

FOTORREDUÇÃO CATALÍTICA DE CO₂: DESENVOLVIMENTO DE FOTOCATALISADORES SELETIVOS PARA PRODUÇÃO DE ÁLCOOIS

Priscilla Nogueira Paulino

Tese de Doutorado apresentada ao Programa de Pós-graduação em Engenharia Química, COPPE, da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Doutor em Engenharia Química.

Orientadores: Vera Maria Martins Salim Neuman Solange de Resende

Rio de Janeiro Setembro de 2015

FOTORREDUÇÃO CATALÍTICA DE CO₂: DESENVOLVIMENTO DE FOTOCATALISADORES SELETIVOS PARA PRODUÇÃO DE ÁLCOOIS

Priscilla Nogueira Paulino

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR EM CIÊNCIAS EM ENGENHARIA QUÍMICA.

Examinada por:

Profa. Vera Maria Martins Salim, D.Sc.

Dra. Neuman Solange de Resende., D.Sc.

Profa. Deborah Vargas César, D.Sc.

Prof. Márcio Nele de Souza, D.Sc.

Dr. Marco André Fraga, D.Sc.

RIO DE JANEIRO, RJ - BRASIL SETEMBRO DE 2015 Paulino, Priscilla Nogueira

Fotorredução catalítica de CO₂: Desenvolvimento de fotocatalisadores seletivos para produção de álcoois/ Priscilla Nogueira Paulino – Rio de Janeiro: UFRJ/COPPE, 2015.

XVIII, 213 p.: il.; 29,7 cm.

Orientadores: Vera Maria Martins Salim

Neuman Solange de Resende

Tese (doutorado) – UFRJ/ COPPE/ Programa de Engenharia Química, 2015.

Referências Bibliográficas: p. 153-171.

Fotorredução catalítica de CO₂.
 Fotocatalisadores. I. Salim, Vera Maria Martins *et al.*. II.
 Universidade Federal do Rio de Janeiro, COPPE,
 Programa de Engenharia Química. III. Título.

No meio da confusão, encontre a simplicidade. A partir da discórdia, encontre a harmonia. No meio da dificuldade reside a oportunidade.

Alberth Einstein

AGRADECIMENTOS

Agradeço à minha família, em especial aos meus pais, Maurício e Márcia, por sempre acreditarem em mim e não medirem esforços para me auxiliar ao longo da minha jornada de estudos. Obrigada por serem meu exemplo de vida e meu alicerce.

Ao Gaspar, por sempre estar presente nos últimos doze anos. Obrigada pela ajuda e compreensão nos momentos cruciais deste trabalho. E acima de tudo, obrigada pelo seu amor, pois dele nasceram as maiores preciosidades que possuo: Sofia e Davi.

Às minhas orientadoras, Vera e Neuman, pela orientação, conhecimentos transmitidos, apoio ao crescimento profissional e acima de tudo, pela amizade.

Ao Núcleo de Catálise por todo suporte para a realização desta tese. Ao Carlos André pela imensurável ajuda nos refinamentos de Rietiveld e análises de XPS. Grandes amizades se firmaram nestes longos 7 anos de trabalho no PEQ e gostaria muito de agradecer à Dora, pela amizade, companheirismo e por ser uma excelente "amostradora". Macarrão e Ayr, obrigada pelo conhecimento transmitido.

Ao Laboratório de Fenômenos Interfaciais (GRIFIT) pelo apoio concedido. À Amanda Gerhardt, que de colega de trabalho se tornou uma amiga/comadre. Obrigada pela amizade e maravilhosa convivência.

Ao Laboratório de Reatores, Cinética e Catálise (RECAT) da Universidade Federal Fluminense (UFF) pelo uso do equipamento para as análises de XPS.

Aos meus amigos Luciana, Leon e Rodrigo (Biscoito), que juntos enfrentamos a dura jornada dos cursos de Mestrado e Doutorado no Programa de Engenharia Química da COPPE. Obrigada pelos conselhos, críticas, companheirismo nos momentos de alegria e de tristeza.

Aos professores e funcionários do Programa de Engenharia Química da COPPE.

Ao CNPQ pelo apoio financeiro.

Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários para a obtenção do grau de Doutor em Ciências (D.Sc.)

FOTORREDUÇÃO CATALÍTICA DE CO₂: DESENVOLVIMENTO DE FOTOCATALISADORES SELETIVOS PARA PRODUÇÃO DE ÁLCOOIS

Priscilla Nogueira Paulino

Setembro/2015

Orientadores: Vera Maria Martins Salim Neuman Solange de Resende

Programa: Engenharia Química

A necessidade de desenvolvimento de processos químicos que utilizem CO₂ como matéria-prima tem se tornado imprescindível para se obter uma indústria mais sustentável. Com isso, este trabalho visou o desenvolvimento de fotocatalisadores seletivos a álcoois para serem empregados na fotorredução catalítica de CO₂ com água. As motivações para se estudar esse tipo de reação são muitas, desde o reaproveitamento de CO2 até a utilização da luz solar como fonte de irradiação, tornando o processo economicamente viável. Para isso, foram preparadas duas séries de fotocatalisadores à base de TiO2, em que foram utilizados dois promotores, óxido de cobre e ferro. Estes fotocatalisadores possibilitaram estudar como a dispersão e teor de Fe influenciaram na fotoatividade e seletividade dos produtos. Todos os fotocatalisadores possuem de 50 a 87 m²/g_{cat} de superfície específica e energias de bandgap que variaram entre 1,4 a 3,1 eV. Os resultados de XPS indicam a coexistência de CuO e Cu₂O em alguns fotocatalisadores e verificou-se que o teor de Cu²⁺ está diretamente ligado a cristalinidade do material base. Nos testes de desempenho, foram obtidos diversos produtos como CH₄, CO, CH₃OH e C₃H₆O. A formação de C₃H₆O indicou uma tendência do sistema em gerar produtos de cadeias carbônicas maiores. O fotocatalisador que apresentou o melhor desempenho para a formação de CH₃OH foi o Cu/Fe₁₀Ti₉₀, indicando que o promotor Fe na estrutura auxiliou no transporte de elétrons de tal forma que aumentou sua fotoatividade. A rota do glioxal se apresenta como uma rota viável devido aos intermediários obtidos e o CO é um subproduto da reação.

Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the requirements for the degree of Doctor of Science (D.Sc.)

PHOTOCATALYTIC REDUCTION OF CO₂: DEVELOPMENT OF SELECTIVE PHOTOCATALYSTS FOR ALCOHOL PRODUCTION

Priscilla Nogueira Paulino

September/2015

Advisors: Vera Maria Martins Salim Neuman Solange de Resende

Department: Chemical Engineering

The necessity of development of chemical processes using CO_2 as a feedstock has become essential to achieve a more sustainable industry. Therefore, this work aimed at the development of selective photocatalysts the alcohols to be used in catalytic photoreduction of CO₂ with water. The motivations for studying this type of reaction are many, from the reuse of CO_2 to the use of sunlight as a source of radiation, making the process economically viable. For this, two series of photocatalysts were prepared based on TiO₂, in which two promoters were used, iron and copper oxide. These photocatalysts made it possible to study how the dispersion and content of Fe influenced the photoactivity and selectivity of products. All photocatalysts have 50 - 87 m²/q_{cat} of specific surface area and the bandgap ranged from 1.4 to 3.1 eV. The XPS results indicate the coexistence of CuO and Cu₂O in some photocatalysts and verified that the Cu²⁺ content is directly related to crystallinity of the material. In performance tests, we were obtained various products such as CH₄, CO, CH₃OH and C₃H₆O. The formation of C₃H₆O indicated a tendency to produce C₂ and C₃ products. The photocatalyst that showed the best performance for the formation of CH₃OH was the Cu/Fe₁₀Ti₉₀, indicating that the Fe promoter in the structure assisted in the transport of electrons in such a way that increases their photoactivity. The route of glyoxal itself as a viable route due to the obtained intermediate and CO is a by-product of the reaction.

ÍNDICE

1.	INTRODUÇÃO	1
2.	REVISÃO BIBLIOGRÁFICA	3
	2.1. Fotocatálise	3
	2.1.1. Histórico	3
	2.1.2. Fundamentos	5
	2.1.3. Aplicações	9
	2.2. Dióxido de Carbono	12
	2.3. Fotorredução Catalítica de CO ₂	19
	2.3.1. Histórico	19
	2.3.2. Fotocatalisadores	22
	2.3.2.1. Semicondutores mais empregados	26
	2.3.2.2. Promotores	32
	2.3.3. Sistemas Reacionais	42
	2.3.4. Mecanismos Propostos	53
	2.4. Considerações Finais	57
3.	METODOLOGIA	59
	3.1. Preparação dos fotocatalisadores	59
	3.1.1. Preparação do TiO ₂ pela hidrólise lenta do isopropóxido de	
	titânio	59
	3.1.2. Preparação do fotocatalisador Cu/Ti-HL	60
	3.1.3. Preparação dos fotocatalisadores co-precipitados	61
	3.1.4. Preparação dos óxidos mistos à base de óxidos de titânio e	
	ferro	61
	3.1.5. Preparação dos fotocatalisadores Cu/Fe _x Ti _{1-x}	63
	3.2. Caracterizações Físico-químicas dos fotocatalisadores	63
	3.2.1. Análises Termogravimétricas	63
	3.2.2. Caracterização Textural	64
	3.2.3. Espectroscopia de Fluorescência de Raios X (XRF)	64
	3.2.4. Difração de Raios X (XRD)	65
	3.2.5. Microscopia Eletrônica de Varredura com detectores de Energia	
	Dispersiva de Raios X (FEG-EDS)	66
	3.2.6. Espectroscopia de Reflectância Difusa no UV-vis (DRS)	67
	3.2.7. Espectroscopia Fotoeletrônica de Raios X (XPS)	68
	3.3. Avaliação dos fotocatalisadores na fotorredução catalítica de CO2 com	
	água	69

4. CARACTERIZAÇÃO FÍSICO-QUÍMICAS	72
4.1. Determinação das condições de tratamento dos materiais Ti-MP e Fe _x Ti _{1-x}	72
4.2. Caracterização Textural	77
4.3. Espectroscopia de Fluorescência de Raios X	80
4.4. Difração de Raios X	82
4.5. Microscopia Eletrônica de Varredura com detectores de Energia	
Dispersiva de Raios X (FEG-EDS)	91
4.6. Espectroscopia de Reflectância Difusa no UV-vis (DRS)	99
4.7. Espectroscopia Fotoeletrônica de Raios X (XPS)	105
4.8.Considerações Finais sobre as Caracterizações Físico-química dos	
fotocatalisadores	114
5. TESTES DE DESEMPENHO	114
5.1. Efeito do óxido de cobre no desempenho dos fotocatalisadores Ti-HL e	
Ti-MP	119
5.2. Efeito do óxido de cobre nos fotocatalisadores com Fe na estrutura do	
TiO ₂ , Fe _x Ti _{1-x}	123
5.3. Efeito do teor de Fe_2O_3 no fotocatalisador Cu/Ti-HL (CuFe _x /Ti-HL)	129
5.4. Efeito do teor de Fe nos fotocatalisadores Fe _x Ti _{1-x}	132
5.5. Efeito da posição – estrutura ou superfície – do Fe no desempenho dos	
fotocatalisadores (CuFe _x /Ti-HL e Cu/Fe _x Ti _{1-x})	136
5.6. Rendimento Quântico e Proposta de Rota Reacional	142
5.7. Considerações em relação aos Testes de Desempenho	146
6. CONCLUSÕES	148
6.1. Conclusões	148
6.2. Propostas para Trabalhos Futuros	151
REFERÊNCIAS BIBLIOGRÁFICAS	153
APÊNDICE A – Determinação da temperatura de calcinação do Ti-HL	172
APÊNDICE B – Caracterização Textural	174
APÊNDICE C – Difração de Raios X	177
APÊNDICE D – Microscopia Eletrônica de Varredura	185
APÊNDICE E – Espectroscopia de Reflectância Difusa no UV-vis	198
APÊNDICE F – Espectroscopia Fotoeletrônica de Raios X	200
APÊNDICE G – Informações dos Testes de Desempenho	209
APÊNDICE H – Resultados dos Testes de Desempenho	212

LISTA DE FIGURAS

Figura 2.1 – Representação das bandas de condução e valência nos materiais	7
Figura 2.2 – Fotoativação de um material semicondutor	8
Figura 2.3 - Diagrama de níveis de energia mostrando a energia de bandgap de	
alguns semicondutores, em pH = 0. As escalas de energia estão em	
relação ao vácuo e ao eletrodo normal de hidrogênio (ENH). (Fonte:	
CHOI, 2006)	8
Figura 2.4 - Banda de condução e as potencialidades da banda de valência de	
fotocatalisadores semicondutores relativos a níveis de energia dos	
pares redox em água. Fonte: ROY <i>et al.</i> , 2010	9
Figura 2.5 – Maçaneta autoesterilizante. Fonte: http://foconafocka.blogspot.com.	
br/2010/12/uma-macaneta-auto-esterilizante.html	10
Figura 2.6 - Mini Purificador de ar para interior (CNLIGHT) que emprega lâmpada	
UVC e TiO ₂	10
Figura 2.7 – Estação Vila Prudente do metrô, São Paulo. Fonte: http://www.	
arcoweb.com.br/arquitetura/luiz-esteves-arquitetura-estacao-vila-	
prudente16-09-2011.html	11
Figura 2.8 – Sistema empregado por ZHU e ZÄCH (2009) para a quebra da água	11
Figura 2.9 – Sistema Milli-Q fornecido pela MILLIPORE CORPORATION. Purificação	
de água com lâmpada UV para extermínio de bactérias	12
Figura 2.10 – Esquema representativo da fotorredução catalítica de CO ₂ com água	12
Figura 2.11 – Utilização de CO2 em sínteses químicas (ARESTA, 1998)	14
Figura 2.12 – Concentração de CO ₂ atmosférico ao longo dos anos. Fonte: http:	
//www.esrl.noaa.gov/gmd/ccgg/trends	15
Figura 2.13 – Ciclos de produção de combustível sintético a partir de CO ₂ reciclado	16
Figura 2.14 – Esquema das possíveis vias de utilização de água e CO ₂ para geração	
de combustíveis hidrocarbonetos	17
Figura 2.15 – Representação esquemática do sequestro de CO2. Adaptado de http://	
cienciahoje.uol.com.br/colunas/do-laboratorio-para-a-fabrica/a-	
poluicao-oculta-do-hidrogenio. Fonte: BAIRD (2002)	18
Figura 2.16 – Esquema do ciclo neutro de dióxido de carbono com metanol renovável	
e produção de combustível. Fonte: TAHIR e AMIN, 2013	19
Figura 2.17 - Número de publicações no site "Web of Science" com o tópico	
"Photocatalytic reduction CO ₂ "	21

Figura 2.18 – Fotocatalisadores mais estudados na fotorredução catalítica de CC) ₂
empregando irradiação UV e luz visível. Fonte: TAHIR e AMIN, 2013	22
Figura 2.19 - Espectro solar. Fonte: http://satelite.cptec.inpe.br/uv/img/espectro	_
percentual.jpg	. 23
Figura 2.20 – Fotorredução catalítica de CO2 ao longo do tempo de irradiação par	а
TiO ₂ não dopado e dopado sob irradiação de luz visível. Fonte: LI e	et
al. (2012)	25
Figura 2.21 - Espectros de DRS UVvis de fotocatalisadores à base de TiC) ₂
implantado com íons (a) V, (b) Cr, (c) Fe e (d) Ni (MATSUOKA <i>et al</i>	.,
2007)	26
Figura 2.22 - Estruturas cristalinas das fases (a) anatásio, (b) rutilo e (c) bruquita	à.
Adaptado de FUJISHIMA <i>et al.</i> , 2008	27
Figura 2.23 – Aplicações do TiO ₂ como fotocatalisador. Fonte: NAKATA	е
FUJISHIMA, 2012	28
Figura 2.24 – Escala de tempo na fotocatálise. Fonte: FUJISHIMA et al., 2008	33
Figura 2.25 – Posições das bandas de valência e condução de CuO, Cu ₂ O e TiO	2,
meio com pH=7; Fonte: ROY <i>et al</i> ., 2010	35
Figura 2.26 - Efeito da percentagem de espécies de cobre sobre a produção d	е
metanol em 6h de irradiação, a 60 °C. Fonte: SLAMET <i>et al</i> ., 2005	36
Figura 2.27 – Formação de metano para o Ti O_2 puro e promovido por diversos teore	S
de Ag, Au e Pt. Fonte: LI <i>et al</i> ., 2012	38
Figura 2.28 – Formação de metanol para os fotocatalisadores TiO ₂ (P-25), Mn/TiO	2,
Cu/TiO ₂ , Mn _{0,22} -Cu _{0,78} /TiO ₂ , Mn _{0,51} -Cu _{0,49} /TiO ₂ , Mn _{0,76} -Cu _{0,24} /TiO ₂	39
Figura 2.29 - Esquema da bandgap e transferência de elétrons no Cu-Fe/TiO2 er	n
pH = 5. Fonte: NGUYEN e WU, 2008	41
Figura 2.30 – Desenho esquemático da instalação experimental para a fotorreduçã	0
de CO ₂ sob a luz solar concentrada utilizada por GUAN <i>et al.</i> (2003)	49
Figura 2.31 – Esquema do fotorreator utilizado por SASIREKHA et al. (2006)	49
Figura 2.32 – Esquema do fotorreator empregado por TAN et al. (2006)	50
Figura 2.33 – Esquema do fotorreator utilizado por WU em 2005 e 2009	. 50
Figura 2.34 – Esquema do reator monolítico e fibras de iluminação e, fotografia d	0
fotorreator iluminado internamente	51
Figura 2.35 – Sistemas reacionais em fase líquida, empregados por (a) TSENG e	€t
<i>al</i> ., 2002 e (b) KOČÍ <i>et al</i> ., 2009	51
Figura 2.36 – Mecanismos para a fotorredução catalítica de CO ₂ via: (a) CH ₂ O, (b))
CO e (c) glioxal	54

Figura 3.1 – Preparação do TiO2 em atmosfera inerte pelo método de hidrólise lenta	
do isopropóxido de titânio	60
Figura 3.2 – Método de Pechini aplicado à síntese dos óxidos Ti-MP e Fe _x Ti _{1-x}	62
Figura 3.3 – Condição de "reflexão" de Bragg	65
Figura 3.4 – Esquema da unidade de fotorredução catalítica de CO2	69
Figura 3.5 – Esquema e foto do reator fotocatalítico	69
Figura 4.1 – Perfis de TGA e TDG (a)-(d), e DSC (e)-(h) para Ti-MP e Fe _x Ti _{1-x}	73
Figura 4.2 – Tratamento térmicos dos precursores Ti-MP e Fe _x Ti _{1-x}	75
Figura 4.3 – Difratogramas dos fotocatalisadores Ti-MP calcinados em mufla e sob	
fluxo de ar	76
Figura 4.4 - Isotermas de adsorção e distribuição de tamanho de poros dos	
fotocatalisadores Ti-HL e Cu/Ti-HL	78
Figura 4.5 - Isotermas de adsorção e distribuição de tamanho de poros dos	
fotocatalisadores Fe_5Ti_{95} e Cu/Fe $_5Ti_{95}$	80
Figura 4.6 – Coloração dos fotocatalisadores preparados	81
Figura 4.7 – Difratogramas dos TiO ₂ preparados, Ti-HL e Ti-MP, com a identificação	
das fases	82
Figura 4.8 – Difratograma do fotocatalisador Cu/Ti-HL em comparação com Ti-HL	83
Figura 4.9 – Difratograma dos fotocatalisadores CuFe _x /Ti-HL	84
Figura 4.10 – Difratogramas dos fotocatalisadores Fe _x Ti _{1-x}	85
Figura 4.11 - Comparação dos difratogramas dos fotocatalisadores (a) Ti-MP e	
Cu/Ti-MP e (b) Fe_5Ti_{95} e Cu/Fe $_5Ti_{95}$	87
Figura 4.12 - Comparação dos difratogramas dos fotocatalisadores (a) Fe10Ti90 e	
$Cu/Fe_{10}Ti_{90} e$ (b) $Fe_{20}Ti_{80} e Cu/Fe_{20}Ti_{80}$	87
Figura 4.13 - Resultados do refinamento de Rietvield para os fotocatalisadores	
CuFe ₅ /Ti-HL e Cu/Fe ₅ Ti ₉₅	88
Figura 4.14 – Micrografias dos fotocatalisadores (a, b) Ti-HL e (c, d) Cu/Ti-HL	92
Figura 4.15 – Micrografias dos fotocatalisadores (a, b) CuFe ₅ /Ti-HL, (c, d) CuFe ₁₀ /Ti-	
HL e (e, f) CuFe ₂₀ /Ti-HL	93
Figura 4.16 - Micrografias de microscopia eletrônica de varredura dos	
fotocatalisadores preparados pelo método de Pechini	94
Figura 4.17 – Micrografias de microscopia eletrônica de varredura do Cu/Ti-MP	95
Figura 4.18 – Micrografias dos fotocatalisadores (a, b) Cu/Fe ₅ Ti ₉₅ , (c, d) Cu/Fe ₁₀ Ti ₉₀	
e (e, f) Cu/Fe ₂₀ Ti ₈₀	96
Figura 4.19 – Análises de FEG-EDS do fotocatalisador Cu/Ti-HL	97
Figura 4.20 – Análises de FEG com EDS dos fotocatalisadores CuFe ₅ /Ti-HL	97

Figura 4.21 – Análises de FEG com EDS dos fotocatalisadores CuFe10/Ti-HL	98
Figura 4.22 – Análises de FEG com EDS dos fotocatalisadores CuFe ₂₀ /Ti-HL	98
Figura 4.23 – Espectros de DRS UV-vis para Ti-HL e Cu/Ti HL	100
Figura 4.24 – Espectros de DRS UV-vis para Ti-HL, Cu/Ti-HL e CuFe _x /Ti-HL	101
Figura 4.25 – Espectros de DRS UV-vis para os fotocatalisadores preparados pelo	
método de Pechini	102
Figura 4.26 – Espectros de DRS UV-vis para os fotocatalisadores preparados pelo	
método de Pechini com e sem o promotor óxido de cobre	103
Figura 4.27 – Manipulação matemática para o cálculo das energias de bandgap dos	
fotocatalisadores Ti-HL e Cu/Ti-HL	103
Figura 4.28 – Espectro de XPS na região do Ti 2p para o fotocatalisador Cu/Ti-MP	106
Figura 4.29 – Espectro de XPS na região do Cu 2p para o fotocatalisador (a) Cu/Ti-	
MP e (b) CuFe ₂₀ /Ti-HL	107
Figura 4.30 – Espectro de XPS na região do Fe 2p para o fotocatalisador CuFe ₂₀ /Ti-	
HL	109
Figura 4.31 – Espectro de XPS na região do Fe 2p para o fotocatalisador $Fe_{20}Ti_{80}$	110
Figura 4.32 – Espectro de XPS na região do O 1s para o fotocatalisador CuFe ₂₀ /Ti-	
HL	110
Figura 4.33 - Esquema representativo das posições dos promotores nos	
fotocatalisadores CuFe _x /Ti-HL e Cu/Fe _x Ti _{1-x}	112
Figura 5.1 – Formação de CH ₂ O para os fotocatalisadores CuFe ₁₀ /Ti-HL e Cu/Fe ₁₀ Ti ₉₀	
em 24 horas de reação	115
Figura 5.2 - Formação de CH4 para todos os fotocatalisadores em 24 horas de	
reação	115
Figura 5.3 – Formação de CO para todos os fotocatalisadores em 24 horas de reação	117
Figura 5.4 – Formação de CH ₃ OH para os fotocatalisadores preparados em 24 horas	
de reação	117
Figura 5.5 – Formação de C ₃ H ₆ O para todos os fotocatalisadores em 24 horas de	
reação	118
Figura 5.6 – Taxa de formação do CH_4 para Ti-HL e Ti-MP com e sem óxido de cobre.	120
Figura 5.7 – Taxa de formação de CO para Ti-HL e Ti-MP com e sem óxido de cobre	120
Figura 5.8 – Taxa de formação de CH ₃ OH para os fotocatalisadores Ti-HL, Ti-MP,	
Cu/Ti-HL e Cu/Ti-MP	121
Figura 5.9 – Formação de C ₃ H ₆ O para todos os fotocatalisadores em 24 horas de	
reação	122

Figura 5.10 – Comparação para a formação de CH_4 entre os fotocatalisadores Fe_xTi_{1-}	
x com e sem promotor óxido de cobre	124
Figura 5.11 – Comparação para a formação de CO entre os fotocatalisadores Fe _x Ti ₁₋	
_x com e sem promotor óxido de cobre	125
Figura 5.12 – Comparação para a formação de CH ₃ OH entre os fotocatalisadores	
Fe _x Ti _{1-x} com e sem promotor óxido de cobre	126
Figura 5.13 – Comparação para a formação de C ₃ H ₆ O entre os fotocatalisadores	
Fe _x Ti _{1-x} com e sem promotor óxido de cobre	127
Figura 5.14 – Configuração do orbital 3d do Fe ³⁺	128
Figura 5.15 – Configuração do orbital 3d dos Cu ²⁺ e Cu ¹⁺	128
Figura 5.16 – Taxas de formação de CH4 ao longo da reação para os	
fotocatalisadores Cu/Ti-HL e CuFe _x /Ti-HL	129
Figura 5.17 – Taxa de formação de CO ao longo da reação para os fotocatalisadores	
Cu/Ti-HL e CuFe _x /Ti-HL	130
Figura 5.18 – Taxa de formação de CH₃OH ao longo da reação para os	
fotocatalisadores Cu/Ti-HL e CuFe _x /Ti-HL	131
Figura 5.19 – Taxa de formação de C_3H_6O ao longo da reação para os	
fotocatalisadores Cu/Ti-HL e CuFe _x /Ti-HL	132
Figura 5.20 – Taxa de formação de CH4 ao longo da reação para os fotocatalisadores	
Ti-MP e Fe _x Ti _{1-x}	133
Figura 5.21 – Taxa de formação de CO ao longo da reação para os fotocatalisadores	
Ti-MP e Fe _x Ti _{1-x}	134
Figura 5.22 – Taxa de formação de CH₃OH ao longo da reação para os	
fotocatalisadores Ti-MP e Fe _x Ti _{1-x}	134
Figura 5.23 – Taxa de formação de C_3H_6O ao longo da reação para os	
fotocatalisadores Ti-MP e Fe _x Ti _{1-x}	135
Figura 5.24 – Perfis de taxa de formação do CH4 para os fotocatalisadores CuFe _x /Ti-	
HL e Cu/Fe _x Ti _{1-x}	137
Figura 5.25 – Curvas de taxa de formação do CO para os fotocatalisadores CuFe _x /Ti-	
HL e Cu/Fe _x Ti _{1-x}	139
Figura 5.26 – Taxas de formação do CH ₃ OH para os fotocatalisadores CuFe _x /Ti-HL	
e Cu/Fe _x Ti _{1-x}	140
Figura 5.27 – Perfis das taxas de formação do C ₃ H ₆ O para os fotocatalisadores	
CuFe _x /Ti-HL e Cu/Fe _x Ti _{1-x}	141
Figura 5.28 - Proposta de rota reacional baseada no mecanismo do glioxal de	
SKROOG <i>et al.</i> (2012)	145

Figura	5.29 -	- Rotas	de	formação	do	CO	propostas	por	ZHAO	et	al.	(2009)	е	
		PIPOF	RNP	ONG et al.	(20	11)								146

LISTA DE TABELAS

Tabela 2.1 – Histórico da fotocatálise e seu desenvolvimento ao longo dos anos	4
Tabela 2.2 – Propriedades físicas e químicas do CO2. Fonte: SONG, 2006	13
Tabela 2.3 – Fontes de emissão de dióxido de carbono	15
Tabela 2.4 – Histórico do desenvolvimento da fotorredução catalítica de CO2	20
Tabela 2.5 – Energias de bandgap das amostras de TiO2 mesoporoso não dopado	
e dopado com nitrogênio. Fonte: LI <i>et al</i> . (2012)	24
Tabela 2.6 – Estudos da fotorredução catalítica de CO ₂ na presença de TiO ₂ puro.	
Adaptado de LIU <i>et al</i> ., 2012	28
Tabela 2.7 – Semicondutores alternativos ao TiO ₂ empregados na fotorredução de	
CO ₂ . Adaptada de HABISREUTINGER et al., 2013	31
Tabela 2.8 – Fotocatalisadores à base de TiO2 empregados na fotorredução	
catalítica de CO ₂ . Fonte: LIU <i>et al.</i> , 2012	33
Tabela 2.9 – Formação de etileno a partir do fotocatalisador Cu(0,5%m/m)-Fe(0,5	
%m/m)/TiO₂ após 4 horas de irradiação UVA e UVC	40
Tabela 2.10 – Resumo dos fotorreatores e suas vantagens e limitações. Adaptado	
de TAHIR e AMIN, 2013	44
Tabela 2.11 – Exemplos dos sistemas reacionais mais empregados para estudo da	
fotorredução de CO ₂	48
Tabela 2.12 – Condições reacionais empregadas para estudo da fotorredução de	
CO ₂	52
Tabela 2.13 – Potencial termodinâmico para diversas reações, em pH = 7	57
Tabela3.1–Reagentesqueforamempregadosnapreparaçãodos	
fotocatalisadores	59
Tabela 3.2 – Parâmetros de varredura para as análises de XPS	69
Tabela 4.1 – Perda de massa para cada faixa de temperatura observada no dTG	74
Tabela 4.2 – Quantificação das fases e tamanho de cristalito (calculado pela equação	
de Scherrer) das amostras de Ti MP tratadas em calcinador e	
mufla	77
Tabela 4.3 – Caracterização textural dos fotocatalisadores à base de Ti-HL	77
Tabela 4.4 – Caracterização textural dos materiais Ti-MP e Fe _x Ti _{1-x} , e estes após	
impregnação do óxido de cobre	79
Tabela 4.5 – Teores reais dos óxidos presentes em cada fotocatalisador	81
Tabela 4.6 – Teores estimados, tamanho de cristalito e parâmetros de rede das fases	
dos fotocatalisadores obtidos a partir do refinamento de Rietvield	89

Tabela 4.7 - Análise quantitativa das áreas estudadas por FEG-EDS dos			
fotocatalisadores Cu/Ti-HL e CuFe _x /Ti-HL	99		
Tabela 4.8 – Energias de bandgap dos fotocatalisadores	104		
Tabela 4.9 - Energias de ligação das espécies estudadas nos fotocatalisadores à			
base de Ti-HL	105		
Tabela 4.10 - Energias de ligação das espécies estudadas nos fotocatalisadores			
preparados pelo método de Pechini com e sem óxido de cobre	106		
Tabela 4.11 – Teores das espécies Cu ¹⁺ e Cu ²⁺ nos fotocatalisadores	108		
Tabela 4.12 – Comparação dos teores mássicos e superficiais de cada espécie	111		
Tabela 5.1 – Rendimento quântico dos produtos CH ₄ , CO, CH ₃ OH e C ₃ H ₆ O após 24			
horas de irradiação	143		

LISTA DE SÍMBOLOS E NOMECLATURA

- Ti-HL TiO₂ preparado pelo método de hidrólise lenta de isopropóxido de titânio
- Cu/Ti-HL Ti-HL impregnado com óxido de cobre
- CuFe_x/Ti-HL Fotocatalisadores preparados pelo método de co-precipitação deposição utilizando o Ti-HL como fotocatalisador base
- **Ti-MP –** TiO₂ preparado pelo método de Pechini
- Cu/Ti-MP Ti-MP impregnado com óxido de cobre
- Fe_xTi_{1-x} Fotocatalisadores preparados pelo método de Pechini
- Cu/Fe_xTi_{1-x} Fotocatalisadores preparados pelo método de Pechini e impregnados

com óxido de cobre

- E Energia de bandgap (eV)
- d Tamanho de cristalito (nm)
- θ Ângulo de difração (°)
- λ Comprimento de onda (nm)
- Φ Rendimento quântico
- MFAF Mols de fótons absorvidos pelo fotocatalisador
- CO2 Dióxido de carbono, Gás carbônico
- CO Monóxido de carbono
- CH₄ Metano
- CH₃OH Metanol
- C₃H₆O Propanona, Acetona
- CH2O Metanal, Formaldeído
- C₂H₄O Etanal, Acetaldeído
- CH₂O₂ Ácido Metanóico, Ácido Fórmico
- C₂H₄O₂ Ácido Etanóico, Áciddo Acético

CAPÍTULO 1

– Introdução –

As questões ambientais vêm despontando grande preocupação da população mundial. A poluição atmosférica tem como grandes vilões a queima de combustíveis fósseis, que liberam CO₂, CO, NO_x e outros compostos nocivos à saúde e ao meio ambiente. Com isso, a procura de alternativas para amenizar todo esse cenário tem sido incessante e desafiadora. O desenvolvimento de processos químicos que utilizam subprodutos da indústria surge como uma rota viável para a diminuição dos resíduos, além disso, permitirá uma economia dos recursos naturais. Para que seja interessante comercialmente, estes novos processos devem ser seletivos e de alto rendimento.

O CO₂ é um dos compostos mais gerados na indústria química. A combustão completa de qualquer substância orgânica produz CO₂. Entretanto, até recentemente, este gás era considerado inofensivo. Ele desempenha um papel importante no ciclo do carbono da Terra, é um gás incolor e inodoro, serve como fonte de carbono para a fotossíntese das plantas. Segundo KEELING e WHORF (2005), ele estava presente na atmosfera com uma concentração de 0,038% (%v/v) em Dezembro de 2004.

Um processo que foi desenvolvido há pouco mais de uma década e tem o intuito de transformar as emissões de CO₂ em matéria-prima é a fotossíntese artificial. Também conhecida como fotorredução catalítica de CO₂ com água, essa reação consiste na fotoavitação do fotocatalisador a partir de uma fonte de irradiação UV e tem como principais produtos CH₄, CH₃OH, HCOOH, C₂H₆, O₂ e H₂. Em relação ao fotocatalisador, ele usualmente é um semicondutor. Os materiais mais estudados e empregados são o TiO₂, ZnO, ZrO₂, CdS e SiC, sendo que eles podem ser promovidos ou não por metais de transição, metais nobres ou lantanídeos. Por se tratar de uma reação catalítica e fotoquímica, ela consiste numa reação de um alto grau de complexidade e os caminhos reacionais ainda estão sendo investigados.

Atualmente, as velocidades de formação dos produtos da fotorredução catalítica de CO₂ em semicondutores raramente excedem dezenas de µmol.g⁻¹.h⁻¹. Isto significa que a eficiência do processo é geralmente mais baixa do que na fotossíntese natural, ou na geração de H₂ fotocatalítico. Houve, no entanto, uma onda de interesse no campo ao longo dos últimos anos, como demonstrado pelo rápido crescimento do número de publicações. Os recentes desenvolvimentos estão concentrados em novos materiais fotocatalíticos e sobre as novas estruturas em nanoescala, que oferecem uma grande área de superfície, melhoria da separação de carga e transferência de elétrons direcionais. Outros focos das pesquisas são os sistemas e mecanismos reacionais.

A falta de uma única medida de eficiência fotocatalítica que permite uma comparação inequívoca dos sistemas heterogêneos pode ser considerada como um sério impedimento para o avanço do tema. A definição desta medida é bastante importante para uma avaliação consistente da eficiência de qualquer sistema em relação aos outros e, assim, permitir a identificação dos que possuem o melhor desempenho e os caminhos para se aperfeiçoar os estudos.

Analisando todos os parâmetros, a redução catalítica de CO₂ ainda não possui viabilidade econômica para ser implementada para a obtenção de combustíveis. No entanto, o ritmo acelerado das pesquisas permite que se vislumbre grande avanços num futuro próximo. Neste cenário, fotocatalisadores com alto desempenho serão determinantes um aspecto importante para a adoção desta tecnologia. Assim, semicondutores como TiO₂ podem ser vantajosos em relação a alguns materiais novos principalmente em termos de custo.

Com este panorama, esta tese teve como objetivo geral a síntese de fotocatalisadores adequados para a produção de álcoois na reação de fotorredução catalítica de CO₂ com água. Para isso, este trabalho visou preparar duas séries de fotocatalisadores à base de TiO₂ promovidos com óxidos de cobre e ferro, em que estes estariam em localizações diferentes do fotocatalisador. Para isso, usou-se diferentes metodologias de preparação visando obter duas séries de fotocatalisadores: uma série em que os promotores estão na superfície do TiO₂; e na segunda, o ferro está disperso na estrutura do TiO₂ enquanto o óxido de cobre se encontra na superfície. Esse conjunto diferenciado de fotocatalisadores possibilita a avaliação do efeito da dispersão na fotoatividade. As propriedades físico-químicas dos fotocatalisadores foram avaliadas por técnicas de caracterização adequadas e este materiais foram testados na fotorredução catalítica de CO₂ com água.

CAPÍTULO 2

– Revisão Bibliográfica –

2.1. Fotocatálise

2.1.1. Histórico

Os indícios da observação de fenônemos que envolvessem reações fotocatalíticas são datados de aproximadamente 1920. RENZ, pesquisador da Universidade de Lugano (Suíça), relatou em 1921, que o dióxido de titânio é reduzido parcialmente durante a iluminação com luz solar quando na presença de compostos orgânicos, transformando o dióxido de titânio da sua coloração branca original para uma cor escura, como cinza, azul ou mesmo preta. Nos anos seguintes, grande parte dos relatos nesta área envolvia o dióxido de titânio como o material de interesse. O óxido de zinco somente ganhou grande atenção nos anos de 1950, quando o desenvolvimento da fotocatálise foi deslocado para estudos com óxido de zinco devido a sua energia de bandgap ser igual a do dióxido de titânio.

No entanto, o primeiro grande feito da fotocatálise é atribuído a dois pesquisadores japoneses, FUJISHIMA e HONDA. Em 1972, eles obtiveram resultados muitos expressivos em seus experimentos de fotooxidação da água em eletrodos de TiO₂. A partir dessa época, a fotocatálise só adquiriu mais pesquisadores interessados em desvendar essa nova tecnologia e aplicá-la. Na Tabela 2.1 (adaptada de KITANO *et al.*, 2007b) é apresentado um histórico da fotocatálise.

Ano	Acontecimentos Científicos	Pesquisador (es)	Local
	TiO ₂ reduzido parcialmente devido		
	iluminação com luz solar, em		Universidade
1921	presença de compostos orgânicos.	RENZ	de Lugano
	Fenômenos semelhantes com		(Suíca)
	CeO ₂ e Nb ₂ O ₅		
	Deposição fotocatalítica de um sal		Instituto
	de prata sobre óxido de zinco para		Federal de
1924	produzir prata metálica. Suspeitas	BAUR e PERRET	Tecnologia
	de que redução e oxidação		Suíco
	ocorram simultaneamente		Odico
	Propuseram simultâneas oxidação		Instituto
1027	e redução para explicar a	BAUR e	Federal de
1521	produção de peróxido de	NEUWEILER	Tecnologia
	hidrogênio com ZnO		Suíco
	Relato de redução fotocatalítica de		Universidade
1932	AgNO₃ a Ag⁰ e AuCl a Au⁰ em	RENZ	de Lugano
	óxidos iluminados, TiO ₂ e Nb ₂ O ₅		(Suíca)
	Decomposição fotocatalítica de		
	tintas contendo titânia como	GOODEVE e KITCHENER	University
1938	pigmento em ar. Proposta de que		College
	TiO ₂ atua como catalisador para		(Londres)
	acelerar a oxidação fotoquímica		
	Elaboração de uma explicação		National
1949	para o fenômeno da escamação	JACOBSEN	Lead
1010	de pinturas em termos de um	0,10020211	Company
	mecanismo redox		(EUA)
			National
Década	Desenvolvimento da fotocatálise	JACOBSEN	Lead
de 50	foi deslocado para ZnO		Company
			(EUA)
	Primeiros estudos que mostram	MCLINTOCK e	Universidade
1965	que é possível oxidar compostos	RITCHIE	de Edinburah
	orgânicos a CO ₂ e H ₂ O		
1972	Fotólise da água com eletrodo de	FUJISHIMA e	Universidade
	TiO ₂	HONDA	de Tóquio
	Primeira proposta de utilizar TiO2		Universidade
1977	para purificação da água pela	FRANK e BARD	do Texas e
	fotodecomposição de poluentes		de Tóquio

 Tabela 2.1 – Histórico da fotocatálise e seu desenvolvimento ao longo dos anos.

Ano	Acontecimentos Científicos	Pesquisador (es)	Local
1995	Aplicações onde um número relativamente pequeno de fótons UV poderiam ser usados para realizar as reações na superfície de TiO ₂	LINSEBIGLER	Universidade de Tóquio
1997	Concepção do fotocatalisador Ti/zeólita altamente ativo para decomposição direta de NO a N ₂ e O ₂	ANPO e YAMASHITA	Universidade de Tóquio
1997	Redução fotocatalítica de CO ₂ com H ₂ O com película fina de fotocatalisador de sítio singular de óxido de Ti em zeólita	ANPO e YAMASHITA	Universidade de Tóquio
1998	TiO ₂ permitindo a absorção e funcionamento, sob irradiação de luz visível (mediante a aplicação de um metal pelo método de síntese de inserção de íons)	YAMASHITA	Universidade de Tóquio
2001	Dopagem de TiO2 com C, S, N	ASAHI	Lab.Toyota Central R&D
2005	Desenvolvimento de filmes finos de fotocatalisadores de TiO ₂ dopados com N mais eficazes e mais eficientes na sensibilização à luz visível	KITANO e ANPO	Universidade de Tóquio
2006	Aplicação em película fina de fotocatalisadores de TiO ₂ sensíveis a luz visível para a decomposição em grande escala de H ₂ O em H ₂ e O ₂	KITANO e ANPO	Universidade de Tóquio
2007	Evolução da quebra de H ₂ O em H ₂ e O ₂ usando filmes de TiO ₂ sensíveis a luz visível	MATSUOKA e ANPO	Universidade de Tóquio

Tabela 2.1 – Histórico da fotocatálise e seu desenvolvimento ao longo dos anos (cont).

2.1.2. Fundamentos

A fotocatálise é resultante de dois processos: a fotoquímica e a catálise.

A fotoquímica é um ramo da química que estuda as interações de átomos e moléculas com a luz, sendo ela regida por três leis:

- A primeira lei, conhecida como lei de Grotthuss-Draper, estabelece que a luz deve ser absorvida por uma substância química para se realizar uma reação fotoquímica;
- A segunda lei, conhecida como lei de Beer-Lambert, estabelece que há uma relação exponencial entre a fração de radiação absorvida por uma substância e a concentração da substância, e que esta fração de radiação absorvida é independente da intensidade da radiação incidente;
- A terceira lei, conhecida como lei de Stark-Einstein, estabelece que para cada fóton de luz absorvido por um sistema químico, somente uma molécula é ativada em uma reação fotoquímica. Isto é também conhecido como a lei de fotoequivalência e foi derivada por Albert Einstein no tempo em que a teoria quântica (dos fótons) de luz estava sendo desenvolvida.

A absorção de um fóton de luz pela molécula de reagente resulta em um estado cuja energia é maior do que a energia inicial, conhecido como estado excitado. A perda do excesso de energia absorvida pode ocorrer por emissão do estado excitado singlete (fluorescência), por emissão do estado excitado triplete (fosforescência), por um processo de relaxação não radiativo ou por uma reação química. A intensidade de uma transição eletrônica é regida pelo princípio de Franck-Condon (Fonte: http://pt.wikipedia.org/wiki/Fotoqu%C3%ADmica).

Catálise é o fenômeno em que uma quantidade relativamente pequena de um material estranho à estequiometria – o catalisador – aumenta a velocidade de uma reação química sem ser consumido no processo (IUPAC, 1976). O catalisador aumenta a velocidade de uma reação através da redução da energia de ativação, devido à mudança de mecanismo da reação que não seria realizada sem a presença deste material. Atualmente, 70% dos processos na Indústria Química e Petroquímica são processos catalíticos e dos novos processos introduzidos, 90% são catalíticos.

