

-term model (MA part).

The identification algorithm can be divided into seven steps, which are described

below.

Algorithm:

1. The user starts by suggesting some change on the coordinates or

not.

2. The user specifies a range of values for the model orders

(ny, nui, ne and d).

3. Synthetic data is acquired from first principle models.

4. Normalization of data is done.

5. Off-line identification algorithm chooses regressors, estimates

parameters and optimizes the number of features for each type

of model (varying the nonlinearity degree, `) and for each

suggestion on coordinate change.
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6. Validation step compares the R-squared value of all types of

models and chooses the model that has the highest one.

7. The suggestion on coordinate change is also chosen comparing the

R-squared values and the one of the black-box identification.

The user interaction is the usage of user knowledge about the process. Some

suggestions were made testing simple nonlinear combinations, such as
√
u1, u1/u2,

u2
1/u2, etc., and others based on energy or mass balance.

3.7 Dynamic Real-Time Optimization

Dynamic real-time optimization (DRTO), as the name suggests, is a real-time op-

timization, but using dynamic models to compute trajectories for the decision vari-

ables and using an economic objective function (JAMALUDIN & SWARTZ, 2016).

Figure 3.5: Optimizing control hierarchy.

The control strategy used in this work is a one-layer architecture (as shown in

Figure 3.5), that sends the control actions directly to the plant, although it can

have a different architecture, as in WÜRTH et al. (2011), which used a two-layer

architecture composed by a lower layer with a model-based predictive controller

(MPC) based on valid linear models when near the operating point; and a upper

layer with a DRTO based on rigorous nonlinear models.

The closed loop consists in starting with as many normalized samples as the

NARMAX model requires. DRTO controller unnormalizes prediction output and

calculates the control actions aiming to minimize the economic objective function

subject to constrains g and h, as in Equations 3.20-3.22. The optimization horizon

(OH) is set by the user. The objective function is the integral of the profit function,

f1, summed to the cost function, f2.

JDRTO =

∫ OH

0

(−f1(yj) + f2(ui))dt (3.20)
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min
ui

JDRTO(ui,yj) (3.21)

subject to

yj(k) = M(ui,yj) or ẏj = M(ui,yj)

g(ui) > 0 (3.22)

h(ui) = 0

where M is the model of the process. It can be the NARMAX model or the first

principle model.

After minimizing JDRTO for OH steps ahead, the first control action is sent to the

system, which responds to it. The response and the input variables are normalized

and sent back to the DRTO controller and the loop continues.

The most common way to solve a nonlinear optimal control problem (e.g. MPC,

DRTO) is by discretizing the infinite dimensional control problem into a nonlinear

programming problem (NLP). This can be performed by using single shooting, mul-

tiple shooting or direct collocation methods. Another way is to use directly discrete

models, such as an identified NARMAX model.

A comparison was made between a DRTO composed with first principle model,

discretized with direct collocation method, and a DRTO composed with the identi-

fied NARMAX models.

The closed loop DRTO routine was developed by Dinesh Krishnamoorthy in

CasADi v3.4.5, which is a Matlab Front-end developed at the Optimization in En-

gineering Center, in K.U.Leuven, Belgium (ANDERSSON, 2013). The one based

on first principle model uses the third order direct collocation method to set the

problem up and IPOPT was used to solve it, as in KRISHNAMOORTHY et al.

(2018).

3.8 Case Studies

Two processes were chosen to be cases of study. The Van de Vusse reactor is a well-

known nonlinear process and it was used to compile the identification code from

the scratch. An oil production system with two gas-lift wells is a large and complex

nonlinear system that is recently being studied with implementation of dynamic

real-time optimization (KRISHNAMOORTHY et al., 2018), so the need of a good

nonlinear discrete model appears. The Van de Vusse reactor is described in Section

3.8.1, and oil production system with two gas-lift wells, in Section 3.8.2.
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3.8.1 Van de Vusse Reactor

This case study is the identification of a non-isothermal Van de Vusse continuous

stirred-tank reactor (CSTR) model (TRIERWEILER, 1997), presented in Figure

3.6. The involved kinetics are shown in Equation 3.23:

A
k1

B
k2

C (3.23)

2A
k3

D

where A, B, C and D represent the components cyclopentadiene, cyclopentenol,

cyclopentanediol and dicyclopentadiene, respectively.

Figure 3.6: Van de Vusse CSTR. Adapted from TRIERWEILER (1997).

The component mass balance and the energy balance are given by the following

ordinary differential equations:

dCa
dt

=
F

V
(Ca0 − Ca)− k1Ca − k3C2

a (3.24)

dCb
dt

=
F

V
Cb + k1Ca − k2Cb (3.25)

dT

dt
=

1

ρcp
[k1Ca(−∆HAB) + k2Cb(−∆HBC) + k3C

2
a(−∆HAD)]+

F

V
(T0 − T ) +

kwAR
ρcpV

(TK − T )

(3.26)

where Ca0 is the concentration of component A at the reactor entrance, T0 is the

inlet temperature, Ca and Cb are the concentrations in the reactor of components A

and B, respectively, T is the temperature in the reactor, F is the flow rate through
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the reactor, V is the reactor volume, ρ is the liquid density, cp is the specific heat

capacity of the liquid, kw is the heat transfer coefficient, AR is the surface area of

the reactor, (−∆HAB), (−∆HBC) and (−∆HAD) are the heat of each reaction, and

TK is the temperature in the cooling jacket. The parameter values are shown in

Table 3.1.

Modeling assumptions: perfect mixture in the reactor; constant specific density

and calorific capacity of the liquid; constant volume V ; the dynamic of the cooling

jacket is neglected; reaction turning A into B as being of second order with respect

to A; reaction turning B into C as being of first order with respect to B; reaction

turning A into D as being of first order with respect to A; specific reaction rates are

temperature dependent, according to Arrhenius’ Equation 3.27, with T in degrees

Celsius:

ki = ki0 exp

(
−Ei/R

T + 273.15

)
(3.27)

where Ei, with i = 1, 2, 3, are the activation energy of the three different reactions;

ki0 , with i = 1, 2, 3, are the pre-exponential constants of the three different reactions;

and R is the gas constant.

The chosen input variables of the system are the cooling jacket temperature, TK ,

and the ratio F/V . The chosen output variables of the system are the concentration

of component A in the reactor, Ca, the concentration of component B, also in the

reactor, Cb, and the temperature of the reactor, T . The operating intervals were

chosen in order to contain the intervals where the system has nonlinear behavior.

They are described below:

12 h−1 6 F/V 6 132 h−1 (3.28)

68 � 6 TK 6 188 �
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Table 3.1: Reactor parameters and their values (TRIERWEILER, 1997):

Parameter Value Unit

k10 1.287x1012 h−1

k20 1.287x1012 h−1

k30 9.043x109 L mol A−1 h−1

−E1/R -9,758.3 K

−E2/R -9,758.3 K

−E3/R -8,560.0 K

(−∆HAB) -4.20 kJ mol A−1

(−∆HBC) 11.00 kJ mol B−1

(−∆HAD) 41.85 kJ mol A−1

ρ 0.9342 kg L−1

cp 3.01 kJ kg−1 K−1

kw 4,032.0 kJ h−1 K−1 m−2

AR 0.215 m2

V 10 L

T0 130 �

Ca0 5.1 mol A L−1

3.8.2 Oil Production System with Two Gas-Lift Wells

In oil production, it is desired that the natural pressure inside the reservoir is suffi-

cient to lift the oil upwards the well to the topside facility. When it is not, artificial

ways can be employed (e.g. boosting, water injection, gas lift). One technology

widely employed is the gas-lift method, represented in Figure 3.7. It consists in the

injection of compressed gas at the bottom of the well. The fluid from the reservoir

enters the tube from the bottom, mixes with the lift gas, then flows through the

common riser manifold and goes to the topside processing facility, so it can separate

the oil and gas phases (KRISHNAMOORTHY et al., 2018). Gas lift reduces the

density of the fluid column, which reduces the hydrostatic pressure drop in the well

and decreases the bottomhole pressure. However, if too much gas is injected, fric-

tional pressure drop may increase to levels where an increase in gas injection rate

may reduce the amount of produced oil. Therefore, the objective function is to find

a desirable gas lift injection rate that maximizes oil production.
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Figure 3.7: Two gas-lift wells scheme. From KRISHNAMOORTHY et al. (2018).

The system model used in this work was developed by KRISHNAMOORTHY

et al. (2018) for two wells (oil production system with two gas-lift wells). The

differential equations are given by Equations 3.29-3.33.

ṁgai = wgli − wivi (3.29)

ṁgti = wivi − wpgi + wrgi (3.30)

ṁoti = wroi − wpoi (3.31)

ṁgr =
∑
i=1,2

wpgi − wtg (3.32)

ṁor =
∑
i=1,2

wpoi − wto (3.33)

where mgai is the mass of gas in the annulus, wgli is the mass rate of gas lift injection,

wivi is the gas flow rate from the annulus into the tubing, mgti is the mass of gas

in the well tubing, moti is the mass of oil in the well tubing, wpgi is the flow rate of

produced gas, wrgi is the gas flow rate from the reservoir, wroi is the oil flow rate

from the reservoir and wpoi is the produced oil flow rate, mgr is the mass of gas in

the riser, mor is the mass of oil in the riser, wtg is the total gas flow rate and wto is

the total oil flow rate; and i stands for each well, with i = 1, 2.

The algebraic equations are given by Equations 3.34-3.51.
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ρai =
Mwpai
TaiR

(3.34)

ρwi =
mgti +moti − ρoLbhiAbhi

LwiAwi
(3.35)

ρr =
mgr +mor

LrAr
(3.36)

pai =

(
TaiR

MwVai
+
gHai

Vai

)
mgai (3.37)

pwhi =
TwiR

Mw

 mgti

LwiAwi + LbhiAbhi −
moti

ρo

− 1

2

(
mgti +moti

LwiAwi
gHwi

)
(3.38)

pwii = pwhi +
g

LwiAwi
(moti +mgti − ρoLbhiAbhi)Hwi + ∆ptfric (3.39)

pbhi = pwii + ρwigHbhi + ∆pbhfric (3.40)

prh =
TrR

Mw

(
mgr

LrAr

)
(3.41)

pm = prh + ρrgHr + ∆prfric (3.42)

wivi = Civi
√
max(0, ρai(pai − pwii)) (3.43)

wpci = Cpci
√
max(0, ρwi(pwhi − pm)) (3.44)

wpgi =
mgti

mgti +moti

wpci (3.45)

wpoi =
moti

mgti +moti

wpci (3.46)

wroi = PIi(pri − pbhi) (3.47)

wrgi = GORi · wroi (3.48)

wrh = Crh
√
ρr(prh − ps) (3.49)

wtg =
mgr

mgr +mor

wrh (3.50)

wto =
mor

mgr +mor

wrh (3.51)

where ρai is the density of gas in the annulus, Mw is the molecular weight of the gas,

R is the gas constant, Tai is the temperature in the annulus, ρwi is the fluid mixture

density in the tubing, ρo is the density of oil in the reservoir, Lbhi and Lwi are

the lengths of each well below and above the injection point, respectively, Abhi and

Awi are the cross-sectional areas of each well below and above the injection point,

respectively. Lr and Ar are the length and cross-sectional area of the riser manifold.
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pai , Lai , Aai and Vai are the pressure, length, cross-sectional area and volume of

each annulus, pwii is the well injection point pressure, g is the acceleration of gravity

constant, pwhi is the well-head pressure, Hbhi and Hwi are the vertical heights of each

well tubing below and above the injection point, Twi is the temperature in each well

tubing, pbhi is the bottom hole pressure, ∆ptfric and ∆pbhfric are the frictional pressure

drop in the well tubing above and below the injection point, respectively. pm is the

manifold pressure, prh is the riser head pressure, Lr, Ar, Hr, Tr and ∆ptfric are

the length, cross-sectional area, vertical height, average temperature and frictional

pressure drop in the riser. wivi is the flow through the downhole gas lift injection

valve, wpci is the total flow through the production choke, Civi and Cpci are the valve

flow coefficients for the downhole injection valve and the production choke for each

well, respectively. PIi is the reservoir production index, pri is the reservoir pressure

and GORi is the gas-oil ratio. wrh is the flow through the riser head choke, Crh is

the valve flow coefficient for the riser head valve and ps is the separator pressure.

The parameter values are in Tables 3.2 and 3.3.

Table 3.2: List of well parameter values (KRISHNAMOORTHY et al., 2018):

Parameter Well 1 Well 2 Units

Lw 1500 1500 m

Hw 1000 1000 m

Dw 0.121 0.121 m

Lbh 500 500 m

Hbh 500 500 m

Dbh 0.121 0.121 m

La 1500 1500 m

Ha 1000 1000 m

Da 0.189 0.189 m

ρo 800 800 kg m−3

Civ 1x10−4 1x10−4 m2

Cpc 2x10−3 2x10−3 m2

pr 150 155 bar

PI 0.7 0.7 kg s−1 bar−1

Ta 28 28 �

Tw 32 32 �

GOR 0.1±0.05 0.12±0.02 kg/kg
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Table 3.3: List of riser parameter values (KRISHNAMOORTHY et al., 2018):

Parameter Value Units

Lr 500 m

Hr 500 m

Dr 0.121 m

Crh 1x10−2 m2

ps 20 bar

Tr 30 �

Mw 20 g mol−1

R 8.314 J mol−1 K−1

The first principle model has a total of five differential equations and

eighteen algebraic equations. Twelve variables were chosen to be outputs,

pwhi , pbhi , wpgi , wpoi , prh, pm, wto, wtg, and two more to be the inputs, wgli , i = 1, 2.

The operating interval of the input variables is given by the equation below:

0 < wgli < 8kgs−1 (3.52)
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Chapter 4

Results and Discussion

First of all, a study of types of disturbances was made in order to choose the type

that is more adequate for nonlinear identification.

For each case study, before getting data from first principle models, a study of

the process was made to know more about it, learning about its nonlinear behavior,

calculate the time for the system to establish and noticing any delays.

After acquiring data, the black-box and gray-box identification were performed

for each output at a time. The comparison of the two types of identification is made

in the last section.

4.1 Pre-test

A series of pre-tests were made on the non-isothermal Van de Vusse reactor, testing

types of input disturbances, and the results were extended to the second case study,

the oil production system with two gas-lift wells. PRBS, multisine and RRSS were

applied on each input variable of the Van de Vusse reactor. PRBS, in Figure 4.1

was generated with the order being set to 3 (for u1) and 2 (for u2).
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Figure 4.1: Pseudo-Random Binary Sequence.

In Figure 4.2, Multisine signal was generated by a linear combination of sines

with random argument between 0 and 2πωt, where ω was set to 20h−1× random

value between 0 and 1, t was set to 501 points from 0 and 5 hours.

Figure 4.2: Multisine signal before sampling step.
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Figure 4.3: Multisine signal after sampling step.

In Figure 4.4, the RRSS signal was generated with 50 steps with duration of 0.1h

each.

Figure 4.4: Random Range Step Sequence.

In Figure 4.1, it is clear that PRBS has some disadvantages when it comes to

nonlinear identification. It does not cover a wide range of operating conditions, as

it is inherently a local signal; at some point, the number of samples is not enough

for the system to settle; or it has so many samples at some point that the system

stays too long in steady state.

Figure 4.3 shows two possibilities when it comes to multisine signals, that is, it

can turn into a signal with all the requirements to be a good input disturbance (u1

case), or it can turn into a bad one (u2 case), which does not cover abrupt changes on
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the input (one of the facts that may cause nonlinear behavior). In order to improve

u2 signal, the time sample period should be smaller, but the probability of getting

a bad signal would still exist, as the input frequency is random.

On the other hand, Figure 4.4 shows a good input disturbance, as it covers all the

operating range, it can be manipulated to stick to one value as long as the system

needs to establish and contains abrupt change of values.

The process was identified using artificial neural networks (ANN). The identifica-

tion procedure was performed in the software Statistica version 16 using multi-layer

perceptrons (MLP) with regressors presented in Equation 4.1, as in BIJANZADEH

et al. (2013) (higher maximum lags did not give much improvement in the identifi-

cation). During training stage, 54 ANN were trained for the variable Cb, varying the

number of neurons of the hidden layer (from 6, which is the number of regressors,

to 15, there is not much improvement, in this case, for higher values), the activa-

tion function of the hidden nodes (logistic function or hyperbolic tangent) and the

activation function of the output node (logistic function or hyperbolic tangent or

identity). From those 54 ANN, the 5 best go to the validation stage. The validation

method was the one-step-ahead cross-validation, which consists in the usage of data

from the other types of signals for one-step-ahead validation.

y(k) = D[y(k − 1), y(k − 2), u1(k − 1), u2(k − 1), u1(k − 2), u2(k − 2)] (4.1)

where D is the ANN model.

After that, the ANN performance was compared using the sum of quadratic fit-

ting errors (SQE) and the determination coefficient between predicted and simulated

data, using the other types of disturbance. In Table 4.1, the sum of squared error

of the identification procedure is recorded; and in Table 4.2, each column shows the

correlation coefficient between predicted data using the corresponding ANN and the

reactor data, simulated for each type of disturbance.

Table 4.1: Sum of quadratic fitting error.