Assim, de um modo geral, fotocatálise é uma reação que usa a luz para ativar uma substância que modifica o mecanismo de uma reação química sem participar em si. E o fotocatalisador é a substância que pode alterar a taxa de reação química com a irradiação de luz. O processo fotocatalítico se fundamenta na geração de pares elétronlacuna (e^{-}/h^{+}), quando materiais semicondutores são iluminados com radiação de energia maior ou igual à da sua energia de bandgap. Este conjunto representa sítios reativos com capacidade pra reduzir ou oxidar substratos de interesse.

empregados Normalmente, os materiais como fotocatalisadores são semicondutores inorgânicos. A condutividade elétrica destes materiais é considerada intermediária em relação a materiais condutores e isolantes. O que determina a classificação dos materiais entre metal, semicondutor e isolante é a distância existente entre as bandas de valência e condução na estratura do material, como pode ser verificado na Figura 2.1. No caso dos semicondutores, essa distância, chamada de bandgap, é intermediária e os elétrons da camada de valência conseguem se destacar para a banda de condução com a inserção de energia no sistema. Em relação aos metais, não é necessáriaa inserção de energia no sistema para que o elétron vá para a banda de condução, em que ele consegue transitar livremente entre essas duas bandas. Quanto aos materiais isolantes, o elétron não consegue migrar da banda de valência para a banda de condução mesmo recebendo energia.

Quando um semicondutor é fotoativado com uma irradiação UV, gera-se o par elétron-lacuna na superfície do semicondutor, o e^{-} na banda de condução e a h^{+} na banda de valência. Eles são sítios oxidantes e redutores, de elevada reatividade, capazes de catalisar reações químicas, conforme representado na Figura 2.2.

É necessário salientar que a fotoativação do semicondutor ocorre quando o fotocatalisador é irradiado por um fóton de energia igual ou maior que a energia de bandgap. O material portador de cargas geradas ($e^- e h^+$) pode reagir com espécies doadoras ou aceptoras de elétrons adsorvidas na superfície do semicondutor ou presentes nas interfaces sólido-líquido ou sólido-gás, ou ainda se recombinar, dissipando a energia absorvida. Esta recombinação pode ocorrer tanto no interior da estrutura do fotocatalisador quanto na superfície, desativando-o através da liberação de energia térmica, prejudicando a atividade fotocatalítica e o rendimento quântico do material.

Figura 2.2 – Fotoativação de um material semicondutor.

Em conjunto com as propriedades dos fotocatalisadores é necessário analisar os diagramas de potencial energético em relação às reações de interesse. A Figura 2.3 mostra as energias de bandgap de alguns destes materiais e as posições das respectivas bandas de valência e condução para um meio com pH = 0.

Figura 2.3 – Diagrama de níveis de energia mostrando a energia de bandgap de alguns semicondutores, em pH = 0. As escalas de energia estão em relação ao vácuo e ao eletrodo normal de hidrogênio (ENH). Fonte: CHOI, 2006.

Cada reação fotocatalítica possui um potencial de energia, sendo que este potencial varia de acordo com o meio reacional. Na Figura 2.4 é apresentado um diagrama para diversas reação em pH = 5.

Figura 2.4 – Banda de condução e as potencialidades da banda de valência de fotocatalisadores semicondutores relativos a níveis de energia dos pares redox em água. Fonte: ROY et al., 2010.

Analisando este diagrama, verifica-se, por exemplo, que o SiC é um material que pode ser empregado em todas as reações (HCOOH/H₂CO₃, HCOH/H₂CO₃, H₂/H₂O, CH₃OH/H₂CO₃, CH₄/CO₂, O₂/H₂O), visto que as suas bandas de valência e condução englobam todos os potenciais energéticos das reações estudadas neste pH. No caso da reação CH₄/CO₂, um fotocatalisador indicado seria o ZnO. Caso seja utilizado o SnO₂ como fotocatalisador, a ausência CH₄ é justificada pela posição mais baixa da banda de condução do que o potencial redox CH₄/CO₂.

2.1.3. Aplicações

As aplicações que envolvem a fotocatálise como princípio vêm crescendo a cada dia e abrangem diversas áreas. Algumas dessas aplicações são descritas sucintamente abaixo, mas a área prioritária das aplicações é a ambiental, como a degradação de poluentes (orgânicos e metais pesados, entre outros).

 Efeito esterilizante: lâmpadas UV têm sido usadas para desinfetar espaços laboratoriais de biologia e médica. O óxido de titânio vem sendo considerado mais eficaz do que qualquer agente antibacteriano existente, pois ele age sobre superfícies cobertas de microorganismos e quando elas estão em propagação ativa. Um exemplo dessa aplicação é a maçaneta autoesterilizante que ainda está em fase de testes.

Figura 2.5 – Maçaneta autoesterilizante. Fonte: http://foconafocka.blogspot. com.br/2010/12/uma-macaneta-auto-esterilizante.html.

Purificador de ar: Impurezas no ar atmosférico como fumaça de cigarro, compostos orgânicos voláteis e poluentes, como NO_x, podem ser degradados por uma reação fotocatalítica. Esta possibilidade fez com que muitas empresas desenvolvessem purificadores de ar para interiores, como a *CNLIGHT*, que empregam o óxido de titânio e uma lâmpada UVC.

Figura 2.6 – Mini purificador de ar para interior (CNLIGHT) que emprega lâmpada UVC e TiO₂.

 Autolimpante: Muitas construções recentes veem empregando as superfícies autolimpantes com o intuito de se economizar com a manutenção de prédios residenciais e públicos. A poluição gerada pelos escapamentos dos automóveis, que são hidrocarbonetos, são oxidados pelo revestimento da parede (um fotocatalisador), proporcionando assim, a autolimpeza das superfícies. A sujeira residual é lavada com as águas das chuvas, mantendo o exterior da construção limpo em todos os momentos, como ocorre na estação de metrô Vila Prudente em São Paulo.

Figura 2.7 – Estação Vila Prudente do metrô, São Paulo. Fonte: http://www. arcoweb.com.br/arquitetura/luiz-esteves-arquitetura-estacao-vilaprudente16-09-2011.html.

 Fotoeletrólise da água: Considerada uma das primeiras tecnologias estudadas que se emprega a fotocatálise, a quebra da água para a geração de gás hidrogênio e oxigênio é bastante estudada até hoje. Os primeiros estudos na área foram realizados por FUJISHIMA e HONDA, 1972. Entre as pesquisas recentes nesta linha, pode-se citar o grupo de DOMEN e colaboradores no Japão.

Figura 2.8 – Sistema empregado por ZHU e ZÄCH (2009) para a quebra da água.

 Purificação de água: Como ocorre no ar atmosférico, o mesmo efeito purificador pode ser aplicado na água. O fotocatalisador juntamente com a iluminação UV pode oxidar poluentes orgânicos, materiais tóxicos e também desinfetar certas bactérias. Esta aplicação é muito empregada em laboratórios químicos que empregam água em seus exames e experimentos e necessitam de uma água com elevado teor de pureza. Algumas marcas de filtros de águas residenciais também disponibilizam seus produtos com esse tipo de tecnologia.

- Figura 2.9 Sistema Milli-Q fornecido pela *MILLIPORE CORPORATION*. Purificação de água com lâmpada UV para extermínio de bactérias.
- Fotossíntese artificial: Todas as aplicações citadas anteriormente se baseiam na oxidação de compostos químicos. Ao contrário deles, a fotossíntese artificial é realizada a partir da redução do CO₂ empregando uma irradiação como forma de energia. Também conhecida como fotorredução catalítica do CO₂, essa tecnologia tem como objetivo produzir compostos de interesse energético replicando o fenômeno da fotossíntese realizada pelas plantas.

Figura 2.10 – Esquema representativo da fotorredução catalítica de CO₂ com água.

2.2. Dióxido de Carbono

O CO₂ foi descoberto pelo físico e químico escocês Joseph Black, sendo representado pela fórmula química CO₂. A temperatura ambiente, o CO₂ se encontra na fase gasosa, é um composto inorgânico e pertence à categoria dos óxidos. Também conhecido como gás carbônico ou anidrido carbônico, ele é incolor, inodoro, apolar,

linear e solúvel em água. Suas propriedades físicas e químicas estão apresentadas na Tabela 2.2.

Propriedade	Valor	
Peso Molecular	44,01 g/mol	
Ponto de Sublimação a 1 atm (101,3 kPa)	-78,5°C	
Ponto Triplo a 5,1 atm (518 kPa)	-56,5°C	
Pressão do Ponto Triplo 5,185 bar		
Temperatura Crítica (T _c)	31,04°C	
Pressão Crítica (Pc)	72,85 atm (7383 kPa)	
	0,468 g/cm ³	
Densidade Crítica (pc)	468 g/L	
	468 kg/m ³	
Densidade Gás a 0°C e 1 atm (101,3 kPa)	1,976 g/L	
Densidade Líquido a 0°C e 1 atm (101,3 kPa)	928 g/L	
Densidade Líquido a 25°C e 1 atm (101,3 kPa)	0,712 vol/vol	
Densidade Sólido	1560 g/L	
Volume Específico a 1 atm e 21°C	0,546 m ³ /kg	
Calor de Formação a 25°C, Δ H° gás	-393,5 kJ/mol	
Entropia de Formação a 25°C, S° gás	213,6 J/K.mol	
Energia Livre Gibbs de Formação 25°C, Δ G° gás	-394,3 kJ/mol	
Calor Latente de Vaporização		
No Ponto Triplo (-78,5°C)	353,4 J/g	
A 0°C	231,3 J/g	
Viscosidade a 25°C e 1 atm (101,3 kPa)	0,015 cP (mPas)	
Solubilidade em água a		
0°C e 1 atm (101,3 kPa)	0,3346 g _{CO2} /100g	
	1,713 mL _{CO2} /mL	
25°C e 1 atm (101,3 kPa)	0,1449 g _{CO2} /100g	
	0,759 mL _{CO2} /mL	
Capacidade de Calor a pressão constante, 25°C	37,1 J/mol.°C	
Capacidade de Calor a volume constante, 25°C	28,1 J/mol.°C	
Condutividade Térmica	14,65 mW/(m.K)	
Viscosidade a 0°C	0,0001372 Poise	

Tabela 2.2 – Propriedades físicas e químicas do CO₂. Fonte: SONG, 2006.

O CO₂ é uma substância essencial para os seres vivos, pois ocorre na natureza e é fundamental em função da fotossíntese realizada pelas plantas. Além da fotossíntese, outros processos são fundamentais para o ciclo de carbono, como o processo de respiração celular, em que CO₂ é produzido a partir da reação de oxigênio com a glicose; e a degradação da matéria orgânica, realizada por microrganismos decompositores.

O CO₂ possui aplicações em diversos setores industriais, como na indústria alimentícia, fabricação de extintores de incêndios, tratamentos estéticos, desencalagem de couro, expansão de espumas de poliuretano, lavagem de polpa de celulose e aplicado em grande escala na recuperação residual de petróleo em poços não exauridos. Na indústria química, além da sua aplicação como fluido supercrítico, o CO₂ tem um grande potencial de uso como matéria-prima ou insumo em vários processos químicos catalíticos homogêneos/heterogêneos, como mostrado na Figura 2.11. Grande parte dos processos que envolvem o reaproveitamento do CO₂ está em estágio de pesquisa, desenvolvimento e inovação e poucos têm alcançado produção em larga escala.

O desenvolvimento mundial ocorrido principalmente a partir do século XX, resultou na produção de grandes quantidades de CO₂ em diversos setores, sendo as principais fontes apresentadas na Tabela 2.3. Devido a este enorme desenvolvimento, o CO₂ se tornou um dos principais poluentes da atmosfera e é apontado como o grande causador do fenômeno chamado Efeito Estufa.

Figura 2.11 – Utilização de CO₂ em sínteses químicas (ARESTA, 1998).

Fontes Estacionárias	Fontes Móveis	Fontes Naturais
Usinas de energia elétrica baseada em combustíveis fósseis	Automóveis e veículos esportivos	Seres humanos
Produtores independentes de energia	Caminhões e ônibus	Animais
Plantas de manufaturamento	Aeronaves	Morte de plantas e animais
Queimadas em campos	Veículos de construção	Vulcão
Instalações militares e governo	Veículos e dispositivos militares	Terremoto

Tabela 2.3 – Fontes de emissão de CO₂.

É interessante destacar que nos países desenvolvidos, as emissões mais expressivas de CO_2 são relacionadas com o consumo de combustíveis fósseis para a geração de eletricidade, de natureza industrial. Entretanto, nos países em desenvolvimento, os maiores responsáveis pelo impacto ambiental causado pela emissão de CO_2 são as queimadas, os lixões e o saneamento (ASSUNÇÃO *et al.*, 2010).

O Observatório Mauna Loa (Havaí) é referência mundial em estudos ligados ao meio ambiente. Um dos trabalhos realizados é o acompanhamento mensal da concentração de CO₂ na atmosfera feitos pelo grupo NOAA/ESRL. A análise dos dados mostra que a quantidade de CO₂ no ar atmosférico aumentou mais de 20% entre 1958 e 2007. A Figura 2.12 mostra a evolução da concentração de CO₂ (em partes por milhão) a partir de 1958, e em Agosto/2015 foi atingida concentração de 398,82 ppm.

Figura 2.12 – Concentração de CO₂ atmosférico ao longo dos anos. Fonte: http://www. esrl.noaa.gov/gmd/ccgg/trends/.

Apesar de vários estudos apontarem o CO₂ como o responsável pelas mudanças climáticas mundiais causadas pelo aquecimento global, vários pesquisadores discordam dessa visão. Ricardo Felício e Luiz Molion, da Universidade de São Paulo (USP) e Universidade Federal de Alagoas (UFAL), respectivamente, afirmam veementemente que o crescimento das emissões de CO₂ não é responsável pelos acontecimentos climáticos. Estes pesquisadores mostram em seus estudos que a teoria proposta de que o aquecimento global possui bases científicas e que ele seja gerado devido à ação antrópica não é válida, sendo estas pesquisas manipuladas em prol de interesses econômicos e políticos.

Com este cenário, há cada vez mais esforços para se considerar o CO₂ um recurso, em vez de um subproduto e poluente. Plantas atuais e planejadas para o sequestro e o armazenamento de carbono obtêm quantidades crescentes de CO₂ a baixos custos e relativamente puro. Desta forma, o CO₂ é uma matéria-prima de custo baixo, podendo ser utilizado para a produção de combustíveis e produtos químicos. Como um substituto direto para combustíveis à base de petróleo, biocombustíveis e combustíveis sintéticos derivados de carbono fóssil estão recebendo mais atenção. A sua sustentabilidade depende em grande parte da fonte da matéria-prima e, no caso de combustíveis fósseis à base de carbono, sobre a disponibilidade de captura de carbono e tecnologias de armazenamento. Hidrocarbonetos semelhantes podem também ser produzidos sem o uso de combustíveis fósseis ou biomassa. A utilização de energia renovável e/ou nuclear (sob a forma de calor, luz, e/ou luz solar), o CO₂ e água podem ser reciclados em combustíveis, como mostrado na Figura 2.13, por um processo não-biológico (GRAVES *et al.*, 2011).

O esquema da Figura 2.14 mostra as possibilidades de se aproveitar o CO₂ em processos de produção de combustíveis sintéticos, no qual o processo é constituído de várias etapas: (1) recolha de energia, (2) recolha de H₂O e CO₂, (3) dissociação da matéria-prima, e (4) síntese de combustível a partir dos produtos da etapa 3. Dentro de

cada fase, há um certo número de opções de tecnologia e o esquema apresenta um mapa das vias possíveis para os combustíveis hidrocarbonetos. Com exceção de luz solar direta, a etapa de coleta de energia pode ser considerada externa ao processo.

Figura 2.14 – Esquema das possíveis vias de utilização de água e CO₂ para geração de combustíveis hidrocarbonetos.

Além de se empregar o CO₂ como matéria-prima para combustíveis, o que vem sendo bastante difundido desde a década de 90 é o sequestro de CO₂. Ele não consiste na transformação deste gás em produtos de grande interesse industrial, mas sim na captura e armazenamento do CO₂, como é mostrado na Figura 2.15. O gás capturado, tanto do ar atmosférico quanto das chaminés de indústrias, pode ser inserido em aquíferos profundos, embaixo da terra ou do mar, onde o CO₂ se dissolve devido a sua reação com o carbonato de cálcio sólido das conchas marinhas para produzir bicarbonato de cálcio solúvel.

O sequestro de carbono é um conceito que foi estabelecido pela Conferência de Kyoto e trata-se de uma modalidade dentro do Mecanismo de Desenvolvimento Limpo (MDL). O intuito é incentivar os países industrializados à comercialização dos créditos de carbono e tornar as emissões de CO₂ equilibradas e em níveis seguros.

Figura 2.15 – Representação esquemática do sequestro de CO₂. Adaptado de http:// cienciahoje.uol.com.br/colunas/do-laboratorio-para-a-fabrica/a-poluicaooculta-do-hidrogenio. Fonte: BAIRD (2002).

YU (2004) diz que o sequestro de carbono se trata de uma medida paliativa que pode trazer benefícios ecológicos secundários. Existe uma variação no custo de absorção de CO₂ que está associado a diversos fatores como: diferenças regionais no clima, variações existentes na qualidade do solo, diferenças no manejo, tempo para corte e tecnologias utilizadas pelas empresas, diferenças administrativas das empresas e diferenças metodológicas de aferição dos dados tabulados. Com todos estes fatores, a inserção de CO₂ em poços e oceanos pode ser inviável, além de não se conhecer a fundo as consequências deste tipo de ação para o ecossistema.

Nesse contexto, entre as estratégias para se aumentar a utilização de CO₂ está o desenvolvimento de novos processos nos quais o CO₂ venha a ser empregado como matéria-prima ou como insumo para a obtenção de produtos químicos de grande demanda no mercado. Acredita-se que a implementação de novas rotas tecnológicas baseadas no CO₂ possa contribuir significativamente para a redução deste na atmosfera. O grande objetivo é introduzir um ciclo de carbono zero, em que todo o CO₂ gerado seria reutilizado em vários setores industriais, como é esquematizado na Figura 2.16.

Figura 2.16 – Esquema do ciclo neutro de CO₂ com CH₃OH renovável e produção de combustível. Fonte: TAHIR e AMIN, 2013.

2.3. Fotorredução Catalítica de CO2

2.3.1. Histórico

A fotorredução catalítica de CO₂, também conhecida como fotossíntese artificial, é uma tecnologia recente na qual seus primeiros estudos surgem na literatura na década de 90. A necessidade de se investir em pesquisas para o desenvolvimento de processos que reutilizem o CO₂ fez com que um grupo de pesquisadores japoneses refletissem sobre a possibilidade de se replicar o processo de fotossíntese realizado pelas plantas, onde as matérias-primas são CO₂ e água e são gerados oxigênio e glicose como produtos. Um grande diferencial da fotorredução catalítica de CO₂ com água, e que torna esse tipo de reação bastante complexa, é o fato de ocorrerem simultaneamente duas reações, a redução do CO₂ e a oxidação da água. A Equação 2.1 descreve sucintamente a reação que ocorre na reação de fotorredução catalítica de CO₂ com água.

$$CO_2 + H_2O \xrightarrow{hv} \text{produtos carbonáceos} + O_2 + H_2$$
 (2.1)

Um dos primeiros artigos publicados nesta área foi no ano de 1994 em que ADACHI *et al.* empregaram um reator de aço inox com uma janela de quartzo, utilizando como fotocatalisador o óxido de titânio promovido por cobre. A Tabela 2.4 apresenta um histórico dos principais estudos que se destacaram no desenvolvimento da fotorredução catalítica de CO₂.

Ano	Fotocatalisador	Produtos	Referência
1994	Cu-TiO ₂	CH ₄ e C ₂ H ₄	ADACHI et al.
1995	Cu/TiO ₂	CH ₄ , CH ₃ OH, CO	ANPO et al.
1997	Pt/TiO ₂ -zeólita Y	CH ₄ , CH ₃ OH	ANPO et al. (a)
1997	TiO ₂	НСООН	KANECO et al.
1998	Cu, Ag, Au/p-Si	CO, H ₂	HINOGAMI et al.
1998	Ti-MCM-41, Ti-MCM-48	CH₃OH	ANPO et al.
1999	Rh/TiO ₂	CH ₄ , CO	KOHNO et al.
2002	TiO ₂ /SiO ₂ , Ti-MCM-41	CH ₃ OH, CO, O ₂	IKEUE et al.
2003	Ti-Si	CH ₄ , CH ₃ OH	SHIOYA et al.
2004	TiO ₂	CH ₄	DEY et al.
2004	Ti-HMS	CH ₄ , CH ₃ OH	HIROMI et al.
2005	CuO/TiO ₂	CH₃OH	SLAMET et al.
2006	TiO ₂	CH ₄	TAN <i>et al</i> .
2007	TiO ₂ , ZrO ₂	CH ₄	LO et al.
2007	NiO/InTaO ₄	CH₃OH	PAN e CHEN
2008	Cu-Fe/TiO ₂	CH_4, C_2H_4	NGUYEN <i>et al</i> .
2008	TiO ₂	H ₂ , CH ₄	TAN et al.
2008	Ag/TiO ₂	CH ₄ , CH ₃ OH	MISHRA
2009	CdS/TNT, Bi ₂ S ₃ /TNT	CH₃OH	KUWARAVA et al.
2009	TiO ₂	CH ₄ , CH ₃ OH	KOČÍ <i>et al</i> .
2010	NiO/InTaO ₄	CH₃OH	WANG et al. (a)
2010	CdSe/Pt/TiO ₂	CH ₄ , CH ₃ OH, CO, H ₂	WANG et al. (b)
2010	Cu/TiO ₂ -SiO ₂	CO, CH_4	LI et al.
2011	ZnS-MMT	CH_4,CO,H_2,O_2	KOČÍ <i>et al</i> .
2011	AgBr/TiO ₂	CH_4 , CO , CH_3OH , C_2H_5OH	ASI <i>et al</i> .
2012	Ag-TiO ₂	CH ₄ , CH ₃ OH	KREJCÍKOVA et al.
2013	MMT-TiO ₂	CO, CH_4	TAHIR e AMIN
2013	TiO ₂ e ZnO	CH_4 , C_2H_6	MAHMODI et al.
2014	Mes-FeCe-x	CH ₄ , CO	WANG et al.
2014	Ag/TiO ₂	CH ₃ OH	LIU et al.
2015	Au/TiO ₂	CH ₄	COLLADO et al.
2015	Ca _x Ti _y O ₃	CH ₄	KWAK e KANG

Tabela 2.4 – Histórico do desenvolvimento da fotorredução catalítica de CO₂.

Alguns anos mais tarde, diversas equipes de pesquisa como, por exemplo, ANPO *et al.* (1995), estudaram a redução fotocatalítica de CO_2 com água em vários catalisadores de TiO₂ à temperatura ambiente e obtiveram como produtos CH₃OH e CO. WU (2010), ROY *et al.* (2010), USUBHARATANA *et al.* (2006), MAGESH *et al.* (2007) e INDRAKANTI *et al.* (2009) são outros exemplos de pesquisadores que estudaram vários outros tipos de fotocatalisadores e metodologias para a fotorredução de CO₂. O catalisador mais usado é o TiO₂ e os produtos de mais obtidos são o CH₄ e/ou CH₃OH.

KOČÍ e seus colaboradores (2008 a,b) estudaram o efeito das variáveis temperatura, pressão e volume da solução no meio reacional para a fotorredução catalítica de CO₂ empregando TiO₂ em um fotorreator anular. Recentemente, ZHANG *et al.* (2009) produziram seletivamente CH₄ a partir de CO₂ em Pt/TiO₂. LI *et al.* (2010) descobriu que CO foi o principal produto de reação empregando TiO₂-SiO₂. A adição de espécies Cu₂O nesse material aumentou a eficiência de conversão do CO₂, bem como a seletividade para CH₄, impedindo a recombinação do par elétron-lacuna. As taxas de formação de CO e CH₄ atingiram, respectivamente, 60 e 10 µmol.g⁻¹.h⁻¹ para o material 0,5%Cu/TiO₂-SiO₂.

Com este panorama, é possível notar que a fotorredução catalítica de CO₂ com água vem sendo considerada uma tecnologia iminente. As publicações científicas sobre o tema cresceram estrondosamente nos últimos anos, confimando o potencial deste tipo de reação, como pode ser verificado na Figura 2.17. Entre 2002 e Agosto/2015 foram publicados 981 artigos no "*Web of Science*" com o tópico "Photocatalytic reduction CO₂".

Figura 2.17 – Número de publicações no site "Web of Science" com o tópico "Photocatalytic reduction CO₂".

2.3.2. Fotocatalisadores

Os fotocatalisadores, como citado anteriormente, são materiais semicondutores. O desenvolvimento de novos fotocatalisadores, independente da área de aplicação – fotooxidação ou fotorredução – vem sendo realizado em duas direções: melhoria da fotoeficiência do fotocatalisador e emprego de materiais fotoativados pela luz solar. Na Figura 2.18 é mostrada uma compilação dos fotocatalisadores mais estudados dependendo da fonte de irradiação empregada no estudo, luz UV ou visível.

A fotoeficiência de um fotocatalisador depende da dinâmica do par elétron/lacuna. Se quando gerados, os elétrons e as lacunas se recombinarem rapidamente, a chance deles serem aproveitados na formação dos radicais envolvidos na reação é pequena, fazendo com que a fotoeficiência do material seja baixa. Portanto, é necessário que se aumente o tempo de estabilidade do par e⁻/h⁺ para que se melhorem os rendimentos das reações fotocatalíticas, e isso vem sendo feito a partir da adição de promotores nos materiais semicondutores. Estes promotores podem variar desde metais nobres, como a platina e ouro; a óxidos, como WO₃, CuO e CrO₃. Além da platina já citada, outros metais estudados são a prata, rutênio, ródio e cobre. Quanto aos óxidos, os mais estudados são os óxidos de cobre (CuO e Cu₂O), óxido de zinco, óxido de zircônia e óxido de rutênio. O contato entre o semicondutor e o metal (ou óxido) em geral, envolve uma redistribuição da carga elétrica. Na presença de clusters de metal/óxido, os elétrons são enriquecidos devido ao alinhamento dos níveis de Fermi do

metal/óxido e de semicondutores, que é a barreira de Schottky. Segundo TSENG *et al.* (2002), o metal em seguida, serve como um capturador de elétrons e proíbe a recombinação dos pares de lacunas e elétrons, promovendo de forma significativa a fotoeficiência. Além disso, outra razão para a melhoria da fotoeficiência se empregando um promotor metal ou óxido é a rápida transferência de elétrons excitados para o cluster de metal/óxido.

Em se tratando da luz solar, o interesse em utilizá-la como fonte de irradiação para fotoativar os fotocatalisadores é bastante notável em virtude da economia energética proporcionada nas unidades reacionais. O grande empecilho de se empregar a luz solar é o seu espectro eletromagnético, em que apenas 7% da luz apresenta comprimentos de onda abaixo de 400nm. O sol emite radiação em praticamente todos os comprimentos de onda do espectro, entretanto 44% do total de radiação emitida por ele tem comprimento de onda entre 380 e 770 nm, como pode ser visto na Figura 2.19.

Figura 2.19 – Espectro solar. Fonte: http://satelite.cptec.inpe.br/uv/img/espectro_ percentual.jpg.

O TiO₂ e o ZnO, por exemplo, possuem uma energia de bandgap em torno de 3,3 eV, o que nos indica que esses materiais absorvem energia em torno de 370 nm. A energia de bandgap é inversamente proporcional do comprimento de onda, e pode ser calculada a partir da Equação 2.2:

$$E_{f\,\acute{o}ton} = \frac{h.c}{\lambda} \tag{2.2}$$

Duas vertentes vêm sendo pesquisadas com o intuito de se empregar a luz solar como irradiação na ativação dos fotocatalisadores: inserção de heteroátomos nos semicondutores e dopagem com íons de metais de transição. A inserção de heteroátomos nos materiais semicondutores tem sido feita com átomos de nitrogênio (MICHALKIEWICZ *et al.*, 2014 e ASAHI *et al.*, 2006), carbono (KHAN *et al.*, 2002) ou enxofre (LIN *et al.*, 2005). Fotocatalisadores à base de ZnO e TiO₂, dopados com nitrogênio, foram estudados intensivamente em relação a sua atividade fotocatalítica para a oxidação de compostos orgânicos (BALCERSKI *et al.*, 2007; JANSEN e LETSCHERT, 2000; LI e HANEDA, 2003; LU *et al.*, 2006; MURASE *et al.*, 2004; SATO, 1986; WANG *et al.*, 2001). Com relação aos materiais à base de TiO₂ dopados com carbono, existem diversos estudos na literatura avaliando como funciona esse tipo de fotocatalisador (SHEN *et al.*, 2006, XU *et al.*, 2006, WU *et al.*, 2009 e LIN *et al.*, 2013). Nestes estudos foi-se verificado que a inserção de carbono na estrutura do TiO₂ cumpriu o objetivo de estender a absorção de irradiação para a região do visível e influenciou no grau de cristalinidade do material, que controla os sítios fotocatalíticos e, consequentemente, a atividade.

No caso da fotorredução catalítica de CO_2 , a inserção de heteroátomos foi estudada por LI *et al.* (2012a) e os autores verificaram que a inserção de nitrogênio em TiO₂ mesoporoso diminuiu a energia de bandgap, como pode ser verificado na Tabela 2.5, possibilitando a luz solar como fonte de irradiação. Em relação aos testes de fotoatividade, os materiais dopados com nitrogênio apresentaram um desempenho superior ao TiO₂ puro, produzindo quantidades maiores de CH₄, como pode ser visto na Figura 2.20.

Amostras	Bandgap (eV)	n (%atômica)
TiO ₂	3,18	-
TiO ₂ –N (500°C)	2,75	0,62
TiO ₂ –N (525°C)	2,72	0,84
TiO ₂ –N (550°C)	2,64	0,88
TiO ₂ –N (575°C)	2,56	0,88

Tabela 2.5 – Energias de bandgap das amostras de TiO₂ mesoporoso não dopado e dopado com nitrogênio. Fonte: LI *et al.* (2012a).

Figura 2.20 – Fotorredução catalítica de CO₂ ao longo do tempo de irradiação para TiO₂ não dopado e dopado sob irradiação de luz visível. Fonte: LI *et al.*, 2012a.

A dopagem com íons de metais de transição vem sendo bastante estudada, empregando, por exemplo, La, Ni, Mn e Fe (XU *et al.*, 2010). MATSUOKA e colaboradores, em 2007, inseriram átomos de Ni, Fe, V e Cr em um óxido de titânio e averiguaram como eles modificaram o perfil de absorbância do material inicial. O resultado pode ser verificado na Figura 2.21, em que se nota um deslocamento e uma ampliação da região de absorção de irradiação. Além disso, se verificou uma relação entre o número de elétrons contidos na camada de valência dos metais implantados com o valor final da energia de bandgap. Quanto maior o número de elétrons contidos na última camada eletrônica do metal, menor é o comprimento de onda necessário para excitar um elétron da banda de valência e, portanto, maior o valor da energia de bandgap.

Resumindo, todos os semicondutores são aptos a serem empregados em reações fotocatalíticas e o que se deseja é melhorar o desempenho destes materiais para assim, obter maiores formações dos produtos desejados. As características mais influentes dos materiais na atividade fotocatalítica são a área específica da superfície, a fase cristalina, os defeitos da superfície, a presença de dopantes e/ou impurezas e o tamanho das partículas agregadas.

Figura 2.21 – Espectros de DRS UV-vis de fotocatalisadores à base de TiO₂ com íons (a) V, (b) Cr, (c) Fe e (d) Ni na estrutura (MATSUOKA *et al.*, 2007).

2.3.2.1. Semicondutores mais empregados

O dióxido de titânio (TiO₂), também conhecido como óxido de titânio (IV) ou titânia, é o sólido de cor branca e é um dos materiais mais empregados na fotocatálise heterogênea. O metal titânio é o nono elemento mais abundante da Terra e devido a importância do óxido de titânio, aproximadamente 95% de todo titânio produzido tem como objetivo a obtenção desse composto (http://www.infoescola.com/elementos-quimicos/titanio/). O grande interesse neste material vem das características físicas e químicas. O óxido de titânio possui baixo custo e baixa toxicidade, é insolubilidade em água, é fotoestável, tem uma estabilidade química em uma ampla faixa de pH, é um material que permite sua imobilização sobre sólidos ou suportes, além da sua alta atividade catalítica. Com todas estas características, o óxido de titânio torna-se viável para diversas aplicações. A principal delas, em que ele é usado em grande escala, é o seu emprego como pigmento branco, em papéis e tintas, por exemplo. A energia necessária para ativar o óxido de titânio é cerca de 3,2 eV, que corresponde à irradiação UV de comprimento de onda menor que 387 nm.

Há três tipos principais de estruturas polimórficas de TiO₂: rutilo, anatásio e bruquita. Segundo FUJISHIMA *et al.* (2008), a fase rutilo é a fase mais estável para partículas acima de 35 nm de tamanho e possui estrutura tetragonal. Já a fase anatásio, também com estrutura tetragonal, é uma fase mais estável para nanopartículas abaixo de 11 nm. A fase bruquita possui nanopartículas no intervalo de 11-35 nm, e possui

estrutura ortorrômbica. As estruturas cristalinas das fases descritas estão representadas na Figura 2.22. Devido às diferenças das estruturas cristalinas, as fases apresentam diferentes fotoatividades, sendo que segundo TANAKA *et al.*, 1993, a fase anatásio apresenta uma taxa de formação de radicais 'OH mais alta que as formas rutilo e bruquita, tornando-a mais ativa. Segundo FOX e DULAY (1993), isso se dá devido à fase rutilo não ser capaz de adsorver O₂ e, consequentemente, a taxa de recombinação do elétron com a lacuna fotogerada é bastante elevada. Em relação à bruquita, devido à dificuldade de sua síntese, ela é raramente estudada. Contudo, OZAWA *et al.* (2005), sintetizou um TiO₂ rico em fase anatásio e bruquita, através do método sol-gel e este material obtido proporcionou um aumento da atividade fotocatalítica em comparação à fase anatásio pura.

Figura 2.22 – Estruturas cristalinas das fases (a) anatásio, (b) rutilo e (c) bruquita. Adaptado de FUJISHIMA *et al.*, 2008.

Devido a todas estas características, o TiO₂ está presente na maioria das pesquisas relacionadas ao desenvolvimento da fotocatálise, como pode ser mostrado na Figura 2.23, tanto no âmbito ambiental como no energético.

Um dos materiais mais estudados quando se fala em óxido de titânio é o P-25 da Degussa, ele apresenta em sua estrutura cerca de 80% de anatásio e 20% de rutilo (TAN *et al.*, 2006 e PAULINO, 2011). A área específica é de aproximadamente de 50 \pm 15 m²/g e o tamanho de partícula de 30 nm (BHATKHANDE *et al.*, 2001).

Figura 2.23 – Aplicações do TiO₂ como fotocatalisador. Fonte: NAKATA e FUJISHIMA, 2012.

Em se tratando da fotorredução catalítica de CO₂, o dióxido de titânio foi um dos primeiros materiais a serem empregados e desde então, ele tem sido o foco de um número considerável de pesquisas relacionadas a esta área. A Tabela 2.6 reuni alguns dos principais trabalhos publicados que empregaram o TiO₂ como fotocatalisador.

Tabela	2.6 –	Estudos	da	fotorredução	catalítica	de	CO_2	na	presença	de	TiO ₂	puro.
		Adaptad	o de	e LIU <i>et al</i> ., 20)12.							

Fotocatalisador	Fonte de UV	Produtos	Pesquisador (es)
TiO	75 W, λ > 280 nm,		ANPO et al 1995
1102	lâmp. alta pressão	0114, 0113011, 00	
TiO	4,5 kW,	CH ₂ O ₂ , CH ₄ ,	
1102	lâmpada de Xe	CH_3OH, C_2H_5OH	
TiO	990 W,	CH2O2	KANECO at al 1997
1102	lâmpada Xe	011202	
TiO ₂ (P-25)	4,2 kW,		KANECO et al. 1998
	lâmpada de Xe	01.14, 011202	

Tabela 2.6 – Estudos da fotorredução catalítica de CO₂ na presença de TiO₂ puro. Adaptado de LIU *et al.*, 2012 (cont).

Fotocatalisador	Fonte de UV	Produtos	Pesquisador (es)
TiO ₂	0,96 kW, lâmpada Xe	CH_2O_2	KANECO <i>et al.</i> , 1999
TiO ₂	8 W, lâmpada de Hg, λ=254 nm	CH ₃ OH, O ₂	TSENG <i>et al.</i> , 2002
TiO ₂ (P-25)	15 W, λ=365 nm	CH₄, CH₃OH	KU <i>et al</i> ., 2004
TiO ₂	λ=350 nm	CH_4	DEY et al., 2004
TiO ₂ em esferas	3 W, λ=365 nm 4,8 W, λ=253,7 nm	CH₄	TAN <i>et al</i> ., 2007
TiO ₂ (P-25)	15 W, λ=365 nm	CH ₄ , CO, C ₂ H ₆	LO <i>et al.</i> , 2007
TiO ₂ em esferas	λ=253,7 nm	CH_4 , CO , H_2	TAN et al., 2007
TiO ₂ /nanotubos	15W,	CH_4 , CH_2O_2 ,	XIA at al. 2007
de carbono	λ = 365 nm	C_2H_5OH	XIA et al., 2007
TiO ₂ anatásio	8 W, λ=254 nm	CH₄, CH₃OH	TAN <i>et al</i> ., 2008
TiO ₂	8 W, λ=254 nm	CH₄, CH₃OH	KOCI <i>et al.</i> , 2009
TiO ₂	100 W, λ = 365 nm	CH ₄	CHEN <i>et al</i> ., 2009
Nanotubo TiO ₂	100 W, λ = 365 nm	CH ₄	SCHULTE et al., 2010
Nanotubo TiO ₂	150 W, lâmpada Xe	CH ₄ , CO	LA TEMPA et al., 2012
TiO ₂	150 W, Lâmpada alta pressão Hg	CH ₄ , C ₂ H ₆	MAHMODI <i>et al.</i> , 2013

Na busca por outros materiais que pudessem substituir o óxido de titânio como fotocatalisador encontrou-se o óxido de zinco. Este óxido, também de coloração branca, apresenta excelentes propriedades térmicas eletrônicas, químicas e óticas, possibilitando o uso em diversas aplicações industriais, como por exemplo, inibidor do crescimento de fungos em pinturas e como pomada antisséptica na medicina. Assim como o óxido de titânio, o óxido de zinco apresenta como características principais a

grande disponibilidade, baixo custo e toxicidade, além de possuir uma energia de bandgap semelhante ao TiO₂, 3,37 eV. Segundo GRÄTZEL (2001), além do valor próximo da energia de bandgap em relação ao óxido de titânio, as posições das bandas de valência e condução também são próximas.

WATANABE (1992) relatou que ZnO pode reduzir o CO_2 em compostos oxigenados utilizando irradiação, na presença de um agente redutor, como H₂O, sob altas pressões de gás $CO_2 - 25-35$ kg/cm². Um dos problemas relacionados a este fotocatalisador é a fotocorrosão que geralmente ocorre ao ser iluminado por uma irradiação UV, o que pode resultar em uma queda de fotoatividade em solução aquosa (DIJKEN *et al.*, 1998). Outra questão que torna o óxido de zinco menos empregado que o óxido de titânio é relatado por SHIFU *et al.* (2009). Este grupo de pesquisadores afirma que a recombinação do par elétron-lacuna fotogerados é mais rápida no ZnO do que no TiO₂ e que por esta razão, a modificação deste óxido tornou-se um tema bastante interessante entre os pesquisadores da área nos últimos anos.

A fim de se substituir o TiO₂ e o ZnO outros materiais como os semicondutores dos óxidos de metais de transição, nitretos, e fosfetos começaram a receber atenção. A Tabela 2.7 lista alguns desses fotocatalisadores, bem como suas energias de bandgap e os produtos obtidos na fotorredução catalítica de CO₂.

Os semicondutores de sulfeto inicialmente receberam muita atenção por diversos pesquisadores (BAO *et al*, 2008; LIU *et al.*, 1998; WANG *et al.*, 2010b). A sua banda de valência constituída de orbitais 3*p* dos átomos de enxofre é deslocada pra cima (para um potencial mais negativo) em comparação com aqueles dos óxidos análogos, com isso, os elétrons da banda de condução também são mais redutores. Segundo BOUMAZA *et al.* (2010), muitos sulfetos possuem bandas de absorção de irradiação estreitas (por exemplo PbS, Bi_2S_3), com o início da absorção na região do visível, ou mesmo no infravermelho. De acordo com HABISREUTINGER *et al.* (2013), a maior desvantagem dos sulfetos em relação aos óxidos é que os sulfetos não são geralmente estáveis sob iluminação em um meio aquoso, devido à oxidação da estrutura dos íons S²⁻ para enxofre elementar e, eventualmente, para os sulfatos.

Comisondutor	Bandgap	Promotor	Dradutaa	Deferêncie Dibliográfice
Semicondutor	(eV)	(%m/m)	Produtos	Referencia bibliografica
ZrO ₂	5,0	1% Cu	CO, H_2	SAYAMA e ARAKAWA, 1993
ZnS	3,66	-	HCOOH	FUJIWARA et al., 1997
ZnS	3,66	-	HCOOH	JOHNE e KISCH, 1997
CdS	2,4	-	CO, H ₂	LIU <i>et al</i> ., 1998
K ₂ Ti ₆ O ₁₃	> 3,0	0,3% Pt	CH_4, H_2	GUAN et al., 2003
BiVO ₄	2,24	-	C_2H_5OH	LIU et al., 2009
InTaO ₄	2,6	1% NiO	CH₃OH	WANG <i>et al</i> ., 2010a
ZnGa ₂ O ₄	4,4	1% RuO ₂	CH_4	YAN <i>et al.</i> , 2010
NaNbO₃	3,4	Pt	CH_4	SHI <i>et al</i> ., 2011
Zn ₂ GeO ₄	4,65	3% RuO ₂	CO, CH ₄	YAN <i>et al</i> ., 2011
Bi ₂ WO ₆	2,75	-	CH_4	ZHOU et al., 2011
CuGaO ₂	2,6	-	CO	LEKSE <i>et al.</i> , 2011
WO ₃	2,79	-	CH_4	XIE <i>et al</i> ., 2012
Zn_2SnO_4	3,87	Pt, RuO ₂	CH_4	LI <i>et al</i> ., 2012b
β-Ga ₂ O ₃	4,9	-	CO, CH ₄	PARK <i>et al</i> ., 2012

Tabela 2.7 – Semicondutores alternativos ao TiO₂ empregados na fotorredução de CO₂. Adaptada de HABISREUTINGER *et al.*, 2013.

O trióxido de tungstênio vem sendo estudado em algumas reações fotocatalíticas devido ao seu valor de energia de bandgap, cerca de 2,7 eV e, por isso, é considerado como um fotocatalisador promissor para ser aplicado na luz visível. Além disso, segundo WANG *et al.* (2013), ele é um óxido inofensivo e estável em meio aquoso em uma grande escala de pH. Devido à posição de sua banda de valência, o WO₃ é normalmente usado para a evolução de oxigênio na presença de um receptor de elétrons. No entanto, a sua banda de condução inferior a -0,1 V vs NHE em pH = 7, limita a sua aplicação em muitas reações importantes, tais como a redução de CO₂ para o CH₄. Segundo PUDDU *et al.* (2007), uma vez que WO₃ apresenta uma acidez superior ao TiO₂, a sua presença no nanocompósito pode modificar a afinidade de substratos para a superfície do catalisador, e como consequência, a atividade de equilíbrio de adsorção e fotooxidação do catalisador.

Outros materiais como óxidos mistos tem despontado interesse em alguns grupos de pesquisa. WANG e colaboradores, na China, vêm pesquisando fotocatalisadores à base de óxidos mistos de cério, ferro e titânio. O CeO₂ é um semicondutor do tipo n, que tem algumas propriedades semelhantes as características do óxido de titânio, tais como ser quimicamente inerte, de baixo custo e não-toxicidade. Ele tem sido frequentemente escolhido como um componente para preparar óxidos complexos, ou como um promotor. WANG *et al.* (2013) prepararam fotocatalisadores à base de TiO₂ e CeO₂ e verificou que a introdução de CeO₂ no TiO₂ aumentou a absorção de luz para a área da luz visível. Segundo os autores, devido a composição especial e estrutura, os compostos mesoporosos CeO₂-TiO₂ exibiram uma excelente atividade fotocatalítica na fotorredução do CO₂ com H₂O. O melhor fotocatalisador, Mes-CeTi-1.0, produziu cerca de 10 µmol/g_{cat}, enquanto o material referência TiO₂ P-25, cerca de 1 µmol/g_{cat}.