JMS JRRSS JPRBS

MS 0.1629 0.3712 8.7533

RRSS 0.5577 0.0509 4.0849

PRBS 3.2060 1.9091 0.5836
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Table 4.2: R-squared values for identified ANN simulation from each type of distur-

bance.

ANN-MS ANN-RRSS ANN-PRBS

MS 0.9990 0.9985 0.9723

RRSS 0.0255 0.9978 0.0301

PRBS 0.9942 0.9969 0.9987

Analyzing Table 4.1, where ANN-MS is the ANN identified using multisine signal

to disturb the input variable, ANN-RRSS is the ANN identified using RRSS and

ANN-PRBS is the ANN using PRBS. It can be observed, in the last column, high

values of SQE, when validating ANN-PRBS. This corroborates the statement made

by LEONTARITIS & BILLINGS (1987a) about the ineffectiveness of PRBS signals

in the nonlinear identification. When comparing the correlation coefficient of ANN-

MS using RRSS and ANN-RRSS using MS, in Table 4.2, it can be noted that

ANN-MS does not have a good representation of the system when it is disturbed by

a RRSS, i.e., the ANN-RRSS adapts better to the other types of input disturbances.

This result was extended to the second case study. Therefore, the type of sig-

nal used in this work is a sequence of random range steps containing all possible

operating conditions, with the same time period, being long enough to the system

establish itself, but not too long as it makes the nonlinear identification more difficult

(LEONTARITIS & BILLINGS, 1987a).

4.2 First Case Study

Two input variables (F/V and TK) and three output variables (Ca, Cb and T ) were

selected to study the Van de Vusse reactor.

4.2.1 Gathering Information

In order to learn more about the process, the inputs were disturbed one at a time

on an open loop simulation with sample time period of 0.0028h or 10s, which was

chosen to give a smooth output data. For the first test, after 0.14h of simulation,

u1 was given an unit pulse during 0.14h, and for the second test, after 0.14h of

simulation, u2 was given an unit pulse with the same duration. All variables were

normalized.

In Figures 4.5-4.7, it can be observed that all variables have no delays; Ca re-

sponse has no delay and has negative gain in relation to u2; Cb has negative gain

in relation to u1 and has a high overshoot, comparing to the other variables; and T
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has inverse response in relation to u1. The system takes at most 0.014h to reach the

steady-state, so the PH is set to 25.

(a) (b)

Figure 4.5: Response of Ca due to disturbance on the inputs: (a) F/V ; (b) TK .

(a) (b)

Figure 4.6: Response of Cb due to disturbance on the inputs: (a) F/V ; (b) TK .
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(a) (b)

Figure 4.7: Response of T due to disturbance on the inputs: (a) F/V ; (b) TK .

4.2.2 Data Acquisition

The system was simulated based on first principle models in order to represent

the real behavior on a plant. It was executed on the programming environment

MATLAB, where a series of 40 random steps with duration of 0.07h each were

applied on the input variables (F/V and TK) with operating intervals described in

Equation 4.2 and sample time period of 10s, as shown in Figures 4.8 and 4.9. It is

important to emphasize that all variables were normalized and corrupted with white

noise.

12h−1 6 u1 6 132h−1

68� 6 u2 6 188� (4.2)

Figure 4.8: Simulated data - variable u1 (F/V ).
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Figure 4.9: Simulated data - variable u2 (TK).

4.2.3 Black-box Identification

4.2.3.1 Parameter Estimation

The order parameters ny, nui and ne varied from 1 to 4 (higher values did not give

much improvement to the model)and the delays were set to zero as a result from

the previous section.

The optimal values of these parameters are listed in Table 4.3.

Table 4.3: Optimal values of order parameters of black-box identification.

Parameter Ca Cb T

npNARX 14 14 14

` 2 2 2

ny 2 4 4

nu1 4 3 4

nu2 2 4 2

ne 3 4 3

npMA
1 1 1

All identified models have second order nonlinearity degree and a total of 15

features.

The objective function values for the optimal solutions are in Table 4.4.
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Table 4.4: Objective function for optimal parameters of black-box identification.

Variable JOLS

Ca 0.0324

Cb 0.0102

T 0.0106

The identified models are presented in Equations 4.3-4.5:

ŷCa = Ψ∗
CaθCa (4.3)

Ψ∗,T
Ca

=



yCa(k − 1)

yCa(k − 2)

u1(k − 1)

u1(k − 2)

yCa(k − 1)u2(k − 1)

yCa(k − 1)2

u2(k − 1)u2(k − 2)

yCa(k − 1)u1(k − 1)

yCa(k − 2)u1(k − 2)

yCa(k − 1)u1(k − 4)

u1(k − 4)2

u2(k − 1)

u1(k − 4)

yCa(k − 1)u1(k − 3)

e(k − 1)



θCa =



1.5255

−0.5178

0.3364

−0.2199

−0.0780

0.0107

−0.0626

−0.2279

0.1653

−0.0523

0.0445

0.0274

−0.0363

−0.0272

−0.4492
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ŷCb = Ψ∗
Cb
θCb (4.4)

Ψ∗,T
Cb

=



yCb(k − 1)

yCb(k − 3)yCb(k − 4)

u1(k − 3)u2(k − 1)

u1(k − 1)u2(k − 4)

u1(k − 2)u2(k − 4)

yCb(k − 3)u1(k − 1)

u2(k − 4)2

yCb(k − 3)u1(k − 2)

u2(k − 2)

yCb(k − 4)u1(k − 3)

u1(k − 1)u1(k − 3)

u1(k − 3)

yCb(k − 2)2

yCb(k − 1)u1(k − 1)

e(k − 3)u2(k − 1)



θCb =



1.0080

−0.1718

0.0785

0.2339

0.0036

−0.3318

−0.1780

0.2120

0.0699

0.0524

−0.1240

0.1346

0.1325

−0.2126

0.2013


ŷT = Ψ∗

TθT (4.5)

Ψ∗,T
T =



yT (k − 1)

u2(k − 1)

yT (k − 4)u2(k − 2)

u1(k − 4)

yT (k − 1)u1(k − 4)

yT (k − 1)u1(k − 1)

u1(k − 1)

yT (k − 2)

u2(k − 2)

yT (k − 3)u2(k − 1)

u1(k − 1)u2(k − 1)

u1(k − 4)2

yT (k − 3)2

yT (k − 4)2

e(k − 2)u1(k − 4)



θT =



0.5091

0.1287

−0.0925

0.0597

−0.0195

−0.2578

0.1574

0.2750

0.1327

0.0565

−0.0304

−0.0152

0.0704

−0.0398

−0.1834


where e is different for each model.

The final models were simulated and the one-step-ahead prediction was compared

with the normalized data. These results are shown in Figures 4.10-4.12.
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Figure 4.10: Simulation output of black-box identification for variable Ca.

(a) (b)

Figure 4.11: Simulation output of black-box identification for variable Cb: (a) ARX

model; (b) NARMAX model.
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Figure 4.12: Simulation output of black-box identification for variable T .

Qualitatively, it can be said about Figures 4.10-4.12 that the identified models

are quite good on describing the original data.

As ARX model is one of the most common type of model used on process control,

the one-step-ahead prediction is compared. The ARX model gives more peaks than

data presents for variable Cb. The differences between ARX and NARMAX models

for the other variables cannot be seen graphically, so it is shown in the next section,

comparing R-squared calculated with input data for model validation. In order carry

out the model validation, the cross-validation is done.

4.2.3.2 Cross-validation

Figures 4.13 and 4.14 show the input data for model validation, that was generated

with the same characteristics as the original set (same number of steps, same dura-

tion of each step of the data used in the identification). The same reference values

were used for normalization to maintain the same scale, so it is possible that the

new data set is not exactly between 0 and 1.
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Figure 4.13: Input data u1 for validation - First Case Study.

Figure 4.14: Input data u2 for validation - First Case Study.

Figures 4.15, 4.17 and 4.19 show the k-step-ahead validation results (k = 25)

and Table 4.5 shows the determination coefficients for the ARX model and for the

NARMAX model.
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Figure 4.15: Cross-validation of Ca model using NARMAX from black-box identifi-

cation.

Figure 4.16: Comparison of both unnormalized predicted output using NARMAX

from black-box identification, and data of variable Ca.
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(a) (b)

Figure 4.17: Cross-validation of Cb model from black-box identification using: (a)

ARX model; (b) NARMAX model.

(a) (b)

Figure 4.18: Comparison of both unnormalized predicted output from black-box

identification and data of variable Cb using: (a) ARX model; (b) NARMAX model.
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Figure 4.19: Cross-validation of T model using NARMAX from black-box identifi-

cation.

Figure 4.20: Comparison of both unnormalized predicted output using NARMAX

from black-box identification and data of variable T .

Table 4.5: Determination coefficient of validation for black-box identification - First

Case Study.