Quanto aos fosfetos, GaP e InP foram estudados por sua capacidade de reduzir o CO₂ em configurações fotoquímicas ou fotoeletroquímicas. O GaP é um semicondutor do tipo *p* com uma energia de bandgap razoavelmente baixa (2,3 eV). BARTON *et al.* (2008) aplicaram p-GaP como um fotocatódo em uma célula fotoeletroquímica e obteve um rendimento fotônico de 2,6% para a conversão de CO₂ em CH₃OH com um eletrodo mantido a -0,5 V vs SCE.

2.3.2.2. Promotores

Promotores são substâncias químicas adicionadas ao catalisador a fim de melhorar a desempenho catalítico do material resultante. Podem ser substâncias que possuam pouca ou nenhuma atividade catalítica, e são empregados para estabilizar as características estruturais do material ou promover a transferência de elétrons.

No caso da fotocatálise, primordialmente os promotores veem sendo usados para favorecer a transferência de elétrons entre os fotocatalisadores e os reagentes. Portanto, é necessário melhorar o trânsito de elétrons na estrutura do material, fazendo com que o par elétron-lacuna fique disponível o maior tempo possível. Em relação ao tempo para uma reação fotoquímica, trata-se de tempo na escala de µs, ns e muitas vezes, fs. Para se ter uma noção desta escala de tempo, a Figura 2.24 mostra como é esta escala para a fotocatálise.

Figura 2.24 – Escala de tempo na fotocatálise. Fonte: FUJISHIMA et al., 2008.

Diversas substâncias veem sendo estudadas como promotores de semicondutores para melhorar o desempenho dos fotocatalisadores na reação de fotorredução catalítica de CO₂. A Tabela 2.8 mostra alguns dos trabalhos desenvolvidos a partir de 1999.

Tabela 2.8 – Fotocatalisadores à base de TiO₂ empregados na fotorredução catalítica de CO₂. Fonte: LIU *et al.*, 2012.

Fotocatalisador	Fonte de UV	Produtos	Pesquisador (es)	
Rh/TiO	Lâmpada deHg,	CO CH.	KOHNO et al 1999	
	λ = 280, 370, 450 nm	00, 014		
Pd/RuO ₂ /TiO ₂ ,	Lâmpada Xe,	НСООН	XIE at al 2001	
Pd/TiO ₂	450 W	neoon		
	8 W,Lâmpada de Hg,		TSENG et al. 2002	
1102, 00/1102	λ=254 nm	0113011, 02		
	Lâmpada de Hg,	CHOOH	TSENG at al 2004	
00/110 ₂ , Ag/110 ₂	λ=254 nm, 365 nm	013011		
	10 W,	СНОН	SLAMET of al 2005	
	Luz negra	ONIGON	SLAIVIET et al., 2005	
	Lâmpada de Hg,	CH₃OH	WUELIN 2005	
	λ=365 nm			

Tabela 2.8 – Fotocatalisadores à base de TiO₂ empregados na fotorredução catalítica de CO₂. Fonte: LIU *et al.*, 2012 (cont).

Fotocatalisador	Fonte de UV	Produtos	Pesquisador (es)	
Pd/TiO ₂	Luz UV-visível	Hidrocarbonetos	CHUANG, 2005	
TiO ₂ . Cu/TiO ₂ . Aa/TiO ₂	Fibras ópticas,	CH₃OH	WU et al., 2008	
	λ = 365 nm		,	
Cu/TiQ₂ Cu-	150 W,		-	
Ee/TiO₂sobre fibra	λ = 320 - 500 nm	CH_4, C_2H_4	NGUYEN <i>et al.</i> , 2008	
Cu e Ag/TiO ₂ ,	λ = 250-450 nm			
Cu e Ag/TiO ₂ ,	Luz artificial,		WIL 2000	
Cu-Fe/TiO ₂ -SiO ₂	λ = 320-500 nm	CH3OH	VVO, 2009	
TiO	100 W,	CH.	CHEN at al. 2000	
1102	λ = 365 nm		CHEN <i>et al</i> ., 2009	
	Lâmpada halógena,	CH ₂ O ₂ , CH ₃ OH,	7HAO at al. 2009	
	500 W	CH ₂ O	ZI IAO et al., 2003	
Ag-TiO-	8 W, lâmpada de Hg,		KOCL at al. 2010	
Ag-110 ₂	λ = 254 nm			
	250 W,	CH₂ HCOO–	QIN et al. 2011	
	λ=365 nm			
FeTiO ₃ /TiO ₂	Lâmpadas Xe,	CH₃OH	TRUONG et al., 2012	
	8 W			
Ag/TiO ₂	Lâmpadas UV	CH ₄ e CH ₃ OH	2012	
	100 W,		UNER e OYMAK,	
Pt-1102/esteras vidro	lâmpada de Hg	CH4	2012	
Nf/Pd-TiO ₂	UV	CH_4, C_2H_6	KIM <i>et al</i> ., 2012	
	8 W,	CH ₄ , C ₂ H ₆ e	COLLADO et al.,	
	λ = 369 nm	C ₃ H ₇ , CH ₃ OH	2013	

Vem se despontando um interesse crescente sobre os lantanídeos, que são substâncias com orbital *f* na sua configuração eletrônica (LIOU *et al.*, 2011; ZHANG *et al.*, 2004; LI *et al.*, 2002). No entanto, as substâncias mais estudadas como promotores são os metais de transição (orbital *d*) e os metais nobres. A dopagem com estes metais, como Fe, Zn, Cu, Ni e V, essencialmente diminui a energia de bandgap doTiO₂ para a fotoexcitação e, simultaneamente, reduz a taxa de recombinação dos pares elétron-lacuna fotogerados.

Um dos promotores mais estudados é o óxido de cobre, e isso se deve a sua característica de bom condutor. Como pode ser verificado na Figura 2.25, as bandas de condução dos dois tipos de óxido de cobre possuem potenciais eletroquímicos próximos ou mais negativos que a banda de condução do óxido de titânio, abrangendo um leque maior de possíveis reações.

Figura 2.25 – Posições das bandas de valência e condução de CuO, Cu₂O e TiO₂, meio com pH = 7; Fonte: ROY et al., 2010.

TSENG *et al.* (2002) prepararam fotocatalisadores à base de TiO₂ e promovidos com diversas porcentagens de cobre metálico, que variavam entre 0,6 e 6% (%m/m). Como principal produto para fotorredução de CO₂ com água foi-se obtido o CH₃OH e os autores verificaram que sua formação crescia com a porcentagem de Cu no fotocatalisador. Esse comportamento foi observado até o fotocatalisador com 2% (%m/m) e em quantidades que excediam esse valor, a formação de CH₃OH decresceu. Para os autores, esse resultado se deve a quantidade de cobre metálico em excesso sobre o TiO₂, que recobre grande parte da superfície do óxido e, com isso, reduz a capacidade do fotocatalisador de ser ativado pela irradiação. Assim, eles concluíram que a quantidade ideal de cobre metálico sobre TiO₂ para se potencializar a formação de CH₃OH é de cerca de 2% (%m/m).

Outro estudo sobre o óxido de cobre bastante citado na literatura é o trabalho de SLAMET *et al.* (2005). Os autores realizaram um estudo comparativo entre o emprego das diversas espécies de cobre sobre o dióxido de titânio: cobre metálico e os óxidos de cobre – CuO e Cu₂O. A Figura 2.26 mostra que CuO é o dopante mais ativo em comparação com as outras espécies de cobre, sendo o fotocatalisador com 3% de CuO sobre TiO₂ o mais eficiente para formação de CH₃OH.

Figura 2.26 – Efeito da percentagem de espécies de cobre sobre a produção de CH₃OH em 6h de irradiação, a 60 °C. Fonte: SLAMET *et al.*, 2005.

Para justificar a seleção dos óxidos de cobre como dopantes, os autores usaram os valores de seus potenciais redox, os quais representam sua capacidade de atrair elétrons. Os valores do potencial redox citados pelos autores para Cu⁺ e Cu²⁺ são:

$$Cu^{2+} + 2e^{-} \rightarrow Cu^{0}, E^{0} = 0.34 V$$
 (2.3)

$$Cu^{2+} + e^{-} \rightarrow Cu^{+}, E^{0} = 0,17 V$$
 (2.4)

$$Cu^+ + e^- \rightarrow Cu^0, E^0 = 0.54 V$$
 (2.5)

Segundo os autores, o maior valor de potencial redox de Cu⁺ deveria habilitá-lo (0,54 V) como um aceptor de elétrons mais efetivo, atenuando a recombinação do par elétron-lacuna. No entanto, esse efeito não foi observado, visto que o fotocatalisador promovido pelo Cu²⁺ apresentou uma maior fotoeficiência. As explicações para esse comportamento foram que o Cu₂O interagiu mais fortemente com o TiO₂, sendo ele fixado nos sítios vagos de TiO₂ e, que o dopante com maior potencial redox positivo captura excessivamente elétrons da banda de condução, não promovendo a atividade fotocatalítica do material.

Entretanto, os potenciais redox utilizados pelos autores para justificar seus dados são valores de potenciais para fotocatalisadores em meio ácido. Os testes de desempenho na fotorredução catalítica de CO₂ foi realizada em um meio aquoso, com solução de NaOH, sendo que com a adição de CO₂ o pH fica em torno de 7 e ao longo da reação o pH torna-se levemente básico. Com isso, eles fizeram uma avaliação errônea dos resultados, sendo que todas as argumentações deveriam ser feitas levando-se em consideração um meio básico. As Equações 2.6 a 2.17 apresentam os

potenciais redox dos materiais mais empregados na fotocatalíse em meio básico. Podese verificar que, em meio reacional básico, o Cu²⁺ possui um potencial mais positivo que o Cu⁺ e, portanto, como verificado por SLAMET *et al.* 2005, o fotocatalisador promovido por Cu²⁺ seria mais fotoativo.

$$TiO_{2 -1,38V} \rightarrow Ti_{2}O_{3} \xrightarrow{-1,95V} \rightarrow TiO \xrightarrow{-2,13V} \rightarrow Ti^{0}$$
(2.6)

$$\operatorname{Cr}(\operatorname{OH})_{3} \xrightarrow[-1,33V]{} \operatorname{Cr}^{0}$$
 (2.7)

$$\operatorname{MnO}_{a}^{2^{-}} \xrightarrow{-0,78V} \operatorname{MnO}_{2^{-}} \xrightarrow{-0,98V} \operatorname{Mn}^{0}$$
(2.8)

$$\operatorname{MnO}_{2} \xrightarrow[-0,15V]{} \operatorname{Mn}_{2}\operatorname{O}_{3} \xrightarrow{-0,23V}{} \operatorname{Mn}(\operatorname{OH})_{2} \xrightarrow{-1,56V}{} \operatorname{Mn}^{0}$$
(2.9)

$$\operatorname{CoO}_2 \xrightarrow[-0,7V]{} \operatorname{Co(OH)}_3 \xrightarrow[-0,73V]{} \operatorname{Co}^0$$
 (2.10)

$$\operatorname{Fe}_{2}O_{3} \xrightarrow{-0,86V} \operatorname{Fe}(OH)_{2} \xrightarrow{-0,89V} \operatorname{Fe}^{0}$$
 (2.11)

$$\operatorname{NiO}_{2}^{*} \longrightarrow \operatorname{NiOOH}_{0,52V} \longrightarrow \operatorname{Ni(OH)}_{2} \longrightarrow \operatorname{Ni}^{0}$$
 (2.12)

$$PdO_2 \xrightarrow{1,47V} PdO \xrightarrow{0,90V} Pd^0$$
 (2.13)

$$Cu(OH)_{2-1,11V} \xrightarrow{} Cu_2O \xrightarrow{} Cu^0$$
 (2.14)

$$Ag_2O_3 \xrightarrow[0,89V]{} AgO \xrightarrow[0,60V]{} Ag_2O \xrightarrow[0,34]{} Ag^0$$
 (2.15)

$$Zn(OH)_{2} \xrightarrow{-1,25V} Zn^{0}$$
 (2.16)

$$Cd(OH)_{2} \rightarrow Cd^{0}$$
 (2.17)

Com a intenção de substituir o óxido de cobre, alguns pesquisadores apostaram no emprego de outros óxidos de metais de configuração eletrônica d⁹, como a prata e o ouro. LI *et al.* (2012a) comparou as fotoeficiência para a formação de CH₄ de

fotocatalisadores à base de TiO₂ promovidos por Pt, Ag e Au. A platina foi utilizada para efeito de comparação, por ser bem conhecido o seu efeito como promotor. A Figura 2.27 mostra o desempenho dos fotocatalisadores com os diversos teores mássicos dos promotores Ag, Au e Pt.

Figura 2.27 – Formação de CH₄ para o TiO₂ puro e promovido por diversos teores de Ag, Au e Pt. Fonte: LI *et al.*, 2012a.

Analisando os resultados, a porcentagem ótima para Pt, Au e Ag foram de 0,2%, 0,2% e 0,1% (%m/m). A amostra que se mostrou mais ativa foi a de 0,2% Pt/TiO₂, em que foram obtidos 5,7 μ mol/g_{cat} após 120 minutos de irradiação, sendo este valor 12 vezes maior em comparação com o TiO₂ não promovido. É evidente que existe uma quantidade ideal para o metal nobre promover eficientemente o fotocatalisador. A quantidade apropriada de partículas de metal sobre a superfície da amostra pode interceptar o maior número de elétrons fotoexcitados, resultando no aumento da atividade fotocatalítica. No entanto, as partículas de metal em excesso funcionam como centros de recombinação que diminuem a atividade fotocatalítica. Além disso, como citado anteriormente, as partículas de metal em excesso pode mascarar a superfície de TiO₂ e reduzir a capacidade de absorção da luz do catalisador e, portanto, reduzir a fotoexcitação para gerar os elétrons ativos. Portanto, a quantidade máxima de promotor em um fotocatalisador varia de acordo com diferentes materiais e diferentes reações, bem como todas as condições inerentes a elas.

Pesquisadores recentemente veem propondo o emprego de dois promotores para melhorar a fotoeficiência dos fotocatalisadores. RICHARDSON *et al.* (2012) prepararam materiais à base de TiO₂ promovidos por cobre e manganês e a formação de CH₃OH obtida por eles pode ser observada na Figura 2.28.

Figura 2.28 – Formação de CH₃OH para os fotocatalisadores TiO₂ (P-25), Mn/TiO₂, Cu/TiO₂, Mn_{0,22}-Cu_{0,78}/TiO₂, Mn_{0,51}-Cu_{0,49}/TiO₂, Mn_{0,76}-Cu_{0,24}/TiO₂.

Segundo os autores, e como dito anteriormente, a configuração eletrônica dos agregados de cobre é bem conhecida por favorecer a disposição dos níveis de Fermi de forma que o promotor metálico age como um caçador de elétrons, evitando a recombinação subsequente das lacunas e elétrons. Quando combinado com o metal manganês, este efeito foi promovido devido ao rápido transporte de elétrons de alta energia para os dopantes metálicos, criando uma competição entre o cobre e o manganês pelo elétron, aumentando assim a redução catalítica de CO₂ para CH₃OH. Da mesma forma que TSENG *et al.* (2002), RICHARDSON *et al.* (2012) também verificaram que cobre e manganês em excesso sobre a superfície do fotocatalisador pode impedir a fotoativação do óxido de titânio. Uma relação molar ideal entre os promotores, manganês e cobre, foi encontrada, levando-se em consideração as conversões de CO₂ obtidas com o material Mn_{0,22}-Cu_{0,78}/TiO₂.

Na mesma linha de emprego de dois promotores, LITTER (1999) relataram que os óxidos de cobre e ferro são bastante interessantes. Segundo ele, WARD e BARD (1982) investigaram a adição de Cu²⁺, Fe³⁺, Pt⁴⁺ e Pd²⁺ em suspensões aquosas desgaseificada com TiO₂ sob iluminação UV e foram feitas medidas de fotocorrente no meio. O trap dos elétrons fotogerados feito por Cu²⁺ e Fe³⁺ é possível, segundo os autores, devido aos valores dos potenciais de redução da dupla (+0,34 e +0,77 V, respectivamente, em meio ácido). Com isso, o elétron fotogerado fica migrando entre os promotores como mostrado nas Equações 2.17 e 2.18:

$$Cu^{2+} + 2e^{-} \rightarrow Cu^{0} \tag{2.17}$$

$$Fe^{3+} + e^{-} \rightarrow Fe^{2+} \tag{2.18}$$

Os autores verificaram que houve redução na taxa de recombinação e melhora das fotocorrentes. Por exemplo, a adição de acetato cúprico ao TiO₂ em suspensões com iluminação UV e na ausência de oxigênio aumentou as correntes em 500 vezes quando comparado com o mesmo sistema, na ausência de Cu₂O. A reoxidação da forma reduzida (Cu⁰ ou Fe²⁺) pelas lacunas é menos favorável do que a oxidação do acetato, que é cerca de 3000 vezes mais rápida. Ainda segundo WARD e BARD (1982), a adição de Fe³⁺ resultou em um aumento drástico na fotocorrente, maior do que no caso do Cu²⁺. Por outro lado, a adição de PdCl₂ ou H₂PtCl₆ não levou a qualquer aumento da fotocorrente.

Materiais contendo os óxidos de cobre, ferro e titânio foram utilizados por NGUYEN e WU em 2008 para a reação de fotorredução catalítica de CO₂, em um sistema gasoso com reator de fibra óptica. O emprego do óxido de ferro é justificado por ele ser um metal de transição que tem um conjunto de estados de oxidação consecutivos (Fe²⁺/Fe³⁺), e, ele na presença do promotor óxido de cobre poderia favorecer o processo de transporte das lacunas de TiO₂ promovendo um aumento na taxa de oxidação da água. Além disso, o óxido de ferro é conhecido pela sua absorção da luz visível. Por essa propriedade, os autores realizaram testes fotocatalíticos com irradiação UVA e UVC. Os resultados mostraram que a formação dos produtos não variou quando se modificou a fonte de ativação do fotocatalisador, como mostrado na Tabela 2.9.

Tabela 2.9 – Formação de etileno a partir do fotocatalisador Cu(0,5%m/m)-Fe(0,5 %m/m)/TiO₂ após 4 horas de irradiação UVA e UVC.

Fonte de Irradiação	Formação de Etileno (nmol/g.h)
UVC (250 – 450 nm)	0,58
UVA (320 – 500 nm)	0,58

Os autores propuseram um esquema para elucidar o efeito sinérgico do fotocatalisador Cu-Fe/TiO₂ na fotorredução de CO₂ a etileno, sendo ele mostrado na Figura 2.29.

Figura 2.29 – Esquema da bandgap e transferência de elétrons no Cu-Fe/TiO₂ em pH = 5. Fonte: NGUYEN e WU, 2008.

Segundo os autores, a diferença de potencial entre a banda de condução do TiO₂, -0,42 eV, e do óxido de ferro, -0,39 eV, faz com que a separação de cargas seja efetiva e melhora a fotoprodução de etileno. Como o potencial da banda de condução e banda de valência de óxido de ferro são mais baixo e mais elevado do que os do TiO₂, respectivamente, os elétrons e lacunas fotoexcitados tendem a se recombinar com facilidade desde que as velocidades de transferência de elétrons e lacunas de TiO₂ para óxido de ferro sejam quase as mesmas. No entanto, o movimento das lacunas é um processo inerentemente mais lento do que o de elétrons; e, como resultado, os elétrons transferidos do TiO₂ ao óxido de ferro ou óxido de cobre facilmente reduz o CO₂ para produzir etileno antes de se recombinar com as lacunas. Estas por sua vez, podem se mover do TiO₂ para o óxido de ferro ou participarem da reação de formação de oxigênio na superfície de TiO₂. Portanto, a redução efetiva de CO₂ para a produção de etileno é feita pelo eletrón em trânsito, do TiO₂ ao óxido de ferro e óxido de cobre. Enquanto isso, o oxigênio é obtido principalmente pelas lacunas no próprio TiO₂ em vez das lacunas transferidas do TiO₂ ao óxido de ferro. Assim, os autores justificam a melhoria do desempenho fotocatalitico devido aos fluxos reversos de eletróns e lacunas, o que diminui consideravelmente a recombinação do par elétron-lacuna.

Outra característica do óxido de ferro observada por NGUYEN e WU (2008) é que a sua inserção no fotocatalisador suprimiu a formação de CH₄, favorecendo uma maior produção de etileno. HORI *et al.* (2002), averiguaram que na redução eletroquímica de CO₂ em eletrodos monocristal de cobre são obtidos vários tipos de produtos hidrocarbonetos, dependendo dos índices de Miller. Por exemplo, o etileno foi formado favoravelmente no plano (1 0 0), enquanto que o CH₄ foi produzido

predominantemente na superfície (1 1 1). NGUYEN e WU (2008) reportaram que o fotocatalisador Cu/TiO₂ produziu mais CH₄ do que etileno e Fe/TiO₂ mostrou relativamente baixa fotoatividade para produzir CH₄ em comparação com o homólogo Cu. Com isso, verifica-se que o óxido de ferro diminui substancialmente a fotoatividade para a produção de CH₄ e aumentou para C₂H₄, favorecendo o aumento da cadeia carbônica dos produtos na fotorredução catalítica de CO₂.

WANG *et al.* (2014) propuseram uma forma diferente de se empregar o óxido de ferro como promotor. Os autores prepararam óxidos mistos de CeO₂ e Fe₂O₃, em que o Fe₂O₃ fica disperso nos mesoporos da estrutura da céria obtida. Os principais produtos da fotorredução de CO₂ foram CO e CH₄ e os fotocatalisadores promovidos por Fe₂O₃ exibiram uma maior atividade do que a céria mesoporosa. A excelente eficiência fotocatalítica das amostras de CeO₂ promovidas por Fe foram atribuídas à sua baixa energia de bandgap, que pode absorver mais luz na região do visível. Também foi verificado pelos autores que a atividade fotocatalítica dos materiais promovidos com Fe₂O₃ cresceu com o aumento de concentração de Fe, sendo que o fotocatalisador que apresentou o melhor desempenho foi Mes-FeCe-20 (concentração molar de Fe igual a 20%), com formação de CO e CH₄ igual a 74,3 e 17,3 µmol/g_{cat} respectivamente (após 6 h de irradiação solar simulada).

2.3.3. Sistemas Reacionais

Como em qualquer processo químico, o desenvolvimento do projeto do reator para determinada reação envolve a avaliação de diversas variáveis. Com a reação de fotorredução catalítica de CO₂ com água não poderia ser diferente, principalmente por ser uma reação bastante complexa como dito anteriormente. Por se tratar de uma tecnologia inovadora, o estudo de diversos sistemas reacionais e fotorreatores consistem em um ramo das pesquisas deste tópico, sendo uma linha de extrema importância.

Segundo TAHIR e AMIN (2013) vários parâmetros são importantes no projeto de um fotorreator que não são considerados nos projetos de reatores químicos convencionais: seleção de fonte de irradiação, comprimento de onda emitido pela fonte, forma e dimensões, design de dispositivos irradiantes e materiais de construção, levando-se em consideração o procedimento de limpeza. Além de estratégias de desenho do reator e do fotocatalisador empregado, há uma série de variáveis de funcionamento que afetam a velocidade e extensão da reação química, incluindo a concentração de semicondutores, a superfície reativa, o tamanho de partícula de agregação, a concentração dos doadores dos pares eletrón-lacuna e intensidade de luz incidente. A fotorredução catalítica de CO₂ pode ser realizada usando tanto as radiações solar, como a ultravioleta, em vários tipos de reatores. O tipo de iluminação depende do fotocatalisador empregado, devido à energia de bandgap do material. A Tabela 2.10 apresenta os diferentes tipos de reatores fotocatalíticos e suas vantagens e desvantagens.

Como pode ser verificado na Tabela 2.10, há a possibilidade dos fotorreatores serem operados em sistemas contínuos e batelada. Entretanto, normalmente os reatores que trabalham em sistemas contínuos são fotorreatores onde o fotocatalisador encontra-se suportado, imobilizado. Já a maioria dos sistemas em batelada utiliza o fotocatalisador em suspensão, em um meio reacional em fase líquida.

Para se avaliar o tipo de fotorreator a ser empregado deve-se inicialmente estabelecer como será feita a fotorredução catalítica de CO₂, utilizando um sistema em fase gasosa ou líquida. As reações em fase gasosa geralmente são mais fáceis de serem desenvolvidas e analisadas por alguns fatores.

Como são adicionados CO₂ e água na forma de vapor consegue-se escolher sem muitos problemas a razão H₂O/CO₂ que se deseja trabalhar, pois se verificou que ela desempenha um papel importante na determinação da taxa de reação. Por exemplo, ANPO *et al.* (1992) verificaram que a taxa de formação de CH₄ aumentou à medida que a proporção de vapor de H₂O para CO₂ aumentou em um sistema com TiO₂ imobilizado em vidro Vycor. Para o outro produto principal, o CH₃OH, ele foi formado em maiores taxas quando a razão H₂O/CO₂ era de 5:1. Em relação ao fotocatalisador, não é necessário realizar a etapa de separação do fotocatalisador do meio reacional e ele pode ser usado na forma de pastilhas, pellets ou pó. No entanto, esse tipo de sistema apresenta menor área de contato entre a superfície do fotocatalisador e a fonte de irradiação. Com isso, são obtidos menores rendimentos quânticos do sistema.

Categoria	Tipo	Características	Limitações
	Reatores de lama	 São a combinação das fases de gás-liquido- sólido; 	 Separação do catalisador da mistura reacional é bastante difícil;
		 Podem ser operados em diferentes padrões de fluxo; 	 A superfície de contato é menos ativa para fotocatálise;
		 Os experimentos consistem em empregar o catalisador disperso na fase aquosa; 	 Redução de CO₂ com menores conversão e taxas de rendimento dos produtos
Trâc facac		 Pode ser operado em modo de leito fixo ou de fluxo contínuo. 	desejados.
1100 10000	Reatores	Catalisador e reagentes estão na forma de	Erosão por abrasão e desgaste das
		 Agitacão vigorosa de sólidos fazendo passar 	 Particulas do catalisador, Separação de catalisador da mistura é
		fluido, resultando em eficiência nas taxas de	bastante difícil;
		 transferência de calor e massa no leito; Alta atividade fotocatalítica. 	 Custo operacional de separação do catalisador;
			 Essa abordagem diminui a eficácia econômica do sistema.
	Reatores leito fixo	 Eles têm fases gás-catalisador ou líquido- catalisador; 	 Menor exposição do catalisador às irradiações de luz;
		Operado em modo de leito fluidizado ou leito	Baixo rendimento quântico e a
		 tixo; Catalisador é normalmente suspenso sobre o 	transterencia de massa na superticie do catalisador;
Duas fases		fundo do reator;	 Menor conversão e taxas de rendimento;
		 Alta conversão por unidade de massa de 	 Geralmente estudada em batelada devido
		catalisador;	à menor conversão de CO2;
		Catalisadores em pó ou em pastilhas podem	Em sistema de fluxo contínuo é difícil de
		sel usados.	nieun as taxas de renuminento dos produtos.

Tabela 2.10 - Resumo dos fotorreatores e suas vantagens e limitações. Adaptado de TAHIR e AMIN, 2013.

-	Tabela 2.10 – Resumo	o dos fotorreatores e suas vantagens e limitações. Adal	ptado de TAHIR e AMIN, 2013 (cont).
Categoria	Tipo	Características	Limitações
	Reator de leito fixo fluidizado	 Consiste em um leito de catalisador e fonte de radiação de lâmpadas coaxial; 	 Superfície inferior é uma interação entre o catalisador e a irradiação de luz;
		 O suporte é de vidro, particularmente quartzo, revestido com fina camada de fotocatalisador; 	 Superior de queda de pressão e erosões do catalisador;
		 Redutor de fluxo por gravidade e separados na parte inferior; 	 Menor conversão e taxas de rendimento; É difícil controlar as condições de
		 O CO₂ é injetado para cima, na direcção oposta; 	 operação; Manter a temperatura da reacção é difícil;
		 Alta taxa de transferência de massa e atividade catalítica. 	 Só é adequado em condições normais de temperatura e pressão.
	Reator anular	 Normalmente têm dois cilindros concêntricos, revestidos ou embalado com catalisador de comisonalitação: 	 Em tubos de leito fixo, há possibilidade de distribuição de luz irregular ou parcial;
Duas fases		 Fonte de luz pode ser localizada no centro ou 	 baixa area superiiciai para reações catalíticas;
		 em torno do reator; Nos tubos, a velocidade de cás é mais elevada 	 Em tubos de leito fixo, a queda de pressão é alta:
		para assegurar que os produtos sejam dessorvidos da superfície de forma eficaz.	 Menores conversão e taxas de rendimento.
	Fotorreato-res em fibra ótica	 Maior interação entre a superfície do catalisador e irradiação; 	 Baixa força de adesão do catalisador. Relativamente baixa área superficial para
		 Distribuição de luz eficiente ao longo do reator; Conversão e taxas de rendimento mais elevadas: 	 reações químicas; Apenas 20-30% do volume do reator é disponíval para fotocatálisa.
		 Baixa queda de pressão e maior estabilidade do catalisador. 	 Revestimento uniforme de fibras muito complexo.

Limitações	 Somente o tipo de fonte de luz refletor pode ser usado; Revestimento do catalisador dentro do canal exige métodos específicos, como o de dip coating; Menor adesão de catalisador na parede e pode ser corroído sob altas taxas de fluxo. 	
aracterísticas	 Distribuição eficiente da luz sobre a superfície do catalisador; Baixa queda de pressão; Alta estabilidade do catalisador; Mais adequado para sistemas gás-sólido, com isso, têm taxas alimentação mais elevadas. Maior conversão e seletividade. 	
Tipo	Fotorreator monolítico	
Categoria	Duas fases	

Tabela 2.10 - Resumo dos fotorreatores e suas vantagens e limitações. Adaptado de TAHIR e AMIN, 2013 (cont).

Os sistemas em fase líquida possuem algumas particularidades que merecem ser ressaltadas. Por se tratar de um meio líquido, e o CO₂ não apresentar uma boa solubilidade em água (0,145g_{CO2}/100g_{H2O} ou 0,76mL_{CO2}/mL_{H2O}), vários pesquisadores que desejam empregar esse tipo de sistema utilizam uma solução de NaOH. Segundo KANECO *et al.* (1998), o emprego da solução de NaOH tem duas finalidades, sendo a primeira justificada pela solução cáustica de NaOH dissolver mais CO₂ do que a água pura, e, portanto, o CO₂ fica retido na forma de carbontos e bicarbonatos. A segunda é que a alta concentração de OH⁻ na solução aquosa pode atuar como forte "capturador" de lacunas e radicais •OH, reduzindo assim a recombinação de pares elétron-lacuna. O equilíbrio que ocorre nesse tipo de meio reacional é representado nas Equações 2.19 e 2.20.

$$CO_2 + H_2O \leftrightarrow (H_2CO_3) \leftrightarrow H_+ + HCO_3^-$$
(2.19)

$$HCO_{3}^{-} \leftrightarrow H^{+} + CO_{3}^{2^{-}}$$
(2.20)

Isto significa que dependendo do valor do pH da solução, uma espécie diferente é dominante no meio. É importante ressaltar que estas espécies de CO₂ possuem características diferentes de adsorção em materiais semicondutores e isso pode resultar em diferentes vias de redução. Além do NaOH, alguns trabalhos também empregam outros meios reacionais como KHCO₃ (SLAMET *et al.*, 2005) e NaHCO₃ (LA TEMPA *et al.*, 2012).

Outro fator a se salientar é a concentração de fotocatalisador no meio reacional. KU *et al.* (2004) avaliaram essa variável no seu sistema reacional e utilizaram concentrações que variavam de 0,1 a 2,0 g/L. Eles verificaram que a concentração de 1 g/L apresentou a maior formação de produtos em comparação com os outros valores e, a justificativa dada por eles foi que quando em maiores quantidades no meio, o fotocatalisador impede que toda a massa seja fotoativada de forma igualitária.

Com o fotocatalisador em fase líquida, há a necessidade de separação deles ao término da reação, podendo não ser um procedimento simples. Outra desvantagem desse sistema é que a redução de CO₂ ocorre em menores conversões e taxas de rendimento dos produtos desejados.

A Tabela 2.11 lista alguns dos sistemas reacionais empregados em publicações sobre a fotorredução catalítica de CO₂.

Sistema Reacional	Ano	Pesquisador (es)
	1995	YAMASHITA et al.
	1998	ANPO et al.
	2002	IKEUE et al.
	2006	TAN et al.
	2007	LO et al.
Fase Gasosa –	2009	ZHANG et al.
Imobilizado	2010	TERAMURA <i>et al</i> .
Infomizado	2011	ZHOU et al.
	2011	ZHANG et al.
	2012	LI <i>et al</i> . (a)
	2012	WANG <i>et al</i> . (b)
	2013	MAHMODI et al.
	1999	SUBRAHMANYAM et al.
	2002	TSENG <i>et al</i> .
	2006	SASIREKHA <i>et al.</i>
	2009	KOČÍ <i>et al.</i>
Fase Líquida –	2009	ZHAO et al.
Fotocatalisador em	2011	YANG et al.
Suspensão	2011	TSAI <i>et al.</i>
	2012	WANG <i>et al.</i> (a)
	2012	LEE et al.
	2013	MATĚJOVÁ <i>et al.</i>
	2014	LIU et al.

Tabela 2.11 – Exemplos dos sistemas reacionais mais empregados para estudo da fotorredução de CO₂.

Para verificar a diversidade dos fotorreatores é interessante apresentar um tipo de cada sistema empregado na fotorredução catalítica de CO₂. GUAN *et al.* (2003) montaram uma instalação experimental, representada pela Figura 2.30 e empregaram como fotocatalisador Cu/ZnO/K₂Ti₆O₁₃. Este grupo de pesquisa montou um sistema em que utilizava a energia solar como fonte de irradiação e ela foi concentrada no reator empregando um espelho côncavo.

(1) Espelho côncavo;
 (2) Cela de reação,
 (3) Luz solar;
 (4) GPD tipo montagem equatorial;
 (5)Termopar;
 (6) Fotocatalisadores;
 (7) Lã de vidro;
 (8) Compensador de temperatura;
 (9) NR-1000 sistema de aquisição de dados;
 (10) Notebook.

Figura 2.30 – Desenho esquemático da instalação experimental para a fotorredução de CO₂ sob a luz solar concentrada utilizada por GUAN *et al.* (2003).

SASIREKHA *et al.* (2006) utilizaram um reator de vidro em um sistema batelada. A fonte de irradiação consistia em uma lâmpada de UV situada no centro do fotoreator. Para manter a temperatura do meio reacional constante, os pesquisadores colocaram uma camisa de resfriamento envolvendo a lâmpada, como pode ser verificado na Figura 2.31.

Figura 2.31 - Esquema do fotorreator utilizado por SASIREKHA et al. (2006).

Como exemplo de um trabalho que empregou um fotorreator com sistema batelada e fase gasosa, pode-se citar as pesquisas de TAN e colaboradores (2006). O fotocatalisador, no caso, pellets de óxido de titânio, são dispostos no fundo do fotorreator. A fonte de irradiação, uma lâmpada UV, encontra-se fora do reator, na parte superior como é mostrado na Figura 2.32.

Figura 2.32 – Esquemado fotorreator empregado por TAN et al. (2006).

Quanto a aplicação de fibras ópticas, verifica-se que WU e colaboradores (2005) tiveram resultados bastante interessantes para a fotorredução catalítica de CO₂ em meio gasoso. O esquema do fotorreator e sua imagem são mostrados na Figura 2.33. Em continuação ao trabalho publicado em 2005, WU (2009) utilizou fibras ópticas revestidas de TiO₂, Cu/TiO₂ e Ag/TiO₂ e obteve como produto principal o CH₃OH.

Figura 2.33 - Esquema do fotorreator utilizado por WU em 2005 e 2009.

Os reatores monolíticos surgiram como opção para a fotorredução catalítica de CO₂ recentemente. Segundo TAHIR e AMIN (2013), os avanços em fototecnologia mostraram que este tipo de reator tem várias vantagens em relação aos reatores comerciais. O fato da estrutura do monolíto possuir microcanais, sendo um material com alta área superficial, possibilita um aumento nas taxas de rendimento e conversão do CO₂ devido à maior interação da irradiação com o fotocatalisador. LIOU *et al.* (2011) empregou pela primeira vez um fotorreator monolítico para a fotorredução de CO₂ com água. A iluminação entre os canais foi feita a partir da inserção de fibras ópticas no interior destes canais. O fotocatalisador, Ni/InTaO₄, foi adicionado ao monolito a partir

da técnica de dip-coating e o principal produto obtido foi o CH₃OH. Um esquema do fotorreator e uma fotografia são apresentados na Figura 2.34.

Figura 2.34 – Esquema do reator monolítico e fibras de iluminação e fotografia do fotorreator iluminado internamente.

Um dos sistemas mais empregados, juntamente com os fotorreatores que utilizam o fotocatalisador imobilizado, é o sistema apresentado na Figura 2.35. São reatores do tipo anular que geralmente consistem em dois cilindros concêntricos em que os catalisadores são revestidos ou suspensos. A fonte de luz para a reação fotocatalítica pode ser localizada no centro ou em redor do reator.

Figura 2.35 – Sistemas reacionais em fase líquida, empregados por (a) TSENG *et al.*, 2002 e (b) KOČÍ *et al.*, 2009.

A Tabela 2.12 lista algumas das condições reacionais empregadas na fotorredução catalítica de CO₂, bem como tipo de sistema reacional e fotocatalisadores.

Pesquisador (es)	Fotocatalisador	Sistema	Fonte de luz	Temperatura	Produtos
YAMASHITA <i>et al.</i> , 1995	TiO₂/ZSM-5 e Y	Gasoso	75 W, λ > 280 nm	0 – 50 °C	CH₄, CH₃OH
ANPO <i>et al.</i> , 1998	Pt/TiO ₂ /MCM-48	Gasoso	75 W, λ > 280 nm	55 °C	CH4, CH3OH
SUBRAHMANYAM <i>et al.</i> , 1999	10% TiO ₂ ou ZnO imobilizados	Líquido – KHCO ₃	250 mW	25 °C	СН4, СН3ОН, С2Н5ОН
TSENG <i>et al.</i> , 2002	Cu/TiO ₂	Líquido - NaOH	8 W, 254 nm	50 °C	CH ₃ OH
IKEUE <i>et al.</i> , 2002	TiO2 imobilizado	Gasoso	100 W, 254 nm	50 °C	CH4, CH3OH
TAN <i>et al.</i> ,2006	TiO ₂ (P-25) pellets	Gasoso	1 W, 254 e 365 nm	I	CH4
LO <i>et al.</i> , 2007	TiO ₂ (P-25) e ZrO ₂ imobilizados	Gasoso	4 x 15W, 254 e 365 nm	43 °C	CH4, CO, C ₂ H ₆
KOČÍ <i>et al.</i> , 2009	TiO ₂ -NP	Líquido NaOH	8 W, 254 nm	25 °C	CH4, CH3OH, CO
KREJCÍKOVA <i>et al.</i> , 2012	Ag/ TiO ₂	Líquido NaOH	8 W, 254 e 365 nm	Ι	CH4, CH3OH
WANG <i>et al.</i> , 2013	CeO ₂ -TiO ₂	Gasoso	300 W, Xe	30 °C	CH4, CO

Tabela 2.12 – Condições reacionais empregadas para estudo da fotorredução de CO2.

2.3.4. Mecanismos Propostos

O mecanismo pelo qual a fotorredução catalítica de CO₂ procede ainda não está esclarecido, existindo algumas propostas na literatura (ANPO *et al.*, 1995; YAHAYA *et al.*, 2004; SASIREKHA *et al.*, 2006; LO *et al.*, 2007; ZHANG *et al.*, 2009), o que denota a complexidade da reação. As divergências existentes são geradas pela variedade de resultados obtidos nos estudos em que um mesmo tipo de fotocatalisador apresenta produtos diferentes em diferentes trabalhos. Um exemplo disso são os fotocatalisadores à base de TiO₂ promovidos por óxido de cobre, em que alguns estudos obtem como produto principal CH₄ e em outros, CH₃OH.

O mecanismo que envolve a quebra da água, a sua fotooxidação, é bem conhecido e estabelecido na literatura. As Equações 2.21 e 2.22 descrevem este mecanismo.

$$H_2O + h^+ \rightarrow {}^{\bullet}OH + H^+, E^0 = 2,32 V$$
 (2.21)

$$2H_2O + 4h^+ \rightarrow O_2 + 4H^+, E^0 = 0.82 V$$
 (2.22)

Em contraste com os estudos sobre a quebra da água, nos estudos sobre a fotorredução de CO₂ o foco reside principalmente no lado da redução, que envolve os elétrons. Isto reflete o fato de que a redução de CO2 é um processo mais complexo e difícil de realizar do que a geração de hidrogênio a partir de água. No entanto, o destino das lacunas fotogeradas, as quais também migram para a superfície (frequentemente mais rápido do que os elétrons) não pode ser ignorado. Na superfície, as lacunas podem reagir com água adsorvida ou íons hidróxido OH_{ads} para gerar oxigênio. Segundo MAEDA e DOMEN (2010), termodinamicamente este é um processo viável, porque a banda de valência da maioria dos semicondutores está situada bem abaixo do potencial de oxidação da água (Eq. 2.21 e 2.22), mas existem apenas alguns relatos de que isso tenha sido alcançado. Estes problemas são atribuídos à necessidade de quatro lacunas por molécula de oxigênio e as dificuldades na dessorção dos produtos. Uma alternativa para a produção de oxigênio é a formação de radicais hidroxila fortemente oxidantes, •OH. O ambiente oxidativo pode afetar o mecanismo de redução de CO₂, porque alguns produtos intermediários podem ser mais facilmente oxidados do que reduzidos, interrompendo assim, o processo antes de os produtos de redução de seis ou oito de elétrons serem obtidos.

Basicamente existem três mecanismos propostos na literatura para a fotorredução do CO₂, em que são denominados pelo principal intermediário: CO, CH₂O e glioxal. Após a ativação do CO₂ através da transferência de um elétron e a formação

do radical CO₂• ligado à superfície, esse radical passa por uma série de passos elementares que envolvem a transferência de um elétron, um próton ou hidrogênio radical (H⁺), bem como a quebra de ligações C–O e criação de ligações C–H. Vários dos intermediários são espécies de radicais, cuja recombinação em diferentes fases representa o número de caminhos possíveis e dos produtos finais, como pode ser verificado nos três mecanismos apresentados na Figura 2.36.

Figura 2.36 – Mecanismos para a fotorredução catalítica de CO₂: (a) CH₂O, (b) CO e (c) glioxal.
Segundo GATTRELL e GUPTA (2006), as diferenças entre os possíveis mecanismos começam a partir do modo como o radical CO₂• interage com a superfície de TiO₂. A ligação monodentada através de um dos átomos de oxigênio a um átomo de titânio ou a ligação através de um átomo de carbono com um átomo de O da superfície geralmente favorece a formação do radical carboxila •COOH. Outra situação, a ligação bidentada do CO₂ através da ligação de ambos os átomos de oxigênio a dois átomos de Ti resulta na fixação preferencial de um átomo de hidrogênio no átomo de carbono, o que leva à formação de um radical formiato, ligado em um modo bidentado.

De acordo com o mecanismo (a) da Figura 2.36, os radicais carboxila recombinam com um radical de hidrogênio para formar o CH₂O₂. Segundo GATTRELL *et al.* (2006), esta reação é favorecida num meio com uma elevada constante dielétrica, tal como água. O CH₂O₂ aceita um novo H[•] para formar um radical dihidroximetil, que se reage com outro H[•] para a formação de formaldeído. Dois passos de redução a mais e é obtido o CH₃OH, que é ainda reduzido mais duas vezes para a produção do CH₄. Há duas observações importantes sobre este mecanismo: a primeira é que o CH₂O e CH₃OH são etapas intermediárias no processo, e não produtos secundários; a segunda é que a clivagem de ligações C–O ocorre muito tarde no processo. Este mecanismo não foi verificado experimentalmente, sendo o CH₂O e o CH₃OH relatados como produtos em alguns estudos, mas os intermediários de radicais específicos não foram detectados. KOČÍ *et al.* (2010) avaliaram os dados experimentais da fotorredução de CO₂ no que diz respeito a um modelo de cinética que considera o CH₂O como intermediário. O estudo concluiu que os perfis de formação do CH₄ e do CH₃OH não se correspondem a uma formação consecutiva, como é proposto no mecanismo.

No mecanismo que propõe o carbeno como intermediário, mostrado na Figura 2.36 (b), a ligação de H[•] com um átomo de oxigênio do radical CO₂[•] adsorvido conduz a uma clivagem da ligação entre este átomo de oxigênio e o átomo de carbono. Segundo HABISREUTINGER *et al.* (2013), esse mecanismo é favorecido se o CO₂[•] está ligado ao semicondutor através do átomo de carbono. Uma molécula de CO adsorvida no fotocatalisador é obtida, e em seguida ela é reduzida por dois elétrons, levando assim a formação de resíduo de carbono sobre a superfície. ANPO *et al.* (1995) detectaram sinais que correspondem aos radicais de carbono por espectroscopia de Ressonância Paramagnética Eletrônica. Estes radicais podem combinar subsequentemente com até quatro radicais H[•], formando CH₄. Eventualmente, se o radical metilo (•CH₃), ao invés de reagir com outro H[•] reagir com um radical hidroxilo, então há a formação de CH₃OH. Isto significa que o CH₃OH é um produto secundário, não um intermediário. É interessante notar que a combinação de CO com CH₃OH e/ou CH₄ é um conjunto

bastante comum de produtos, que são observados em muitos estudos na literatura. Alguns autores afirmam que o CH₃OH e CH₄ são formados competitivamente a partir de radicais metila, com o favorecimento do produto dependendo da hidrofilia dos semicondutores e da quantidade de água no sistema. TAN *et al* (2008) e KOČÍ *et al* (2010) conseguiram ajustar os resultados experimentais de formação de CH₃OH e CH₄ a um modelo cinético considerando o mecanismo do carbeno como intermediário. Estes resultados mostram que este mecanismo se apresenta mais plausível do que aquele que propõe o CH₂O como intermediário.

O mecanismo apresentado na Figura 2.36 (c) foi proposto por SHKROB *et al.* (2012), que consiste em uma versão simplificada de um mecanismo alternativo que envolve um número de compostos C₂ em uma complexa sequência de reações. Especificamente, os autores sugeriram que os radicais formila se dimerizam para se obter o glioxal. Este composto C₂ tem uma afinidade considerável a elétrons devido à sua conjugação π , e, portanto, pode ser facilmente reduzido e permitindo que outros compostos sejam obtidos. Os autores investigaram outros potenciais intermediários C₂ tais como o ácido oxálico, o ácido glioxílico, e ácido glicólico. Eles concluíram que estes compostos não poderiam plausivelmente levar à formação de radicais metilo por causa da sua predisposição para a oxidação. O complexo mecanismo proposto evita intermediários que bloqueiam o processo antes de atingir o CH₄ e a reciclagem do CO₂, dois fatores responsáveis pela baixa eficiência quântica do processo de fotorredução de CO₂. Com isso, a via glioxal aparenta ser um passo importante na compreensão do mecanismo da reação.

Além dos possíveis caminhos reacionais apresentados acima, como se trata de uma reação fotocatalítica, quando se deseja avaliar um mecanismo também é necessário levar em consideração os potenciais redox de cada etapa. A Tabela 2.13 mostra os potenciais termodinâmicos de várias reações em pH = 7. Quando se é estabelecido o produto de interesse na reação, deve se escolher um fotocatalisador que possua uma banda de condução abaixo (mais negativa) que o seu respectivo potencial redox. Por exemplo, para se reduzir o CO₂ a CH₄ são necessários 8 elétrons e 8 radicais H⁺, além de um fotocatalisador em que suas bandas de valência e condução englobem o potencial de -0,24 V vs NHE.

Devido à complexidade do sistema, o mecanismo do processo é também o assunto de diversos estudos, normalmente com base em uma combinação de métodos experimentais e computacionais. Esses estudos tentam responder a questões ainda não resolvidas sobre os caminhos químicos de redução de CO₂ que determinam a

seletividade de toda a reação. Outros aspectos do mecanismo que são importantes e de extrema relevância para uma compreensão mais profunda do processo são:

- Dinâmica da transferência de carga dentro dos semicondutores e de suas interfaces com o metal dos co-catalisadores;
- Efeito da nanoestrutura do fotocatalisador e do co-catalisador utilizado;
- Impacto da escolha do metal sobre o resultado do processo.

Equações Químicas	Potencial Termodinâmico (V vs NHE)
$2H^+ + 2e^- \rightarrow H_2$	- 0,41
$CO_2 + 2H^+ + 2e^- \rightarrow HCOOH$	- 0,61
$CO_2 + 4H^+ + 4e^- \rightarrow HCHO + H_2O$	- 0,52
$CO_2 + 2H^+ + 2e^- \rightarrow CO + H_2O$	- 0,48
$CO_2 + 6H^+ + 6e^- \rightarrow CH_3OH + H_2O$	- 0,38
$CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + H_2O$	- 0,24
$H_2CO_3 + 2H^+ + 2e^- \rightarrow HCOOH + H_2O$	- 0,166
$H_2CO_3 + 4H^+ + 4e^- \rightarrow HCHO + 2H_2O$	- 0,050
$H_2CO_3 + 6H^+ + 6e^- \rightarrow CH_3OH + 2H_2O$	+ 0,044
$2CO_3^{2-} + 4H^+ + 2e^- \rightarrow C_2O_4^{2-} + 2H_2O$	+ 0,478
$2\text{CO}_3^{2^-} + 3\text{H}^+ + 2e^- \rightarrow \text{HCOO}^- + 2\text{H}_2\text{O}$	+ 0,311
$2CO_3^{2-} + 8H^+ + 6e^- \rightarrow CH_3OH + 2H_2O$	+ 0,209
$C_2O_4^{2^{-}} + 2H^+ + 2e^{-} \rightarrow 2HCOO^{-}$	+ 0,145
$HCOO^{-} + 5H^{+} + 4e^{-} \rightarrow CH_{3}OH + 2H_{2}O$	+ 0,157

Tabela 2.13 – Potencial termodinâmico para diversas reações, em pH = 7.

2.4. Considerações Finais

O crescente interesse em diminuir as emissões de poluentes na atmosfera traz um conjunto de benefícios. O primeiro, e mais evidente, é a diminuição da poluição atmosférica, que tem sido incentivado devido às grandes mudanças climáticas ocorridas no planeta. O segundo benefício é o reaproveitamento de um poluente, de um subproduto, como fonte de matéria-prima para processos que possam gerar compostos de alto teor agregado. Cada vez mais se busca por processos que sejam sustentáveis e, principalmante, economicamente viáveis. A possibilidade de se utilizar o CO₂ como matéria-prima para a produção de combustíveis, por exemplo, é extremamente animadora pois o ciclo de carbono se tornaria ecologicamente correto.

Considerando todo o panorama mostrado na Revisão Bibliográfica, fica evidente o potencial da fotorredução de CO₂ e a necessidade de se aprofundar as pesquisas sobre o tema. O principal foco das pesquisas nos últimos anos vem sendo a melhoria do desempenho fotocatalítico dos materiais, aumentando o rendimento quântico da reação e promovendo um direcionamento para os produtos de interesse. Para isso, o fotocatalisador vem sendo promovido por metais ou óxidos a fim de se modificar as propriedades eletrônicas do material resultante, proporcionando um melhor desempenho. Dentre outros pontos de interesse, pode-se citar o desenvolvimento de fotocatalisadores que podem ser ativados com a luz solar, o aperfeiçoamento de unidades reacionais e o estudo da influência de variáveis, como temperatura e pressão, no sistema reacional.

Analisando as lacunas existentes sobre o assunto, a principal delas é o estudo do trânsito de elétrons no fotocatalisador. Diversos promotores são empregados com o intuito de se melhorar este parâmetro, mas poucos são os relatos em relação ao teor de promotor, sobre qual seria um teor máximo deste para que se atinja uma maior fotoeficiêcia.

Além disso, faltam estudos que comparem a localização dos promotores. Muitos pesquisadores verificam que a inserção de um elemento metal ou não-metal na estrutura do fotocatalisador influencia diretamente em sua energia de bandgap. Ou que a adição de um promotor na superfície do fotocatalisador melhora significativamente o desempenho fotocatalítico. No entanto, não há estudos que confrontem o desempenho de um mesmo fotocatalisador, com os mesmos promotores, adicionados de formas distintas no fotocatalisador base.

Portanto, espera-se que este trabalho consiga preencher uma lacuna existente, sanando algumas das inúmeras dúvidas que persistem no campo da pesquisa sobre a fotorredução catalítica de CO₂.

CAPÍTULO 3

- Metodologia -

3.1. Preparação dos fotocatalisadores

A Tabela 3.1 apresenta os reagentes que foram utilizados em todas as sínteses de fotocatalisadores neste trabalho.

Reagente	Fórmula Química	Origem	Pureza (%)	Massa Molar (g/mol)
Isopropóxido de titânio	Ti(OCH(CH ₃) ₂) ₄	Aldrich	97,0	284,26
Nitrato de ferro	Fe(NO ₃) ₃ .9H ₂ O	Acros	99,0	404,00
Nitrato de cobre	$Cu(NO_3)_2.3H_2O$	Merck	99,5	241,55
Carbonato de Sódio	Na ₂ CO ₃	Vetec	99,5	105,99
Ácido Cítrico (AC)	C ₆ H ₈ O ₇	Vetec	99,5	192,13
Etilenoglicol (EG)	$C_2H_6O_2$	Tedia	99,5	62,07

Tabela 3.1 – Reagentes que foram empregados na preparação dos fotocatalisadores.

3.1.1. Preparação do TiO2 pela hidrólise lenta do isopropóxido de titânio

O método de preparação empregado para a obtenção do TiO₂ foi hidrólise lenta do isopropóxido de titânio (Ti(OCH(CH₃)₂)₄). Todo o procedimento ocorre a temperatura ambiente, cerca de 25 °C, conforme descrito por PAULINO (2011). Devido à instabilidade do reagente na presença de oxigênio, a reação foi realizada em atmosfera inerte, como mostrado na Figura 3.1, empregando uma câmara plástica preenchida previamente com N₂.

Figura 3.1 – Preparação do TiO₂ em atmosfera inerte pelo método de hidrólise lenta do isopropóxido de titânio.

A obtenção do TiO₂ se dá através da reação apresentada na Equação (3.1).

$$Ti(OCH(CH_3)_2)_4 + 2H_2O \rightarrow TiO_2 + 4CH(CH_3)_2OH$$
(3.1)

O precipitado obtido foi filtrado, lavado e seco em estufa a 120°C por 12h. Posteriormente, o precipitado foi calcinado em duas temperaturas diferentes, 350 e 550 °C, durante 6h com taxa de aquecimento de 10°C/min e fluxo de ar (30 mL/min). O TiO₂ resultante deste procedimento foi nomeado Ti-HL, com a respectiva temperatura de calcinação.

Para os fotocatalisadores Cu/Ti-HL e CuFe_x/Ti-HL, escolheu-se utilizar como fotocatalisador base o Ti-HL calcinado a 350°C. A justificativa da sua escolha pode ser vista no Apêndice A. Assim, a nomenclatura Ti-HL sempre será referente ao Ti-HL calcinado a 350°C.

3.1.2. Preparação do fotocatalisador Cu/Ti-HL

Foi-se utilizado o material Ti-HL como fotocatalisador inicial para a impregnação. O teor nominal do promotor óxido de cobre foi de 2% (%m/m), estabelecido após investigação da literatura e determinado em trabalhos do grupo (FERREIRA NETO, 2015).

O material foi preparado por impregnação seca e o Cu(NO₃)₂.3H₂O foi a fonte precursora do óxido de cobre. Após a preparação, o material foi seco em estufa por 12h a 120°C e calcinado a 350°C por 3 horas em um fluxo de ar (30 mL/min). A nomeclatura adotada para este fotocatalisador foi Cu/Ti-HL.

3.1.3. Preparação dos fotocatalisadores co-precipitados

Os fotocatalisadores co-precipitados foram preparados pelo método de deposição co-precipitação empregado por BEHRENS (2009) e PAULINO (2011). O TiO₂ utilizado como base para esta preparação foi o Ti-HL. A preparação foi realizada em meio aquoso a 65°C e com pH = 7, sendo este mantido constante pela adição do agente precipitante Na₂CO₃, 1M.

A adição dos sais precursores foi realizada com o auxílio de uma bomba peristáltica e o pH verificado por um pHmetro. Após a adição dos sais precursores, o material foi envelhecido durante 2 horas nas mesmas condições reacionais. Em seguida, o material foi filtrado, lavado e seco em estufa a 120°C por 12h, e posteriormente, calcinado a 350 °C por 3 horas em fluxo de ar (30 mL/min).

Os sais precursores dos promotores cobre e ferro foram o Cu(NO₃)₂.3H₂O e o Fe(NO₃)₃.9H₂O, respectivamente. O teor nominal de óxido de cobre é de 2% (%m/m). Os teores nominais do promotor de ferro, *x*, são de 5, 10 e 20% (%m/m) e a nomeclatura adotada para estas amostras foi CuFe_x/Ti-HL:

 $x = 5\% \rightarrow \text{CuFe}_5/\text{Ti-HL}$ $x = 10\% \rightarrow \text{CuFe}_{10}/\text{Ti-HL}$ $x = 20\% \rightarrow \text{CuFe}_{20}/\text{Ti-HL}$

3.1.4. Preparação dos óxidos mistos à base de óxidos de titânio e ferro

O método de preparação empregado para a obtenção destes materiais é denominado de método de Pechini, também conhecido como Rota do Complexo Polimerizável (RCP). Segundo QUINELATO *et al.* (2001), esse método oferece algumas vantagens na síntese de óxidos mistos como:

- Controle preciso e direto da estequiometria;
- Mistura uniforme dos multicomponentes em escala molecular;
- Homogeneidade microestrutural;
- Menor temperatura de cristalização de uma fase pura;
- Simplicidade do método.

Este método consiste na complexação dos cátions metálicos do material desejado a partir de um ácido α-hidroxicarboxílico, preferencialmente o ácido cítrico. Após essa complexação utiliza-se um polihidroxiálcool, normalmente o etilenoglicol,

para que ele reaja com os quelatos, formando éster e água. Ainda segundo QUINELATO *et al.* (2001), quando a mistura é aquecida, ocorre uma reação de poliesterificação na solução líquida, que resulta em um sol homogêneo, em que os cátions estão uniformemente distribuídos na matriz polimérica orgânica. Removendo o excesso de solvente desse sol, há a formação de uma resina intermediária, que dá origem aos óxidos após uma adequada etapa de tratamento térmico. A Figura 3.2 mostra o esquema da reação para a obtenção dos fotocatalisadores.

Figura 3.2 – Método de Pechini aplicado à síntese dos óxidos Ti-MP e Fe_xTi_{1-x}.

Inicialmente foi obtido o citrato de titânio pela dissolução de isopropóxido de titânio em uma solução aquosa de ácido cítrico 0,5M (AC) a 60°C. A adição do isopropóxido de titânio foi realizada em pequenas alíquotas, sob agitação de 300 rpm, com a espera da completa dissolução antes de ser adicionada uma nova fração, a fim de se evitar qualquer formação de TiO₂. Depois de formado o citrato de titânio, foi adicionada a solução de 0,2M de Fe(NO₃)₃.9H₂O e o meio reacional permaneceu nesta condição por 30 minutos, também sob agitação.

O ácido cítrico tem função complexante e foi usado em excesso (10%) para assegurar a completa complexação dos cátions metálicos, 1,1:1 (AC:M). Em seguida adicionou-se o etilenoglicol (EG) na razão AC:EG de 3:2 e a temperatura do sistema foi elevada a 90°C, mantendo-a constante até a obtenção de uma solução com o menor teor de água possível. Nesta condição, ocorre a reação de poliesterificação entre o complexo metálico e o etilenoglicol, produzindo uma resina polimérica e água.

Após a preparação da resina, ela foi seca em estufa por 12 horas a 120ºC para eliminação da água produzida na reação. O polímero seco foi então macerado com gral e pistilo e submetido à etapa de calcinação.Em todas as preparações, objetivava-se produzir 5g do fotocatalisador final. A etapa de tratamento térmico destes fotocatalisadores foi determinada a partir de caracterizações como análise termogravimétrica e difração de raios X. Estas avaliações e as condições de tratamento utilizadas são apresentadas no Capítulo 4, item 4.1.

Os fotocatalisadores possuem diferentes teores mássicos de Fe: 5, 10 e 20% (%m/m). A nomeclatura desses materiais foi denominada Fe_xTi_{1-x} , em que *x* é o teor mássico de Fe e o TiO₂ obtido foi nomeado de Ti-MP:

$$\begin{split} & \mathsf{Fe}_5\mathsf{Ti}_{95}\mathsf{O}_{2\text{-}\delta} \to \mathsf{Fe}_5\mathsf{Ti}_{95} \\ & \mathsf{Fe}_{10}\mathsf{Ti}_{90}\mathsf{O}_{2\text{-}\delta} \to \mathsf{Fe}_{10}\mathsf{Ti}_{90} \\ & \mathsf{Fe}_{20}\mathsf{Ti}_{90}\mathsf{O}_{2\text{-}\delta} \to \mathsf{Fe}_{20}\mathsf{Ti}_{80} \end{split}$$

3.1.5. Preparação dos fotocatalisadores Cu/Fe_xTi_{1-x}

Para a incorporação do óxido de cobre nos óxidos preparados pelo método de Pechini, foi feita a impregnação seca utilizando o $Cu(NO_3)_2.6H_2O$ como precursor e o teor para todos os fotocatalisadores é de 2% (%m/m). A nomeclatura desses materiais é Cu/Ti-MP e Cu/Fe_xTi_{1-x}.

Após a impregnação e secagem em estufa a 120 °C e 12h, o material foi calcinado a 350 °C por 3 horas em um fluxo de ar (30 mL/min).

3.2. Caracterizações Físico-químicas dos fotocatalisadores

A seguir, são apresentadas as técnicas de caracterização que foram empregadas para o estudo dos fotocatalisadores preparados.

3.2.1. Análise Termogravimétrica

Análises de TG-DTA foram realizadas a fim de se estudar o comportamento térmico das resinas poliméricas secas, precursoras dos materiais Ti-MP e Fe_xTi_{1-x} produzidas pelo método de Pechini. Desta forma, foi possível determinar um tratamento térmico adequado para estes materiais.

Foi utilizada uma termobalança da marca Hitachi, modelo STA7200 para a realização das análises. As amostras foram aquecidas da temperatura ambiente a 1000°C à taxa de 2°C/min, sob vazão de 50 mL/min de ar sintético.

3.2.2. Caracterização Textural

As técnicas de caracterização textural baseiam-se na propriedade que têm as moléculas de um gás de serem atraídas por uma superfície sólida de tal forma que a concentração de moléculas na interface do sólido é maior do que na fase gasosa. Este enriquecimento na superfície é chamado de adsorção. Assim, busca-se analisar a adsorção física, que se caracteriza por envolver interações adsorvente/adsorbato relativamente fracas e ser pouco seletiva. Embora qualquer gás condensável possa ser usado, as medidas são mais confiáveis empregando moléculas pequenas e esféricas, e o adsorbato normalmente empregado é o N₂. O princípio básico é variar a pressão parcial do N₂ gasoso em contato com a amostra e medir a quantidade de gás adsorvido.

Para a caracterização dos fotocatalisadores produzidos, foram feitas análises de área específica (método BET), volume de poros (método BJH, entre 17 e 3000 Å) e tamanho médio de poro (4V/A pelo método BET). A técnica empregada foi adsorção física de N₂, utilizando um equipamento Micromeritics ASAP 2010. Primeiramente, as amostras foram pré-tratadas sob vácuo a 300°C, durante 12h. Após resfriadas e pesadas, prosseguiu-se a obtenção das isotermas pelo método volumétrico, com a adsorção de N₂ a -196°C.

3.2.3. Espectroscopia de Fluorescência de Raios X (XRF)

Esta análise utiliza uma fonte geradora de raios X, onde a radiação X tem energia suficiente para expulsar elétrons dos subníveis mais internos de um átomo. Deste modo, quando esta radiação é absorvida pela amostra, causa a remoção dos elétrons (elétron primário) dos subníveis mais internos dos átomos formando espécies excitadas. Estas, após um breve período de tempo, devem retornar ao estado fundamental, o que ocorre quando um elétron de um subnível mais externo ocupa a vacância formada. O processo é acompanhado de liberação de energia sob a forma de radiação X ou ejeção de um segundo elétron. As radiações emitidas, que apresentam comprimentos de onda característicos dos elementos que compõe a amostra, são coletadas e a medida dos seus comprimentos de onda é feita fazendo-se com que elas incidam sobre um cristal

analisador conhecido e medindo-se os ângulos de difração. Com isso é possível a identificação e a quantificação dos elementos presentes na amostra, sendo necessário, contudo, o uso de padrões apropriados.

As análises de XRF foram realizadas em um aparelho Rigaku, modelo RIX 3100, com tubo de Rh, a fim de comparar o teor real de cada óxido com o teor nominal e detectar possíveis impurezas provenientes dos métodos de preparação. Todas as amostras foram pastilhadas e analisadas qualitativamente e quantitativamente.

3.2.4. Difração de Raios X (XRD)

A difração de raios X baseia-se na reflexão de ondas eletromagnéticas incidentes por planos sucessivos de átomos em um cristal. Ao incidir um feixe de raios X segundo um ângulo θ, como mostrado na Figura 3.3, os diferentes planos ou camadas de átomos dos cristais refletem parte da radiação, sendo o ângulo de reflexão igual ao ângulo de incidência. Para que as ondas refletidas pelos diferentes planos cristalinos estejam em fase, isto é, para que seja máxima a intensidade da radiação refletida, é necessário que se verifique uma certa relação entre o comprimento de onda da radiação, a distância entre os planos dos cristais (distância interplanar) e o ângulo de incidência (lei de Bragg).

Figura 3.3 – Condição de "reflexão" de Bragg.

A condição para difração em fase é dada pela Lei de Bragg:

$$n\,\lambda = 2d_{hkl}sen\theta\tag{3.2}$$

Em que: θ = ângulo entre o feixe incidente e o plano em questão;

 λ = comprimento de onda característico de radiação incidente;

 d_{hkl} = distância interplanar para um dado conjunto de planos de reflexão identificados pelos índices de Miller (h, k, l) (característico do sólido);

n = ordem da difração.

O princípio básico da técnica é variar θ até que a Lei de Bragg seja satisfeita. Isto pode ser feito girando o cristal ou usando um grande número de cristais orientados ao acaso (método do pó). Assim, para um dado plano caracterizado por d_{hkl} existirá um número significativo de cristais nos quais este plano estará orientado em relação ao feixe segundo um ângulo θ adequado.

Os tamanhos de cristalito serão calculados através da equação de Scherrer (BOND, 1987):

$$d = \frac{k.\lambda}{\cos(\theta).L} \tag{3.3}$$

Em que *d* é o tamanho médio de cristalito e possui a mesma unidade de λ , k é uma constante (constante de Scherrer), que depende da forma do cristalito (assumida 0,893), λ é o comprimento de onda utilizado na análise, θ representa o ângulo de difração, dado em radianos, e L é a largura do pico à meia altura.

Neste trabalho, foi utilizado um aparelho Rigaku modelo Miniflex com radiação de cobre (CuKα = 1,54178 Å). Para as amostras, os valores de 20 variaram de 10° a 80°, com passo de 0,05° e tempo de contagem de 1 segundo. Através dos difratogramas, foi possível avaliar as fases cristalinas presentes no material e a existência de possíveis fases segregadas dos óxidos, sendo elas identificadas com auxílio do programa JADE 5.0, comparando os mesmos com o banco de dados PC-PDF (Powder Diffraction File – PDF para PC).

Para quantificação das fases presentes no material preparado foi utilizado o software "*FullProof*", o qual consiste em estimar cada estrutura presente sendo necessário fornecer ao programa os parâmetros de rede de cada estrutura identificada qualitativamente no difratograma de raios X.

3.2.5. Microscopia Eletrônica de Varredura com detectores de Energia Dispersiva de Raios X (FEG-EDS)

A microscopia eletrônica de varredura com detectores de energia dispersiva de raios X é particularmente adequada para o estudo da morfologia de sólidos. As análises de microscopia eletrônica de varredura por emissão de campo (FEG-SEM) foram realizadas num microscópio da FEI Company, modelo Quanta 400, com tensão máxima

de operação de 30kV e resolução nominal de 1,2 nm em alto vácuo em SE (elétrons secundários). A tensão utilizada para a maior parte das análises dos materiais estudados foi de 20kV e as imagens foram adquiridas utilizando o detector de SE. As ampliações variaram de 5000x a 100000x. Detalhes sobre as condições de operação para a aquisição das imagens, tais como tamanho de "spot" e distância de trabalho (WD), bem como sobre as ampliações das regiões observadas estão disponíveis na barra de escala das micrografias. Nenhuma etapa de pré-tratamento foi necessária para a obtenção das imagens.

Análises de microscopia eletrônica de varredura com detectores de energia dispersiva de raios X foram realizadas como medidas semi-quantitativas da composição química superficial e avaliação da dispersão dós óxidos de cobre e ferro na superfície dos fotocatalisadores.

3.2.6. Espectroscopia de Reflectância Difusa no UV-vis (DRS)

A reflexão difusa ocorre em superfícies não totalmente planas, podendo o substrato ser contínuo ou fragmentado (na forma de pó). Neste processo de reflexão o feixe incidente penetra a superfície da amostra interagindo com a matriz, retornando à superfície da mesma, após absorção parcial e múltiplos espalhamentos. Na reflexão difusa, a radiação incidente entra em contato diversas vezes com as partículas da amostra sendo consequentemente atenuada. Com isto, a radiação que sofre a reflexão difusa fornece informações qualitativas e quantitativas, sobre a natureza química da amostra analisada. As informações qualitativas dizem respeito à capacidade de que cada substância da amostra tem de absorver energia, em determinada região do espectro, para promoção de vibração entre dois centros (átomos) que compõem determinada ligação.

A análise qualitativa destas informações foi realizada pela função de Kubelka Munk (Equação 4.3) que relaciona os espectros de reflectância difusa com a concentração de cada molécula presente na amostra.

$$f(R_{\infty}) = \frac{(1-R_{\infty})^2}{2R_{\infty}}$$
 (3.4)

onde $R_{\infty} = \frac{1}{10^{absorbância}}$, é a reflectância difusa.

Além disso, o espectro proveniente do DRS pode ser utilizado para o cálculo da bandgap do material. Para tal, o espectro obtido Absorbância x Comprimento de Onda foi transformado em Função de Kubelka Munk modificada $[(F(R)hu)^n] \times E$, (n = 1/2, 3/2, 2 ou 3), que é chamado de gráfico de Tauc. Deste espectro resultante calculou-se a energia de bandgap a partir da interseção da extrapolação linear do espectro com a abscissa. O comprimento de onda (λ) está ligado à energia necessária a um elétron para que ele passe da banda de valência para a banda de condução, sendo esta energia denominada bandgap. Encontrado o valor do comprimento de onda, a bandgap foi calculada pela Equação 3.5:

$$E = \frac{1239.8}{\lambda} \quad [eV] \tag{3.5}$$

As amostras foram analisadas em um espectrofotômetro Varian, Cary modelo 5 UV-Vis-NIR. Os espectros foram obtidos a temperatura ambiente, sendo utilizado o sal BaSO₄ como referência e a faixa espectral estudada foi de 200 a 800 nm. Com exceção de uma secagem em estufa a 100°C, as amostras não foram submetidas a nenhum prétratamento. Para o cálculo da bandgap dos materiais foi considerado uma transição permitida direta, em que o valor de n = $\frac{1}{2}$.

3.2.7. Espectroscopia Fotoeletrônica de Raios X (XPS)

A análise de XPS consiste em incidir sobre a amostra raios X de alta energia e, assim, medir os espectros de energia cinética e intensidade dos elétrons primários ejetados. Isso possibilita a determinação da energia de ligação característica dos elétrons de cada elemento. Com exceção de H e He, todos os elementos podem ser detectados por XPS. Como a profundidade de escape dos elétrons ejetados dos sólidos é pequena, somente uma camada de alguns ângstrons (alguns átomos) próxima à superfície externa do cristal pode ser analisada. Portanto, esta é uma técnica de análise superfícial.

A análise por XPS fornece informações sobre o estado de oxidação dos elementos presentes, a partir da energia de ligação determinada. Foi utilizado um analisador de elétrons marca Thermo Scientific (ESCALAB 250Xi) e com radiação Al Kα (1486,61 eV). Os espectros adquiridos foram processados no programa CasaXPS versão 2.3.15 e foi utilizada a região do C 1s (284,6 eV) como valor de referência. Outros parâmetros utilizados nas análises são apresentados na Tabela 3.2.

Orbitais	Energia de Ligação (eV)	Passo (eV)	Energia de Passagem (eV)
Geral	0 – 1300	1	100
Cu 2p	925 – 970	0,1	40
Fe 2p	700 – 740	0,1	40
Ti 2p	448 – 475	0,1	40
O 1s	525 – 545	0,1	40
C 1s	280 – 298	0,1	40

 Tabela 3.2 – Parâmetros de varredura para as análises de XPS.

3.3. Avaliação dos fotocatalisadores na fotorredução catalítica de CO₂ com água

Os testes de desempenho dos fotocatalisadores na reação de fotorredução catalítica de CO₂ com água foram realizados em uma unidade localizada no laboratório de Núcleo de Catálise/PEQ/COPPE/UFRJ. A Figura 3.4 demonstra um esquema da disposição dos equipamentos na unidade reacional.

Figura 3.4 – Esquema da unidade de fotorredução catalítica de CO₂.

Esta unidade foi montada ao longo do trabalho de mestrado desenvolvido anteriormente. Ela é constituída de um fotorreator batelada, em um sistema reacional em fase líquida com o fotocatalisador suspenso em solução de NaOH 0,1M e concentração de fotocatalisador no meio reacionalde 1 g/L. Em relação as condições reacionais, a temperatura de reação foi 25°C e pressão de 1 atm.

O fotorreator cilíndrico com parede externa de vidro pyrex e interna de quartzo possui volume interno de 1180 mL e foi iluminado por uma lâmpada UVC de vapor de Hg de baixa pressão (Puritec 18W, 254 nm, OSRAM) situada no centro do reator, como pode ser verificado na Figura 3.5.

Figura 3.5 – Esquema e foto do reator fotocatalítico.

A entrada de gás foi feita por um tubo na parte superior do reator com extremidade próxima ao fundo. CO₂ com alto teor de pureza (99,99%, LINDE) foi usado para evitar qualquer contaminação de hidrocarbonetos. Antes da iluminação, CO₂ foi borbulhado com um fluxo constante (50 mL/min) através do meio reacional por 20 minutos para limpar o meio e saturar a solução com o reagente. Para evitar a sedimentação do fotocatalisador foi utilizado um agitador magnético. Um banho de refrigeração (Lauda PROLINE RP 854) manteve constante a temperatura do meio reacional.

Amostras da fase gasosa e líquida foram retiradas regularmente ao longo das 24 horas de reação, para monitoramento dos produtos gerados. A amostragem foi feita a cada duas horas de reação para análise dos produtos gasosos. Para amostragem líquida, foram retiradas alíquotas de 1 mL também a cada duas horas de reação, com um intervalo entre as 12h até as 20h de reação. Todas as amostras foram analisadas em um cromatógrafo a gás, utilizando os detectores de condutividade térmica e ionização de chama. Para análise das amostras gasosas foram empregadas duas

colunas capilares, Molsieve 5Å e PoraPlot-Q. Os produtos da fase líquida foram analisados por uma coluna capilar CP-Wax 52 CB.

Com os dados de formação de produtos foram calculados os rendimentos quânticos da fotoconversão de CO₂. Este cálculo leva em consideração o número de elétrons necessários para a formação de determinado produto, a quantidade formada desse produto em determinado tempo estabelecido para o cálculo e o número de mol de fótons absorvidos pelo fotocatalisador. Por exemplo, o número de elétrons necessários para a formação de CH₄, CH₃OH e CO são 8, 6 e 2, respectivamente. As Equações 3.6 a 3.9 mostram a equação para cálculo do rendimento quântico para o CH₄, CH₃OH e CO.

$$\Phi_{CH_4}(\%) = \frac{8 x \text{ mol de formação } CH_4}{\text{mol de fótons absorvidos pelo fotocatalisador}} x \ 100\%$$
(3.6)

$$\Phi_{CO}(\%) = \frac{2 x \text{ mol de formação CO}}{\text{mol de fótons absorvidos pelo fotocatalisador}} x \ 100\% \tag{3.7}$$

$$\Phi_{CH_3OH}(\%) = \frac{6 x \text{ mol } de \text{ formação } CH_3OH}{\text{mol } de \text{ fótons absorvidos pelo fotocatalisador}} x \ 100\%$$
(3.8)

$$\Phi_{C_3H_6O}(\%) = \frac{7 x \text{ mol de formação } C_3H_6O}{\text{mol de fótons absorvidos pelo fotocatalisador}} x \ 100\%$$
(3.9)

O cálculo do número de mol de fótons absorvidos pelo fotocatalisador foi feito pela Equação 3.9. A medida do fluxo de fótons absorvido (µW/cm²) foi realizada com o auxílio de um radiômetro (ILT1700, International Light Technologies).

MFAF

$$=\frac{fluxo \ de \ f\acute{o}tons \ absorvidos \ (\mu W/cm^2) \ x \ área \ superficial \ externa \ do \ reator \ (cm^2) \ x \ tempo \ de \ irradiação \ (s)}{energia \ de \ cada \ f\acute{o}ton \ (J)x \ (6.02 \ x \ 10^{23})} (3.10)$$

Dados como tempos de retenção dos compostos identificados, programação do cromatógrafo, especificações das colunas cromatográficas e resultados não apresentados no Capítulo 5 estão disponíveis no Apêndice G e H.

CAPÍTULO 4

- Caracterizações Físico-químicas -

Para avaliação da influência dos promotores na fotoeficiência do material, foram preparados fotocatalisadores à base de TiO₂ com dois promotores dispersos de forma distinta:

- No primeiro fotocatalisador, os dois promotores estarão na superfície do material. Para isso, foi utilizando como base o TiO₂ preparado pelo método de hidrólise lenta do isopropóxido de titânio, Ti-HL. O promotor óxido de cobre foi adicionado no fotocatalisador Ti-HL por impregnação seca, nomeado Cu/Ti-HL. Já nos fotocatalisadores CuFe_x/Ti-HL, os promotores óxidos de ferro e cobre foram adicionados por co-precipitação deposição;
- A segunda série de fotocatalisador preparados pelo método de Pechini, desejando-se que o promotor ferro esteja disperso na estrutura do TiO₂. Estes materiais foram denominados Ti-MP e Fe_xTi_{1-x}. Posteriormente, foi acrescentado nestes fotocatalisadores o óxido de cobre por impregnação seca, os quais foram denominados Cu/Ti-MP e Cu/Fe_xTi_{1-x}. Assim, o promotor ferro se encontra na estrutura cristalina do fotocatalisador, enquanto o óxido de cobre está na superfície.

Algumas técnicas de caracterização foram empregadas para averiguar se os fotocatalisadores propostos realmente possuem as características desejadas. A seguir, são apresentadas as caracterizações físico-químicas pertinentes para este estudo.

4.1. Determinação das condições de tratamento dos materiais Ti-MP e Fe_xTi_{1-x}

Devido à grande quantidade de matéria orgânica presente nos precursores utilizados na preparação dos materiais Ti-MP e Fe_xTi_{1-x}, foi necessária uma avaliação termogravimétrica para determinar as condições do tratamento térmico. As análises de TGA, dTG e DTA destes materiais são apresentadas na Figura 4.1.

Figura 4.1 – Perfis de TGA e dTG (a)-(d), e DTA (e)-(h) para Ti-MP e Fe_xTi_{1-x}.

Analisando as curvas de termogravimetria nas Figuras 4.1 (a) a (d), é possível verificar uma perda de massa total de cerca de 76% para todas as amostras. Após a temperatura de 500°C não é observada variação de massa relativa.

Como pode ser verificado nos perfis de dTG nas Figuras 4.1 (a) a (d) e na Tabela 4.1, existem dois principais estágios da perda de massa.

Amostra	Faixa de temperatura	Pico de temperatura	Perda de massa
Amostra	(°C)	(°C)	(%)
	25 – 100	44	0,06
	100 – 380	257	0,65
	380 – 445	425	0,73
	445 – 500	462	0,77
	25 – 130	117	0,03
ForTire	130 – 212	180	0,21
F E 5 1 195	212 – 422	274	0,72
	422 – 480	446	0,75
	25 – 113	36	0,08
Fourtin	113 – 212	176	0,27
	212 – 420	258	0,73
	420 – 500	460	0,75
	25 – 123	40	0,09
Fourtin	123 – 206	180	0,32
ı ⊏ 20 i 180	206 – 396	245	0,75
	396 – 500	480	0,77

Tabela 4.1 – Perda de massa para cada faixa de temperatura observada no dTG.

- 30°C a 120°C se refere a perda de água;
- 120°C a 500°C faixa referente a decomposição da matéria orgânica da matriz polimérica.

O Ti-MP apresenta picos de dTG mais largos devido a maior quantidade de material orgânico utilizado na sua preparação. Conforme há um aumento no percentual do promotor ferro no fotocatalisador, ocorre uma diminuição da quantidade de precursores orgânicos utilizados. Com isso, os picos se tornam mais definidos como pode ser visto nas Figuras 4.1 (c) e (d), amostras Fe₁₀Ti₉₀ e Fe₂₀Ti₈₀, respectivamente.

Na faixa de temperatura referente a decomposição da matéria orgânica da resina polimérica, é possível verificar três temperaturas máximas de perda de massa para as

amostras Ti-MP e Fe₅Ti₉₅, enquanto que para Fe₁₀Ti₉₀ e Fe₂₀Ti₈₀, somente dois picos. Com isso, é possível supor que a resina polimérica formada consiste em um material estruturado e ramificado, em que estas ramificações necessitam de energias diferentes para sua ruptura. Além disso, conforme há um aumento no teor de ferro nos fotocatalisadores, uma destas ramificações não é favorecida. Também é possível verificar que a adição de ferro no material não influenciou nas temperaturas máximas de perda de massa de 180, 250 e 480°C.

Em relação ao DTA, as Figuras 4.1 (e) a (h) mostram os perfis obtidos para todas as amostras. Em todas as análises se verifica um pico em 260°C devido à combustão altamente exotérmica dos compostos orgânicos e consequente obtenção de TiO₂. O mesmo comportamento observado nos resultados de dTG para os fotocatalisadores Fe₁₀Ti₉₀ e Fe₂₀Ti₈₀ ocorreu nos perfis de DTA. Conforme há um aumento no percentual de ferro nos fotocatalisadores, ocorre uma definição do pico referente a combustão da matéria orgânica. Além disso, é verificado um segundo pico em aproximadamente 420°C, que corresponde à transformação de fase do TiO₂ de anatásio para rutilo.

HUANG *et al.* (2002) prepararam materiais Fe_xTi_y/TiO₂ e verificaram um comportamento semelhante nas análises de termogravimetria: um pico em 270°C referente da cristalização de TiO₂ amorfo a partir da queima da resina orgânica e um pico em 470°C, referente à transição de fase anatásio/rutilo no material.

Com essa análise, estabeleceu-se um tratamento térmico e este é mostrado na Figura 4.2.

Figura 4.2 – Tratamento térmicos dos precursores Ti-MP e Fe_xTi_{1-x}.

Inicialmente, a resina precursora do fotocatalisador é aquecida até 150°C e permanece nesta temperatura por 30 minutos. Esta etapa visa a retirada da água presente no material. Em seguida, para a eliminação da grande quantidade de matéria orgânica, eleva-se a temperatura até 300°C com uma baixa taxa de aquecimento, de 1°C/min. Finalmente, o material é aquecido a 500°C, com uma taxa de aquecimento de

5°C/min, para retirada do teor residual da matéria orgânica. Como não há mais perda de massa a partir de 500°C, essa é a temperatura final e o material permanece nesta temperatura por 180 minutos para garantir a eliminação de quaisquer impurezas que possam ter permanecido no fotocatalisador. Portanto, o tempo total de tratamento é cerca de 7 horas e 30 minutos.

Após a proposta do tratamento térmico, era necessário escolher onde ele seria realizado, mufla ou calcinador. Para isso, duas alíquotas de Ti-MP foram separadas e tratadas a fim de se verificar as fases de TiO₂ presentes no material após o tratamento. A Figura 4.3 apresenta os difratogramas do Ti-MP calcinados na mufla e no calcinador, sob fluxo de ar.

Figura 4.3 – Digratogramas dos fotocatalisadores Ti-MP calcinados em mufla e sob fluxo de ar.

Analisando os difratogramas, foram identificadas as fases anatásio e rutilo, com picos de maior intensidade em $2\theta = 25,28^{\circ}$ e $2\theta = 27,38^{\circ}$, respectivamente. O Ti-MP tratado no calcinador sob fluxo de ar apresentou uma quantidade de fase rutilo bastante expressiva quando comparado ao material tratado na mufla. A Tabela 4.2 mostra os resultados do refinamento de Rietiveld para estes dois materiais. É possível verificar que o Ti-MP Calcinador é composto de 50% de fase anatásio e 50% de fase rutilo, enquanto o Ti-MP Mufla possui 89% de fase anatásio e 11% de fase rutilo.

Amostra	Fases [*]	Teor %(m/m)	2 θ (°)	Tamanho Cristalito (nm)
Ti MP 500°C	А	50,0	25,31	21,5
Calcinador	R	50,0	27,44	22,0
Ti MP 500°C	А	88,6	25,30	13,4
Mufla	R	11,4	27,45	14,2

Tabela 4.2 – Quantificação das fases e tamanho de cristalito (calculado pela equaçãode Scherrer) das amostras Ti-MP tratadas em calcinador e mufla.

* A = anatásio, R = rutilo

Como visto na Revisão Bibliográfica, estudos indicam que a fase anatásio é cerca de 10 vezes mais fotoativa que a fase rutilo (LIU e LI, 2014). Portanto, é interessante que o material resultante possua o menor teor de rutilo/bruquita possível.

Com esses resultados, foi estabelecido que os materiais preparados pelo método de Pechini seriam tratados em mufla e que a rampa de tratamento proposta era adequada para o que se desejava obter de propriedades do fotocatalisador.

4.2. Caracterização Textural

A Tabela 4.3 apresenta os resultados da fisissorção de N₂, utilizando o método BET. O Ti-HL apresentou superfície específica, volume de poros e diâmetro médio de poro de 87 m²/g_{cat}, 0,229 cm³/g e 104 Á, respectivamente. A impregnação de óxido de cobre promoveu um decréscimo no valor da supérficie específica do material inicial, obtendo-se 75 m²/g_{cat} para o Cu/Ti-HL. Também foi observado uma pequena diminuição no volume de poros enquanto o diâmetro médio de poro teve um ligeiro aumento.

Amostra	Superfície Específica BET (m²/g _{cat})	Volume de Poros (cm ³ /g)	Diâmetro médio de poro (Á)
Ti-HL	87	0,229	104
Cu/Ti-HL	75	0,209	107
CuFe₅/Ti-HL	71	0,209	114
CuFe ₁₀ /Ti-HL	73	0,205	110
CuFe ₂₀ /Ti-HL	66	0,219	130

Tabela 4.3 – Caracterização textural dos fotocatalisadores à base de Ti-HL.

Em relação aos fotocatalisadores CuFe_x/Ti-HL, conforme há o aumento do teor de óxido de ferro no material ocorre uma diminuição do valor inicial da superfície específica do Ti-HL. Foram obtidos os valores de 71, 73 e 66 m²/g_{cat} para CuFe₅/Ti-HL, CuFe₁₀/Ti-HL e CuFe₂₀/Ti-HL, respectivamente. Não foi observada grandes variações para o volume de poros, com valores em torno de 0,200 cm³/g. Os valores de diâmetro médio de poro apresentaram um ligeiro aumento quando comparados ao valor inicial do Ti-HL. O fotocatalisador CuFe₂₀/Ti-HL apresentou um diâmetro médio de poro de 130 Å, por exemplo.