R2
ARX R2

NARMAX

Ca 0.8190 0.9789

Cb 0.4156 0.8590

T 0.9368 0.9971

The accuracy of prediction can be seen qualitatively in Figures 4.16, 4.18 and

4.20, and quantitatively in Table 4.5.
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Qualitatively, Ca and T models seem to be more accurate on predicting the

output, and Cb model is more disperse and ARX model gives a more disperse plot

when comparing Figures 4.16a and 4.16b.

Comparing the values of R-squared in Table 4.5, besides reassuring that Cb

model is less accurate on prediction (it has R-squared lower than 0.9), the ARX one

is lower than the NARMAX one, which means that ARX model would not describe

the nonlinear behavior of these variables for all the operating interval.

4.2.3.3 Dynamic Real-time Optimization

During DRTO run for the Van de Vusse reactor, F/V was varied in order to simulate

changes on the flow rate and TK was the decision variable with Equation 4.6 as

economic objective function (with the optimization horizon of 50 and all variables

restricted to positive values), as can be observed in Figures 4.21 and 4.22. F/V was

given 3 steps: one at time = 50s from the 50h−1 to 100h−1, other at time = 500s

from 100h−1 to 30h−1 and another at time = 1000s from 30h−1 to 72.128h−1, which

is one of the steady-states of the process.

JDRTO =

∫ 50

0

(−pCbCb + (pTKTK)2)dt (4.6)

where the first term is f1 from Equation 3.20: pCb = 2.009 is the price of product Cb

and pTK = 1.657×10−4 is the utility cost (ALSTAD, 2005). The system is subjected

to constraints:

ui, yj > 0, i = 1, 2 and j = Ca, Cb, T (4.7)

Figure 4.21: F/V variation.
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Figure 4.22: Control action on input TK .

The closed loop responses of the black-box identified model to the DRTO actions

on the temperature of the jacket (DRTO-NARMAX - DRTO based on NARMAX

model) were compared with the one using first principle model (DRTO-ID - ideal

DRTO), the results are shown in Figures 4.23-4.25. It can be noted that they have

different solutions in all operating interval with 10% maximum difference, which is

a good result because the minimum measurement error of the process is 10%.

Figure 4.23: Comparison of DRTO performances to Ca.
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Figure 4.24: Comparison of DRTO performances for Cb.

Figure 4.25: Comparison of DRTO performances for T .

In Figure 4.26, it can be seen that the objective function of the ideal scenario

is much lower than the one calculated on the DRTO-NARMAX. It can be due to

the fact that the model is far from perfection, i.e., high uncertainty of the data and

prediction error.
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Figure 4.26: Comparison of objective function during DRTO.

4.2.4 Gray-box Identification

4.2.4.1 Parameter Estimation

The gray-box identification algorithm found no need for changing coordinates to

identify Ca and T models. On the other hand, for Cb, it asked for suggestions,

which are described in Appendix B, with each R-squared value. Some suggestions

were made testing simple nonlinear combinations, such as
√
u1, u1/u2, u2

1/u2, etc.,

and others based on energy or mass balance. The negative R-squared values are

due to poor suggestion that makes the prediction error to be very big; and the NaN

(Not-a-Number) means that at some point, there is addition of prediction errors

with infinite magnitude (-Inf+Inf,).

The chosen suggestion (the one with maximum R-squared value of Table B.1)

for Cb was changing u2 to u2
2/u1. The optimal values of the model orders are listed

in Table 4.6.

Table 4.6: Optimal values of order parameters of the gray-box identification - First

Case Study.

Parameter Cb

npNARX 14

` 3

ny 4

nu1 4

nu2 4

ne 4

npMA
1

44



The objective function value for the optimal solution is 0.0454, which is higher

than the one calculated on the black-box identification, but it gives better predic-

tion. This is due to the algorithm code that maximizes R-squared value instead of

minimizing the objective function, as can be seen in the next section.

The estimated model of Cb is presented in Equation 4.8.

ŷCb = Ψ∗
Cb
θCb (4.8)

Ψ∗,T
Cb

=



yCb(k − 1)

u1(k − 3)2u2(k − 1)

u1(k − 1)u2(k − 2)yCb(k − 4)

u1(k − 2)u2(k − 2)

u1(k − 4)u2(k − 4)

yCb(k − 3)

yCb(k − 1)u1(k − 1)2

u2(k − 1)u2(k − 4)u1(k − 4)

u1(k − 3)u2(k − 1)

u1(k − 2)2u1(k − 4)

u1(k − 1)

u1(k − 3)u2(k − 2)yCb(k − 1)

u1(k − 1)u1(k − 2)yCb(k − 1)

u1(k − 2)u2(k − 1)2

e(k − 1)u1(k − 3)yCb(k − 4)



θCb =



1.1595

−0.2130

−0.2899

0.5433

0.1185

−0.1823

−0.2495

−1.3865

0.7723

0.0754

−0.0483

−0.3428

0.1102

−0.2467

−0.7995



The final model was simulated and the one-step-ahead simulation was compared

with the normalized data, as shown in Figure 4.27. It can be seen that the model

describes the normalized data very well.
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Figure 4.27: Simulation of gray-box identification for variable Cb.

4.2.4.2 Cross-validation

Input data for validation of the gray-box identification model was the same as for

the black-box one. This data was used before the change in coordinates, so u1 and

u2 are used to calculate the new input variables, which are referred also as u1 and

u2, but they can be different for every identification procedure. In this case, as a

result of the previous section, u2 values has been changed to u2
2/u1.

(a) (b)

Figure 4.28: Cross-validation of Cb model from (a) black-box identification; (b)

gray-box identification.
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(a) (b)

Figure 4.29: Comparison of both unnormalized predicted output and data of variable

Cb using NARMAX (a) black-box identification; (b) gray-box identification.

The R-squared for the gray-box identification of Cb model is 0.8729, which is

better than in black-box identification. In Figure 4.28b, it can be noticed, when

comparing with Figure 4.28a, that the model can now provide a better representation

of abrupt changes on the gain. And Figure 4.29b shows as much dispersion as in

black-box validation, in Figure 4.29a.

4.2.4.3 Dynamic Real-time Optimization

The same procedure was done for the gray-box NARMAX model-based DRTO, F/V

was varied and TK was the decision variable, as can be observed in Figures 4.30 and

4.31.

Figure 4.30: F/V variation.
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Figure 4.31: Control action on input TK .

The closed loop responses of the identified model of the system to the DRTO

actions on the temperature of the jacket were compared with the one using the first

principle model, and the results are shown in Figures 4.32-4.34.

Figure 4.32: Comparison of DRTO performances for Ca.
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Figure 4.33: Comparison of DRTO performances for Cb.

Figure 4.34: Comparison of DRTO performances for T .

The change on Cb model made the optimization unstable, which can be noted by

the oscillations in Figures 4.32-4.34. It can be due to the fact that the optimization

code sets the control horizon to be the same as the prediction horizon. In Figure

4.35, it can be seen that the objective function of the DRTO-NARMAX has much

higher values than the ones in the ideal scenario, which was expected because of the

uncertainties and the prediction error of the NARMAX models.
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Figure 4.35: Comparison of objective function during DRTO.

4.3 Second Case Study

Oil production system with two gas-lift wells has twelve output variables,

pwhi , pbhi , wpgi , wpoi , prh, pm, wto, wtg, and two input variables, wgli , i = 1, 2.

4.3.1 Gathering Information

The same tests were made for the second case study. On the first test, after 2h, an

unit pulse was applied on u1 during 2h with a sample time period of 2min. On the

second test, the same pulse was applied on u2. All variables are normalized. The

slowest and the fastest variables are presented in Figures 4.36 and 4.37, respectively;

the other results are in Appendix C. The system takes at maximum 20min to reach

steady-state, so the PH is set to 50. Also, there are no delays regarding the input

variables.
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(a) (b)

Figure 4.36: Response of wpg2 due to disturbance on the inputs: (a) wgl1 ; (b) wgl2 .

(a) (b)

Figure 4.37: Response of pm due to disturbance on the inputs: (a) wgl1 ; (b) wgl2 .

4.3.2 Data Acquisition

The system was simulated based on first principle models on CasADi, where a series

of 50 random steps with sample time period of 2min and duration of 0.028h were

applied on the input variables (wgl1 and wgl2) with operating intervals between 0

and 8 kg/s, as shown in Figures 4.38 and 4.39 after normalization and addition of

white noise.
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Figure 4.38: Simulation data of input variable u1 for black-box identification - Sec-

ond Case Study.

Figure 4.39: Simulation data of input variable u2 for black-box identification - Sec-

ond Case Study.

4.3.3 Black-box Identification

4.3.3.1 Parameter Estimation

The order parameters ny, nui and ne varied from 1 to 4 and the delays were set to

zero as a result from the previous section. The optimal values are listed in Table

4.7.

52



Table 4.7: Optimal values of order parameters of black-box identification - Second

Case Study.

Parameter pwh1 pwh2 pbh1 pbh2 wpg1 wpg2 wpo1 wpo2 prh pm wto wtg

npNARX 13 9 10 10 14 14 14 9 11 11 14 8

` 2 2 2 2 1 2 2 1 1 2 1 1

ny 2 1 2 2 3 4 4 4 3 3 4 2

nu1 1 1 4 3 3 1 4 4 3 4 2 3

nu2 2 2 3 4 2 4 2 3 4 4 4 4

ne 1 3 1 1 3 1 2 2 2 2 1 0

npMA
1 1 1 1 1 1 1 1 1 1 1 -

The model features are presented in Appendix D. The objective function values

for the optimal solution of black-box identification are in Table 4.8.

Table 4.8: Objective function values for the optimal solution of black-box - Second

Case Study.

Variable JOLS

pwh1 0.0617

pwh2 0.0965

pbh1 4.27× 10−4

pbh2 0.0331

wpg1 0.0607

wpg2 0.0111

wpo1 0.0238

wpo2 9.79× 10−4

prh 3.73× 10−4

pm 0.0116

wto 0.0596

wtg 0.0697

4.3.3.2 Cross-validation

Figures 4.40 and 4.41 show the input data for validation, that was also generated

with the same characteristics as the original set (same number of steps, same dura-

tion of each step of the data used on identification). It was used the same reference

values for normalization.

Figures 4.42-4.53 show the k-step-ahead validation results (k = 50) and Table

4.9 shows the determination coefficients.
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Figure 4.40: Input data u1 for validation - Second Case Study.

Figure 4.41: Input data u2 for validation - Second Case Study.

(a) (b)

Figure 4.42: Cross-validation of models for: (a) pwh1 ; (b) pwh2 .
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(a) (b)

Figure 4.43: Cross-validation of models for: (a) pbh1 ; (b) pbh2 .

(a) (b)

Figure 4.44: Cross-validation of models for: (a) wpg1 ; (b) wpg2 .
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(a) (b)

Figure 4.45: Cross-validation of models for: (a) wpo1 ; (b) wpo2 .

(a) (b)

Figure 4.46: Cross-validation of models for: (a) prh; (b) pm.
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(a) (b)

Figure 4.47: Cross-validation of models for: (a) wto; (b) wtg.

(a) (b)

Figure 4.48: Comparison of both unnormalized predicted output and data of vari-

able: (a) pwh1 ; (b) pwh2 .
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(a) (b)

Figure 4.49: Comparison of both unnormalized predicted output and data of vari-

able: (a) pbh1 ; (b) pbh2 .

(a) (b)

Figure 4.50: Comparison of both unnormalized predicted output and data of vari-

able: (a) wpg1 ; (b) wpg2 .
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(a) (b)

Figure 4.51: Comparison of both unnormalized predicted output and data of vari-

able: (a) wpo1 ; (b) wpo2 .

(a) (b)

Figure 4.52: Comparison of both unnormalized predicted output and data of vari-

able: (a) prh; (b) pm.
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(a) (b)

Figure 4.53: Comparison of both unnormalized predicted output and data of vari-

able: (a) wto; (b) wtg.

Table 4.9: Determination coefficient of validation for black-box identification - Sec-

ond Case Study.

Variable R2
NARMAX

pwh1 0.9946

pwh2 0.9963

pbh1 0.9857

pbh2 0.5038

wpg1 0.9844

wpg2 0.9988

wpo1 0.968

wpo2 0.7331

prh 0.9332

pm 0.9248

wto 0.7978

wtg 0.9887

From Figures 4.42-4.53, the variables that have the worst fit are, qualitatively,

pbh2 , wpo2 , pm and wto. It is corroborated by analyzing the worst R-squared values

in Table 4.9. Beside the fact that pm has one of the lowest R-squared values, it is

higher than the minimum quality criterion, that is 0.9.
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4.3.3.3 Dynamic Real-time Optimization

During DRTO run for the oil production system, all inputs were optimized with

Equation 4.9 as economic function, and the constrains are given by Equation 4.10.

The control horizon was set to 40, as can be noticed in Figures 4.54 and 4.55.

JDRTO =

∫ 40

0

(−(w2
to) + 0.5×

∑
i=1,2

w2
gli

)dt, i = 1, 2 (4.9)

subject to

ui, yj > 0 (4.10)

where i = 1, 2 and j = pwhi , pbhi , wpgi , wpoi , prh, pm, wto, wtg

Figure 4.54: Control action on input wgl1 .

Figure 4.55: Control action on input wgl2 .
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The closed loop responses of the identified model of the system to the DRTO

actions on the input variables (wgl1 and wgl2) were compared with the one using

first principle models, the results are shown in Figures 4.56-4.67.In Figures 4.58 and

4.65, the NARMAX model showed poor performance when trying to represent the

nonlinearity of the respective variables. It can be due to the fact that one of the

inputs changed so abruptly that made the trajectory to go to another stationary

point.

Figure 4.56: Comparison of DRTO performances for pwh1 .

Figure 4.57: Comparison of DRTO performances for pwh2 .
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Figure 4.58: Comparison of DRTO performances for pbh1 .

Figure 4.59: Comparison of DRTO performances for pbh2 .

Figure 4.60: Comparison of DRTO performances for wpg1 .
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Figure 4.61: Comparison of DRTO performances for wpg2 .

Figure 4.62: Comparison of DRTO performances for wpo1 .

Figure 4.63: Comparison of DRTO performances for wpo2 .
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Figure 4.64: Comparison of DRTO performances for prh.

Figure 4.65: Comparison of DRTO performances for pm.

Figure 4.66: Comparison of DRTO performances for wto.
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Figure 4.67: Comparison of DRTO performances for wtg.

In Figure 4.68, it can be seen that the objective function of the DRTO-NARMAX

has much higher values than the ones in the ideal scenario. It can be due to high

uncertainties and the prediction error of the NARMAX models.

Figure 4.68: Comparison of objective function during DRTO.

4.3.4 Gray-box Identification

4.3.4.1 Parameter Estimation

As a result of the black-box identification, the minimum quality criterion made

the gray-box identification algorithm to only find need for changing coordinates to

identify pbh2 , wpo2 and wto models. The user suggestions are described in Appendix

E, with each R-squared value and the chosen suggestions are in Table 4.10. The

optimal values of the order parameters are listed in Table 4.11.
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Table 4.10: Chosen modification on coordinates of gray-box identification - Second

Case Study.

Output variable First input Second input

pbh2 u1/u2 u2/u1

wpo2 u2/u
2
1

√
u1

wto u21/u2
√
u2

Table 4.11: Optimal values of order parameters of gray-box identification - Second

Case Study.

Parameter pbh2 wpo2 wto

npNARX 10 9 11

` 1 1 1

ny 3 4 4

nu1 4 2 4

nu2 4 4 4

ne 0 0 0

npMA
- - -

Table 4.12: Objective function values for the optimal solution of gray-box identifi-

cation - Second Case Study.

Variable JOLS

pbh2 0.7964

wpo2 2.8517

wto 1.4141

The objective function values in Table 4.12 are much higher than the ones re-

sulted from black-box identification. This is due to the fact that the algorithm

chose a NARX model instead of a NARMAX one, so the noise was not modeled.

The identified models are presented in Appendix F. They were simulated and the

one-step-ahead prediction outputs were compared with the normalized data. These

results are shown in Figures 4.69-4.71. It can be seen that the models describe the

normalized data very well, despite not having the MA part in the model.
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Figure 4.69: Simulation output of gray-box identification for variable pbh2 .

Figure 4.70: Simulation output of gray-box identification for variable wpo2 .

Figure 4.71: Simulation output of gray-box identification for variable wto.
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4.3.4.2 Cross-validation

Figures 4.72 and 4.73 show the input data for validation. It used the same reference

values as the original data to be normalized, so it is possible that it is not exactly

between 0 and 1. The the k-step-ahead validation results (k = 50) are presented in

Figures 4.74-4.76 and the determination coefficients are shown in Table 4.13.

Figure 4.72: Input data u1 for validation - Second Case Study.

Figure 4.73: Input data u2 for validation - Second Case Study.
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(a) (b)

Figure 4.74: (a) Cross-validation of pbh2 model; (b) Comparison of unnormalized

predicted output and unnormalized data.

(a) (b)

Figure 4.75: (a) Cross-validation of wpo2 model; (b) Comparison of unnormalized

predicted output and unnormalized data.

70



(a) (b)

Figure 4.76: (a) Cross-validation of wto model; (b) Comparison of unnormalized

predicted output and unnormalized data.