A Figura 4.4 apresenta os gráficos das isotermas de adsorção (a e b) e da distribuição de tamanho de poros (c e d) dos fotocatalisadores Ti-HL e Cu/Ti-HL, os quais são representativos para os demais materiais à base de Ti-HL. Todas as isortermas de adsorção e distribuição de tamanho de poros não apresentadas neste capítulo encontram-se listadas no Apêndice B.

Figura 4.4 – Isotermas de adsorção e distribuição de tamanho de poros dos fotocatalisadores Ti-HL e Cu/Ti-HL.

Todos os fotocatalisadores apresentaram uma isoterma do tipo IV e histerese H1, características de materiais mesoporosos e macroporosos. A histerese do tipo H1 é encontrada em materiais cujos poros são regulares, cilíndricos e/ou poliédricos com as extremidades abertas. Além disso, a histerese H1 é característica de materiais com estreita distribuição de poros, o que pode ser verificado nos perfis de distribuição de tamanho de poros. Todos os fotocatalisadores apresentaram uma distribuição bem definida em torno de 100 Á.

A Tabela 4.4 apresenta os resultados para a adsorção física de N₂ dos materiais preparados pelo método de Pechini, bem como estes após a impregnação do promotor óxido de cobre.

Amostra	Superfície Específica BET (m²/g _{cat})	Volume de Poros (cm³/g)	Diâmetro médio de poro (Á)
Ti-MP	50	0,073	58
Cu/Ti-MP	40	0,068	67
Fe ₅ Ti ₉₅	71	0,091	37
Cu/Fe ₅ Ti ₉₅	57	0,083	57
Fe ₁₀ Ti ₉₀	75	0,087	47
Cu/Fe ₁₀ Ti ₉₀	68	0,085	49
Fe ₂₀ Ti ₈₀	86	0,101	33
Cu/Fe ₂₀ Ti ₈₀	70	0,095	54

Tabela 4.4 – Caracterização textural dos materiais Ti-MP e Fe_xTi_{1-x}, e estes após impregnação do óxido de cobre.

O Ti-MP apresentou um valor de superfície específica de 50 m²/g_{cat}, valor consistente com a temperatura do tratamento térmico empregado. Para as amostras Fe_xTi_{1-x}, verifica-se uma elevação do valor da superfície específica conforme a percentagem de ferro aumenta na estrutura do fotocatalisador. Para o Fe₅Ti₉₅, Fe₁₀Ti₉₀ e Fe₂₀Ti₈₀ foram encontrados os valores de 71, 75 e 86 m²/g_{cat}, respectivamente. Com a impregnação do promotor nestes materiais, há uma diminuição dos valores de superfície específica. O Cu/Fe₂₀Ti₈₀, por exemplo, apresentou uma diminuição em torno de 20% do valor inicial do Fe₂₀Ti₈₀, 86 e 70 m²/g_{cat}, respectivamente.

Em relação ao volume de poros, o aumento da percentagem de ferro na estrutura dos fotocatalisadores e impregnação de óxido de cobre não provocaram variações em seus valores, que ficaram em torno de 0,090 cm³/g. Para o diâmetro médio de poros, é notado um ligeiro aumento dos seus valores com a adição de óxido de cobre na

superfície. Enquanto o Ti-MP possui um diâmetro médio de poro de 58 Å, o Cu/Ti-MP apresenta 67 Å. Essa tendência não é observada para o fotocatalisador Fe₁₀Ti₉₀.

A Figura 4.5 apresenta as isotermas de adsorção e a distribuição de tamanho de poros dos fotocatalisadores Fe₅Ti₉₅ e Cu/Fe₅Ti₉₅. Esses resultados são representativos para os demais fotocatalisadore Fe_xTi_{1-x} e Cu/Fe_xTi_{1-x}.

Figura 4.5 – Isotermas de adsorção (a e b) e distribuição de tamanho de poros (c e d) dos fotocatalisadores Fe₅Ti₉₅ e Cu/Fe₅Ti₉₅.

Todos os materiais apresentaram isotermas do tipo IV e histerese do tipo H1, característica de materiais mesoporosos/macroporosos. O acréscimo de ferro na estrutura fotocatalisador, independente do teor, não modificou no perfil obtido. Os materiais também apresentam uma distribuição estreita e bem definida de tamanho de poro, em torno de 50 Å.

4.3. Espectroscopia de Fluorescência de Raios X (XRF)

A Tabela 4.5 apresenta os teores reais dos óxidos de titânio, cobre e ferro determinados a partir de análises de XRF. A concordância entre os teores reais e

nominais indica que não houve perda significativa de material nas respectivas etapas de preparação. Além disso, é possível verificar que o método de Pechini é adequado para a síntese de óxidos mistos com estequiometria controlada.

Amostra	%TiO ₂ (%m/m)	%Fe ₂ O ₃ (%m/m)	%CuO (%m/m)
Ti-HL	100	-	-
Cu/Ti-HL	97,4	-	2,6
CuFe₅/Ti-HL	91,4	6,1	2,5
CuFe ₁₀ /Ti-HL	86,5	11,2	2,3
CuFe ₂₀ /Ti-HL	77,5	20,4	2,1
Ti-MP	100	-	-
Fe ₅ Ti ₉₅	95,3	4,7	-
Fe ₁₀ Ti ₉₀	91,1	8,9	-
Fe ₂₀ Ti ₈₀	81,7	18,3	-
Cu/Ti-MP	97,4	-	2,6
Cu/Fe ₅ Ti ₉₅	92,6	4,8	2,6
Cu/Fe ₁₀ Ti ₉₀	85,7	11,6	2,7
Cu/Fe ₂₀ Ti ₈₀	78,2	19,1	2,7

Tabela 4.5 – Teores reais dos óxidos presentes em cada fotocatalisador.

A Figura 4.6 mostra a diferença de coloração das amostras dos fotocatalisadores preparados. A adição dos promotores modifica visualmente a coloração de cada fotocatalisador.

Figura 4.6 – Coloração dos fotocatalisadores preparados.

Os óxidos de titânio, Ti-HL e Ti-MP, apresentam cor característica branca. Os fotocatalisadores Cu/Ti-HL e Cu/Ti-MP que têm apenas óxido de cobre, possuem uma coloração esverdeada. Para os materiais com ferro, verifica-se que conforme há um

aumento do teor de promotor, há um escurecimento das amostras, ficando elas com tons de marrom. Também pode ser observada a diferença de coloração das amostras em que o ferro está em posições diferentes, o que é o caso por exemplo, das amostras CuFe₅/Ti-HL e Cu/Fe₅Ti₉₅.

4.4. Difração de Raios X

As análises de difração de raios X foram usadas para identificar e quantificar as fases cristalográficas, bem como obter o tamanho de cristalito dos fotocatalisadores. Os difratogramas e a identificação das fases cristalográficas são apresentados nas Figuras 4.7 a 4.12 e sua quantificação, na Tabela 4.4 e Figura 4.13.

A Figura 4.7 apresenta os difratogramas dos fotocatalisadores Ti-HL e Ti-MP.

Figura 4.7 – Difratogramas dos TiO₂ preparados, Ti-HL e Ti-MP, com a identificação das fases.

Para o Ti-HL foram identificadas as fases anatásio e bruquita, com os picos de maior intensidade em $2\theta = 25,28^{\circ}$ e $2\theta = 25,34^{\circ}$, respectivamente. A identificação da fase bruquita foi realizada a partir do segundo pico de maior intensidade, em $2\theta = 30,81^{\circ}$, devido a proximidade dos picos mais intensos das referidas fases. Para o fotocatalisador

Ti-MP, foram identificadas as fases anatásio e rutilo, com pico de maior intensidade da fase rutilo em $2\theta = 27,38^{\circ}$.

Como é sabido, as temperaturas de calcinação influenciam na cristalinidade do material. O Ti-HL apresentou uma estrutura menos cristalina do que o Ti-MP, com picos da fase anatásio pouco definidos. Já o Ti-MP, apresentou uma maior cristalinidade com picos referentes a fase anatásio bem definidos. A influência do método de preparo na fase cristalina obtida fica evidente nestes materiais. Como o método de Pechini consiste na obtenção de uma resina polimérica bem estruturada, isso facilita a obtenção das fases anatásio e rutilo (tetragonais) e diminui a tendência do TiO₂ permanecer como bruquita (ortorrômbica).

Segundo LUIS *et al.* (2011), a fase anatásio é formada em temperaturas mais brandas, cerca de 450°C, enquanto a fase rutilo é formada em altas temperaturas. RIBEIRO (2011) estudou a influência da razão ácido cítrico/cátion metálico nas fases cristainas do TiO₂, empregando o método de Pechini. Todos os seus materiais foram calcinados a 500°C e foram variadas a razão ácido cítrico/cátion metálico de 2:1 a 5:1. Para a razão 2:1, foi observada a obtenção de uma estrutura monofásica de anatásio. Para os materiais obtidos com razões maiores, 3:1 a 5:1, foram identificadas as fases anatásio e rutilo.

A Figura 4.8 apresenta a comparação dos difratogramas de raios X dos fotocatalisadores Ti-HL e Cu/Ti-HL. Não é possível identificar nenhum pico referente a quaisquer fases de óxido de cobre, como da fase tenorita (CuO – 100%, $2\theta = 35,54^{\circ}$) ou cuprita (Cu₂O – 100%, $2\theta = 23,41^{\circ}$). A ausência de fases segregadas do óxido de cobre é um indício de que este promotor está bem disperso sobre o TiO₂ ou o teor empregado está abaixo do limite de detecção do equipamento.

Figura 4.8 – Difratograma do fotocatalisador Cu/Ti-HL em comparação com Ti-HL.

A Figura 4.9 apresenta os difratogramas dos fotocatalisadores CuFe_x/Ti-HL, preparados pelo método de co-precipitação deposição. Para todos os materiais foram identificadas as fases anatásio e bruquita, referentes as fases do Ti-HL utilizado na preparação. Como nos fotocatalisadores Cu/Ti-HL, não foi verificado picos referentes as possíveis fases de óxido de cobre nos perfis, indicando da mesma forma uma boa dispersão deste promotor.

Em relação às fases de óxido de ferro, foram identificados picos da fase hematita (α -Fe₂O₃), com pico de maior intensidade em 2 θ = 33,10°, nos fotocatalisadores CuFe₁₀/Ti-HL e CuFe₂₀/Ti-HL. Para o CuFe₅/Ti-HL não foi observada a fase hematita, sugerindo que esta esteja bem dispersa sobre a superfície do material.

Figura 4.9 – Difratograma dos fotocatalisadores CuFe_x/Ti-HL.

A Figura 4.10 apresenta os difratogramas dos fotocatalisadores Fe_xTi_{1-x}, preparados pelo método de Pechini. Foram identificadas as fases anatásio e rutilo em todos os materiais. A inserção de ferro na estrutura do TiO₂ provocou uma diminuição da cristalinidade dos fotocatalisadores. Além disso, o aumento da percentagem de ferro favoreceu a formação da fase rutilo no fotocatalisador.

Não foram identificados picos referentes a quaisquer fases de óxido de ferro, ferro metálico ou estruturas Fe_xTi_yO_z. A ausência desses picos de difração sugere que a estrutura Fe-Ti forma uma solução sólida, com estrutura tetragonal das fases anatásio/rutilo. Nesse caso, os íons dopantes, que tem um forte efeito sobre a cinética de transição das fases anatásio para rutilo, podem entrar na estrutura do anatásio e influenciar nas vacâncias de oxigênio, promovendo ou inibindo assim a transformação para rutilo.

Figura 4.10 – Difratogramas dos fotocatalisadores Fe_xTi_{1-x}.

No caso da formação de uma solução sólida intersticial, a limitação da estrutura pode resultar na desestabilização ou estabilização do material, dependendo do tamanho, da valência e efeitos do teor do promotor. Se o limite de solubilidade de impurezas ou dopantes é excedido, então a sua precipitação pode facilitar a transformação de fase através de uma nucleação heterogênea.

Alguns estudos têm sugerido que cátions com menores raio e valência aceleram a transição para rutilo, devido ao aumento das vacâncias de oxigênio que resultam da substituição dos íons Ti⁴⁺. Por outro lado, quando cátions de valência superior a 4 são empregados para substituir íons Ti na estrutura do anatásio, ocorre a aniquilação das vacâncias de oxigênio existentes e a formação intersticial de Ti da mesma ou de menor valência. Portanto, se conclui que pequenos cátions de baixa valência (< 4), devem promover a transformação de fase anatásio para rutilo e grandes cátions de alta valência (> 4) devem inibí-la (HANAOR E SORRELL, 2011).

Também é necessário levar em consideração os dopantes catiônicos que podem apresentar mais de uma valência. Esse tipo de dopante pode resultar num aumento das vacâncias de oxigênio e/ou a formação de Ti³⁺ intersticial (GENNAoRI E PASQUEVICH, 1998). Estudos apontam que o fato do Al³⁺ ter apenas uma valência explica por que sua presença inibe a transformação de fase em oposição ao Fe³⁺, apesar de serem de tamanho e valência semelhantes. A Equação 4.1 mostra como o ferro pode sofrer redução e criar uma vacância de oxigênio, em que uma vaga aniônica é representada pelo símbolo □.

$$2Fe^{3+} + O^{2-} \rightarrow 2Fe^{2+} + \Box a + \frac{1}{2}O_2$$
(4.1)

No TiO₂, a transformação da fase anatásio para rutilo é promovida pela formação de vacâncias de oxigênio a partir da redução do dopante Fe³⁺, que ocorre conforme mostrado na Equação 4.2.

$$Fe^{3+} + Ti^{4+} 2O^{2-} \rightarrow (Fe^{2+} + O^{2-} + \Box a) + Ti^{3+}_{intersticial} + \frac{1}{2}O_2$$
(4.2)

Como foi verificado nos difratogramas de raios X da Figura 4.10, o aumento da quantidade de ferro como promotor nos fotocatalisadores Fe_xTi_{1-x} promoveu uma diminuição da cristalinidade e promove um aumento da quantidade da fase rutilo nestes materiais. Portanto, estes resultados corroboram com dados da literatura.

As Figuras 4.11 e 4.12 apresentam os difratogramas dos fotocatalisadores Cu-Ti-MP e Cu/Fe_xTi_{1-x}. É possível verificar que os difratogramas não se modificaram após a impregnação do óxido de cobre nos fotocatalisadores. Como nos outros materiais promovidos por este promotor, o não aparecimento de picos referentes a fases de óxido de cobre sugere que este se encontra bem disperso na superfície dos fotocatalisadores.

Figura 4.11 – Comparação dos difratogramas dos fotocatalisadores (a) Ti-MP e Cu/Ti-MP e (b) Fe₅Ti₉₅ e Cu/Fe₅Ti₉₅.

Figura 4.12 – Comparação dos difratogramas dos fotocatalisadores (a) Fe₁₀Ti₉₀ e Cu/Fe₁₀Ti₉₀ e (b) Fe₂₀Ti₈₀ e Cu/Fe₂₀Ti₈₀.

Após a identificação das fases cristalográficas presentes em cada fotocatalisador, realizou-se a quantificação de cada uma dela empregando o método de Rietveld. Para o cálculo do tamanho de cristalito foi empregada a equação de Scherrer.

A Figura 4.13 exemplifica os resultados de refinamento de Rietvield para os fotocatalisadores CuFe₅/Ti-HL e Cu/Fe₅Ti₉₅. Os resultados dos refinamentos e cálculo do tamanho de cristalito foram compilados na Tabela 4.6. Os resultados dos demais fotocatalisadores são apresentados no Apêndice C.

Figura 4.13 – Resultados do refinamento de Rietvield para os fotocatalisadores CuFe₅/Ti-HL e Cu/Fe₅Ti₉₅.

A inc. a a time		al <i>(ra raa</i>)**	Parâmetro de Rede	
Amostra	Fases	Teor %(m/m)	a (nm)	a; b; c (nm)
Ti-HL -	А	74,2	8,0	3,786; 3,786; 9,482
	В	25,8	3,5	9,184; 5,447; 5,145
	А	77,8	10,1	3,788; 3,788; 9,487
	В	22,2	6,2	9,184; 5,447; 5,145
	А	68,3	12,2	3,786; 3,786. 9,485
CuFe₅/Ti-HL	В	31,2	7,2	9,184; 5,447; 5,145
	Н	0,5	48,9	5,035; 5,035; 13,747
	А	63,7	12,4	3,787; 3,787; 9,487
CuFe ₁₀ /Ti-HL	В	28,6	7,8	9,184; 5,447; 5,145
	Н	7,7	26,9	5,035; 5,035; 13,747
	А	51,6	10,1	3,786; 3,786; 9,488
CuFe ₂₀ /Ti-HL	В	31,2	7,1	9,184; 5,447; 5,145
	Н	17,2	24,1	5,034; 5,034; 13,749
Ti-MP	A	88,6	13,4	3,786; 3,786; 9,493
	R	11,4	14,2	4,592; 4,592; 2,955
Cu/Ti-MP	А	87,5	13,4	3,786; 3,786; 9,489
	R	12,5	12,9	4,591; 4,591; 2,956
FesTiss	А	95,6	9,5	3,787; 3,787; 9,476
	R	4,4	14,2	4,592; 4,592; 2,955
Feating	А	91,7	8,6	3,786; 3,786; 9,465
1 C10 1 190	R	8,3	14,2	4,592; 4,592; 2,955
	А	29,0	9,7	3,788; 3,788; 9,469
Fe ₂₀ Ti ₈₀	R	40,0	2,1	4,546; 4,546; 2,999
	В	31,0	4,4	9,184; 5,447; 5,145
Cu/Eo-Tis-	А	94,7	9,7	3,788; 3,788; 9,476
Cu/1 C5 1 195	R	5,3	14,2	4,592; 4,592; 2,955
Cu/Feating	А	91,3	8,4	3,788; 3,788; 9,463
	R	8,7	14,2	4,592; 4,592; 2,955
	А	26,5	9,9	3,793; 3,793; 9,402
Cu/Fe ₂₀ Ti ₈₀	R	56,8	2,1	4,539; 4,539; 2,994
	В	16,7	7,6	9,184; 5,447; 5,145

Tabela 4.6 – Teores estimados, tamanho de cristalito e parâmetros de rede das fasesdos fotocatalisadores obtidos a partir do refinamento de Rietvield.

* A = anatásio, B = bruquita, R = rutilo, H = hematita

** Obtido a partir da equação de Scherer

O Ti-HL possui 74,2% e 25,8% (%m/m) das fases anatásio e bruquita, respectivamente. A bruquita apresentou um tamanho de cristalito bem menor em relação ao anatásio, 3,5 e 8 nm, respectivamente.

A impregnação do promotor óxido de cobre no Ti-HL não promoveu variações nos teores das fases cristalinas presentes no fotocatalisador Cu/Ti-HL. O tamanho de cristalito da fase anatásio que inicialmente era de 8,0 nm no Ti-HL, aumentou para 10,1 nm no Cu/Ti-HL e o mesmo efeito é observado para a fase bruquita. Isso ocorre devido a temperatuta de tratamento para a obtenção do óxido de cobre ser a mesma empregada para a calcinação do Ti-HL, 350°C. Segundo MOZIA (2008), a temperatura e o tempo do tratamento térmico são variáveis que influenciam no diretamente no tamanho de cristalito das fases de TiO₂ e nos seus teores. Quanto maior for o tempo de duração do tratamento, maior é o tamanho de cristalito resultante da fase cristalina.

Para os materiais CuFe_x/Ti-HL, foram quantificadas no refinamento três fases: anatásio, bruquita e hematita. Como citado anteriormente, CuFe₅/Ti-HL não apresentou em seu difratograma picos referentes a fase α -Fe₂O₃. Com isso, o refinamento estimou um teor bastante baixo desta fase em comparação ao teor real, 0,77% e 6,1% (%m/m), respectivamente. Já para os demais fotocatalisadores CuFe₁₀/Ti-HL e CuFe₂₀/Ti-HL, com teores reais de 11,2% e 20,4% de Fe₂O₃ foram estimados com uma variação, 7,7% e 17,2% (%m/m), respectivamente. Em relação aos tamanhos de cristalito das fases, foi observado o mesmo efeito ocorrido na amostra Cu/Ti-HL, maior tamanho de cristalito das fases anatásio e bruquita quando comparados ao material inicial, Ti-HL. A fase anatásio possui um tamanho de cristalito de 12,2, 12,4 e 10,1 nm para CuFe₅/Ti-HL, CuFe₁₀/Ti-HL e CuFe₂₀/Ti-HL, respectivamente. Quanto à fase hematita, o tamanho de cristalito para o fotocatalisador CuFe₅/Ti-HL foi bastante discrepante em relação aos outros fotocatalisadores, decorrente de uma estimativa sem precisão por não ser identificada a fase no difratograma. Nos fotocatalisadores CuFe₁₀/Ti-HL e CuFe₂₀/Ti-HL, a fase hematita possui tamanho de cristalito de 26,9 e 24,1 nm, respectivamente.

O Ti-MP apresentou fases anatásio e rutilo, nos teores 88,6% e 11,4% (%m/m) e, tamanhos de cristalito de 13,4 nm e 14,2 nm, respectivamente.

Já para as soluções sólidas Fe_xTi_{1-x} , o refinamento para as amostras Fe_5Ti_{95} e $Fe_{10}Ti_{90}$ não apresentou grandes problemas e notou-se que conforme há um aumento da quantidade de ferro na estrutura do TiO_2 ocorre uma diminuição do tamanho de cristalito da fase anatásio, enquanto a fase rutilo permanece inalterada. A fase anatásio do Fe_5Ti_{95} apresenta um tamanho de cristalito igual a 9,5 nm e este valor diminui para 8,6 nm para o $Fe_{10}Ti_{90}$. Esse efeito está relacionado o aumento da quantidade de
vacâncias da fase anatásio, que é provocada pela inserção de ferro na estrutura do TiO₂, favorecendo a formação da fase rutilo. Para a quantificação das fases, Fe₅Ti₉₅ apresentou 95,6% e 4,4% de fases anatásio e rutilo, respectivamente. Já Fe₁₀Ti₉₀, apresentou 91,7% e 8,3% de fases anatásio e rutilo, respectivamente. Para o fotocatalisador Fe₂₀Ti₈₀, o refinamento é bastante complexo devido a baixa cristalinidade do material. Como o refinamento com as fases anatásio e rutilo não apresentou um resultado satisfatório, partiu-se para um modelo com as três fases de TiO₂. Com isso, Fe₂₀Ti₈₀ apresentou 29%, 40% e 31% das fases anatásio, rutilo e bruquita. Portanto, este material possui uma maior quantidade de fase rutilo do que anatásio. Outro detalhe interessante de se salientar é presença da fase bruquita mesmo a temperatura de tratamento sendo consideravelmente alta, 500°C. A fase anatásio e bruquita apresentaram tamanho de cristalito de 9,7 e 4,1 nm, respectivamente. A fase rutilo apresentou um tamanho de cristalito bem menor do que os outros materiais, 2,1 nm.

Como era esperado, a impregnação do promotor óxido de cobre nos materiais Ti-MP e Fe_xTi_{1-x} não proporciou nenhuma variação na estrutura cristalina dos fotocatalisadores resultantes.

Em relação aos parâmetros de rede, não foi observada variação nos fotocatalisadores à base de Ti-HL. Quanto os materiais preparados pelo método de Pechini, a escolha do ferro como promotor possibilitou a formação de uma solução sólida sem grandes modificações nos parâmetros de rede das fases do TiO₂ devido aos valores de raios iônicos serem bastante próximos, 0,64 e 0,68 Å para Fe³⁺ e Ti⁴⁺, respectivamente. Assim, os fotocatalisadores tiveram pequenas alterações nos parâmetros de rede da fase anatásio, basicamente no parâmetro c, em que foram encontrados os valores de 9,493, 9,476, 9,465 e 9,469 nm para as amostras Ti-MP, Fe₅Ti₉₅, Fe₁₀Ti₉₀ e Fe₂₀Ti₈₀, respectivamente.

4.5. Microscopia Eletrônica de Varredura com EDS (FEG-EDS)

Os fotocatalisadores foram analisados por microscopia eletrônica de varredura e algumas amostras foram analisadas por detectores de Energia Dispersiva de Raios X.

A Figura 4.14 mostra as micrografias para Ti-HL e Cu/Ti-HL para avaliação da superfície dos fotocatalisadores após a adição do óxido de cobre sobre o TiO₂. É possível notar que a impregnação do promotor não modificou a superfície do material inicial Ti-HL. Este resultado corrobora com os resultados de XRD que indicam uma boa dispersão do óxido de cobre.

Figura 4.14 – Micrografias dos fotocatalisadores (a, b) Ti-HL e (c, d) Cu/Ti-HL.

A Figura 4.15 apresenta as micrografias dos fotocatalisadores CuFe_x/Ti-HL a fim de se verificar se os promotores alteraram a morfologia do Ti-HL. Analisando as micrografias dos fotocatalisadores com 5 e 10% (%m/m) de Fe₂O₃, não se identifica mudanças significativas na superfície do material inicial, Ti-HL. Já para o fotocatalisador CuFe₂₀/Ti-HL, é verificada claramente a formação de estruturas esféricas, que se aglomeram na supefície do óxido de titânio.

Figura 4.15 – Micrografias dos fotocatalisadores (a, b) CuFe₅/Ti-HL, (c, d) CuFe₁₀/Ti-HL e (e, f) CuFe₂₀/Ti-HL.

A Figura 4.16 apresenta as micrografias dos fotocatalisadores preparados pelo método de Pechini, Ti-MP e Fe_xTi_{1-x} .

Figura 4.16 – Micrografias de microscopia eletrônica de varredura dos fotocatalisadores preparados pelo método de Pechini.

Figura 4.16 – Micrografias de microscopia eletrônica de varredura dos fotocatalisadores preparados pelo método de Pechini (cont).

As micrografias mostram que os materiais Ti-MP e Fe_xTi_{1-x} possuem uma morfologia uniforme e regular. Este resultado é consequência do método de preparação empregado, que consiste na obtenção de uma resina polimérica ordenada antes do tratamento térmico. A adição de ferro na estrutura do TiO₂, em qualquer teor, não promoveu modificação na morfologia do fotocatalisador, todos apresentando as mesmas carasterísticas.

Também foram analisadas as amostras Cu/Ti-MP e Cu/Fe_xTi_{1-x} e suas micrograficas são apresentadas nas Figuras 4.17 e 4.18.

Figura 4.17 – Micrografias de microscopia eletrônica de varredura do Cu/Ti-MP.

Figura 4.18 – Micrografias dos fotocatalisadores (a, b) Cu/Fe₅Ti₉₅, (c, d) Cu/Fe₁₀Ti₉₀ e (e, f) Cu/Fe₂₀Ti₈₀.

Não foram observadas modificações nas morfologias dos fotocatalisadores Ti-MP e Fe_xTi_{1-x} após a impregnação do óxido de cobre. É possível identificar alguns aglomerados na superfície, mas não se pode afirmar se são do promotor, já que o material inicial também apresentava estruturas desse tipo.

Para uma avaliação da dispersão dos promotores, fez-se FEG-EDS dos fotocatalisadores Cu/Ti-HL e CuFe_x/Ti-HL. Nesta análise, foi feita uma varredura em toda a amostra e as Figuras 4.19 a 4.22 apresentam o resultado obtido em apenas uma das áreas analisadas.

A Figura 4.19 mostra o FEG-EDS da amostra Cu/Ti-HL. É possível verificar que o promotor óxido de cobre está bem disperso na superfície do Ti-HL.

Figura 4.19 – Análises de FEG-EDS do fotocatalisador Cu/Ti-HL.

As análises de FEG-EDS nos fotocatalisadores CuFe_x/Ti-HL são apresentadas nas Figuras 4.20 a 4.22.

Figura 4.20 – Análises de FEG com EDS dos fotocatalisadores CuFe₅/Ti-HL.

Figura 4.21 – Análises de FEG com EDS dos fotocatalisadores CuFe10/Ti-HL.

Ambos os promotores se encontram bem dispersos no Ti-HL, até para os maiores teores de Fe₂O₃. É possivel verificar o aumento da quantidade de Fe₂O₃ nos fotocatalisadores, o que fica bastante evidente na amostra CuFe₂₀/Ti-HL. Portanto, mesmo com a aglomeração de estruturas esféricas de Fe₂O₃ visto na Figura 4.15 (e, f), a superfície dos fotocatalisadores não foi totalmente recoberta.

As análises quantitativas das áreas estudadas são apresentadas na Tabela 4.7. Mesmo esta análise não sendo de mesma precisão que os resultados de XRF, os teores dos promotores ferro e cobre encontrados para cada fotocatalisador foram semelhantes em ambas as caracterizações. Portanto, os resultados do EDS corroboram com as análises de XRF.

Amostras	Elementos	Teor mássico (%m/m)	% Atômica	
Cu/Ti-HI	Cu	2,4	0,9	
Guinene	Ti 48,8		24,8	
	Cu	2,2	0,8	
CuFe₅/Ti-HL	Fe	4,1	2,5	
	Ti	41,1	20,5	
CuFe₁₀/Ti-HL	Cu	2,3	0,8	
	Fe	9,7	3,7	
	Ti 23,8		10,5	
CuFe ₂₀ /Ti-HL	Cu	2,5	1,0	
	Fe	23,7	11,3	
	Ti	31,8	17,7	

Tabela 4.7 – Análise quantitativa das áreas estudadas por FEG-EDS dos fotocatalisadores Cu/Ti-HL e CuFe_x/Ti-HL.

No Apêndice D encontram-se as micrografias e as análises de EDS não apresentadas ao longo da discussão dos resultados.

4.6. Espectroscopia de Reflectância Difusa no UV-vis (DRS)

Para avaliar o comportamento dos fotocatalisadores frente a irradiação UVvisível e a influência de cada promotor no perfil de absorbância foram realizadas análises de espectroscopia de reflectância difusa.

A Figura 4.23 apresenta os espectros obtidos para o Ti-HL e Cu/Ti-HL. O material Ti-HL apresentou um espectro típico de TiO₂, mostrando uma banda de absorção em torno de 335 nm. Segundo YOONG *et al.* (2009), essas bandas de absorção estão associadas ao processo de transferência de carga $O^{2-}(2p) \rightarrow Ti^{4+}$ (3d). A impregnação de óxido de cobre no Ti-HL modifica as propriedades de absorção de luz do fotocatalisador. Como pode ser visto, o Cu/Ti-HL absorve energia na faixa da luz visível, em torno de 230 a 500 nm.

Figura 4.23 - Espectros de DRS UV-vis para Ti-HL e Cu/Ti-HL.

O óxido de cobre apresenta diversas bandas de absorção de irradiação UV-vis. De acordo com COLÓN *et al.* (2006), bandas no intervalo de 210 a 270 nm indicam a transição de transferência de carga do ligante para o metal, $O^{2-}(2p) \rightarrow Cu^{2+}(3d)$, quando os íons Cu ocupam sítios isolados do suporte. Banda em 350 nm, indicam a formação de clusters de (Cu-O-Cu)²⁺ em um estado altamente disperso. Outra banda, localizada em 400-500 nm, ocorre devido a uma redução parcial da matriz do Cu²⁺ a clusters tridimensionais de Cu¹⁺. Também pode ocorrer a transição d-d de íons Cu²⁺ gerada por íons ligantes ou oxigênio, a qual aparece na faixa do visível e do infravermelho próximo. Bandas de absorção em 600-800 nm e 740-800 nm são atribuídas às transições $2E_g \rightarrow 2T_{2g}$ de Cu²⁺ na simetria octaédrica distorcida ou perfeita, respectivamente.

O baixo teor do óxido de cobre na amostra Cu/Ti-HL, 2% (%m/m), modifica o perfil de absorção de irradiação UV-vis, mas dificulta uma avaliação mais precisa das transições que ocorrem no fotocatalisador. Por exemplo, é observado no espectro uma região de baixa absorção acima de 600 nm, mas não é possível afirmar se é decorrente das transições $2E_g \rightarrow 2T_{2g}$ de Cu²⁺ na simetria octaédrica distorcida ou perfeita.

A Figura 4.24 apresenta os espectros de DRS UV-vis para os fotocatalisadores Ti-HL, Cu/Ti-HL e CuFe_x/Ti-HL. É possível verificar que a inserção dos promotores modificou significativamente o perfil de absorção do fotocatalisador inicial, Ti-HL. A presença do Fe₂O₃ na superfície dos materiais promove a ampliação da faixa de absorção de irradiação nos fotocatalisadores CuFe_x/Ti-HL até a região do visível. Com o aumento do percentual de Fe₂O₃ nas amostras também ocorre um deslocamento do máximo de absorção. Enquanto o Ti-HL apresenta uma banda máxima de absorção em 335 nm, a banda do CuFe₂₀/Ti-HL é em 350 nm.

Figura 4.24 – Espectros de DRS UV-vis para Ti-HL, Cu/Ti-HL e CuFe_x/Ti-HL.

De acordo com LAGUNA *et al.* (2011), a fase α-Fe₂O₃ apresenta uma banda de absorção em torno de 533 nm, característica das transições d-d do ferro. Com o aumento da quantidade de Fe₂O₃ nos fotocatalisadores, é possível notar o surgimento desta banda, que fica mais evidente no fotocatalisador CuFe₂₀/Ti-HL. Além disso, os materiais CuFe_x/Ti-HL mostram-se aptos para uso em aplicações que empregam a luz solar como fonte de irradiação por apresentarem uma larga região de absorção de irradiação.

Os fotocatalisadores preparados pelo método de Pechini também foram analisados por DRS UV-vis e seus espectros são apresentados na Figura 4.25. Para o Ti-MP, o método de preparo modificou ligeiramente a forma como o TiO₂ absorve irradiação em comparação com o Ti-HL. É possível verificar um deslocamento a banda de máxima absorção para comprimentos de onda em torno de 355 nm, enquanto o Ti-HL tem seu máximo em 335 nm.

Analisando os espectros pode-se notar que o aumento do teor de ferro na estrutura do TiO₂ provoca uma mudança gradual no perfil de absorção de luz do TiO₂. Além de deslocar a banda de máxima absorção de 355 nm (Ti-MP) para 400 nm (Fe₂₀Ti₈₀), ocorre um alargamento da faixa de absorção de irradiação. Enquanto o Ti-MP absorve irradiação entre 225-400 nm, o Fe₂₀Ti₈₀ absorve na faixa de 225 e 750 nm. Assim, os fotocatalisadores Fe_xTi_{1-x} apresentam uma larga faixa de absorção de irradiação, englobando todo o espectro da luz solar, em que estes fotocatalisadores também são aptos para reações que a utilizem como fonte de irradiação.

Figura 4.25 – Espectros de DRS UV-vis para os fotocatalisadores preparados pelo método de Pechini.

A Figura 4.26 apresenta uma comparação dos espectros de DRS UV-vis dos fotocatalisadores preparados pelo método de Pechini com e sem o óxido de cobre. Após a impregnação do óxido de cobre, os fotocatalisadores que tiveram uma maior modificação no perfil de absorção foram o Ti-MP e Fe₅Ti₉₅. Diferentemente do perfil de absorção da amostra Cu/Ti-HL, a absorção de irradiação UV-vis acima de 600 nm nos fotocatalisadores Cu/Ti-MP e Cu/Fe₅Ti₉₅ foi mais pronunciada. No entanto, para as duas amostras não é possível afirmar se as bandas são provenientes das transições $2E_g \rightarrow 2T_{2g}$ de Cu²⁺ na simetria octaédrica distorcida ou perfeita.

Para os demais fotocatalisadores, com teores de ferro iguais a 10 e 20% (%m/m), a impregnação do óxido de cobre não promoveu mudanças significativas em seus perfis de absorção. Isso ocorre porque as bandas referentes as transições eletrônicas envolvendo o óxido de cobre estão encobertas pelo efeito que o promotor ferro imprimiu nas amostras.

Figura 4.26 – Espectros de DRS UV-vis para os fotocatalisadores preparados pelo método de Pechini com e sem o promotor óxido de cobre.

Além da avaliação de como o material absorve irradiação UV-vis, o espectro de DRS UV-vis possibilita o cálculo dos valores de energia de bandgap. Para tal, foi empregado o método da extrapolação descrito por KOČÍ *et al.* (2009) e empregado por PAULINO (2011). A Figura 4.27 apresenta os gráficos que foram utilizados para o cálculo da energia de bandgap dos fotocatalisadores Ti-HL e Cu/Ti-HL.

Figura 4.27 – Manipulação matemática para o cálculo das energias de bandgap dos fotocatalisadores Ti-HL e Cu/Ti-HL.

A Tabela 4.8 apresenta os valores de bandgap calculados para todos os fotocatalisadores. Os demais gráficos e resultados podem ser verificados no Apêndice E.

Fotocatalisador	Bandgap (eV)		
Ti-HL	3,00		
Cu/Ti-HL	1,96		
CuFe₅/Ti-HL	1,80		
CuFe ₁₀ /Ti-HL	1,58		
CuFe ₂₀ /Ti-HL	1,40		
Ti-MP	2,86		
Cu/Ti-MP	1,97		
Fe ₅ Ti ₉₅	1,85		
Cu/Fe ₅ Ti ₉₅	1,50		
Fe ₁₀ Ti ₉₀	1,75		
Cu/Fe ₁₀ Ti ₉₀	1,35		
Fe ₂₀ Ti ₈₀	1,54		
Cu/Fe ₂₀ Ti ₈₀	1,47		

 Tabela 4.8 – Energias de bandgap dos fotocatalisadores.

Os fotocatalisadores Ti-HL e Ti-MP apresentaram energias de bandgap de 3,00 e 2,86 eV, respectivamente, em que estes resultados são consistentes com a literatura. ZOCCAL (2010) obteve um resultado semelhante a este, quando preparou TiO₂ pelo método de Pechini e calcinou em diferentes temperaturas. Para as amostras calcinadas a 500 e 600°C, as energias de bandgap estimadas foram 3,06 e 2,97 eV, respectivamente. De acordo com o autor, a energia de bandgap diminui com o aumento da temperatura de calcinação devido ao maior grau de organização do material.

Para as amostras Cu/Ti-HL e Cu/Ti-MP, pode-se observar um decréscimo do valor de energia de bandgap quando se adicionar o promotor óxido de cobre. Isso ocorre devido a baixa energia de bandgap dos óxidos de cobre, em torno de 1,6 eV.

Também é possível verificar um decréscimo das energias de bandgap dos fotocatalisadores CuFe_x/Ti-HL em relação ao Ti-HL. Quanto maior o teor de Fe₂O₃ na amostra, menor o valor da bandgap. CuFe₅/Ti-HL, CuFe₁₀/Ti-HL e CuFe₂₀/Ti-HL apresentaram energias de bandgap iguais a 1,80, 1,58 e 1,40 eV, respecticamente.

Essa diminuição ocorre pelo mesmo efeito observado no Cu/Ti-HL em relação ao óxido de cobre. O Fe₂O₃ possui uma energia de bandgap baixa, em torno de 2,2 eV.

Para os materiais Fe_xTi_{1-x}, fica evidente que a energia de bandgap decai com a adição do promotor ferro na estrutura do TiO₂. Fe₅Ti₉₅, Fe₁₀Ti₉₀ e Fe₂₀Ti₈₀ apresentaram energia de bandgap iguais a 1,85, 1,75 e 1,54 eV, respectivamente. Estes valores de bandgap e esta ampliação do perfil de absorção são vistos em outros semicondutores, como CdS (BAO *et al.*, 2008). MATSUOKA *et al.* (2007) observaram a mesma ampliação de absorção de irradiação quando inseriu átomos de Ni, Fe, V e Cr em TiO₂.

Já para os fotocatalisadores Cu/Fe_xTi_{1-x}, verificou-se a mesma tendência vista nas outras amostras. Com a impregnação do óxido de cobre, o valor da energia de bandgap diminui. Cu/Fe₅Ti₉₅, Cu/Fe₁₀Ti₉₀ e Cu/Fe₂₀Ti₈₀ apresentram energia de bandgap iguais a 1,50, 1,35 e 1,47 eV, respecticamente.

4.7. Espectroscopia Fotoeletrônica de Raios X (XPS)

Foram realizadas análises de XPS nas amostras CuFe₅/Ti-HL, CuFe₂₀/Ti-HL, Fe_xTi_{1-x} (x = 5, 10 e 20%) e Cu/Fe_xTi_{1-x} (x = 5, 10 e 20%) para se estudar o estado de oxidação dos elementos presentes na superfície de cada fotocatalisador.

Os espectros das espécies não apresentados ao longo da discussão encontramse no Apêndice F.

As Tabelas 4.9 e 4.10 compilam as energias de ligação das espécies estudadas para os fotocatalisadores à base de Ti-HL e preparados pelo método de Pechini, respectivamente.

Tabela 4.9 – Energias de ligação das espécies estudadas nos fotocatalisadores à basede Ti-HL.

Amostras	Energias de Ligação (eV)					
	Cu 2p _{3/2}	Cu 2p _{1/2}	Fe 2p _{3/2}	Fe 2p _{1/2}	Ti 2p	0 1s
CuFe₅/Ti-HL	933,2	952,6	710,7	724,2	458,1	529,4
			717,3	728,6	463,8	531,0
CuFe ₂₀ /Ti-HL	933,4	953,1	710,7	724,2	458,4	529,4
			717,3	729,0	464,1	531,2

Amostras	Energias de Ligação (eV)						
Anostras	Cu 2p _{3/2}	Cu 2p _{1/2}	Fe 2p _{3/2}	Fe 2p _{1/2}	Ti 2p	0 1s	
	033.0	3,0 952,6	_	-	458,2	529,5	
	300,0		-		463,9	-	
Eo-Ti	_	-	711,1	724,8	458,1	529,3	
1 05 1 195			718,5	731,5	463,8	530,9	
Fe ₁₀ Ti ₉₀ -	_	-	711,6	724,9	458,2	529,5	
	-		719,2	732,2	463,9	531,0	
FeetTier	_	-	711,3	724,8	458,2	529,6	
	-		718,7	731,7	463,9	530,9	
Cu/Fe ₅ Ti ₉₅ 933	033.3	053 1	711,0	724,6	458,0	529,3	
	933,3	900,1	717,7	728,3	463,7	530,9	
Cu/Fe ₁₀ Ti ₉₀ 933,1	033.1	953,0	711,0	724,6	458,1	529,5	
	900,1		718,3	728,5	463,8	531,6	
Cu/Fe ₂₀ Ti ₈₀	033.2	052.0	710,9	724,6	458,0	529,4	
	933,2 93	333,0	718,3	728,9	463,6	531,4	

Tabela 4.10 – Energias de ligação das espécies estudadas nos fotocatalisadorespreparados pelo método de Pechini com e sem óxido de cobre.

Todas as amostras apresentaram contribuições do Ti 2p em 458,3 e 463,9 eV, respectivamente, associadas a Ti⁴⁺ (XU *et al.*, 2010). A Figura 4.28 apresenta o espectro da região Ti 2p para o fotocatalisador Cu/Ti-MP, representativo para os demais fotocatalisadores. Não foi observada a contribuição do Ti³⁺, já esperada em decorrência do tratamento térmico ser realizado em atmosfera oxidante. Este mesmo efeito foi visto por COLÓN *et al.* (2006).

Figura 4.28 - Espectro de XPS na região do Ti 2p para o fotocatalisador Cu/Ti-MP.

A Figura 4.29 mostra o espectro típico para a região do Cu das amostras Cu/Ti-MP e CuFe₂₀/Ti-HL. Observam-se os picos de Cu $2p_{3/2}$ e Cu $2p_{1/2}$ em torno de 933,0 e 952,6 eV, respectivamente, além do pico satélite em 942 eV.

Segundo LI *et al.* (2010) e COLÓN *et al.* (2006), o pico de em aproximadamente 933 ou 934 eV e a presença do pico satélite em 942 eV confirmam a existência do Cu²⁺ na superfície dos fotocatalisadores. Já a espécie Cu¹⁺ apresenta o pico de Cu $2p_{3/2}$ em 932,8 eV, com um deslocamento de aproximadamente 1,3 eV.