Table 4.13: Determination coefficient of validation for gray-box identification - Sec-

ond Case Study.

Variable R2
NARX

pbh2 0.8867

wpo2 0.7442

wto 0.8151

In Figures 4.74-4.76, it can be seen that model outputs for variables wpo2 and wto

are still quite disperse and do not give a good prediction, although the R-squared

values, in Table 4.13 are higher, when compared with black-box identified model, in

Table 4.9.

4.3.4.3 Dynamic Real-time Optimization

During DRTO run, all inputs were optimized, as can be observed in Figures 4.77

and 4.78.
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Figure 4.77: Control action on input wgl1 .

Figure 4.78: Control action on input wgl2 .

The closed loop responses of the identified model of the system to the DRTO

actions on the input variables (wgl1 and wgl2) were compared with the one using

first principle models, the results are shown in Figures 4.79-4.90. The performance

improved because the DRTO-NARMAX solution based on the gray-box NARMAX

models went closer to the ideal solution when comparing to the one based on the

NARMAX model from the black-box identification.
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Figure 4.79: Comparison of DRTO performances for pwh1 .

Figure 4.80: Comparison of DRTO performances for pwh2 .

Figure 4.81: Comparison of DRTO performances for pbh1 .
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Figure 4.82: Comparison of DRTO performances for pbh2 .

Figure 4.83: Comparison of DRTO performances for wpg1 .

Figure 4.84: Comparison of DRTO performances for wpg2.
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Figure 4.85: Comparison of DRTO performances for wpo1 .

Figure 4.86: Comparison of DRTO performances for wpo2 .

Figure 4.87: Comparison of DRTO performances for prh.
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Figure 4.88: Comparison of DRTO performances for pm.

Figure 4.89: Comparison of DRTO performances for wto.

Figure 4.90: Comparison of DRTO performances for wtg.

Comparing the performance of gray-box NARMAX model-based DRTO with
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the black-box NARMAX model-based DRTO, it can be observed that the difference

between the solutions for the variables pbh2 , wpo2 and wto on DRTO-ID and DRTO-

NARMAX were reduced a lot.

In Figure 4.91, it can be seen that the objective function of the DRTO-NARMAX

has much higher values than the ones in the ideal scenario. This is due to imperfec-

tion of the model, generating high prediction error.

Figure 4.91: Comparison of objective function during DRTO.
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Chapter 5

Conclusions and Suggestions

A study of the Van de Vusse reactor and the oil production system with two gas-lift

wells was made by disturbing each input variable at a time, the required duration

of each step was found and the prediction horizon was calculated.

The identification using NARMAX structure was performed for both cases and

the user interaction gave improvement to the model. On the other hand, it makes

the identification a little hard to improve when there is lack of knowledge, that is

when the study of the process is more important and should be made attentive and

exhaustively.

Despite the fact that the search for the optimal is local and exhaustive, the

gray-box identification algorithm had a great performance, because it is based on

analytical solution. The usage of prior knowledge by changing the coordinates avoids

gray-box usual complexity, because it does not change the fact that the model is

still linear on the parameters. For both the case studies, the gray-box algorithm

showed low complexity when leading with a combination of the parameters that

should be given by the user, and it did not take a lot of computational effort to

find the solution, although it took longer than the black-box one. The results of

the gray-box identification were better than the black-box one for both case studies.

Therefore, gray-box identification gives more accurate, sometimes smaller and less

complex model than the black-box one.

The application on optimization and control made it clearer that the gray-box

identification improves the modeling of the system. The gray-box identified model

provided a better performance than the black-box one, even though for Van de Vusse

CSTR, the optimization went unstable. This can be due to the fact that the control

horizon of the dynamic real-time optimization (DRTO) is set to be the same as the

prediction horizon and it can lead the system to oscillate. Moreover, it demanded

acquisition of knowledge regarding to the optimization tool CasADi, even though

there is still lack of it when the results are oscillating.

Regarding the algorithm itself, the orthogonal least square method avoids the
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ill-conditioning problem, but it needs a lot of optimization layers in order to find

optimal orders and nonlinearity degree for the model. One suggestion for continu-

ing this work is to compile a multi-objective optimization algorithm for the batch

estimation. Other suggestions are a hybrid estimation (using moving horizon esti-

mation) that could be implemented with the dynamic real-time optimization, and

improve the DRTO algorithm to avoid instability.
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Appendix A - Householder

Transformation with QR

Decomposition

The decomposition QR of Ψ (defined in Section 3.3) results in a matrix Q that

satisfies the following equations:

QΨ =

[
R

0

]
(A.1)

QTQ = I (A.2)

Seeing that, the extended matrix Ψ̃ is defined, as in Equation 3.9.

A matrix of Householder transformation is defined by the Equations A.3 to A.7:

H(i) = I − v(i)β(i)(v(i))T , i = 1, ..., nθ (A.3)

v(i) =


v
(i)
1

v
(i)
2

:

v
(i)
N

 (A.4)

v
(i)
j =


0, j < i

ψ̃
(i−1)
ii + sign(ψ̃

(i−1)
ii )σ(i), j = i

ψ̃
(i−1)
ji , j > i

(A.5)

where ψ̃
(i−1)
ji is the term number (ji) of the matrix Ψ̃(i−1) and sign(X) is a function

that, for each element of matrix X, returns 1, if the element is greater than zero; it

returns zero, if the element is equal to zero; and -1, if the element is less than zero.

β(i−1) =
1

σ(i)(σ(i) + |ψ̃(i−1)
ii |)

(A.6)
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σ(i) =

√√√√ N∑
j=i

(ψ̃
(i−1)
ji )2 (A.7)

For each transformation, Ψ̃(i) is calculated, according to Equations A.8 and A.9:

Ψ̃(i) = H(i)Ψ̃(i−1) (A.8)

Ψ̃(i) = [I − v(i)β(i)(v(i))T ]Ψ̃(i−1)

= Ψ̃(i−1) − v(i)β(i)(v(i))T Ψ̃(i−1), i = 1, ..., nθ
(A.9)

After nθ transformations, it generates Ψ̃(nθ), according to Equation A.10:

Ψ̃(nθ) =

[
Vnθ y∗

1

0 y∗
2

]
(A.10)
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Appendix B - User Suggestions -

First Case Study

Table B.1: Change on coordinates to identify the model

of Cb - First Case Study.

First input Second input R2
Cb

u1 u1/u2 0.5658

u1 u2/u1 0.1929

u1 u21/u2 0.4661

u1 u1/u
2
2 0.4790

u1 u22/u1 0.8729

u1 u2/u
2
1 0.1522

u1 eu1 -0.4614

u1 eu2 -0.6242

u1
√
u1 -0.0585

u1
√
u2 0.8199

u1
√
u1/u2 0.6727

u1
√
u2/u1 0.4089

u2 u1/u2 NaN

u2 u2/u1 NaN

u2 u21/u2 -0.7735

u2 u1/u
2
2 0.5435

u2 u22/u1 0.0816

u2 u2/u
2
1 -0.9064

u2 eu1 0.4837

u2 eu2 0.4879

u2
√
u1 -0.3753

u2
√
u2 0.5426

u2
√
u1/u2 0.5885

u2
√
u2/u1 -0.0010
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u1/u2 u2/u1 0.6181

u1/u2 u21/u2 -1.0126

u1/u2 u1/u
2
2 0.5222

u1/u2 u22/u1 0.8141

u1/u2 u2/u
2
1 0.4382

u1/u2 eu1 0.2883

u1/u2 eu2 0.2840

u1/u2
√
u1 0.3106

u1/u2
√
u2 0.7630

u1/u2
√
u1/u2 0.7226

u1/u2
√
u2/u1 0.1834

u2/u1 u21/u2 NaN

u2/u1 u1/u
2
2 NaN

u2/u1 u22/u1 -0.0011

u2/u1 u2/u
2
1 NaN

u2/u1 eu1 NaN

u2/u1 eu2 0.2776

u2/u1
√
u1 -0.0867

u2/u1
√
u2 0.8005

u2/u1
√
u1/u2 -0.0425

u2/u1
√
u2/u1 -0.0011

u21/u2 u1/u
2
2 0.3688

u21/u2 u22/u1 -0.0550

u21/u2 u2/u
2
1 -1.1686

u21/u2 eu1 0.1595

u21/u2 eu2 0.1473

u21/u2
√
u1 -0.6069

u21/u2
√
u2 0.8026

u21/u2
√
u1/u2 0.5184

u21/u2
√
u2/u1 0.1855

u1/u
2
2 u22/u1 0.6489

u1/u
2
2 u2/u

2
1 0.6030

u1/u
2
2 eu1 0.6866

u1/u
2
2 eu2 0.6820

u1/u
2
2

√
u1 0.5589

u1/u
2
2

√
u2 0.7648

u1/u
2
2

√
u1/u2 0.0047

u1/u
2
2

√
u2/u1 0.1609

u22/u1 u2/u
2
1 -0.0024
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u22/u1 eu1 NaN

u22/u1 eu2 0.6295

u22/u1
√
u1 NaN

u22/u1
√
u2 0.8039

u22/u1
√
u1/u2 -0.0010

u22/u1
√
u2/u1 -0.0010

u2/u
2
1 eu1 NaN

u2/u
2
1 eu2 -0.3775

u2/u
2
1

√
u1 NaN

u2/u
2
1

√
u2 0.7142

u2/u
2
1

√
u1/u2 NaN

u2/u
2
1

√
u2/u1 -0.0010

eu1 eu2 -0.1730

eu1
√
u1 -0.0010

eu1
√
u2 0.4995

eu1
√
u1/u2 -0.4394

eu1
√
u2/u1 -0.5312

eu2
√
u1 -0.1317

eu2
√
u2 0.4994

eu2
√
u1/u2 -0.9909

eu2
√
u2/u1 -0.8326

√
u1

√
u2 0.8397

√
u1

√
u1/u2 0.8587

√
u1

√
u2/u1 0.3155

√
u2

√
u1/u2 0.5133

√
u2

√
u2/u1 NaN

√
u1/u2

√
u2/u1 0.3249
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Appendix C - Gathering

Information - Second Case Study

(a) (b)

Figure C.1: Response of pwh1 due to disturbance on the inputs: (a) wgl1 ; (b) wgl2 .

(a) (b)

Figure C.2: Response of pwh2 due to disturbance on the inputs: (a) wgl1 ; (b) wgl2 .
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(a) (b)

Figure C.3: Response of pbh1 due to disturbance on the inputs: (a) wgl1 ; (b) wgl2 .

(a) (b)

Figure C.4: Response of pbh2 due to disturbance on the inputs: (a) wgl1 ; (b) wgl2 .
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(a) (b)

Figure C.5: Response of wpg1 due to disturbance on the inputs: (a) wgl1 ; (b) wgl2 .

(a) (b)

Figure C.6: Response of wpo1 due to disturbance on the inputs: (a) wgl1 ; (b) wgl2 .
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(a) (b)

Figure C.7: Response of wpo2 due to disturbance on the inputs: (a) wgl1 ; (b) wgl2 .

(a) (b)

Figure C.8: Response of prh due to disturbance on the inputs: (a) wgl1 ; (b) wgl2 .
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(a) (b)

Figure C.9: Response of wto due to disturbance on the inputs: (a) wgl1 ; (b) wgl2 .

(a) (b)

Figure C.10: Response of wtg due to disturbance on the inputs: (a) wgl1 ; (b) wgl2 .
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Appendix D - Features of the

black-box NARMAX models -

Second Case Study

ŷpwh1 = Ψ∗
pwh1

θpwh1 (D.1)

Ψ∗T
pwh1

=



ypwh1 (k − 1)

ypwh1 (k − 2)

u1(k − 1)

ypwh1 (k − 1)u1(k − 1)

ypwh1 (k − 2)u2(k − 2)

u1(k − 1)u2(k − 1)

ypwh1 (k − 2)2

ypwh1 (k − 1)2

ypwh1 (k − 1)ypwh1 (k − 2)

u2(k − 2)

u2(k − 2)2

ypwh1 (k − 1)u2(k − 2)

u1(k − 1)u2(k − 2)

e(k − 1)ypwh1 (k − 2)



θpwh1 =



1.464149

−0.54346

0.103848

0.06166

0.286443

0.011124

0.064889

−0.607

0.453616

0.006359

−0.00534

−0.36463

0.066143

−0.05045


ŷpwh2 = Ψ∗

pwh2
θpwh2 (D.2)

Ψ∗T
pwh2

=



ypwh2 (k − 1)

u2(k − 1)

ypwh2 (k − 1)u2(k − 1)

u1(k − 1)

ypwh2 (k − 1)2

u1(k − 1)2

u2(k − 1)2

u2(k − 1)u2(k − 2)

e(k − 2)2


θpwh2 =



0.7844

0.2381

−0.0616

0.0070

0.0391

−0.0056

−0.0131

0.0079

0.1055
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ŷpbh1 = Ψ∗
pbh1
θpbh1 (D.3)

Ψ∗T
pbh1

=



ypbh1 (k − 1)

ypbh1 (k − 2)

ypbh1 (k − 1)u1(k − 1)

ypbh1 (k − 1)ypbh1 (k − 2)

u1(k − 4)

u1(k − 2)

ypbh1 (k − 1)u1(k − 4)

ypbh1 (k − 2)2

ypbh1 (k − 1)u2(k − 3)

ypbh1 (k − 1)u1(k − 3)

u1(k − 1)

ypbh1 (k − 2)u1(k − 3)

u1(k − 4)2

u1(k − 1)u1(k − 2)

e(k − 1)



θpbh1 =



1.7873

−0.5652

−0.0465

−1.4597

0.1040

−0.1227

−0.1779

1.1525

−0.0200

−0.7419

0.0865

0.5680

−0.0735

0.0428

−0.02186


ŷpbh2 = Ψ∗

pbh2
θpbh2 (D.4)

Ψ∗T
pbh2

=



ypbh2 (k − 1)

ypbh2 (k − 2)

ypbh2 (k − 1)u2(k − 1)

ypbh2 (k − 1)2

ypbh2 (k − 1)u2(k − 2)

ypbh2 (k − 2)u2(k − 1)

u2(k − 4)2

ypbh2 (k − 1)u2(k − 4)

ypbh2 (k − 2)u2(k − 3)

ypbh2 (k − 2)2

u1(k − 1)u2(k − 4)

ypbh2 (k − 1)u1(k − 3)

ypbh2 (k − 1)u1(k − 1)

ypbh2 (k − 2)u2(k − 4)

e(k − 1)u2(k − 2)



θpbh2 =



1.8734

−0.6051

−0.0395

−0.8908

−0.2835

0.4207

0.0399

−0.3133

−0.1858

0.5294

0.0177

−0.0498

0.0276

0.1388

0.026872
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ŷwpg1 = Ψ∗
wpg1

θwpg1 (D.5)

Ψ∗T
wpg1

=



ywpg1 (k − 1)

u1(k − 1)

u1(k − 2)

ywpg1 (k − 2)

u1(k − 3)

u2(k − 2)

ywpg1 (k − 3)

e(k − 3)


θwpg1 =



0.3661

0.2060

0.0626

0.2269

0.0378

0.0023

0.1013

−0.0235


ŷwpg2 = Ψ∗

wpg2
θwpg2 (D.6)

Ψ∗T
wpg2

=



ywpg2 (k − 1)

u2(k − 1)

ywpg2 (k − 1)ywpg2 (k − 4)

ywpg2 (k − 2)

u2(k − 2)

u1(k − 1)

ywpg2 (k − 4)u1(k − 1)

ywpg2 (k − 3)2

u2(k − 1)2

u1(k − 1)2

u2(k − 3)2

ywpg2 (k − 1)ywpg2 (k − 2)

ywpg2 (k − 1)u2(k − 4)

ywpg2 (k − 2)u2(k − 2)

e(k − 1)u2(k − 1)



θwpg2 =



0.3599

0.2418

0.1648

0.3706

0.0540

0.0187

−0.0141

0.0554

−0.0301

−0.0086

0.0353

−0.3261

0.0371

0.0360

−0.03476
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ŷwpo1 = Ψ∗
wpo1

θwpo1 (D.7)

Ψ∗T
wpo1

=



ywpo1 (k − 1)

ywpo1 (k − 2)

ywpo1 (k − 1)2

u1(k − 1)

u1(k − 1)u1(k − 4)

u1(k − 2)

u2(k − 2)

ywpo1 (k − 2)2

u1(k − 3)u2(k − 1)

ywpo1 (k − 1)u1(k − 3)

ywpo1 (k − 4)

u1(k − 4)2

ywpo1 (k − 3)u1(k − 2)

u2(k − 1)2

e(k − 2)u1(k − 3)



θwpo1 =



0.843586

−0.00153

−0.19414

0.510861

−0.16781

−0.16492

0.02431

0.218338

−0.01662

−0.18764

−0.09074

0.046826

0.120682

−0.00657

−0.04545


ŷwpo2 = Ψ∗

wpo2
θwpo2 (D.8)

Ψ∗T
wpo2

=



ywpo2 (k − 1)

ywpo2 (k − 2)

u1(k − 2)

ywpo2 (k − 4)

u2(k − 2)

u2(k − 1)

u2(k − 3)

u1(k − 1)

ywpo2 (k − 3)

u1(k − 4)

e(k − 2)