COLÓN *et al.* (2006) também confirmam essas informações. Os autores indicam que o pico principal Cu 2p_{3/2} para o CuO é deslocado em 1,3±0,2 eV em relação ao Cu⁰ e o Cu₂O. Além disso, a grande diferença entre Cu¹⁺ e Cu²⁺ é o pico satélite localizado entre 6 e 8 eV acima do pico principal Cu 2p. Esse pico satélite representa as transições

de transferência de carga 3d do ligante-metal, em que esta não pode ocorrer em Cu¹⁺ e Cu⁰ por causa dos níveis 3d estarem completamente cheios.

Portanto, analisando todos os valores de energia de ligação relacionadas à espécie Cu, não é possível descartar a coexistência das espécies Cu¹⁺ e Cu²⁺. Os teores de cada espécie foram calculados e são apresentados na Tabela 4.11.

Amostras	%Cu		
Amootrao	Cu ²⁺	Cu ¹⁺	
CuFe₅/Ti-HL	100	-	
CuFe ₂₀ /Ti-HL	100	-	
Cu/Ti-MP	58	42	
Cu/Fe ₅ Ti ₉₅	55	45	
Cu/Fe ₁₀ Ti ₉₀	75	25	
Cu/Fe ₂₀ Ti ₈₀	98	2	

Tabela 4.11 – Teores das espécies Cu¹⁺ e Cu²⁺ nos fotocatalisadores.

Nota-se que o CuFe₅/Ti-HL e CuFe₂₀/Ti-HL possuem somente o CuO, enquanto que o Cu/Ti-MP têm uma quantidade maior de CuO do que Cu₂O, 58%. Para os fotocatalisadores Cu/Fe_xTi_{1-x}, observa-se que o aumento do teor de ferro na estrutura do TiO₂ favorece a presença de CuO. Cu/Fe₅Ti₉₅ apresenta uma quantidade de 45% de Cu₂O enquanto que o Cu/Fe₂₀Ti₈₀ possui predominantemente CuO, 98%.

Analisando estes resultados, verifica-se que o teor de Cu²⁺ está relacionado com a cristalinidade do TiO₂. A amostra Ti-MP possui estrutura cristalina mais ordenada devido a maior temperatura de tratamento térmico empregada do que o Ti-HL utilizado como base para os fotocatalisadores CuFe_x/Ti-HL. Já nos materiais Cu/Fe_xTi_{1-x}, conforme há uma diminuição da cristalinidade do material base (Fe_xTi_{1-x}) ocorre um aumento da percentagem de Cu²⁺ no fotocatalisador. Portanto, verifica-se que quanto mais cristalino o TiO₂ inicial, menor a quantidade de CuO no fotocatalisador.

FERREIRA NETO (2015) preparou fotocatalisadores Cu/Zn/TiO₂ e utilizou como base um TiO₂ preparado pelo procedimento de hidrólise lenta do isopropóxido de titânio calcinado a 350°C. Todas amostras, independente do teor de óxido de cobre (2, 5 e 8% -%m/m), apresentaram Cu²⁺ na superfície. Outros trabalhos do grupo também confirmam essa hipótese. Os fotocatalisadores de PAULINO (2011), 2%CuO/TiO₂ e 2%CuO-19%ZnO/TiO₂, preparados com TiO₂ calcinado a 550°C, apresentaram teores iguais a 54 e 51% de Cu¹⁺, respectivamente. Portanto, estes resultados corroboram com o comportamento verificado neste trabalho.

Como os fotocatalisadores à base de Ti-HL, CuFe_x/Ti-HL, possuem 100% de CuO e FERREIRA NETO (2015) empregando o mesmo Ti-HL também verificou em seu trabalho esse teor de CuO, é cabível supor que o Cu/Ti-HL possua 100% de CuO. Segundo WU *et al.* (2009), a temperatura ambiente, as moléculas de água ocupam facilmente as vacâncias de oxigênio da superfície do TiO₂, gerando radicais hidroxila adsorvidos, 'OH. Quando se adiciona Cu²⁺ ao TiO₂ por impregnação, ocorre a seguinte reação entre os radicais hidroxilas e o promotor:

$$- \operatorname{Ti} - \operatorname{OH} + \operatorname{Cu}(\operatorname{NO}_3)_2 \rightarrow \operatorname{TiO} - \operatorname{CuO}_x + \operatorname{HNO}_3$$
(4.3)

Durante as etapas de secagem e tratamento térmico, as espécies de CuO_x são modificadas na superfície do TiO₂. Uma menor cristalinidade caracteriza um material mais desestruturado, com uma maior quantidade de vacâncias de oxigênio e radicais hidroxilas expostas. Com isso, durante o tratamento térmicos deste tipo de material, a estrutura CuO_x se torna CuO com mais facilidade do que em um material mais cristalino, como pode ser visto em todos os materiais preparados.

Em relação ao promotor ferro, as amostras CuFe_x/Ti-HL apresentaram contribuições do Fe $2p_{3/2}$ em 710,7 eV, associadas a Fe³⁺ (PAL *et al.*, 2001). O espectro da região Fe 2p para o fotocatalisador CuFe₂₀/Ti-HL é mostrado na Figura 4.30.

Figura 4.30 – Espectro de XPS na região do Fe 2p para o fotocatalisador CuFe₂₀/Ti-HL.

Todos os fotocatalisadores Fe_xTi_{1-x} e Cu/Fe_xTi_{1-x} apresentaram contribuições de Fe2p_{3/2} variando entre 710,9 – 711,6 eV, também associadas a Fe³⁺. No entanto, os picos sofreram um ligeiro deslocamento, o que indicam a inserção do Fe³⁺ na estrutura do TiO₂ e/ou a formação da ligação Fe–O–Ti nas amostras (TONG *et al.*, 2008). O espectro da região Fe 2p para o fotocatalisador Fe₂₀Ti₈₀ é apresentado na Figura 4.31, representativo para os demais fotocatalisadores citados acima.

Figura 4.31 – Espectro de XPS na região do Fe 2p para o fotocatalisador Fe₂₀Ti₈₀.

Para o O 1s, todos os fotocatalisadores apresentaram duas contribuições, com exceção da amostra Cu/Ti-MP. Os picos possuem energias de ligação em torno de 530 eV e 531,5 eV, como pode ser visto na Figura 4.32.

Figura 4.32 - Espectro de XPS na região do O 1s para o fotocatalisador CuFe20/Ti-HL.

Segundo COLÓN *et al.* (2006), o pico principal em 530 eV pode ser atribuído aos oxigênios da rede do TiO₂, enquanto que o sinal em aproximadamente 531 eV pode estar associado ao oxigênio das hidroxilas superficiais dos fotocatalisadores.

A Tabela 4.12 apresenta as composições química mássica e superficial obtidas pelo XRF e XPS, respectivamente. Em todos os fotocatalisadores observa-se que os teores de óxido de cobre apontados no XPS são iguais ou superiores dos valores obtidos no XRF. Esse mesmo efeito é observado para o Fe₂O₃ nas amostras CuFe₅/Ti-HL e CuFe₂₀/Ti-HL. Isso sugere que os promotores estão na superfície dos fotocatalisadores, recobrindo uma parte da superfície do TiO₂.

Amostra	Cu (%m/m)		Fe (%m/m)		Ti (%m/m)	
	XRF	XPS	XRF	XPS	XRF	XPS
Cu/Ti-MP	2,6	3,0	-	-	97,4	47,1
CuFe₅/Ti-HL	2,5	4,4	6,1	27,6	91,4	38,7
CuFe ₂₀ /Ti-HL	2,1	3,5	20,4	36,8	77,5	31,0
Fe ₅ Ti ₉₅	-	-	4,7	4,6	95,3	46,8
Fe ₁₀ Ti ₉₀	-	-	8,9	10,2	91,1	46,0
Fe ₂₀ Ti ₈₀	-	-	18,3	19,1	81,7	39,9
Cu/Fe ₅ Ti ₉₅	2,6	2,7	4,8	4,6	92,6	49,7
Cu/Fe ₁₀ Ti ₉₀	2,7	2,2	11,6	7,3	85,7	41,8
Cu/Fe ₂₀ Ti ₈₀	2,7	3,3	19,1	13,1	78,2	39,0

Tabela 4.12 – Comparação dos teores mássicos e superficícias de cada espécie.

Em relação aos materiais Fe_xTi_{1-x}, verifica-se que a quantidade de ferro na superfície e no bulk são semelhantes, indicando que o promotor está disperso de forma homogênea por toda a estrutura do fotocatalisador. Quando adicionado o óxido de cobre por impregnação nestes materiais, ocorre um recobrimento da superfície fazendo com que ela apresente uma menor quantidade de ferro do que o material de partida. Este efeito é observado nos fotocatalisadores com 10 e 20% (%m/m) de ferro na estrutura. Por exemplo, Fe₁₀Ti₉₀ e Cu/Fe₁₀Ti₉₀ apresentam 10,2 e 7,3% de ferro na superfície, respectivamente.

4.8. Considerações das Características Físico-químicas dos fotocatalisadores

A proposta inicial deste trabalho era preparar dois tipos de fotocatalisadores que possibilitassem um melhor entendimento do papel dos promotores no trânsito de elétrons no fotocatalisador e, além disso, avaliar a influência deles na formação de produtos na reação de interesse. Assim, desejava-se obter fotocatalisadores como mostrado na Figura 4.33.

Figura 4.33 – Esquema representativo das posições dos promotores nos fotocatalisadores CuFe_x/Ti-HL e Cu/Fe_xTi_{1-x}.

Nos fotocatalisadores CuFe_x/Ti-HL, Figura 4.33 (a), o CuO e o Fe₂O₃ estão na superfície do Ti-HL e mesmo o maior teor de Fe₂O₃ (20%m/m) não recobriu totalmente a superfície do fotocatalisador final. A co-precipitação dos promotores proporciounou uma diminuição da superfície específica e um aumento do diâmetro médio de poro do Ti-HL. Nos difratogramas de raios X são identificadas as fases anatásio, bruquita e hematita. As informações obtidas no refinamento de Rietveld são consistentes com a literatura e a co-precipitação do CuO e Fe₂O₃ não modificou os parâmetros de rede do Ti-HL. A ausência de fases referentes ao CuO e os resultados de FEG-EDS indicam uma boa dispersão do CuO. Em relação a absorção de irradiação UV-vis, o Fe₂O₃ promoveu uma ampliação na faixa de absorção em todos os fotocatalisadores, possibilitando-os a serem usados em aplicações com a luz solar. Com isso, as energias de bandgap estimadas são baixas, em torno de 1,8 a 1,4 eV. Devido ao baixo teor de CuO, verifica-se a contribuição do promotor nos perfis de absorção, mas não é possível apontar quais transições realmente ocorrem quando o fotocatalisador é fotoativado. Nos resultados de XPS, verificou-se as contribuições das espécies Fe³⁺ e Cu²⁺, confirmando a presença de Fe_2O_3 e CuO na superfície dos fotocatalisadores.

Para os fotocatalisadores preparados pelo método de Pechini, representados na Figura 4.33 (b), a inserção de ferro na estrutura do TiO₂ promoveu modificações nas

propriedades texturais em comparação ao Ti-HL. A superfície específica aumenta e o diâmetro médio de poro diminui conforme o teor de Fe se eleva, mas não se observa grandes modificações no volume de poros. Os resultados de XRD e o refinamento de Rietveld confirmam a formação de soluções sólidas de Fe-Ti devido a não segregação de quaisquer fases de Fe e a ligeira modificação do parâmetro de rede *c* na fase anatásio dos fotocatalisadores. O refinamento também mostrou que os materiais Fe₅Ti₉₅ e Fe₁₀Ti₉₀ possuem as fases anatásio e rutilo, enquanto Fe₂₀Ti₈₀ possui as três fases de TiO₂, com maior teor de fase rutilo. Conforme o teor de Fe aumenta na estrutura do TiO₂ o fotocatalisador torna-se mais amorfo. Esses resultados indiciam que o Fe₂₀Ti₈₀ e o Cu/Fe₂₀Ti₈₀ não deverão apresentar os melhores desempenhos fotocatalíticos em relação aos outros fotocatalisadores. A absorção de irradiação UV-visível sofreu modificações em relação a faixa e máximo de absorção para a região da luz visível. Os resultados de XPS sinalizam que a percentagem superficial de Fe é igual a percentagem bulk, evidenciando uma estrutura homogênea.

Após a impregnação de óxido de cobre sobre os materiais preparados pelo método de Pechini, algumas características se modificaram. A superfície específica, por exemplo, sofreu uma redução em torno de 20%. Não foram identificadas fases de óxido de cobre nos difratogramas de raios X, indicando uma boa dispersão deste promotor. Quanto a absorção de irradiação, os perfis que apresentaram maiores mudanças foram os fotocatalisadores Cu/Ti-MP e Cu/Fe₅Ti₉₅. A contribuição do óxido de cobre nos fotocatalisadores Cu/Fe₁₀Ti₉₀ e Cu/Fe₂₀Ti₈₀ foi mascarada devido a forte influência do promotor Fe. Os resultados de XPS mostram que conforme há um aumento do teor de Fe na estrutura do fotocatalisador, há um aumento da quantidade de Cu²⁺ na superfície. Analisando estes resultados em conjunto com o XRD, notou-se que o teor de Cu²⁺ é inversamente promorcional a cristalinidade do material. Assim, quanto menos cristalino for o TiO₂ base, maior a concentração de Cu²⁺ na superfície.

Portanto, foi atingido o objetivo inicial de se preparar fotocatalisadores em que os promotores estão em locais distintos na estrutura. Os fotocatalisadores apresentam características bastante interessantes que permitirão avaliar a influência de cada promotor na fotorredução catalítica de CO₂ com água. Vale ressaltar que o fotocatalisador Cu/Fe₂₀Ti₈₀ não deve apresentar um bom desempenho fotocalítico devido as fases de TiO₂ do material de partida Fe₂₀Ti₈₀.

CAPÍTULO 5

- Testes de Desempenho -

Os testes de desempenho são propostos para averiguar a influência dos promotores na fotoatividade dos fotocatalisadores e verificar a seletividade de cada um para a formação dos produtos desejados.

Todos os fotocatalisadores foram testados em duplicata e os resultados apresentados são obtidos a partir de uma média aritimética dos valores obtidos nas respectivas análises. Somente os fotocatalisadores CuFe₁₀/Ti-HL e Cu/Fe₁₀Ti₉₀ foram testados em triplicata e, com isso, foi possível calcular o erro inerente às análises. A triplicata objetivou analisar as amostras líquidas em uma faixa de tempo da reação que não havia sido verificada nos outros testes.

Foram observados produtos em ambos os meios reacionais do fotorreator, gasosa e líquida. Os compostos identificados ao longo das reações foram CH₄, CO, CH₃OH, C₃H₆O, CH₂O, C₂H₄O, C₂H₄O₂, CH₂O₂ e exemplos dos cromatogramas obtidos para cada meio são apresentados no Apêndice G.

Nota-se que os compostos CH₄, CO, CH₃OH, C₃H₆O, CH₂O foram produzidos por todos os fotocatalisadores promovidos com óxido de cobre e ferro. Os demais produtos não apresentaram uma formação constante ao longo do tempo de reação e também não foram identificados nas reações de todos os fotocatalisadores. Por exemplo, o C₂H₄O foi idetificado nas reações dos fotocatalisadores Cu/Ti-HL, CuFe_x/Ti-HL, Cu/Fe₁₀Ti₉₀ e Cu/Fe₂₀Ti₈₀. O fotocatalisador Cu/Fe₅Ti₉₅ foi o único que produziu C₂H₄O₂, 22,8 µmol/g_{cat} após 24 horas de irradiação.

A Figura 5.1 apresenta a formação de CH₂O ao longo das 24h de irradiação para os fotocatalisadores CuFe₁₀/Ti-HL e Cu/Fe₁₀Ti₉₀. Nota-se que o CuFe₁₀/Ti-HL produz uma maior quantidade do aldeído do que o Cu/Fe₁₀Ti₉₀. Além disso, verifica-se que o CH₂O é consumido durante a reação, não sendo encontrado nas análises das amostras

de 12 a 16 horas para o Cu/Fe₁₀Ti₉₀. Portanto, o comportamento dos compostos CH₂O, C_2H_4O e CH₂O₂ pode ser um indício de que eles sejam intermediários da reação.

Figura 5.1 – Formação de CH₂O para os fotocatalisadores CuFe₁₀/Ti-HL e Cu/Fe₁₀Ti₉₀ em 24 horas de reação.

A Figura 5.2 apresenta a formação de CH₄ em 24 horas de irradiação UV para de todos os fotocatalisadores preparados.

Figura 5.2 – Formação de CH₄ para todos os fotocatalisadores em 24 horas de reação.

O fotocatalisador que mais produziu CH₄ na reação foi o Cu/Ti-HL, cerca de 231 µmol/g_{cat}. Em contrapartida, Cu/Ti-MP foi o fotocatalisador que produziu a menor quantidade ao final da reação, 111 µmol/g_{cat}, uma quantidade bastante semelhante ao Ti-MP. Portanto, o óxido de cobre quando impregnado no Ti-MP não modifica a sua seletividade para a formação de CH₄.

Para os fotocatalisadores Fe_xTi_{1-x} , verifica-se que Fe_5Ti_{95} e $Fe_{10}Ti_{90}$ produziram quantidades semelhantes, 155 e 152 µmol/g_{cat}, respectivamente. Um aumento da quantidade de CH₄ produzido do teor de 10 para 20% (%m/m) é observado.

Em relação aos fotocatalisadores com os dois promotores, Cu e Fe, os que apresentaram o melhor desempenho foram CuFe₅/Ti-HL, Cu/Fe₅Ti₉₅ e Cu/Fe₁₀Ti₉₀, 200, 202 e 206 μ mol/g_{cat}, respectivamente. O Cu/Fe₂₀Ti₈₀ apresentou uma quantidade menor de CH₄ do que o Cu/Fe₁₀Ti₉₀, 151 μ mol/g_{cat}.

Destes resultados, vale ressaltar que a diferença de comportamento vista para os fotocatalisadores Ti-HL e Ti-MP, antes e após a impregnação do óxido de cobre, é um indício de que o efeito promotor do óxido de cobre é mais pronunciado na associação das fases anatásio/bruquita do que na associação anatásio/rutilo. Além disso, a adição do óxido de cobre no fotocatalisador Fe₂₀Ti₈₀ não promoveu uma melhora do desempenho fotocatalítico para a formação de CH₄. Portanto, o promotor pode estar influenciando no direcionamento da reação ou há algum efeito sinérgico entre o teor de 20% (%m/m) de Fe com o óxido de cobre.

A Figura 5.3 mostra a formação de CO nas 24 horas de irradiação UV dos fotocatalisadores. Todos apresentaram formação de CO em torno de 440 a 460 μmol/g, com exceção dos fotocatalisadores Cu/Ti-HL, Cu/Fe₁₀Ti₉₀ e CuFe₁₀/Ti, que produziram 289, 381 e 357 μmol/g_{cat}, respectivamente.

Analisando os resultados dos produtos gasosos da reação, é possível verificar que o fotocatalisador que mais produziu CH₄ foi o que apresentou uma menor quantidade de CO no final da reação, Cu/Ti-HL. O papel do CO é bastante controverso na literatura, considerado um intermediário de reação em alguns estudos. Com isso, é notória a necessidade de se averiguar melhor o comportamento do CO, verificando por exemplo, as taxas de formação do produto ao longo do tempo e a influência dos promotores na sua produção.

Figura 5.3 – Formação de CO para todos os fotocatalisadores em 24 horas de reação.

A Figura 5.4 apresenta os valores de formação de CH₃OH para todos os fotocatalisadores preparados após 24 horas de irradiação UV. Obteve-se uma ampla faixa de valores, entre 42 e 284 μ mol/g_{cat}, com o fotocatalisador Cu/Fe₁₀Ti₉₀ apresentando o melhor desempenho.

Figura 5.4 – Formação de CH₃OH para os fotocatalisadores preparados em 24 horas de reação.

A impregnação de óxido de cobre em Ti-HL e Ti-MP promoveu a formação de CH₃OH, independente do TiO₂ de origem. Os fotocatalisadores Cu/Ti-HL e Cu/Ti-MP produziram cerca de 113 µmol/g_{cat}. Dentre os fotocatalisadores com Fe na estrutura, Fe_xTi_{1-x}, o teor de 5% apresentou a maior formação, 163 µmol/g_{cat}. Já os fotocatalisadores Fe₁₀Ti₉₀ e Fe₂₀Ti₈₀ geraram quantidades semelhantes, cerca de 130 µmol/g_{cat}.

Para os fotocatalisadores CuFe_x/Ti-HL e Cu/Fe_xTi_{1-x}, os que apresentaram o melhor desempenho para a produção de CH₃OH contem o teor de Fe igual a 10% (%m/m). CuFe₁₀/Ti-HL e Cu/Fe₁₀/Ti₉₀ produziram 221 e 284 μ mol/g_{cat}, respectivamente.

A Figura 5.5 mostra os resultados de formação de C_3H_6O para todos os fotocatalisadores depois de 24 horas de reação.

Analisando o gráfico, verifica-se que as quantidades produzidas de C₃H₆O são consideradas altas para este tipo de reação. A sua produção, que indica uma tendência do sistema em produzir compostos de cadeia carbônica mais longa, é pouco relatada na literatura na fotorredução catalítica de CO₂. Apenas com os óxidos de titânio sem promotores, Ti-HL e Ti-MP, foram produzidos 322 e 301 µmol/g_{cat}, respectivamente. A impregnação do óxido de cobre causou efeitos diferentes nestes fotocatalisadores.

Enquanto o Cu/Ti-HL produziu uma maior quantidade de C_3H_6O que o óxido de titânio puro, o Cu/Ti-MP produziu menos do que o Ti-MP.

Em relação aos fotocatalisadores Fe_xTi_{1-x} , o aumento do teor de Fe na estrutura do TiO₂ promoveu um aumento da formação de C₃H₆O de 98 µmol/g_{cat} para o Fe₅Ti₉₅, para 359 µmol/g_{cat}, para o Fe₁₀Ti₉₀. Ao se adicionar óxido de cobre, o aumento foi ainda mais significativo. Cu/Fe₅Ti₉₅ e Cu/Fe₁₀Ti₉₀ foram os fotocatalisadores que apresentaram uma maior produção de C₃H₆O, 672 e 655 µmol/g_{cat}, respectivamente. Já os testes com os fotocatalisadores CuFe_x/Ti-HL, produziram quantidades bastante semelhantes de C₃H₆O, 402, 436 e 398 µmol/g_{cat}, para CuFe₅/Ti-HL, CuFe₁₀/Ti-HL e CuFe₂₀/Ti-HL, respectivamente.

A utilização de métodos de preparação distintos, para as duas séries de fotocatalisadores, possibilitou uma extensa avaliação dos efeitos dos promotores na fotoatividade. Para isso, os efeitos foram estudados utilizando os valores de taxa de formação dos produtos (µmol/g.h), que podem dar informações mais precisas em relação do desempenho dos fotocatalisadores. Assim, foram avaliados os seguintes efeitos:

- 1. Efeito do óxido de cobre no desempenho dos fotocatalisadores Ti-HL e Ti-MP;
- Efeito do óxido de cobre nos fotocatalisadores com Fe na estrutura do TiO₂, Fe_xTi_{1-x};
- 3. Efeito do teor de Fe₂O₃ no fotocatalisador Cu/Ti-HL (CuFe_x/Ti-HL);
- 4. Efeito do teor de Fe nos fotocatalisadores Fe_xTi_{1-x};
- Efeito da posição estrutura ou superfície do Fe no desempenho dos fotocatalisadores (CuFe_x/Ti-HL e Cu/Fe_xTi_{1-x}).

5.1. Efeito do óxido de cobre no desempenho dos fotocatalisadores Ti-HL e Ti-MP

Para se verificar como o óxido de cobre promoveu os fotocatalisadores Ti-HL e Ti-MP, foram analisadas as taxas de formação para os produtos obtidos ao longo da reação. A Figura 5.6 apresenta os resultados obtidos para a taxa de formação de CH₄ ao longo das 24 horas de reação. O Ti-HL e o Ti-MP apresentaram perfis de taxa bastante semelhantes, diferenciando-se pelo valor máximo de taxa de formação no tempo de 2 horas de reação, 7,9 e 5,6 µmol/g.h, respectivamente.

A impregnação do óxido de cobre no Ti-HL promoveu uma modificação no perfil de taxa de formação. Além do aumento dos valores da taxa, também a taxa máxima observada foi deslocada para 6 horas de irradiação. Em relação ao Cu/Ti-MP, a adição do óxido de cobre na superfície não modificou expressivamente o perfil de taxa de formação. Houve um aumento da taxa máxima observada em 2 horas de reação, 7,8 µmol/g.h.

Figura 5.6 – Taxa de formação do CH₄ para Ti-HL e Ti-MP com e sem óxido de cobre.

A Figura 5.7 mostra os perfis para as taxas de formação de CO. É possível verificar que os perfis são bastante semelhantes, não observando grandes modificações nos perfis do Ti-HL e Ti-MP após a impregnação do óxido de cobre.

Figura 5.7 – Taxa de formação de CO para Ti-HL e Ti-MP com e sem óxido de cobre.

Cu/Ti-HL e Cu/Ti-MP apresentam taxas máximas de formação, em 2 horas de reação, menores que os fotocatalisadores base. Ti-HL e Ti-MP apresentam taxas máximas iguais a 90 e 86 µmol/g.h, respectivamente; enquanto o Cu/Ti-HL e o Cu/Ti-MP, 61 e 75 µmol/g.h, respectivamente.

A Figura 5.8 mostra os perfis de taxa de formação para o CH₃OH. O Ti-HL e o Ti-MP apresentam perfis semelhantes e a produção do álcool se inicia apenas após a oitava hora de irradiação. Como não há análises entre os tempos de reação de 12 e 20 horas, não é possível inferir uma tendência para as taxas nesse intervalo. No final da reação, nos tempos de 22 e 24 horas, verifica-se a tendência de uma discreta elevação dos valores de taxa. Assim, em 24 horas de reação, Ti-HL e Ti-MP apresentam taxas iguais a 2,6 e 1,7 μmol/g.h, respectivamente.

Em relação aos fotocatalisadores impregnados com óxido de cobre, é possível verificar que eles apresentam perfis distintos. Enquanto o Cu/Ti-HL começa a produzir CH₃OH a partir da quarta hora de reação, o Cu/Ti-MP inicia esse processo após a sexta hora. Ambos apresentam uma inclinação de crescimento dos valores de taxa de formação, mas só é possível identificar uma taxa máxima para o Cu/Ti-HL. É notável que a presença do óxido de cobre promoveu a produção de CH₃OH e o Cu/Ti-HL e Cu/Ti-MP apresentaram taxas, em 24 horas de irradiação, iguais a 4,7 e 4,6 µmol/g.h, respectivamente.

Figura 5.8 – Taxa de formação de CH₃OH para os fotocatalisadores Ti-HL, Ti-MP, Cu/Ti-HL e Cu/Ti-MP.

A Figura 5.9 mostra como variou a taxa de formação de C_3H_6O ao longo da reação. O Ti-HL e o Ti-MP possuem perfis bastante distintos e verifica-se que o TiO₂ preparado pelo método de Pechini produz C_3H_6O em menor quantidade. Além disso, seus valores de taxa de formação não sofrem variações expressivas ao longo das 24 horas de reação, ficando entre 12 e 21,5 µmol/g.h. O Ti-HL possui uma taxa máxima em 2 horas de reação igual a 41,9 µmol/g.h e este valor cai gradativamente ao longo da reação, chegando a 13,4 µmol/g.h após 24 horas de irradiação.

Figura 5.9 – Formação de C_3H_6O para os TiO₂ promovidos por óxido de cobre.

Ao se impregnar óxido de cobre no Ti-HL e Ti-MP, os perfis de taxa de formação não apresentaram grandes variações, mas os valores se modificaram bastante. O promotor inibiu a produção de C₃H₆O no Cu/Ti-MP, em que a taxa máxima em 2 horas de irradiação foi igual a 13 µmol/g.h. Após isso, as taxas não variaram muito ao longo do tempo, ficando no intervalo de 8,9 e 10,7 µmol/g.h. Já no Cu/Ti-HL, o óxido de cobre promoveu um aumento das taxas de formação do C₃H₆O. A taxa máxima em 2 horas de reação passou de 41,9 µmol/g.h, sem o promotor, para 51,5 µmol/g.h.

Analisando os resultados dos fotocatalisadores Ti-HL e Ti-MP, a diferença entre as fotoatividades pode estar relacionada às suas estruturas cristalinas. Como visto nas análises de XRD, o Ti-HL possui as fases anatásio e bruquita, enquanto que o Ti-MP, anatásio e rutilo. A associação das fases anatásio+bruquita se mostra mais benéfica para a fotoatividade dos fotocatalisadores devido as estruturas ortorrômbica e tetragonal das fases bruquita e anatásio, respectivamente. Mesmo apresentando diferentes taxas de formação, as quantidades de produtos obtidos ao final das 24 horas de reação foram semelhantes. Portanto, faz-se necessário analisar os rendimentos quânticos dos produtos para realmente afirmar que a associação das fases anatásio+bruquita é melhor que a associação das fases anatásio+rutilo.

O efeito do óxido de cobre em fotocatalisadores empregados na fotorredução de CO₂ tem sido extensamente estudado. Ainda não há um consenso sobre qual óxido de cobre, Cu₂O e CuO, promove uma maior fotoeficiência aos fotocatalisadores. Assim, a comparação entre Cu/Ti-HL e Cu/Ti-MP pode elucidar parte dessa questão. Como visto nos resultados de XPS, o Cu/Ti-MP possui 58% de CuO. O Cu/Ti-HL não foi analisado no XPS, porém há grandes indícios de que ele possua 100% de CuO. Com isso, é possível avaliar como os teores dos óxidos de cobre influenciaram na fotoatividade.

A impregnação do óxido de cobre no Ti-HL aumentou expressivamente a fotoatividade do fotocatalisador final, Cu/Ti-HL, fazendo com que este produzisse maiores quantidades dos produtos. Este mesmo efeito não foi visto para o fotocatalisador Cu/Ti-MP. Com isso, há indícios de que o Cu²⁺ aumente mais a fotoatividade do que a associação Cu²⁺/Cu¹⁺. No entanto, nota-se que o Cu/Ti-MP apresentou taxas de formação para o CH₃OH semelhantes ao Cu/Ti-HL, ao final das 24 horas de irradiação. Assim, pode-se supor que a coexistência dos óxidos de cobre não promove uma melhora na fotoeficiência do fotocatalisador tanto quanto o CuO puro, mas torna-o mais seletivo a produção de CH₃OH.

5.2. Efeito do óxido de cobre nos fotocatalisadores com Fe na estrutura do TiO₂, Fe_xTi_{1-x}

A fim de se verificar como o óxido de cobre influencia na fotoatividade dos fotocatalisadores Fe_xTi_{1-x} e na seletividade dos produtos, foram comparadas as taxas de formação dos produtos obtidos para os fotocatalisadores Fe_xTi_{1-x} e Cu/Fe_xTi_{1-x}.

A Figura 5.10 apresenta os perfis das taxas de formação do CH₄ para os fotocatalisadores em questão. A impregnação do óxido de cobre proporcionou modificações distintas nos perfis de taxa de formação dos fotocatalisadores base.

O fotocatalisador Fe_5Ti_{95} apresentou taxas que variaram entre 6,5 e 10,7 µmol/g.h ao longo das 24 horas de reação. Já o Cu/Fe₅Ti₉₅ possui taxas maiores e com taxa máxima observada em 2 horas de irradiação, 19,2 µmol/g.h.

O Fe₁₀Ti₉₀ apresentou um perfil semelhante ao Fe₅Ti₉₅, apenas com uma taxa máxima mais definida às 6 horas de reação, 10,5 μmol/g.h. A adição do óxido de cobre

no Fe₁₀Ti₉₀ não provocou uma modificação tão acentuada no perfil da taxa de formação como foi visto para os fotocatalisadores com o percentual de 5% de Fe. Enquanto os valores das taxas variam entre 6,3 e 10,5 µmol/g.h para o Fe₁₀Ti₉₀, para o Cu/Fe₁₀Ti₉₀ variam entre 5,8 a 11,9 µmol/g.h.

Figura 5.10 – Comparação para a formação de CH₄ entre os fotocatalisadores Fe_xTi_{1-x} com e sem promotor óxido de cobre.

Para os fotocatalisadores com 20% (%m/m) de Fe, a impregnação do óxido de cobre não promoveu a formação de CH₄. Fe₂₀Ti₈₀ possui taxas iniciais de formação maiores que o Cu/Fe₂₀Ti₈₀. O perfil de taxa apresentado pelo Fe₂₀Ti₈₀ é semelhante ao perfil do fotocatalisador Fe₅Ti₉₅, indicando que o aumento do teor de Fe na estrutura do TiO₂ também não promoveu a formação do CH₄. O perfil de taxa do Cu/Fe₂₀Ti₈₀ se mantem constante ao longo de todo o tempo de reação, com taxas variando entre 6,3 e 7,3 µmol/g.h.

A Figura 5.11 mostra os resultados das taxas de formação para o CO ao longo das 24 horas de irradiação. O comportamento dos perfis das taxas de formação é bastante semelhante para todos os fotocatalisadores, não apresentando variação com a adição do óxido de cobre na superfície e nem com o aumento do teor de Fe na estrutura do TiO₂. As modificações notadas são em relação as taxas máximas, em 2 horas de irradiação. Os fotocatalisadores Fe_5Ti_{95} , $Fe_{10}Ti_{90}$, $Fe_{20}Ti_{80}$ apresentaram taxas máximas iguais a 85, 107, 133 µmol/g.h, respectivamente. Já os fotocatalisadores Cu/Fe₅Ti₉₅, Cu/Fe₁₀Ti₉₀ e Cu/Fe₂₀Ti₈₀, 96, 89 e 110 µmol/g.h, respectivamente.

Figura 5.11 – Comparação para a formação de CO entre os fotocatalisadores Fe_xTi_{1-x} com e sem promotor óxido de cobre.

Os perfis das taxas de formação do CH₃OH ao longo das 24 horas de irradiação podem ser observados na Figura 5.12. Somente o fotocatalisador Cu/Fe₁₀Ti₉₀ possui análises no intervalo de 12 a 20 horas de reação. A impregnação do óxido de cobre nos fotocatalisadores Fe_xTi_{1-x} promoveu a formação do álcool no Cu/Fe₅Ti₉₅ e Cu/Fe₁₀Ti₉₀ e a suprimiu no Cu/Fe₂₀Ti₈₀. Este mesmo efeito foi observado para a produção de CH₄. Todos os fotocatalisadores iniciam a formação de CH₃OH a partir da segunda hora de reação e apresentam taxas entre 3 e 12 µmol/g.h.

Nos fotocatalisadores com 5% de Fe na estrutura, nota-se que a adição do óxido de cobre elevou os valores de taxa de formação do CH₃OH. Inicialmente, o Fe₅Ti₉₅ apresentava taxas de formação entre 4,4 a 7,4 µmol/g.h. Já o Cu/Fe₅Ti₉₅, possui uma taxa máxima após 4 horas de irradiação, igual a 10 µmol/g.h. Nas horas seguintes, as

taxas de formação caem ligeiramente e apresenta uma taxa de formação após 24 horas de irradiação igual a 8,5 µmol/g.h.

Figura 5.12 – Comparação para a formação de CH₃OH entre os fotocatalisadores Fe_xTi_{1-x} com e sem promotor óxido de cobre.

O Fe₁₀Ti₉₀ apresenta taxas de formação que variam pouco entre si ao longo das 24 horas de irradiação, 5,5 a 7 µmol/g.h. O Cu/Fe₁₀Ti₉₀ possui um perfil de taxa de formação diferente dos demais fotocatalisadores, mostrando uma tendência de crescimento ao longo do tempo de reação. Nos tempos de 4 e 24 horas de reação, as taxas de formação do CH₃OH são iguais a 7,3 e 11,8 µmol/g.h, respectivamente.

Para os fotocatalisadores $Fe_{20}Ti_{80}$ e Cu/Fe₂₀Ti₈₀, foi verificada a mesma tendência observada para a formação de CH₄. A impregnação do óxido de cobre sobre o Fe₂₀Ti₈₀ fez com que as taxas de formação diminuíssem nas primeiras horas de reação. Entretanto, ao final das 24 horas de irradiação, nota-se que a taxa de formação do Cu/Fe₂₀Ti₈₀ é maior que do Fe₂₀Ti₈₀, 6,8 e 5,4 µmol/g.h, respectivamente.

A Figura 5.13 apresenta os perfis das taxas de formação do C_3H_6O ao longo da reação. Verifica-se que todas as curvas obtidas apresentam a mesma tendência e comportamento.
A adição do óxido de cobre na superfície dos fotocatalisadores Fe_5Ti_{95} e $Fe_{10}Ti_{90}$ promoveu a formação de C_3H_6O . Enquanto suas taxas de formação variam entre 3,8 -4,5 e 12 - 18 µmol/g.h, respectivamente; as taxas do CuFe₅Ti₉₅ e do Cu/Fe₁₀Ti₉₀ apresentaram variações entre 28 - 37,8 e 27 - 41 µmol/g.h, respectivamente.

Figura 5.13 – Comparação para a formação de C₃H₆O entre os fotocatalisadores Fe_xTi_{1-x} com e sem promotor óxido de cobre.

Já para os fotocatalisadores $Fe_{20}Ti_{80}$ e Cu/Fe₂₀Ti₈₀, o óxido de cobre não promoveu um aumento das taxas de formação para o produto em questão. As taxas obtidas foram semelhantes, em que $Fe_{20}Ti_{80}$ e Cu/Fe₂₀Ti₈₀ apresentam taxas iguais a 19,7 e 21 µmol/g.h, respectivamente, após 24 horas de irradiação.

Analisando os resultados, é possível verificar como os teores dos óxidos de cobre influenciaram na fotoatividade dos fotocatalisadores. Como visto nos fotocatalisadores Cu/Ti-HL e Cu/Ti-MP, a maior percentagem de CuO na superfície do Ti-HL promoveu uma melhora significativa na fotoeficiência do material. Nos fotocatalisadores Fe_xTi_{1-x} e Cu/Fe_xTi_{1-x} foi observado que conforme decresce o teor de CuO no fotocatalisador, cresce a fotoeficiência.

Como visto na Revisão Bibliográfica, o potencial redox do Fe^{3+} é mais positivo do que os potenciais do Cu^{2+} e Cu^{1+} . Com isso, ele tende a receber elétrons mais facilmente do que os óxidos de cobre. A adição do Fe na estrutura tetragonal das fases de TiO₂ apresenta uma configuração eletrônica do subnível *d* com distorção do orbital, conforme o esquema mostrado na Figura 5.14.

Figura 5.14 – Configuração do orbital 3d dos Cu²⁺ e Cu¹⁺.

O Fe³⁺ possui 5 possibilidades de retenção dos elétrons fotogerados, sendo os subníveis dz² e dx²-y² menos energéticos. Já os promotores Cu²⁺ e Cu¹⁺ possuem configurações eletrônicas dos subníveis d e s como apresentado na Figura 5.15. Todas as possibilidades do sequestro de elétrons dos óxidos de cobre são mais energéticas do que as do Fe³⁺.

Figura 5.15 – Configuração do orbital 3d dos Cu²⁺ e Cu¹⁺.

Seria esperado que a adição de óxido de cobre no Fe₂₀Ti₈₀ melhorasse o desempenho do fotocatalisador final, o que não ocorreu. Analisando as características físico-químicas do Cu/Fe₂₀Ti₈₀, algumas possibilidades são consideradas para este efeito. O grande teor de Fe na estrutura do TiO₂ favoreceu a formação da fase rutilo e o aumento excessivo do número de vacâncias no fotocatalisador. Além disso, o alto teor de Fe (20%) aumentou demasiadamente o trânsito de elétrons no fotocatalisador de tal

forma que, devido a configuração eletrônica do Fe³⁺, o óxido de cobre não participa da reação como um sequestrador de elétrons. Portanto, a presença do óxido de cobre no fotocatalisador Cu/Fe₂₀Ti₈₀ não beneficia sua atividade.

Dentre os fotocatalisadores apresentados neste item, para um melhor desempenho para a obtenção de CH₃OH, o fotocatalisador escolhido seria o Cu/Fe₁₀Ti₉₀ por apresentar uma taxa de formação crescente ao longo das 24 horas de irradiação.

5.3. Efeito do teor de Fe₂O₃ no fotocatalisador Cu/Ti-HL (CuFe_x/Ti-HL)

As Figuras 5.16 a 5.19 apresentam uma comparação das taxas de formação dos produtos CH₄, CO, CH₃OH e C₃H₆O para os fotocatalisadores Cu/Ti-HL e CuFe_x/Ti-HL.

Para o CH₄, mostrado na Figura 5.16, é possível verificar como a presença de Fe₂O₃ na superfície modifica as taxas de formação do produto. Os fotocatalisadores Cu/Ti-HL, CuFe₁₀/Ti-HL e CuFe₂₀/Ti-HL apresentam um valor máximo de taxa de formação nas primeiras horas de reação e depois este valor vai decaindo com o tempo. O mesmo não é observado para o CuFe₅/Ti-HL, que apresenta taxas com pouca variação ao longo das 24 horas de irradiação UV.

Figura 5.16 – Taxas de formação de CH₄ ao longo da reação para os fotocatalisadores Cu/Ti-HL e CuFe_x/Ti-HL.

É possível verificar que a presença de Fe₂O₃ na superfície dos fotocatalisadores diminuiu os valores das taxas de formação em comparação com o Cu/Ti-HL. O CuFe₅/Ti-

HL, CuFe₁₀/Ti-HL e CuFe₂₀/Ti-HL apresentaram taxas iguais a 6, 12 e 9 μmol/g.h, respectivamente, após 4 horas de irradiação. Já para este mesmo intervalo de tempo, o Cu/Ti-HL possui uma taxa de 16 μmol/g.h.

A Figura 5.17 mostra a taxa de formação para o CO em relação ao tempo de reação. Verifica-se que os perfis das taxas de formação são bastante semelhantes, todos com um máximo de formação em torno de 2 horas. Ao contrário do que foi observado para formação de CH₄, o Cu/Ti-HL possui as menores taxas para a produção de CO, apresentando 60 µmol/g.h de taxa máxima. Os fotocatalisadores CuFe_x/Ti-HL, com 5, 10 e 20% de Fe₂O₃, apresentaram valores máximos iguais a 105, 97 e 98 µmol/g.h, respectivamente.

Figura 5.17 – Taxa de formação de CO ao longo da reação para os fotocatalisadores Cu/Ti-HL e CuFe_x/Ti-HL.

A Figura 5.18 apresenta a taxa de formação para o CH₃OH e somente o fotocatalisador CuFe₁₀/Ti-HL possui análises líquidas no intervalo de tempo de 12 a 20 horas de reação. Analisando os perfis das taxas de formação, é possível verificar que a adição de Fe₂O₃ antecipou a produção de CH₃OH na reação. Os fotocatalisadores CuFe_x/Ti-HL começaram a produzir o álcool a partir da segunda hora de reação, enquanto que o Cu/Ti-HL, a partir da quarta hora.

Também é possível verificar que o fotocatalisador Cu/Ti-HL possui um perfil de taxa de formação diferente dos fotocatalisadores CuFe_x/Ti-HL. O Cu/Ti-HL inicia a produção de CH₃OH mais tarde, em que a taxa cresce entre o intervalo de 4 a 8 horas e, em seguida, apresenta uma queda que se mantêm até o final da reação. Os

fotocatalisadores CuFe_x/Ti-HL iniciam a formação de CH₃OH após a segunda hora de reação, apresentam uma taxa máxima em 4 horas e, posteriormente, os valores vão decaindo até as 24 horas de irradiação.

CuFe₁₀/Ti-HL e CuFe₂₀/Ti-HL apresentam valores de taxa de formação superiores ao CuFe₅/Ti-HL e Cu/Ti-HL, indicando que os teores de 10 e 20% de Fe₂O₃ na superfície são mais seletivos a produção do CH₃OH. Após 24 horas de irradiação, os fotocatalisadores Cu/Ti-HL, CuFe₅/Ti-HL, CuFe₁₀/Ti-HL e CuFe₂₀/Ti-HL apresentam taxas de formação iguais a 4,7, 5, 9,2 e 8,2 µmol/g.h, respectivamente.

Figura 5.18 – Taxa de formação de CH₃OH ao longo da reação para os fotocatalisadores Cu/Ti-HL e CuFe_x/Ti-HL.

A Figura 5.19 mostra os perfis de taxa de formação para o produto C₃H₆O. O Cu/Ti-HL possui taxas bem mais elevadas do que os outros fotocatalisadores durante toda a reação. CuFe₁₀/Ti-HL apresenta um perfil de taxa diferente dos demais fotocatalisadores, em que os valores variam pouco ao longo das 24 horas de irradiação. Os fotocatalisadores Cu/Ti-HL, CuFe₅/Ti-HL, e CuFe₂₀/Ti-HL apresentam uma taxa máxima nas primeiras horas de reação e em seguida, ela vai decaindo gradativamente. Em 6 horas de irradiação UV, os fotocatalisadores Cu/Ti-HL, CuFe₅/Ti-HL, CuFe₁₀/Ti-HL

Com as análises acima, é possível verificar que a presença de Fe₂O₃ na superficie dos fotocatalisadores diminuiu as taxas de formação de CH₄ e C₃H₆O em comparação com o Cu/Ti-HL. A mesma tendência não é observada para a formação de

CO. Em relação ao CH₃OH, o teor de 5% de Fe₂O₃ não promoveu um acréscimo da sua taxa de formação, o que só é visto para os teores de 10 e 20% (%m/m).

Figura 5.19 – Taxa de formação de C_3H_6O ao longo da reação para os fotocatalisadores Cu/Ti-HL e CuFe_x/Ti-HL.

Portanto, dentre estes fotocatalisadores, os que se mostram mais adequados para a produção de CH₃OH foram CuFe₁₀/Ti-HL e CuFe₂₀/Ti-HL. Além de apresentar maiores taxas de formação, esses fotocatalisadores foram mais seletivos para a produção do álcool e possuem taxas de formação de C₃H₆O constantes ao longo de todo o tempo de reação.

5.4. Efeito do teor de Fe nos fotocatalisadores Fe_xTi_{1-x}

Para uma avaliação da influência da inserção de Fe na estrutura do TiO₂ na formação de produtos fez-se uma comparação dos desempenhos dos fotocatalisadores Ti-MP e Fe_xTi_{1-x}.

A Figura 5.20 apresenta as taxas de formação de CH₄ ao longo das 24 horas de reação. Nota-se que as taxas de formação do Ti-MP apresentam um comportamento diferente dos demais fotocatalisadores, tendo uma taxa máxima em 2 horas de reação (7,9 µmol/g.h) e queda dos valores até o final da reação.

A inserção do Fe na estrutura do TiO₂ proporciou um aumento dos valores de taxa de formação de CH₄ para todos os fotocatalisadores Fe_xTi_{1-x}, independente do teor

do promotor. Fe_5Ti_{95} e $Fe_{10}Ti_{90}$ apresentaram valores máximos de taxa com 6 horas de reação, em torno de 10,5 µmol/g.h. Já o $Fe_{20}Ti_{80}$ apresentou uma taxa máxima em 4 horas de reação igual 10 µmol/g.h.

Figura 5.20 – Taxa de formação de CH₄ ao longo da reação para os fotocatalisadores Ti-MP e Fe_xTi_{1-x}.

A taxa de formação de CO em função do tempo de reação é apresentado na Figura 5.21. O comportamento das taxas observadas é semelhante para todos os fotocatalisadores. No entanto, as taxas máximas observadas em 2 horas de reação aumentam com o teor de Fe na estrutura do TiO₂. Assim, Ti-MP, Fe₅Ti₉₅, Fe₁₀Ti₉₀ e Fe₂₀Ti₈₀ possuem uma taxa de formação máxima igual a 86, 85, 107 e 133 μmol/g.h, respectivamente.

Figura 5.21 – Taxa de formação de CO ao longo da reação para os fotocatalisadores Ti-MP e Fe_xTi_{1-x}.

Em relação as taxas de formação de CH₃OH, os fotocatalisadores apresentaram perfis bastante distintos e estes são mostrados na Figura 5.22.

Figura 5.22 – Taxa de formação de CH₃OH ao longo da reação para os fotocatalisadores Ti-MP e Fe_xTi_{1-x}.

O Ti-MP iniciou a produção de CH₃OH somente após a oitava hora de irradiação e apresentou valores de taxa de formação baixos, entre 0 e 2 μmol/g.h. Ao se inserir 5% de Fe no TiO₂, a taxa de formação cresce ao longo do tempo de reação a partir da segunda hora. Como não há análises entre o intervalo de tempo de 12 a 20 horas de reação, não se pode inferir até quando a taxa de formação se mantém nesta tendência de crescimento. Com 22 e 24 horas de irradiação, a taxa de formação permanece constante, em torno de 7 µmol/g.h.

Os fotocatalisadores Fe₁₀Ti₉₀ e Fe₂₀Ti₈₀ apresentaram perfis de taxa de formação bastante semelhantes, indicando que o teor de 20% de Fe na estrutura do TiO₂ não beneficiou a produção de CH₃OH. As taxas sofrem uma queda durante o intervalo sem análises, e após as 24 horas de irradiação, Fe₁₀Ti₉₀ e o Fe₂₀Ti₈₀ apresentam taxas iguais a 5,4 µmol/g.h.

A Figura 5.23 apresenta os perfis de taxa de formação de C₃H₆O ao longo do tempo de reação. É possível verificar que os fotocatalisadores apresentaram perfis de taxa bastante distintos.

O Ti-MP é o fotocatalisador que apresenta maiores taxas de formação e possui um valor de máximo nas primeiras horas de reação, com posterior queda. O Fe₅Ti₉₅ apresenta os menores valores de taxa de reação e elas se mantém constante ao longo de toda a reação. Em 6 horas de irradiação, o Ti-MP e o Fe₅Ti₉₅ possuem taxas de formação iguais a 20,8 e 4,4 µmol/g.h, respectivamente.

Figura 5.23 – Taxa de formação de C_3H_6O ao longo da reação para os fotocatalisadores Ti-MP e Fe_xTi_{1-x}.

Em relação aos teores de 10 e 20% de Fe, verifica-se que os perfis das taxas de formação são bastante semelhantes para os dois fotocatalisadores, como também foi visto para a produção de CH₃OH. Observa-se uma taxa máxima de formação em 2 horas de reação e, após 24 horas de irradiação, o Fe₁₀Ti₉₀ e o Fe₂₀Ti₈₀ apresentam taxas de formação iguais a 15 e 15,4 μ mol/g.h, respectivamente.

Vale salientar que o comportamento do fotocatalisador Fe₅Ti₉₅ é bastante interessante para a obtenção de CH₃OH. Ele apresenta um valor de taxa maior ao final das 24 horas de irradiação e, ao longo da reação, as taxas de formação são semelhantes em comparação aos demais fotocatalisadores promovidos com Fe. Além disso, as baixas e constantes taxas de formação de C₃H₆O indicam uma maior seletividade para o álcool desejado.

Em concordância com os de resultados de XRD, o teor de 20% de Fe no fotocatalisador $Fe_{20}Ti_{80}$ não conferiu a ele um melhor desempenho fotocatalítico devido a grande quantidade da fase rutilo no fotocatalisador (57%). Além disso, como citado no item 5.2, o alto teor de Fe na estrutura do TiO₂ pode ter causado o efeito inverso do desejado: aumentando excessivamente o trânsito de elétrons na estrutura e facilitando a recombinação dos pares e⁻/h⁺.

5.5. Efeito da posição – estrutura ou superfície – do Fe no desempenho dos fotocatalisadores (CuFe_x/Ti-HL e Cu/Fe_xTi_{1-x})

Com o objetivo de avaliar a influência da dispersão de promotores Fe na fotoeficiência do fotocatalisador, foram preparados os fotocatalisadores CuFe_x/Ti-HL e Cu/Fe_xTi_{1-x}. Isso possibilitará inferir se uma dispersão do promotor Fe na estrutura melhorará a fotoatividade do fotocatalisador ou se facilitará a recombinação do par e^-/h^+ .

A Figura 5.24 apresenta os resultados para taxa de formação para CH_4 dos fotocatalisadores $CuFe_x/Ti$ -HL e Cu/Fe_xTi_{1-x} .

Figura 5.24 – Perfis de taxa de formação do CH₄ para os fotocatalisadores CuFe_x/Ti-HL e Cu/Fe_xTi_{1-x}.

As taxas de formação referentes ao CuFe₅/Ti-HL apresentaram pouca variação nas 24 horas de reação. Em contrapartida, Cu/Fe₅Ti₉₅ foi o que apresentou maior variação, tendo uma taxa máxima em 2 horas de irradiação igual a 19 µmol/g.h. No final da reação, as taxas de formação dos fotocatalisadores com com 5% de Fe se equipararam, apresentando valores iguais a 8,4 µmol/g.h.

Em relação aos fotocatalisadores com 10% de Fe, eles possuem perfis de taxa de formação diferentes nas primeiras horas de reação. Enquanto o CuFe₁₀/Ti-HL apresenta uma taxa máxima de formação na segunda hora de reação, o Cu/Fe₁₀Ti₉₀ apresenta na quarta hora. Após o início da reação, suas performances são bastante semelhantes. Em 24 de irradiação, CuFe₁₀/Ti-HL e Cu/Fe₁₀Ti₉₀ apresentam taxas de formação iguais a 7,4 e 8,6 µmol/g.h, respectivamente.

Já para os fotocatalisadores com 20% de Fe, ambos apresentaram perfis semelhantes, sem grandes variações expressivas. O CuFe₂₀/Ti-HL teve uma taxa de formação maior do que Cu/Fe₂₀Ti₈₀ ao longo de toda a reação, porém constante. Após

24 horas de irradiação, CuFe₂₀/Ti-HL e Cu/Fe₂₀Ti₈₀ apresentaram taxas de formação iguais a 7,8 e 6,3 μ mol/g.h, respectivamente.

É possível verificar pelos resultados como o método de preparo influenciou na formação de CH₄. O promotor Fe na superfície fez com que os teores de 5 e 20% apresentassem uma taxa de formação praticamente constante ao longo da reação. O mesmo comportamento não foi verificado para o teor de 10%, CuFe₁₀/Ti-HL.

Já o Fe na estrutura do TiO₂, os comportamentos foram distintos nos 3 teores. Cu/Fe₅Ti₉₅ apresentou grande taxa de formação nas primeiras 2 horas de reação e este valor inicial caiu pela metade ao final da reação. Cu/Fe₁₀Ti₉₀, apresentou um máximo de taxa com 4 horas de reação e após isso, se observou uma ligeira queda. Para Cu/Fe₂₀Ti₈₀, a taxa de formação se manteve constante ao longo de toda reação.

A Figura 5.25 apresenta os resultados para taxa de formação para CO dos fotocatalisadores CuFe_x/Ti-HL e Cu/Fe_xTi_{1-x}.

Todos os fotocatalisadores apresentaram altas taxas de formação de CO no início da reação e os perfis possuem o mesmo comportamento. Além disso, todos os perfis apresentam uma taxa máxima de formação de CO após duas horas de reação, que variaram entre 90 e 105 µmol/g.h.

Em relação ao teor de 5% de Fe, o CuFe₅/Ti-HL apresentou uma taxa de formação de CO levemente maior do que Cu/Fe₅Ti₉₅ até 12 horas de reação. Após este tempo, as taxas se mantiveram semelhantes até o final das 24 horas de irradiação. Para x = 10%, as taxas de formação de CO foram bastante próximas ao longo de toda a reação para ambos os fotocatalisadores. Já o Cu/Fe₂₀Ti₈₀ apresentou uma taxa de formação máxima maior do que o CuFe₂₀/Ti-HL, na segunda hora de irradiação. Em seguida os valores observados são bastante semelhantes entre si até o final da reação. Estes resultados indicam que a posição do promotor Fe no fotocatalisador não influencia na produção de CO.

Figura 5.25 – Curvas de taxa de formação do CO para os fotocatalisadores CuFe_x/Ti-HL e Cu/Fe_xTi_{1-x}.

A Figura 5.26 apresenta os resultados para as taxas de formação do CH₃OH dos fotocatalisadores em questão. Todos os fotocatalisadores produziram CH₃OH a partir de 4 horas de reação. Além disso, os perfis apresentaram comportamentos distintos conforme há um aumento do teor de Fe no fotocatalisador.

O fotocatalisador CuFe₅/Ti-HL foi o material que apresentou menor variação nos valores de taxa de formação, mantendo-a praticamente constante ao longo de toda a reação. Esse mesmo comportamento foi verificado no fotocatalisador Cu/Fe₅Ti₉₅. Após 24 horas de irradiação, CuFe₅/Ti-HL e Cu/Fe₅Ti₉₅ apresentaram taxas de formação iguais a 4,9 e 8,5 μmol/g.h, respectivamente.

Entretanto, o comportamento observado nos fotocatalisadores com 5% de Fe não foi mantido para os fotocatalisadores com os teores de 10 e 20% (%m/m). Os fotocatalisadores com os promotores na superfície, CuFe₁₀/Ti-HL e CuFe₂₀/Ti-HL tiveram altas taxas de formação no início da reação e esses valores foram decaindo ao longo do tempo, diminuindo em cerca de 50% do valor inicial. Já os materiais com o promotor Fe na estrutura, Cu/Fe₁₀Ti₉₀ e Cu/Fe₂₀Ti₉₀, a tendência se modificou. As taxas de formação de CH₃OH cresceram ao longo do tempo de reação, apresentando um aumento de cerca de 40% e 50% para para os fotocatalisadores Cu/Fe₁₀Ti₉₀ e Cu/Fe₂₀Ti₉₀, respectivamente.

Figura 5.26 – Taxas de formação do CH₃OH para os fotocatalisadores CuFe_x/Ti-HL e Cu/Fe_xTi_{1-x}.

Portanto, a presença do promotor Fe na estrutura do TiO₂, em maiores teores, favoreceu a formação de CH₃OH. Em relação aos fotocatalisadores com 10% de Fe, que são os materiais com análises no intervalo de tempo de 12 a 20 horas de reação, é possível verificar o tempo em que o Cu/Fe₁₀Ti₉₀ passa a ter uma taxa de formação maior que CuFe₁₀/Ti-HL, em 18 horas de reação.

A Figura 5.27 apresenta os resultados para taxa de formação para C_3H_6O dos fotocatalisadores CuFe_x/Ti-HL e Cu/Fe_xTi_{1-x}. Todos os fotocatalisadores produziram C_3H_6O logo no início da reação, após 2 horas de irradiação.

Figura 5.27 – Perfis das taxas de formação do C₃H₆O para os fotocatalisadores CuFe_x/Ti-HL e Cu/Fe_xTi_{1-x}.

Para o teor de 5% de Fe, o CuFe₅/Ti-HL apresentou uma taxa máxima em 2 horas de reação igual a 26,5 µmol/g.h. Em sequência, as taxas sofreram uma leve queda e permaneceram constante até o término da reação. Já o fotocatalisador Cu/Fe₅Ti₉₅, apresentou taxas de formação maiores que o CuFe₅/Ti-HL, que variaram entre 28 e 37,8 µmol/g.h.

O fotocatalisador CuFe₁₀/Ti-HL apresentou taxas de formação de C₃H₆O sem variações expressivas ao longo das 24 horas de irradiação. Após 6 e 24 horas de reação, as taxas de formação observadas são 17,3 e 18,2 µmol/g.h, respectivamente. A mesma tendência vista no fotocatalisador Cu/Fe₅Ti₉₅ é observada para o Cu/Fe₁₀Ti₉₀. Os valores de taxa de formação do fotocatalisador com o Fe na estrutura são maiores do que o fotocatalisador que possui o Fe na superfície. O Cu/Fe₁₀Ti₉₀ apresenta uma taxa máxima de formação após 2 horas de irradiação, igual a 40,9 µmol/g.h. Ao final da reação, as taxas de formação decaem e após 24 horas, a taxa observada é de 27,3 µmol/g.h.

Os fotocatalisadores CuFe₂₀/Ti-HL e Cu/Fe₂₀Ti₈₀ apresentaram perfis de taxa de formação semelhantes para a produção de C₃H₆O. Os valores de taxa observados para ambos os fotocatalisadores não são discrepantes, durante todo o tempo de reação. Com exceção para a taxa máxima de formação observada em 2 horas de irradiação, em que CuFe₂₀/Ti-HL e Cu/Fe₂₀Ti₈₀ apresentaram taxas iguais a 28,6 e 20,6 μ mol/g.h, respectivamente.

Analisando os resultados, verifica-se que a posição do promotor Fe no fotocatalisador influenciou principalmente na formação dos produtos da fase líquida, CH₃OH e C₃H₆O. Os teores de 5 e 10% de Fe na estrutura do TiO₂ melhoraram a seletividade do fotocatalisador para CH₃OH, enquanto que o CuFe₂₀/Ti-HL se mostrou mais eficiente do que Cu/Fe₂₀Ti₈₀. O Cu/Fe₂₀Ti₈₀ apresentou valores de taxa de formação menores do que os outros fotocatalisadores, para todos os produtos. No entanto, seu perfil de formação de CH₃OH é crescente ao longo das 24 horas de reação. Assim, o fotocatalisador Cu/Fe₁₀Ti₉₀ se mostra apto para a produção de CH₃OH devido ao perfil de taxas de formação crescente ao longo do tempo.

Para uma escolha mais correta, visando a produção de CH₃OH, são necessárias avaliações mais minuciosas, como cálculos de rendimento quântico dos produtos obtidos.

5.6. Rendimento Quântico e Proposta de Rota Reacional

Neste trabalho foram preparadas duas séries de fotocatalisadores, totalizando 13 fotocatalisadores. Com isso, conseguiu-se avaliar os efeitos dos promotores em ambas as séries. Para uma melhor interpretação, é importante analisar os dados de formação (quantidades e taxas) em conjunto com o rendimento quântico calculado para cada produto. A Tabela 5.1 apresenta os rendimentos quânticos obtidos para os produtos CH_4 , CO, $CH_3OH e C_3H_6O$.

Analisando os resultados apresentados na tabela, verifica-se que o Ti-HL e o Ti-MP apresentam rendimentos totais próximos, indicando que a associação das fases anatásio+bruquita e anatásio+rutilo, nos teores obtidos, não resultou em uma grande variação na fotoeficiência dos fotocatalisadores.

Ao se impregnar óxido de cobre nos óxidos de titânio preparados, verifica-se que o promotor melhora a fotoeficiência do Ti-HL, mas o mesmo não ocorre com o Ti-MP. Portanto, a associação anatasio+bruquita, promovida por Cu²⁺ se mostra mais fotoativa do que a associação anatásio+rutilo com a coexistência de Cu²⁺ e Cu¹⁺.

Fotocatalisadores	CH₄	CO	CH₃OH	C₃H ₆ O	Φ _{total}
Ti-HL	0,78	0,74	0,30	1,80	3,62
Cu/Ti-HL	1,47	0,46	0,54	2,68	5,16
Ti-HL 550°C	0,80	0,74	0,35	1,81	
Cu/Ti-HL 550°C	1,46	0,44	0,49	1,73	
CuFe₅/Ti-HL	1,47	0,46	0,54	2,24	4,72
CuFe ₁₀ /Ti-HL	1,14	0,57	1,06	2,44	5,20
CuFe ₂₀ /Ti-HL	1,19	0,67	0,94	2,22	5,02
				•	
Ti-MP	0,79	0,74	0,20	1,68	3,41
Fe ₅ Ti ₉₅	0,99	0,70	0,78	0,55	3,02
Fe ₁₀ Ti ₉₀	0,97	0,69	0,62	2,00	4,27
Fe ₂₀ Ti ₈₀	1,15	0,74	0,62	2,06	4,58
Cu/Ti-MP	0,71	0,67	0,53	1,27	3,19
Cu/Fe ₅ Ti ₉₅	1,29	0,73	0,98	3,75	6,75
Cu/Fe ₁₀ Ti ₉₀	0,88	0,41	0,91	2,26	4,46
Cu/Fe ₂₀ Ti ₈₀	0,97	0,68	0,43	2,02	4,10

Tabela 5.1 – Rendimento quântico dos produtos CH₄, CO, CH₃OH e C₃H₆O após 24 horas de irradiação.

Em relação aos fotocatalisadores com Fe, para o teor de 5% (%m/m) nota-se um efeito promotor muito mais sensível quando este está na estrutura. Além disso, o fotocatalisador Cu/Fe₅Ti₉₅ é mais seletivo a CH₄ e CH₃OH.

Com o aumento do teor de Fe na estrutura, o rendimento do fotocatalisador cai, atingindo um patamar. Para o teor de 10% de Fe, a seletividade do CH₃OH é mantida, porém para o teor de 20% o rendimento diminui mais do que 50%.

Quando o promotor Fe está na superfície, o aumento do teor de Fe aumenta o rendimento total dos fotocatalisadores, dobrando a seletividade ao CH₃OH do teor de 5% para 10% (CuFe₅/Ti-HL e CuFe₁₀/Ti-HL).

Portanto, com os resultados desta tabela, pode-se afirmar que os fotocatalisadores mais indicados para a produção de CH₃OH são os que possuem o teor

de 10% de Fe, CuFe₁₀/Ti-HL e Cu/Fe₁₀Ti₉₀, e o CuFe₂₀/Ti-HL. Os valores de rendimentos quânticos habilitam os fotocatalisadores com os promotores na superfície para esta finalidade, entretanto, por apresentarem perfis de taxa de formação decrescentes ao longo do tempo, é mais interessante se empregar o fotocatalisador Cu/Fe₁₀Ti₉₀.

De posse dos resultados dos testes de desempenho, é possível indicar uma rota reacional para a fotorredução catalítica de CO₂. Dentre os três mecanismos existentes na literatura, apresentados no Capítulo 2, acredita-se que a rota do glioxal seja a que ocorra quando empregados estes fotocatalisadores. Esta rota, proposta por SKROOG *et al.* (2012), baseia-se na formação de intermediários mais estáveis e obtêm como produtos principais o CH₄ e o CH₃OH.

Como neste trabalho foram produzidos compostos de maior cadeia carbônica, como C_3H_6O e $C_2H_4O_2$, antes de se propor as modificações da rota, deve-se considerar as seguintes hipóteses definidas a partir das observações dos resultados obtidos:

- O CH₃OH é um produto concorrente na produção de CH₄ e C₃H₆O;
- A formação do CO é um subproduto da reação, proveniente da redução parcial do CO₂;
- Os compostos CH₂O, C₂H₄O e CH₂O₂ são intermediários da reação;
- C₂H₄O₂ foi identificado, em pequena quantidade, somente na reação com o fotocatalisador Cu/Fe₅Ti₉₅.

Com isso, foram propostas a seguintes modificações (em vermelho) na rota do glioxal, apresentadas na Figura 5.28.

Inicialmente o CO₂ é reduzido, havendo a formação do radical [•]CO₂. Este radical pode ser aproveitado tanto para a geração de CH_2O_2 e posterior formação do glioxal, como para a geração de CO. Seguindo os produtos de interesse, o glioxal gera um glicoaldeído e segundo os autores, é a partir da reação deste composto com uma lacuna (h⁺) que ocorre a formação de CH₃OH. Este glicoaldeído também pode ser reduzido, havendo a formação de C₂H₄O. A obtenção do radical H₃C₂O[•], a partir da combinação do C₂H₄O, credencia esta rota para a formação de compostos de cadeia carbônica mais ampla. Portanto, a partir dele, podem ser produzidos C₃H₆O, C₂H₄O₂, CH₄ e também, o CH₃OH.

Figura 5.28 – Proposta de rota reacional baseada no mecanismo do glioxal de SKROOG *et al.* (2012).

Analisando os resultados das taxas de formação do CO, para todos os fotocatalisadores, é interessante ressaltar que os perfis das taxas não sofrem modificações em seus comportamentos com a presença dos promotores Fe e óxido de cobre. Isso ocorre em ambas as séries de fotocatalisadores. Portanto, a produção de CO não é influenciada pelos promotores. Esse é um indício de que o mecanismo de formação do CO não está relacionado ao direcionamento da reação. A Figura 5.29 apresenta três formas distintas de obtenção do CO a partir do radical 'CO₂, mecanismos propostos por ZHAO et al. (2009) e PIPORNPONG et al. (2011).

$$CO_2 + e^- \longrightarrow O = C^- O^- \underbrace{CO_2 + e^-}_{CO_2 + e^-} CO + CO_3^{2-}$$
 (II)

$$CO + O^{\bullet^{-}} \begin{cases} V_{o} \longrightarrow V_{o}^{+} + e^{-} \\ V_{o} + O^{\bullet^{-}} \longrightarrow O_{2c} \\ CO_{2} + [TiO_{2} + V_{o}] \longrightarrow CO + [TiO_{2}] \end{cases}$$
(III)

Figura 5.29 - Rotas de formação do CO propostas por ZHAO et al. (2009) e PIPORNPONG et al. (2011).

5.7. Considerações em relação aos Testes de Desempenho

Este trabalho é uma continuidade, em que o mesmo tema foi abordado na dissertação de PAULINO, 2011. Portanto, vale ressaltar algumas melhoras no sistema reacional e comparações com os resultados anteriores do grupo.

PAULINO (2011) empregou como meio reacional uma solução de NaOH mais concentrada, 0,2M. Além disso, eram utilizados 600 mL de meio reacional para a realização dos testes de desempenho. Como produtos, foram observados CH₄ e CO, empregando fotocatalisadores à base de TiO₂, ZnO e óxido de cobre. O fotocatalisador que apresentou o melhor desempenho foi o 2%CuO-19%ZnO/TiO₂, produzindo 184 µmol/g_{cat} de CH₄.

Para este trabalho, algumas condições reacionais mudaram em decorrência dos melhores resultados nos testes de desempenho verificados na dissertação de mestrado de FERREIRA NETO, 2015. Com isso, a concentração da solução de NaOH empregada passou a ser 0,1M e foram utilizados 400 mL de meio reacional em todos os testes de

desempenho. Essas alterações nas condições de reação modificaram significativamente os resultados de desempenho dos fotocatalisadores, visto a gama de produtos observados neste trabalho.

Além disso, o número de fotocatalisadores preparados possibilitou uma avaliação concisa da relação trânsito de elétrons X fotoatividade do fotocatalisador. Esta variável é pouco estudada na literatura e os resultados obtidos são bastante promissores. É sabido que o promotor óxido de cobre melhora a fotoeficiência dos fotocatalisadores atuando como um capturador de elétrons e com isso, mantendo o par elétron-lacuna mais tempo disponível para ser aproveitado na reação. Outro fator estudado por alguns pesquisadores é o emprego de dois promotores, para a geração de uma competição entre os elétrons fotoexcitados.

Os fotocatalisadores CuFe_x/Ti-HL e Cu/Fe_xTi_{1-x} demonstratam como a localização do promotor Fe influenciou no trânsito de elétrons. Quando presente na superfície do fotocatalisador, os teores de 10 e 20% (%m/m) de Fe₂O₃ apresentaram rendimentos quânticos para o CH₃OH semelhantes. Já com o Fe na estrutura do TiO₂, quando o teor aumenta de 10 para 20% (%m/m), o rendimento quântico para o CH₃OH cai pela metade. Isso ocorreu devido ao grande trânsito de elétrons no fotocatalisador, impedindo que o óxido de cobre participasse do sistema como capturador de elétrons.

Muitos efeitos puderam ser analisados com a gama de fotocatalisadores preparados neste trabalho. Entretanto, um resultado bastante interessante dos testes de desempenho foi a produção de C_3H_6O . Além de indicar uma tendência do sistema em se produzir compostos de maior cadeia carbônica (C_2 e C_3), este é um composto sem relatos na literatura, que foi produzido em quantidades bastante expressivas.

A produção de diversos compostos, CH₄, CO, CH₃OH, C₃H₆O, CH₂O, C₂H₄O, C₂H₄O₂, CH₂O₂, indiciou o sistema reacional seguiu a rota do glioxal. Esta rota possui etapas mais complexas do que as outras rotas de maior visibilidade na literatura, entretanto, apresenta intermediários quimicamente mais estáveis.

Por fim, é possível afirmar que o objetivo inicial do trabalho foi alcançado com sucesso. Os fotocatalisadores que apresentaram o melhor desempenho para a produção de CH₃OH foram CuFe₁₀/Ti-HL e Cu/Fe₁₀Ti₉₀, com ênfase no fotocatalisador com o promotor Fe na estrutura.

CAPÍTULO 6

Conclusões e Propostas para Trabalhos Futuros –

6.1. Conclusões

Foram sintetizadas duas series de fotocatalisadores variando o método de obtenção de oxido de titânio, por hidrólise lenta de alcoóxido e método de Pechini, além do teor dos promotores, ferro e óxido de cobre.

Com relação à preparação dos óxidos de titânio, conclui-se que as metodologias empregadas foram adequadas para a obtenção das propriedades e estruturas desejadas.

Os teores reais e nominais dos óxidos de titânio, ferro e cobre, para os fotocatalisadores promovidos, não apresentaram discrepâncias entre os teores reais e nominais, indicando que os métodos escolhidos de impregnação (CuO) e coprecipitação (Fe₂O₃ e CuO/Cu₂O) favoreceram a incorporação dos metais. O método de Pechini também se mostrou uma boa técnica para a obtenção de óxidos mistos com teores controlados.

Todos os fotocatalisadores preparados apresentaram isoterma do tipo IV e histerese H1, características de materiais meso e/ou macroporosos;

Quanto às caracterizações físico-químicas da série dos fotocatalisadores obtidos a partir do TiO₂ preparado pelo método de hidrólise lenta do isopropóxido de titânio (CuFe_x/Ti-HL), podem ser ressaltadas algumas características:

 A adição dos óxidos de cobre e de ferro promoveu um decréscimo no valor da superfície específica com relação ao Ti-HL;

- Foram identificadas as fases anatásio e bruquita nos fotocatalisadores Ti-HL e Cu/Ti-HL, com teores em torno de 75% e 25%, respectivamente;
- Para os fotocatalisadores CuFe_x/Ti-HL, com exceção do teor de 5% de Fe, foram identificadas as fases anatásio, bruquita e hematita. A presença dos promotores não modificou os parâmetros de rede das fases do fotocatalisador base, Ti-HL;
- A adição de 2% de óxido de cobre, tanto por impregnação seca quanto por coprecipitação, não foi evidenciada nos difratogramas de raios X e também nas microscopias. Tal fato, aliado às análises de FEG-EDS, indicam a alta dispersão de óxido de cobre sobre o Ti-HL;
- As análises de FEG não evidenciaram a segregação da fase Fe₂O₃ na superfície dos fotocatalisadores CuFe_x/Ti-HL, com exceção daquele com 20% de Fe, em que se nota uma aglomeração de estruturas esféricas. De acordo com o FEG-EDS, mesmo o maior teor de Fe₂O₃ não recobriu totalmente a superfície do fotocatalisador base;
- O Ti-HL apresentou um perfil de absorção de irradiação característico de TiO₂, com energia de bandgap igual a 3,00 eV;
- A adição dos promotores óxidos de cobre e ferro modificou expressivamente os perfis de absorção de irradiação UV-vis, habilitando todos os fotocatalisadores promovidos a serem empregados na luz solar. Os valores de bandgap obtidos variam no intervalo de 1,96 a 1,4 eV;
- Os resultados de XPS indicam a presença das espécies Ti⁴⁺, Fe³⁺ e Cu²⁺ na superfície dos fotocatalisadores analisados, CuFe₅/Ti-HL e CuFe₂₀/Ti-HL. Há grandes indícios de que o fotocatalisador Cu/Ti-HL tenha somente o CuO na sua superfície.

Quanto as propriedades da série de fotocatalisadores preparados pelo método de Pechini, é interessante apontar que:

- A adição do ferro na estrutura do TiO₂ promoveu um aumento nos valores de superfície específica em comparação ao Ti-MP. Após a impregnação do óxido de cobre sobre os fotocatalisadores Ti-MP e Fe_xTi_{1-x}, verificou-se uma diminuição destes valores;
- Em todos os fotocatalisadores, com exceção daqueles com 20% de Fe na estrutura, foram identificadas as fases anatásio e rutilo. O Fe₂₀Ti₈₀, com e sem

óxido de cobre, possui as três fases de TiO₂, anatásio, rutilo e bruquita. Não foram identificadas quaisquer fases de Fe ou óxido de cobre. Com o aumento dos teores de Fe na estrutura, há um aumento da concentração da fase rutilo no fotocatalisador e menos estruturado é o material;

- Nas imagens por FEG não foram observadas modificações ao se adicionar o óxido de cobre na superfície dos fotocatalisadores Fe_xTi_{100-x};
- Nos resultados de DRS UV-vis, fica evidente como a adição de Fe na estrutura do TiO₂ modifica os perfis de absorção. Conforme há um aumento do teor de Fe, a faixa de absorção se expande para comprimentos de onda mais elevados. Não foi possível identificar com clareza as transições eletrônicas referentes aos óxidos de cobre devido ao baixo teor do promotor;
- A adição do Fe e do óxido de cobre diminuiu os valores de bandgap dos fotocatalisadores, que variaram entre 2,86 e 1,35 eV;
- Os resultados de XPS indicam a presença das espécies Ti⁴⁺, Fe³⁺ e Cu²⁺ e Cu¹⁺ na superfície de todos os fotocatalisadores Cu/Fe_xTi_{1-x} analisados. O teor de Cu²⁺ cresce na amostra conforme há um aumento do teor de Fe na estrutura do TiO₂.

No que se refere aos testes de desempenho, conclui-se que:

- Todos os fotocatalisadores produziram CH₄, CO, CH₃OH e C₃H₆O. Alguns compostos como CH₂O, C₂H₄O e CH₂O₂ foram identificados nos fotocatalisadores promovidos e indicam que eles são intermediários da reação;
- A produção de C₃H₆O em quantidades expressivas indicia a tendência do sistema de produzir compostos de cadeia carbônica maior;
- Os perfis de taxa de formação de CO não são influenciados pela presença dos promotores no fotocatalisador. Pequenas variações nos valores de taxa máxima de formação foram observadas;
- A impregnação do óxido de cobre nos óxidos de titânio preparados apresentou influências distintas. A associação anatasio+brookita, promovida por Cu²⁺ se mostra mais fotoativa do que a associação anatásio+rutilo com a coexistência de Cu²⁺ e Cu¹⁺;

- Para os fotocatalisadores com os óxidos de ferro e cobre na superfície, CuFe_x/Ti-HL, verificou-se que o aumento do teor de Fe de 10 para 20% não proporcionou melhora no desempenho fotocatalítico do fotocatalisador;
- A impregnação do óxido de cobre nos fotocatalisadores Fe_xTi_{1-x} melhorou o desempenho fotocatalítico dos teores de Fe iguais a 5 e 10% (%p/p). O mesmo não foi observado para os fotocatalisadores Fe₂₀Ti₈₀ e Cu/Fe₂₀Ti₈₀. O alto teor de Fe aumentou excessivamente o trânsito de elétrons no fotocatalisador impedindo que o óxido de cobre participasse da reação como um sequestrador de elétrons;
- Em relação ao Fe na estrutura do TiO₂, observou-se que o promotor aumentou a fotoatividade e a seletividade de CH₃OH dos fotocatalisadores;
- Verificou-se que a posição do promotor Fe no fotocatalisador influenciou basicamente na formação dos produtos CH₃OH e C₃H₆O. Os teores de 5 e 10% de Fe na estrutura do TiO₂ melhoraram a seletividade do fotocatalisador para CH₃OH. Já nos fotocatalisadores com os promotores na superfície, a maior seletividade para o álcool foi para os teores de 10 e 20% de Fe₂O₃.

Analisando os resultados, acredita-se que os produtos são gerados seguindo a rota reacional do glioxal. Nota-se que os produtos CH₄, CH₃OH e C₃H₆O são concorrentes e o CO é um subproduto da reação, não interferindo no mecanismo.

Finalmente, levando em conta os perfis de taxa de formação, os efeitos dos promotores analisados e os cálculos de rendimento quântico de cada produto, os fotocatalisadores que possuem 10% do promotor Fe são os mais indicados para a produção de CH₃OH. Dentre CuFe₁₀/Ti-HL e Cu/Fe₁₀Ti₉₀, o fotocatalisador com Fe na estrutura apresenta um melhor desempenho para a produção de CH₃OH, devido ao perfil de taxa de formação crescente ao longo da reação em comparação com o fotocatalisador com Fe na superfície.

6.2. Propostas para Trabalhos Futuros

A fotossíntese artificial ainda possui diversas lacunas a serem esclarecidas. Assim, como sugestões para trabalhos futuros têm-se:

 Realização de estudos de DRIFTS para melhor entendimento do mecanismo reacional;

- Utilização de reagentes marcados, como H₂O deuterada e ¹³CO₂ para averiguar o mecanismo de reação e possíveis rotas.
- Preparação do óxido misto Fe₁₅Ti₈₅ para avaliação do teor ótimo de Fe na estrutura do TiO₂;
- Caracterização dos fotocatalisadores após a reação, para se verificar se houve mudanças nas propriedades texturais e superficiais do material;
- Realizar reações consecutivas com um mesmo fotocatalisador, para verificar a estabilidade deste para o uso com reciclo.

– Referências Bibliográficas –

- ADACHI, K., OHTA, K., MIZUNO, T., 1994, "Photocatalytic reduction of carbon dioxide to hydrocarbons using copper loaded titanium dioxide". *Solar Energy Materials and Solar Cells,* v. 53, pp. 187-190.
- ANPO, M., CHIBA, K., 1992, "Photocatalytic reduction of CO₂ on anchored titanium oxide catalysts", *Journal of Molecular Catalysis A: Chemical*, v. 74, pp. 207-212.
- ANPO, M., YAMASHITA, H., ICHIHASHI, Y., EHARA, S., 1995, "Photocatalytic reduction of CO₂ with H₂O on various titanium oxide catalysts", *Journal of Electroanalytical Chemistry*, v. 396, pp. 21-26.
- ANPO, M., YAMASHITA, H., ICHIHASHI, Y., *et al.*, 1997a, "Photocatalytic Reduction of CO₂ with H₂O on Titanium Oxides Anchored within Micropores of Zeolites: Effects of the Structure of the Active Sites and the Addition of Pt", *Journal Physical Chemistry B*, v. 101, pp. 2632-2636.
- ANPO, M., ZHANG, S. G., MISHIMA, H., *et al.*, 1997b, "Design of photocatalysts encapsulated within the zeolite framework and cavities for the decomposition of NO into N₂ and O₂ at normal temperature", *Catalysis Today*, v. 39, pp. 159-168.
- ANPO, M., YAMASHITA, H., IKEUE, K., FUJI, Y., ZHANG, S. G., ICHIHASHI, Y., PARK,
 D. R., SUZUKI, Y., KOYANO, K., TATSUMI, T., 1998, "Photocatalytic reduction of CO₂ with H₂O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts", *Cataysis Today*, v. 44, pp. 327-332.
- ARESTA, M., 1998, "Advances in chemical conversions for mitigating carbon dioxide", *Studies in Surface Science and Catalysis*, v. 114, pp. 65-76.
- ASAHI, R., MORIKAWA, T., OHWAKI, AOKI, T., K., TAGA, Y., 2001, "Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides", *Science*, v. 293, pp. 269-271.

- ASI, A. M., CHUN, H., MINHUA, S., DEHUA, X., LONG, L., HUIQI, D., *et al.*, 2011, "Photocatalytic reduction of CO₂ to hydrocarbons using AgBr/TiO₂ nanocomposites under visible light", *Catalysis Today*, v. 175, pp. 256-263.
- ASSUNÇÃO, *et al.*, 2010, *Química verde no Brasil: 2010-2030*, Brasília, DF, Centro de Gestão e Estudos Estratégicos.
- BAIRD, C., 2002, Química Ambiental. 2 ed. Porto Alegre, Bookman.
- BALCERSKI, W., RYU, S. Y., HOFFMANN, M. R., 2007, "Visible-light photoactivity of nitrogen doped TiO₂: photooxidation of HCO₂H to CO₂ and H₂O", *Journal of Physical Chemistry C*, v. 111, pp. 15357-15362.
- BAO, N., SHEN, L., TAKATA, T., DOMEN, K., 2008, "Self-Templated Synthesis of Nanoporous CdS Nanostructures for Highly Efficient Photocatalytic Hydrogen Production under Visible Light", *Chemical of Materials*, v. 20, pp 110-117.
- BARTON, E. E., RAMPULLA, D. M., BOCARSLY, A. B., 2008, "Selective Solar-Driven Reduction of CO₂ to Methanol Using a Catalyzed p-GaP Based Photoelectrochemical Cell", *Journal of the American Chemical Society*, v. 130, pp. 6342-6344.
- BAUR, E., PERRET, A., 1924, "Über die Einwirkung von Licht auf gelöste Silbersalze in Gegenwart von Zinkoxyd", *Helvetica Chimica Acta*, v. 7, pp. 910-915.
- BAUR, E., NEUWEILER, C., 1927, "Über photolytische Bildung von Hydroperoxyd", *Helvetica Chimica Acta*, v. 10, pp. 901-907.
- BEHRENS, M., 2009, "Meso and nano-structuring of industrial Cu/ZnO/(Al₂O₃) catalysts", *Journal of Catalysis*, v. 267, pp. 24-29.
- BHATKHANDE, D. S., PANGARKAR, V. G., BEENACKERS, A. A. C. M., 2001, "Phtocatalytic Degradation for Environmental Applications - A Review", *Journal* of Chemical Technology and Biotechnology, v. 77, pp. 102-116.
- BOUMAZA, S., BOUDJEMAA, A., OMEIRI, S., BOUARAB, R., BOUGUELIA, A., TRARI, M., 2010, "Physical and photoelectrochemical characterizations of hematite α-Fe₂O₃: Application to photocatalytic oxygen evolution", *Solar Energy*, v. 84, pp. 715-721.
- CHEN, L., GRAHAM, M. E., LI, G., GENTNER, D. R., DIMITRIJEVIC, N. M., GRAY, K. A., 2009, "Photoreduction of CO₂ by TiO₂ nanocomposites synthesized through

reactive direct current magnetron sputter deposition", *Thin Solid Films*, v. 517, pp.5641-5645.

- CHOI, W., 2006. "Pure and modified TiO₂ photocatalysts and their environmental applications", *Catalysis Surveys from Asia*, v. 10, pp. 16-28.
- CHUANG, S. S. C., 2005, "CO₂ Sequestration and Recycle by Photosynthesis", Final Report DE-PS26-01NT41294.
- COLLADO, L., REYNAL, A., CORONADO, J. M., SERRANO, D. P., DURRANT, J. R., O'SHEA, V. A. DE LA PENA, 2015, "Effect of Au surface plasmon nanoparticles on the selective CO₂ photoreduction to CH₄", *Applied Catalysis B: Environmental*, v. 178, pp. 177-185.
- COLON, G., MAICU, M, HIDALGO, M. C., NAVIO, J. A., 2006, "Cu-doped TiO₂ system with improved photocatalytic activity", *Applied Catalysis B: Environmental*, v. 67, pp. 41-51.
- DEY, G. R., BELAPURKAR, A. D., KISHORE, K., 2004, "Photocatalytic reduction of carbon dioxide to methane using TiO₂ as suspension in water", *Journal of Photochemistry and Photobiology A: Chemistry*, v. 163, pp. 503-508.
- DIJKEN, A. V., JANSSEN, A. H., SMITSMANS, M. H. P., et al., 1998. "Size-selective photoetching of nanocrystalline semiconductor particles", *Chemistry of Materials*, v. 10, pp. 3513-3522.
- FERREIRA NETO, VIRGÍLIO JOSÉ MARTINS, 2015, Processo fotocatalítico aplicado à geração de energia redução fotocatalítica de dióxido de carbono. Dissertação de M.Sc., COPPE/UFRJ, Rio de Janeiro, RJ, Brasil.
- FOX, M. A.; DULAY, M. T., 1993, "Heterogeneous photocatalysis", *Chemical Reviews*, v. 93, pp. 341-357.
- FRANK, S. N., BARD, A. J., 1977a, "Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder", *Journal of the American Chemical Society*, v. 99, pp. 303-304.
- FRANK, S. N., BARD, A. J., 1977b, "Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders", *Journal of Physical Chemistry*, v. 81, pp. 1484-1488.