θwpo2 =



0.9467

0.0736

0.0252

0.0469

−0.1777

0.2316

−0.0620

−0.0197

−0.0707

0.0058

0.0041
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ŷprh = Ψ∗
prh
θprh (D.9)

Ψ∗T
prh

=



yprh(k − 1)

yprh(k − 3)

u1(k − 1)

u2(k − 1)

yprh(k − 2)

u2(k − 2)

u1(k − 2)

u1(k − 3)

u2(k − 3)

e(k − 2)



θprh =



0.2574

0.1290

0.1364

0.1307

0.2713

0.0320

0.0304

0.0154

0.0112

−0.0035


ŷpm = Ψ∗

pmθpm (D.10)

Ψ∗T
pm =



ypm(k − 1)

ypm(k − 2)

ypm(k − 3)u1(k − 2)

u1(k − 1)

ypm(k − 1)u2(k − 2)

ypm(k − 3)u2(k − 1)

u1(k − 3)

ypm(k − 1)2

u1(k − 1)u2(k − 1)

ypm(k − 1)u2(k − 3)

ypm(k − 1)u1(k − 4)

ypm(k − 3)u1(k − 3)

ypm(k − 1)u2(k − 4)

u1(k − 4)2

e(k − 2)ypm(k − 3)



θpm =



1.2171

0.2443

−0.1815

0.1121

−0.1652

0.1619

−0.1657

−0.6616

0.1249

−0.2359

−0.3037

0.2930

−0.1550

0.0339

−0.27136
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ŷwto = Ψ∗
wtoθwto (D.11)

Ψ∗T
wto =



ywto(k − 1)

ywto(k − 2)

ywto(k − 3)

u1(k − 1)

u1(k − 2)

u2(k − 1)

u2(k − 2)

ywto(k − 4)

u2(k − 3)

e(k − 1)



θwto =



1.2545

−0.2245

−0.1290

0.1298

−0.1114

0.0740

−0.0855

0.0655

0.0182

−0.0019


ŷwtg = Ψ∗

wtgθwtg (D.12)

Ψ∗T
wtg =



ywtg(k − 1)

ywtg(k − 2)

u1(k − 1)

u2(k − 1)

u1(k − 2)

u2(k − 2)

u2(k − 3)

u1(k − 3)


θwtg =



0.5027

0.2428

0.0972

0.1003

0.0238

0.0191

0.0114

0.0116
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Appendix E - User Suggestions -

Second Case Study

Table E.1: Change on coordinates to identify the models

- Second Case Study.

First input Second input R2
pbh2

R2
wpo2

R2
wto

u1 u1/u2 -0.6769 0.2601 -0.0406

u1 u2/u1 -1.1680 0.4182 0.6663

u1 u21/u2 -0.4230 0.3538 -0.0890

u1 u1/u
2
2 -0.4561 0.4068 0.1867

u1 u22/u1 -0.8604 0.5572 0.7188

u1 u2/u
2
1 0.0111 0.6082 0.7658

u1
√
u1 -28.9291 -19.7444 -15.3672

u1
√
u2 -1.1052 0.2540 0.5652

u1
√
u1/u2 -0.1662 0.3498 0.2837

u1
√
u2/u1 -0.7201 -874.1604 0.6888

u2 u1/u2 -0.2654 0.5775 0.5587

u2 u2/u1 -0.6767 0.5725 -0.2282

u2 u21/u2 -0.6916 0.6851 0.4574

u2 u1/u
2
2 -0.8165 0.7002 0.5760

u2 u22/u1 -0.6767 0.6105 -0.7905

u2 u2/u
2
1 -0.6767 0.5760 -0.1071

u2
√
u1 -0.7013 0.5813 0.0155

u2
√
u2 -22.7267 -18.1608 -21.7015

u2
√
u1/u2 -0.8112 0.5768 0.5992

u2
√
u2/u1 -0.6767 0.5590 0.3318

u1/u2 u2/u1 0.8867 0.5843 0.7016

u1/u2 u21/u2 -4.1315 -2.1390 -1.4719

u1/u2 u1/u
2
2 -2.3793 0.5967 0.1436

u1/u2 u22/u1 0.8130 0.6425 0.7380
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u1/u2 u2/u
2
1 0.7424 0.4860 0.6097

u1/u2
√
u1 0.4621 0.1572 -0.8914

u1/u2
√
u2 -0.0762 0.3226 0.7808

u1/u2
√
u1/u2 -5.5474 -0.8549 -2.5010

u1/u2
√
u2/u1 0.8358 0.4761 0.6229

u2/u1 u21/u2 0.4732 0.7037 0.5633

u2/u1 u1/u
2
2 0.1410 0.5646 0.5271

u2/u1 u22/u1 -5.8955 -0.6152 -2.0907

u2/u1 u2/u
2
1 -6.1042 0.5175 -1.9163

u2/u1
√
u1 -1.1304 0.5795 0.2443

u2/u1
√
u2 -1.6755 0.3506 -1.9162

u2/u1
√
u1/u2 0.2033 -1.0062 0.5486

u2/u1
√
u2/u1 -11.8883 -6.0243 -3.4989

u21/u2 u1/u
2
2 -0.9713 0.1706 -0.5357

u21/u2 u22/u1 0.4972 0.1941 0.7552

u21/u2 u2/u
2
1 0.7286 0.6294 0.6316

u21/u2
√
u1 0.2633 0.3756 0.4050

u21/u2
√
u2 -0.9282 0.4064 0.8151

u21/u2
√
u1/u2 -2.0311 -0.0224 -0.2853

u21/u2
√
u2/u1 0.7866 0.6586 0.6887

u1/u
2
2 u22/u1 0.6666 0.4732 0.6467

u1/u
2
2 u2/u

2
1 0.5758 0.4097 0.5257

u1/u
2
2

√
u1 0.7000 0.3560 -0.2723

u1/u
2
2

√
u2 -0.1480 0.4173 0.7634

u1/u
2
2

√
u1/u2 -6.1006 -3.1060 -2.6313

u1/u
2
2

√
u2/u1 0.3652 -2.6345 0.5794

u22/u1 u2/u
2
1 -2.8397 0.5723 0.2160

u22/u1
√
u1 -0.8767 0.5347 0.2645

u22/u1
√
u2 -1.5390 -0.3817 -1.7555

u22/u1
√
u1/u2 0.1923 0.5188 0.5724

u22/u1
√
u2/u1 -3.6250 0.5980 0.3742

u2/u
2
1

√
u1 -0.1947 0.7442 0.0697

u2/u
2
1

√
u2 -1.5980 0.3392 -1.5139

u2/u
2
1

√
u1/u2 0.0146 0.4372 0.5373

u2/u
2
1

√
u2/u1 -3.8088 -1.4521 -3.3082

√
u1

√
u2 -1.1733 0.2241 0.5165

√
u1

√
u1/u2 -0.6151 0.3687 0.3083

√
u1

√
u2/u1 -1.5104 0.4003 0.6615

√
u2

√
u1/u2 -0.7675 0.6919 0.5940

102



√
u2

√
u2/u1 -0.7219 0.6469 0.2953

√
u1/u2

√
u2/u1 0.6644 0.3817 0.5547

103



Appendix F - Features of the

gray-box NARMAX models -

Second Case Study

ŷpbh2 = Ψ∗
pbh2
θpbh2 (F.1)

Ψ∗T
pbh2

=



ypbh2 (k − 1)

ypbh2 (k − 2)

u1(k − 1)

u2(k − 4)

u2(k − 2)

u1(k − 4)

u1(k − 2)

u2(k − 3)

ypbh2 (k − 3)

u1(k − 3)



θpbh2 =



1.4030

−0.4210

0.0325

0.0063

−0.0053

−0.0422

0.0458

0.0104

−0.0194

−0.0014


ŷwpo2 = Ψ∗

wpo2
θwpo2 (F.2)

Ψ∗T
wpo2

=



ywpo2 (k − 1)

ywpo2 (k − 2)

ywpo2 (k − 4)

u1(k − 1)

u1(k − 2)

ywpo2 (k − 3)

u2(k − 1)

u2(k − 2)

u1(k − 3)

u2(k − 3)

u1(k − 4)



θwpo2 =



1.0324

−0.0024

0.0397

0.7475

−0.5893

−0.0877

−0.5960

0.4609

−0.1477

0.1194

0.0129
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ŷwto = Ψ∗
wtoθwto (F.3)

Ψ∗T
wto =



ywto(k − 1)

ywto(k − 2)

ywto(k − 4)

u1(k − 1)

u2(k − 4)

u1(k − 2)

u2(k − 2)

u2(k − 1)

ywto(k − 3)

u2(k − 3)

u1(k − 3)



θwto =



1.3654

−0.3129

0.0745

0.1405

0.0179

−0.1483

−0.1304

0.0930

−0.1581

0.0323

0.0296
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