- FUJISHIMA, A., HONDA, K., 1972, "Eletrochemical photolysis of water at a semicondutor electrode", *Nature*, v. 238, pp. 37-38.
- FUJISHIMA, A., ZHANG, X., TRYK, D. A., 2008, "TiO₂ photocatalysis and related surface phenomena", *Surface Science Reports*, v. 63, pp. 515-582.
- FUJIWARA, H., HOSOKAWA, H., MURAKOSHI, K., WADA, Y., YANAGIDA, S., OKADA, T., KOBAYASHI, H., 1997, "Effect of Surface Structures on Photocatalytic CO₂ Reduction Using Quantized CdS Nanocrystallites", *The Journal of Physical Chemistry B*, v. 101, pp. 8270-8278.
- GATTRELL, M., GUPTA, N., CO, A., 2006, "A review of the aqueous electrochemical reduction of CO₂ to hydrocarbons at copper", *Journal of Electroanalytical Chemistry*, v. 594, pp. 1-19.
- GENNARI, F. C., PASQUEVICH, D. M., 1998, "Kinetics of the anatase rutile transformation in TiO₂ in the presence of Fe₂O₃", *Journal of Materials Science*, v. 33, pp. 1571-1578.
- GOODEVE, C. F., KITCHENER, J. A., 1938, "Photosensitisation by titanium dioxide", *Transactions of the Faraday Society*, v. 34, pp. 570-579.
- GRATZEL, M., 2001. "Photoelectrochemical cells", Nature, v. 414, pp. 338-344.
- GRAVES, C., EBBESEN, S. D., MOGENSEN, M., LACKNER, K. S., 2011, "Sustainable hydrocarbon fuels by recycling CO₂ and H₂O with renewable or nuclear energy", *Renewable and Sustainable Energy Reviews*, v. 15, pp. 1-23.
- GUAN, G., KIDA, T., HARADA, T., ISAYAMA, M., YOSHIDA, A., 2003, "Photoreduction of carbon dioxide with water over K₂Ti₆O₁₃ photocatalyst combined with Cu/ZnO catalyst under concentrated sunlight", *Applied Catalysis A: General*, v. 249, pp. 11-18.
- HABISREUTINGERS, N., SCHMIDT-MENDE, L., STOLARCZYK, J. K., 2013, "Photocatalytic Reduction of CO₂ on TiO₂ and Other Semiconductors, *Angewandte Chemie International Edition*, v. 52, pp. 7372-7408.
- HANAOR, D. A. H., SORRELL, C. C., 2011, "Review of the anatase to rutile phase transformation", *Journal of Materials Science*, v. 46, pp. 855-874.
- HINOGAMI, R., NAKAMURA, Y., YAE, S., NAKATO, Y., 1998, "An approach to ideal semiconductor electrodes for efficient photoelectrochemical reduction of carbon

dioxide by modification with small metal particles", *Journal of Physical Chemistry B*, v. 102, pp. 974-980.

- HORI, Y., TAKAHASHI, I., KOGA, O., HOSHI, N., 2002, "Selective Formation of C₂
 Compounds from Electrochemical Reduction of CO₂ at a Series of Copper Single
 Crystal Electrodes", *The Journal of Physical Chemistry B*, v. 106, pp. 15-17.
- http://cienciahoje.uol.com.br/colunas/do-laboratorio-para-a-fabrica/a-poluicao-ocultado-hidrogenio. Acesso em: 15 jan 2011, 15:56:34.
- http://foconafocka.blogspot. com.br/2010/12/uma-macaneta-auto-esterilizante.html. Acesso em: 22 jul 2014, 09:41:10.
- http://pt.wikipedia.org/wiki/Fotoqu%C3%ADmica. Acesso em: 20 jan 2011, 20:32:55.
- http://satelite.cptec.inpe.br/uv/img/espectro_percentual.jpg. Acesso em: 15 jan 2011, 16:31:54.
- http://www.arcoweb.com.br/arquitetura/luiz-esteves-arquitetura-estacao-vila-prudente 16-09-2011.html. Acesso em: 23 jul 2014, 10:01:45.
- http://www.infoescola.com/elementos-quimicos/titanio/. Acesso em: 16 jan 2011, 12:18:31.
- http://www.esrl.noaa.gov/gmd/ccgg/trends. Acesso em: 14 set 2015, 14:21:30.
- HUANG, W, TANG, X., FELNER, I., KOLTYPIN, Y., GEDANKEN, A., 2002, "Preparation and characterization of Fe_xTi_y-TiO₂ via sonochemical synthesis", *Materials Research Bulletin*, v. 37, pp. 1721-1735.
- IKEUE, K., NOZAKI, S., OGAWA, M., ANPO, M., 2002, "Characterization of self-standing Ti-containing porous silica thin films and their reactivity for the photocatalytic reduction of CO₂ with H₂O", *Catalysis Today*, v. 74, pp. 241-248.
- INDRAKANTI, V. P., KUBICKI, J. D., SCHOBERT, H. H., 2009, "Photoinduced activation of CO₂ on Ti-based heterogeneous catalysts: current state, chemical physicsbased insights and outlook", *Energy & Environmental Science*, v. 2, pp. 745-758.
- JACOBSEN, A. E., 1949, "Titanium Dioxide Pigments: Correlation between Photochemical Reactivity and Chalking", *Industrial & Engineering Chemistry Research*, v. 41, pp. 523-552.

- JANSEN, M., LETSCHERT, H. P., 2000, "Inorganic yellow-red pigments without toxic metals", *Nature*, v. 404, pp. 980-982.
- JOHNE, P., KISCH, H., 1997, "Photoreduction of carbon dioxide catalysed by free and supported zinc and cadmium sulphide powders", *Journal of Photochemistry and Photobiology A: Chemistry*, v. 111, pp. 223-228.
- KANECO, S., KURIMOTO, H., OHTA, K., MIZUNO, T., SAJI, A., 1997, "Photocatalytic reduction of CO₂ using TiO₂, powders in liquid CO₂ medium", *Journal of Photochemistry and Photobiology A: Chemistry*, v. 109, pp. 59-63.
- KANECO, S., SHIMIZU, Y., OHTA, K., MIZUNO, T., 1998, "Photocatalytic reduction of high pressure carbon dioxide using TiO₂ powders with a positive hole scavenger", *Journal of Photochemistry* and *Photobiology A*: *Chemistry*, v. 115, pp. 223-226.
- KANECO, S., KURIMOTO, H., SHIMIZU, Y., OHTA, K., MIZUNO, T., 1999,
 "Photocatalytic reduction of CO₂ using TiO₂ powders in supercritical fluid CO₂", *Energy*, v. 24, pp. 21-30.
- KEELING, C. D., WHORF, T. P., 2005, Atmospheric CO₂ records from sites in the SiO air sampling network. In: Trends: A Compendium of Data on Global Change.Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN, USA.
- KHAN, S. U. M., AL-SHAHRY, M., INGLER, J. R. W. B., 2002, "Efficient Photochemical Water Splitting by a Chemically Modified n-TiO₂", *Science*, v. 297, pp. 2243-2245.
- KIM, W., SEOK, T., CHOI, W., 2012, "Nafion layer-enhanced photosynthetic conversion of CO₂ into hydrocarbons on TiO₂ nanoparticles", *Energy and Environmental Science*, v. 5, pp. 6066-6070.
- KITANO, M., TAKEUCHI, M., MATSUOKA, M., J. THOMAS, M., ANPO, M., 2005, "Preparation of Visible Light-responsive TiO₂ Thin Film Photocatalysts by an RF Magnetron Sputtering Deposition Method and Their Photocatalytic Reactivity", *Chemistry Letters*, v. 34, pp. 616-617.
- KITANO, M., KIKUCHI, H., HOSODA, T., *et al.*, 2006, "The Preparation of Visible Light-Responsive TiO₂ Thin Films by Applying a RF-Magnetron Sputtering Deposition Method and Their Photocatalytic Reactivity for the Decomposition of Water with a Separate Evolution of H₂ and O₂", *Key Engineering Materials*, v. 317-318, pp. 823-826.

- KITANO, M., TAKEUCHI, M., MATSUOKA, M., *et al.*, 2007a, "Photocatalytic water splitting using Pt-loaded visible light-responsive TiO₂ thin film photocatalysts", *Catalysis Today*, v. 120, pp. 133-138.
- KITANO, M., MATSUOKA, M., UESHIMA, M., ANPO, M., 2007b, "Recent developments in titanium oxide-based photocatalysts", *Applied Catalysis A: General*, v. 325, pp. 1-14.
- KOČÍ, K., OBALOVÁ, L., LACNÝ, Z., 2008a, "Photocatalytic reduction of CO₂ over TiO₂ based catalysts", *Chemical Papers*, v. 62, pp. 1-9.
- KOČÍ, K., OBALOVÁ, L., LACNÝ, Z., 2008b, "Effect of temperature, pressure and volume of reacting phase on photocatalytic CO₂ reduction on suspended nanocrystalline TiO₂", *Collection of Czechoslovak Chemical Communications*, v. 73, pp. 1192-1204.
- KOČÍ, K., OBALOVÁ, L., MATĚJOVÁ, L., PLACHÁ, D., LACNÝ, Z., JIRKOVSKÝ, J., ŠOLCOVÁ, O., 2009, "Effect of TiO₂ particle size on the photocatalytic reduction of CO₂", *Applied Catalysis B: Environmental*, v. 89, pp. 494-502.
- KOČÍ, K., OBALOVÁ, L., O. ŠOLCOVÁ, O., 2010, "Kinetic Study of Photocatalytic Reduction of CO₂ over TiO₂", *Chemical Process Engineering*, v. 31, pp. 395-407.
- KOČÍ, K., RELI, M., KOZÁK, O., LACNÝ, Z., PLACHÁ, D., PRAUS, P., *et al.*, 2011, "Influence of reactor geometry on the yield of CO₂ photocatalytic reduction", *Catalysis Today*, v. 176, pp. 212-214.
- KOHNO, Y., HAYASHI, H., TAKENAKA, S., TANAKA, T., FUNABIKI, T., YOSHIDA, S.,
 1999, "Photoenhanced reduction of carbon dioxide with hydrogen over Rh/TiO₂",
 Journal of Photochemistry and Photobiology A: Chemistry, v. 126, pp. 117-123.
- KREJCÍKOVA, S., MATEJOVA, L., KOCÍ, K., OBALOVA, L., MATEJ, Z., CAPEK, L., *et al.*, 2012, "Preparation and characterization of Ag-doped crystalline titania for photocatalysis applications", *Applied Catalysis B: Environmental*, v. 111-112, pp. 119-125.
- KU, Y., LEE, W.-H., WANG, W.-Y., 2004, "Photocatalytic reduction of carbonate in aqueous solution by UV/TiO₂ process", *Journal of Molecular Catalysis A: Chemical*, v. 212, pp. 191-196.

- KUWAHARA, Y., KAMEGAWA, T., MORI, K., MATSUMURA, Y., YAMASHITA, H., 2009,
 "Fabrication of hydrophobic zeolites using triethoxyfluorosilane and their application for photocatalytic degradation of acetaldehyde", *Topics in Catalysis*, v. 52, pp. 643-648.
- KWAK, B. S., KANG, M., 2015, "Photocatalytic reduction of CO₂ with H₂O using perovskite Ca_xTi_yO₃", *Applied Surface Science*, v. 337, pp. 138-144.
- LA TEMPA, T. J., RANI, S., BAO, N., GRIMES, C. A., 2012, "Generation of fuel from CO₂ saturated liquids using a p-Si nanowire II n-TiO₂ nanotube array photoelectrochemical cell, *Nanoscale*, v. 4, pp. 2245-2250.
- LAGUNA, O. H., CENTENO, M. A., BOUTONNET, M., *et al.*, 2011, "Fe-doped ceria solids synthesized by the microemulsion method for CO oxidation reactions", *Applied Catalysis B: Environmental*, v. 106, pp. 621-629.
- LEE, D. S., CHEN, H. J., CHEN, Y. W., 2012, "Photocatalytic reduction of carbon dioxide with water using InNbO₄ catalyst with NiO and Co₃O₄ cocatalysts", *Journal of Physics and Chemistry of Solids*, v. 73, pp. 661-669.
- LEKSE, J. W., UNDERWOOD, M. K., LEWIS, J. P., MATRANGA, C., 2011, "Synthesis, Characterization, Electronic Structure, and Photocatalytic Behavior of CuGaO₂ and CuGa_{1-x}Fe_xO₂ (x = 0.05, 0.10, 0.15, 0.20) Delafossites", *The Journal of Physical Chemistry C*, v. 116, pp. 1865-1872.
- LI, W., SHAH, S. I., HUNAG, C. P., JUNG, O., NI, C., 2002, "Metallorganic chemical vapor deposition and characterization of TiO₂ nanoparticles", *Materials Science and Engineering: B*, v. 96, pp. 247.
- LI, D., HANEDA, H., 2003, "Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gas-phase acetaldehyde decomposition", *Journal of Photochemistry* and *Photobiology A*: *Chemistry*, v. 155, pp. 171-178.
- LI, Y., WANG, W-N., ZHAN, Z., WOO, M-H., WU, C-Y., BISWAS, P., 2010, "Photocatalytic reduction of CO₂ with H₂O on mesoporous silica supported Cu/TiO₂ catalysts", *Applied Catalysis B: Environmental*, v. 100, pp. 386-392.
- LI, X., ZHUANG, Z., LI W., PAN, H., 2012a, "Photocatalytic reduction of CO₂ over noble metal-loaded and nitrogen-doped mesoporous TiO₂", *Applied Catalysis A: General*, v. 429-430, pp. 31-38.

- LI, Z, ZHOU, Y, ZHANG, J, TU, W, LIU, Q, YU, T, *et al.*, 2012b, "Hexagonal nanoplatetexturedmicro-octahedron Zn₂SnO₄: combined effects toward enhanced efficiencies of dye-sensitized solar cell and photoreduction of CO₂ into hydrocarbon fuels, *Crystal Growth & Design*, v. 12, pp. 1476-1481.
- LIN, L., LIN, W., ZHU, Y. X., ZHAO, B. Y., XIE, Y. C., 2005, "Phosphor-doped Titania a Novel Photocatalyst Active in Visible Light", *Chemistry Letters*, v. 34, pp. 284-285.
- LIN, C., SONG, Y., CAO, L., CHEN, S., 2013, "Effective photocatalysis of functional nanocomposites based on carbon and TiO₂ nanoparticles", *Nanoscale*, v. 5, pp.4986-4992.
- LINSEBIGLER, A. L., LU, G., YATES, J. J. T., 1995, "Photocatalysis on TiO₂ Surfaces: Principles, Mechanisms, and Selected Results", *Chemical Reviews*, v. 95, pp. 735-758.
- LIOU, P. Y., CHEN, S. C., WU, J. C. S., LIU, D., MACKINTOSH, S., MAROTO-VALER,
 M., *et al.*, 2011, "Photocatalytic CO₂ reduction using an internally illuminated monolith photoreactor", *Energy & Environmental Science*, v. 4, pp. 1487-1494.
- LITTER, M. I., 1999, "Heterogeneous photocatalysis Transition metal ions in photocatalytic systems", *Applied Catalysis B: Environmental*, v. 23, pp. 89-114.
- LIU, B.-J., TORIMOTO, T., YONEYAMA, H., 1998, "Photocatalytic reduction of CO₂ using surface-modified CdS photocatalysts in organic solvents", *Journal of Photochemistry and Photobiology A: Chemistry*, v. 113, pp. 93-97.
- LIU, Y., HUANG, B., DAI, Y., ZHANG, X., QIN, X., JIANG, M., WHANGBO, M.-H., 2009,
 "Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO₄ photocatalyst", *Catalysis Communications*, v. 11, pp. 210-213.
- LIU, G., HOIVIK, N., WANG, K., JAKOBSEN, H., 2012, "Engineering TiO₂ nanomaterials for CO₂ conversion solar fuels", *Solar Energy Materials & Solar Cells*, v. 105, pp. 53-68.
- LIU, E., KANG, L., WU, F., SUN, T., HU, X., YANG, Y., LIU, H., FAN, J., 2014,
 "Photocatalytic Reduction of CO₂ into Methanol over Ag/TiO₂ Nanocomposites Enhanced by Surface Plasmon Resonance", *Plasmonics*, v. 9, pp. 61-70.

- LIU, L., LI, Y., 2014, "Understanding the Reaction Mechanism of Photocatalytic Reduction of CO₂ with H₂O on TiO₂-Based Photocatalysts: A Review", *Aerosol and Air Quality Research*, v. 14, pp. 453-469.
- LO, C. C., HUNG, C-H., YUAN, C-S., WU, J-F., 2007, "Photoreduction of carbon dioxide with H₂ and H₂O over TiO₂ and ZrO₂ in a circulated photocatalytic reactor", *Solar Energy Materials & Solar Cells*, v. 91, pp. 1765-1774.
- LU, J. F., ZHANG, Q. W., WANG, J., SAITO, F., UCHIDA, M., 2006, "Synthesis of Ndoped ZnO by grinding and subsequent heating ZnO-urea mixture", *Powder Technology*, v. 162, pp. 33-37.
- LUIS, A. M., NEVES, M. C., MENDONÇA, M. H., *et al.*, 2011, "Influence of calcination parameters on the TiO₂ photocatalytic properties", *Materials Chemistry and Physics*, v. 125, pp. 20-25.
- MAEDA, K., DOMEN, K., 2010, "Photocatalytic Water Splitting: Recent Progress and Future Challenges", *The Journal of Physical Chemistry Letters*, v. 1, pp. 2655-2661.
- MAGESH, G., VISWANATHAN, B., VISWANATH, R. P., VARADARAJAN, T. K., "Photocatalytic routes for chemicals", 37p. In: KANECO S., VISWANATHAN B., KATSUMATA H., editors. "Photoelectrochemistry & photobiology in the environment, energy and fuel". Kerala, India: Research Sign post; 2007, Chapter 11.
- MAHMODI, G., SHARIFNIA, S., MADANI, M., VATANPOUR, V., 2013, "Photoreduction of carbon dioxide in the presence of H₂, H₂O and CH₄ over TiO₂ and ZnO photocatalysts", *Solar Energy*, v. 97, pp. 186-194.
- MATĚJOVÁ, L., KOČÍ, K., RELI, M., ČAPEK, L., MATĚJKA, V., ŠOLCOVÁ, O., OBALOVÁ, L., 2013, "On sol-gel derived Au-enriched TiO₂ and TiO₂-ZrO₂ photocatalysts and their investigation in photocatalytic reduction of carbon dioxide, *Applied Surface Science*, v. 285, pp. 688-696.
- MATSUOKA, M., KITANO, M., TAKEUCHI, M., TSUJIMARU, K., ANPO, M., THOMAS,
 J. M., 2007, "Photocatalysis for new energy production: Recent advances in photocatalytic water splitting reactions for hydrogen production", *Catalysis Today*, v. 122, pp. 51-61.
- MCLINTOCK, I.S., RITCHIE, M., 1965, "Reactions on titanium dioxide; photo-adsorption and oxidation of ethylene and propylene", *Transactions of the Faraday Society*, v. 61, pp. 1007-1016.
- MICHALKIEWICZ, B., MAJEWSKA, J., KADZIOŁKA, G., MOZIA, S., MORAWSKI, A.W., 2014, "Reduction of CO₂ by adsorption and reaction on surface of TiO₂-nitrogen modified photocatalyst", *Journal of CO₂ Utilization*, v. 5, pp. 47-52.
- MISHRA, U. K., 2008, "Semiconductor device physics and design". Netherlands: Springer.
- MIZUNO, T., ADACHIN, K., OHTA, K., SAJI, A., 1996, "Effect of CO₂ pressure on photocatalytic reduction of CO₂ using TiO₂ in aqueous solutions", *Journal of Photochemistry and Photobiology A: Chemistry*, v. 98, pp. 87-90.
- MOZIA, S., 2008, "Effect of calcination temperature on photocatalytic activity of TiO₂. Photodecomposition of mono- and polyazo dyes in water", *Polish Journal of Chemical Technology*, v. 10, pp. 42-49.
- MURASE, T., IRIE, H., HASHIMOTO, K., 2004, "Visible light sensitive photocatalysts, nitrogen doped Ta₂O₅ powders", *Journal of Phisical Chemistry B*, v. 108, pp. 15803-15807.
- NAKATA, K.; FUJISHIMA, A., 2012, "TiO₂ photocatalysis: Design and applications", *Journal of Photochemistry and Photobiology C: Photochemistry Reviews*, v. 13, pp. 169-189.
- NGUYEN, T. V., WU, J. C. S., 2008, "Photoreduction of CO₂ in an optical-fiber photoreactor: Effects of metals addition and catalyst carrier", *Applied Catalysis A: General*, v. 335, pp. 112-120.
- OZAWA, T. I, WASAI, M., TADA, H., *et al.*, 2005, "Low-temperature synthesis of anatase-brookite composite nanocrystals: the junction effect on photocatalytic activity", *Journal of Colloid and Interface Science*, v. 281, pp. 510-513.
- PAL, B., HATA, T., GOTO, K., NOGAMI, G., 2001, "Photocatalytic degradation of ocresol sensitized by iron-titania binary photocatalysts", *Journal of Molecular Catalysis A: Chemical*, v. 169, pp. 147-155.

- PAN, P. W., CHEN, Y. W., 2007, "Photocatalytic reduction of carbon dioxide on NiO/InTaO₄ under visible light irradiation", *Catalysis Communications*, v. 8, pp. 1546-1549.
- PARK, H.-A., CHOI, J. H., CHOI, K. M., LEE, D. K., KANG, J. K., 2012, "Highly porous gallium oxide with a high CO₂ affinity for the photocatalytic conversion of carbon dioxide into methane", *Journal of Materials Chemistry*, v. 22, pp. 5304-5307.
- PAULINO, PRISCILLA NOGUEIRA, 2011, Fotorredução catalítica de CO₂ para geração de produtos de alto teor energético. Dissertação de M.Sc., COPPE/UFRJ, Rio de Janeiro, RJ, Brasil.
- PIPORNPONG, W., WANBAYOR, R., RUANGPORNVISUTI, V., 2011, "Adsorption CO₂ on the perfect and oxygen vacancy defect surfaces of anatase TiO₂ and its photocatalytic mechanism of conversion to CO", *Applied Surface Science*, v. 257, pp. 10322-10328.
- PUDDU, V., MOKAYA, R, LI PUMA G., 2007, "Novel one step hydrothermal synthesis of TiO₂/WO₃ nanocomposites with enhanced photocatalytic activity", *Chemical Communications*, v. 45, pp. 4749-4751.
- QIN, S., XIN, F., LIU, Y., YIN, X., MA, W., 2011, "Photocatalytic reduction of CO₂ in methanol to methylformate over CuO-TiO₂ composite catalysts", *Journal of Colloid and Interface Science*, v. 356, pp. 257-261.
- QUINELATO, A. L., LONGO, E., LEITE, E. R., *et al.*, 2001, "Synthesis and sintering of ZrO₂-CeO₂ powder by use of polymeric precursor based on Pechini process", *Journal of Materials Science*, v. 36, pp. 3825-3830.
- RENZ, C., 1921, "Lichtreaktionen der Oxyde des Titans, Cers und der Erdsäuren", *Helvetica Chimica Acta*, v. 4, pp. 961-968.
- RENZ, C., 1932, "Über die Einwirkung von Oxyden auf Silbernitrat und Goldchloridim Licht", *Helvetica Chimica Acta*, v. 15, pp. 1077-1084.
- RIBEIRO, P. C., 2011, Avaliação da relação ácido cítrico/cátions metálicos na estrutura e morfologia de nanopós de TiO₂ sintetizado pelo método Pechini para uso como fotocatalisador, Tese de D.Sc, Universidade Federal de Campina Grande, Campina Grande, PB, Brasil.

- RICHARDSON, P. L., PERDIGOTO, M. L. N., WANG, W., LOPES, R. J. G., 2012, "Manganese- and copper-doped titania nanocomposites for the photocatalytic reduction of carbon dioxide into metanol", *Applied Catalysis B: Environmental*, v. 126, pp. 200-207.
- ROY, S. C., VARGHESE, O. K., PAULOSE, M., GRIMES, C. A., 2010, "Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons", ACS Nano, v. 4, pp. 1259-1278.
- SASIREKHA, BASHA, N., S. J. S., SHANTHI, K., 2006, "Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide", *Applied Catalysis B: Environmental*, v. 62, pp. 169-180.
- SATO, S., 1986, "Photocatalytic activity of NO_x-doped TiO₂ in the visible light region", *Chemical Physics Letters*, v. 123, pp. 126-128.
- SAYAMA, K., ARAKAWA, H., 1993, "Photocatalytic decomposition of water and photocatalytic reduction of carbon dioxide over zirconia catalyst", *The Journal of Physical Chemistry*, v. 97, pp. 531-533.
- SCHULTE, K. L., DE SARIO, P. A., GRAY, K. A., 2010, "Effect of crystal phase composition on the reductive and oxidative abilities of TiO₂ nanotubes under UV and visible light, *Applied Catalysis B: Environmental*, v. 97, pp. 354-360.
- SHEN, M., WU, Z. Y., HUANG, H., DU, Y. K., ZOU, Z. G., YANG, P., 2006, "Carbondoped anatase TiO₂ obtained from TiC for photocatalysis under visible light irradiation", *Materials Letters*, v. 60, pp. 693-697.
- SHI, H., WANG T., CHEN J., ZHU C., YE J., ZOU Z., 2011, "Photoreduction of carbon dioxide over NaNbO₃ nanostructured photocatalysts", *Catalysis Letters*, v. 141, pp. 525-530.
- SHIFU, C., WEI, Z., SUJUAN, Z., WEI, L., 2009, "Preparation, characterization and photocatalytic activity of N-containing ZnO powder", *Chemical Engineering Journal*, v. 148, pp. 263-269.
- SHIOYA, Y., IKEUE, K., OGAWA, M., ANPO, M., 2003, "Synthesis of transparent Ticontaining mesoporous silica thin film materials and their unique photocatalytic activity for the reduction of CO₂ with H₂O", *Applied Catalysis A: General*, v. 254, pp. 251-259.

- SHKROB, I. A., DIMITRIJEVIC, N. M., MARIN, T. W., HE, H., ZAPOL, P., 2012, "Heteroatom-Transfer Coupled Photoreduction and Carbon Dioxide Fixation on Metal Oxides", *The Journal of Physical Chemistry C*, v. 116, pp. 9461-9471.
- SLAMET, N., H. W., PURNAMA, E., KOSELA, S., GUNLAZUARDI, J., 2005, "Photocatalytic reduction of CO₂ on copper-doped titania catalysts prepared by improved-impregnation method", *Catalysis Communications*, v. 6, pp. 313-319.
- SONG, C., 2006, "Global challenges and strategies for control, conversion and utilization of CO₂ for sustainable development involving energy, catalysis, adsorption and chemical processing", *Catalysis Today*, v. 115, pp. 2-32.
- SUBRAHMANYAM, M., KANECO, S., ALONSO-VANTE, N., 1999, "A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C₁-C₃ selectivity", *Applied Catalysis B: Environmental*, v. 23, pp. 169-174.
- TAHIR, M., AMIN, N. A. S., 2013, "Photocatalytic reduction of carbon dioxide with water vapors over montmorillonite modified TiO₂ nanocomposites", *Applied Catalysis B: Environmental*, v. 142-143, pp. 512-522.
- TAN, S. S., ZOU, L., HU, E., 2006, "Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO₂ pellets", *Catalysis Today*, v. 115, pp. 269-273.
- TAN, S. S., ZOU, L., HU, E., 2007, "Photosynthesis of hydrogen and methane as key components for clean energy system", *Science and Technology of Advanced Materials*, v. 8, pp. 89-92.
- TAN, S. S., ZOU, L., HU, E., 2008, "Kinetic modeling for photosynthesis of hydrogen and methane through catalytic reduction of carbon dioxide with water vapour", *Catalysis Today*, v. 131, pp. 125-129.
- TANAKA, K.; HISANAGA, T.; RIVERA, A., 1993, "Effect of crystal form of TiO₂, on the photocatalytic degradation of pollutants". In: Photocatalytic treatment of water and air, OLLIS, D. F., AL-EKABI, H., Elsevier Science Publishers B. V. Amsterdam, 1993.
- TERAMURA, K, OKUOKA S-I., TSUNEOKA, H, SHISHIDO, T, TANAKA, T., 2010, "Photocatalytic reduction of CO₂ using H₂ as reductant over ATaO₃ photocatalysts (A = Li, Na, K)", *Applied Catalysis B: Environmental*, v. 96, pp. 565-568.

- TONG, T., ZHANG, J., TIAN, B., CHEN, F., HE, D., 2008, "Preparation of Fe³⁺-doped TiO₂ catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation", *Journal of Hazardous Materials*, v. 155, pp. 572-579.
- TRUONG, Q. D., LIU, J., CHUNG, C., LING, Y., 2012, "Photocatalytic reduction of CO₂ on FeTiO₃/TiO₂ photocatalyst", *Catalysis Communications*, v. 19, pp. 85-89.
- TSAI, C. W., CHEN H. M., LIU R. S., ASAKURA, K., CHAN, T. S., 2011, "Ni@NiO coreshell structure modified nitrogen-doped InTaO₄ for solar-driven highly efficient CO₂ reduction to methanol". *Journal Physical Chemical C*, v. 115, pp. 10180-10186.
- TSENG, I. H., CHANG, W. C., WU, J. C. S., 2002, "Photoreduction of CO₂ using sol-gel derived titania and titania-supported copper catalysts", *Applied Catalysis B: Environmental*, v. 37, pp. 37-48.
- TSENG, I. H., WU, J. C. S., CHOU, H. Y., 2004, "Effects of sol-gel procedures on the photocatalysis of Cu/TiO₂ in CO₂ photoreduction", *Journal of Catalysis*, v. 221, pp. 432-440.
- UNER, D., MERT OYMAK, M., IPEK, B., 2011, "CO₂ utilisation by photocatalytic conversion to methane and metanol", *International Journal of Global Warming*, v. 3, pp. 142-161.
- USUBHARATANA, P., Mc MARTIN, D., VEAWAB, A., TONTIWACHWUTHIKUL, P., 2006, "Photocatalytic process for CO₂ emission reduction from industrial flue gas streams", *Industrial and Engineering Chemistry Research*, v. 45, pp. 2558-2568.
- WANG, X., YANG, S., WANG, J., LI, M., JIANG, X., DU, G., LIU, X., CHANG, R. P. H.,
 2001, "Nitrogen doped ZnO film grown by the plasma-assisted metal-organic chemical vapor deposition", *Journal of Crystal Growth*, v. 226, pp. 123-129.
- WANG, Z. Y., CHOU, H. C., WU, J. C. S., TSAI, D. P., MUL, G., 2010a, "CO₂ photoreduction using NiO/InTaO₄ in optical-fiber reactor for renewable energy", *Applied Catalysis A: General*, v. 380, pp. 172-177.
- WANG, C., THOMPSON, R. L., BALTRUS, J., MATRANGA, C., 2010b, "Visible light photoreduction of CO₂ using CdSe/Pt/TiO₂ heterostructured catalysts", *Journal of Physical Chemistry Letters*, v. 1, pp. 48-53.

- WANG, W. N., NA, W. J., RAMALINGAM, B., MUKHERJEE, S., NIEDZWIEDZKI, D. M., GANGOPADHYAY, S., *et al.*, 2012, "Size and structure matter: enhanced CO₂ photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO₂ single crystals, *Journal of the American Chemical Society*, v. 134, pp. 11276-11281.
- WANG, Q., WU, W., CHEN, J., CHU, G., MA, K., ZOU, H., 2012, "Novel synthesis of ZnPc/TiO₂ composite particles and carbon dioxide photocatalytic reduction efficiency study under simulated solar radiation conditions", *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, v. 409, pp. 118-25.
- WANG, Y. G., LI, B., ZHANG, C. L., CUI, L. F., KANG, S. F., LI, X., et al., 2013, "Ordered mesoporous CeO₂-TiO₂ composites: highly efficient photocatalysts for the reduction of CO₂ with H₂O under simulated solar irradiation", *Applied Catalysis B: Environmental*, v. 130, pp. 277-284.
- WANG, Y. G, WANG, F., CHEN, Y., ZHANG, D., LI, B., KANG, S., LI, X., CUI, L., 2014,
 "Enhanced photocatalytic performance of ordered mesoporous Fe-doped CeO₂ catalysts for the reduction of CO₂ with H₂O under simulated solar irradiation", *Applied Catalysis B: Environmental*, v. 147, pp. 602-609.
- WARD, M. D., BARD, A. J., 1982, "Photocurrent enhancement via trapping of photogenerated electrons of titanium dioxide particles", *The Journal of Physical Chemistry A*, v. 86, pp. 3599-3605.
- WATANABE, M., 1992, "Photosynthesis of methanol and methane from CO₂ and H₂O molecules on a ZnO surface", *Surface Science Letters*, v. 279, pp. 236-242.
- WU, J. C. S., LIN, H. M., LAI, C. L., 2005, "Photoreduction of CO₂ to methanol using optical-fiber photoreactor", *Applied Catalysis A: General*, v. 296, pp. 194-200.
- WU, J. C. S., WU, T., CHU, T., HUANG, H., TSAI, D., 2008, "Application of optical-fiber photoreactor for CO₂ photocatalytic reduction", *Topics in Catalysis*, v. 47, pp. 131-136.
- WU, J. C. S., 2009, "Photocatalytic reduction of greenhouse gas CO₂ to fuel", *Catalysis Surveys from Asia*, v. 13, pp. 30-40.
- WU, Z., DONG, F., ZHAO, W., WANG, H., LIU, Y., GUAN, B., 2009, "The fabrication and characterization of novel carbon doped TiO₂ nanotubes, nanowires and nanorods with high visible light photocatalytic activity", *Nanotechnology*, v. 20, pp. 1-9.

- WU, J. C. S., Renewable energy from the photocatalytic reduction of CO₂ with H₂O. In: ANPO M., KAMAT P., editors. Environmentally benign photocatalysts: applications of titanium oxide-based materials (Nanostructure science & technology). Springer; 2010 Chapter 28.
- XIA, X., JIA, Z., YU, Y., LIANG, Y., WANG, Z., MA, L., 2007, "Preparation of multi-walled carbon nanotube supported TiO₂ and its photocatalytic activity in the reduction of CO₂ with H₂O", *Carbon*, v. 45, pp. 717-721.
- XIE, T., WANG, D., ZHU, L., LI, T., XU, Y., 2001, "Application of surface photovoltage Technique in photocatalysis studies on modified TiO₂ photocatalysts for photoreduction of CO₂", *Materials Chemistry and Physics*, v. 70, pp. 103-106.
- XIE, Y. P., LIU, G., YIN, L., CHENG, H.-M., 2012, "Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO₃ for solar energy conversion", *Journal of Materials Chemistry*, v. 22, pp. 6746-6751.
- XU, C. K., KILLMEYER, R., GRAY, M. L., KHAN, S. U. M., 2006, "Enhanced carbon doping of n-TiO₂ thin films for photoelectrochemical water splitting", *Electrochemistry Communications*, v. 8, pp. 1650-1654.
- XU, S., SUN, D. D., 2009, "Significant improvement of photocatalytic hydrogen generation rate over TiO₂ with deposited CuO", *International Journal of Hydrogen Energy*, v. 34, pp. 6096-6104.
- XU, C., CAO, L., SU, G., LIU, W., QU, X., YU, Y., 2010, "Preparation, characterization and photocatalytic activity of Co-doped ZnO Powders", *Journal of Alloys and Compounds*, v. 497, pp. 373-376.
- YAHAYA, A. H., GONDAL, M. A., HAMEED, A., 2004, "Selective laser enhanced photocatalytic conversion of CO₂ into methanol", *Chemical Physics Letters*, v. 400, pp. 206-212.
- YAMASHITA, H., SHIGA, A., KAWASAKI, S-I., ICHIHASHI, Y., EHARA, S., ANPO, M., 1995, "Photocatalytic synthesis of CH₄ and CH₃OH from CO₂ and H₂O on highly dispersed active titanium oxide catalysts", *Energy Conversion and Management*, v. 36, pp. 617-620.
- YAMASHITA, H., KAWASAKI, S., ICHIHASHI, Y., *et al.*, 1998, "Characterization of Titanium-Silicon Binary Oxide Catalysts Prepared by the Sol-Gel Method and

Their Photocatalytic Reactivity for the Liquid-Phase Oxidation of 1-Octanol", *Journal Physical Chemistry B*, v. 102, pp. 5870-5875.

- YAN, S. C., OUYANG, S. X., GAO, J., YANG, M., FENG, J. Y., FAN, X. X., WAN, L. J., LI, Z. S., YE, J. H., ZHOU, Y., ZOU, Z. G., 2010, "A Room-Temperature Reactive-Template Route to Mesoporous ZnGa₂O₄ with Improved Photocatalytic Activity in Reduction of CO₂", *Angewandte Chemie International Edition*, v. 49, pp. 6400-6404.
- YAN, S., WAN, L., LI, Z., ZOU, Z., 2011, "Facile temperature-controlled synthesis of hexagonal Zn₂GeO₄ nanorods with different aspect ratios toward improved photocatalytic activity for overall water splitting and photoreduction of CO₂", *Chemical Communications*, v. 47, pp. 5632-5634.
- YANG, X. Y., XIAO, T. C., EDWARDS, P. P., 2011, "The use of products from CO₂ photoreduction for improvement of hydrogen evolution in water splitting", *International Journal of Hydrogen Energy*, v. 36, pp. 6546-6552.
- YOONG, L. S., CHONG, F. K., DUTTA, B. K., 2009, "Development of copper-doped TiO₂ photocatalyst for hydrogen production under visible light", *Energy*, v. 34, pp. 1652-1661.
- YU, C. M. Seqüestro florestal de carbono no Brasil dimensões políticas socioeconômicas e ecológicas. Disponível em: www.ces.fgvsp.br/arquivos/Tese %20artigo%20 Simpósio%20CO21.pdf. Acesso em: 16 jan 2011, 12:55:13.
- ZHANG, Y. H., ZHANG, H. X., XU, Y. X., WANG, Y. G., 2004, "Significant effect of lanthanide doping on the texture and properties of nanocrystalline mesoporous TiO₂", *Journal of Solid State Chemistry*, v. 177, pp. 3490.
- ZHANG, Q-H., HAN, W-D., HONG, Y-J., YU, J-G., 2009, "Photocatalytic reduction of CO₂ with H₂O on Pt-loaded TiO₂ catalyst", *Catalysis Today*, v. 148, pp. 335-340.
- ZHANG, Q. Y., LI Y, ACKERMAN, E. A., GAJDARDZISKA-JOSIFOVSKA, M., LI, H. L., 2011, "Visible light responsive iodine-doped TiO₂ for photocatalytic reduction of CO₂ to fuels". *Applied Catalysis A: General*, v. 400, pp. 195-202.
- ZHAO, Z., FAN, J., XIE, M., WANG, Z., 2009, "Photo-catalytic reduction of carbon dioxide with in-situ synthesized CoPc/TiO₂ under visible light irradiation", *Journal of Cleaner Production*, v. 17, pp. 1025-1029.

- ZHOU, Y, TIAN, Z, ZHAO, Z, LIU, Q, KOU, J, CHEN, X, et al., 2011, "High-yield synthesis of ultrathin and uniform Bi₂WO₆ square nanoplates benefitting from photocatalytic reduction of CO₂ into renewable hydrocarbon fuel under visible light". ACS Applied Materials & Interfaces, v. 3, pp. 3594-3601.
- ZHU, J., ZÄCH, M., 2009, "Nanostructured materials for photocatalytic hydrogen production", *Current Opinion in Colloidal & Interface Science*, v. 14, pp. 260-269.
- ZOOCAL, JOÃO VICTOR MARQUES, 2010, Síntese e caracterização de nanopartículas de TiO₂ pelo método polimérico, Dissertação de M.Sc, UFSCar, São Carlos, SP, Brasil.

APÊNDICE A

-Determinação da temperatura de calcinação do Ti-HL-

O material Ti-HL foi preparado pelo método de hidrólise lenta do isopropóxido de titânio. Como citado na metodologia, o único subproduto desta reação é o álcool isopropílico, que é eliminado facilmente na lavagem do precipitado. Portanto, a etapa de calcinação do Ti-HL não tem por finalidade eliminar quaisquer impurezas e sim, formação das fases cristalinas de TiO₂.

Assim, foram calcinadas duas amostras em temperaturas diferentes, 350°C e 550°C, para verificar a superfície específica de cada uma. A Tabela A apresenta os resultados da caracterização textural das amostras Ti-HL 350°C e Ti-HL 550°C.

Amostra	Superfície Específica BET (m²/g _{cat})	Volume de Poros (cm³/g _{cat})	Diâmetro médio de poro (Á)
Ti-HL 350°C	87	0,229	104
Ti-HL 550°C	53	0,158	118

Analisando os resultados, verifica-se que o material Ti-HL 350°C apresenta uma superfície específica de 87 m²/g_{cat}. Com o aumento da temperatura de calcinação para 550°C, o valor da superfície específica diminui para 53 m²/g_{cat}. Também foi observado uma diminuição do volume de poros de 0,229 para 0,158 cm³/g_{cat}, para Ti-HL 350°C e Ti-HL 550°C, respectivamente. Já o diâmetro médio de poro apresentou um ligeiro aumento, de 104 para 118 Å para as amostras calcinados a 350°C e 550°C, respectivamente.

Estes valores são coerentes com a literatura e trabalhos anteriores do grupo (PAULINO, 2011 e FERREIRA NETO, 2015). O valor da superfície específica apresentou uma significativa redução do valor da superfície específica, neste caso uma diminuição de 40%. Devido a esta diferença expressiva nos valores de superfície

específica, determinou-se que o Ti-HL utilizado nos fotocatalisadores Cu/Ti-HL e CuFe_x/Ti-HL seria calcinado a 350°C.

APÊNDICE B

- Caracterização Textural -

A seguir estão as isotermas de adsorção e as distribuições de tamanho de poros dos demais fotocatalisadores que não constam no Capítulo 4.

APÊNDICE C

– Difração de Raios X –

A seguir estão as Gráficos dos refinamentos de Rietiveld dos demais fotocatalisadores que não constam no Capítulo 4. Também é apresentada Tabela com todos os dados obtidos como valores de largura à meia altura (Full Width at Half Maximum, FWHM), parâmetros de rede de cada fase e valores de χ^2 (o qual representa a qualidade dos resultados do refinamento).

Fotocatalisador	Fases	Teor (%m/m)	2 θ (°)	FWHM (°)	Tamanho de Cristalito (nm)	Parâmetro de Rede (Å)	X ²
Ti-HL 350°C	Anatásio	74,2	25,308	1,00524	8,0	3,78616 3,78616 9,48173	- 1,29
	Bruquita	25,8	30,807	2,33627	3,5	9,184 5,447 5,145	
Ti-HL 550°C	Anatásio	72,5	25,306	0,4913	16,5	3,78587 3,78587 9,49385	4 50
	Bruquita	27,5	30,807	0,72113	11,3	9,184 5,447 5,145	- 1,53
Ti-MP	Anatásio	88,6	25,307	0,60202	13,4	3,78571 3,78571 9,49315	- 1,62
	Rutilo	11,4	27,445	0,57138	14,2	4,59216 4,59216 2,95471	
Ti-MP (calcinador)	Anatásio	50,0	25,299	0,37689	21,5	3,78582 3,78582 9,51173	- 1,75
	Rutilo	50,0	27,433	0,36888	22,0	4,59410 4,59410 2,96025	
Cu/Ti-HL	Anatásio	77,8	25,298	0,80129	10,1	3,78761 3,78761 9,48651	1 22
	Bruquita	22,2	30,807	1,31127	6,2	9,184 5,447 5,145	- 1,33

Fotocatalisador	Fases	Teor (%m/m)	2 θ (°)	FWHM (°)	Tamanho de Cristalito (nm)	Parâmetro de Rede (Å)	X ²
Cu/Ti-HL 550⁰C	Anatásio	72,5	25,305	0,49129	16,5	3,78590 3,78590 9,49403	- 1,53
	Bruquita	27,5	30,807	0,72114	11,3	9,184 5,447 5,145	
Cu/Ti-MP	Anatásio	87,5	25,309	0,60475	13,4	3,78557 3,78557 9,48945	- 1,20
	Rutilo	12,5	27,453	0,63176	12,9	4,59085 4,59085 2,95576	
CuFe₅/Ti-HL	Anatásio	68,3	25,309	0,66131	12,2	3,78580 3,78580 9,48488	- 1,24 -
	Bruquita	31,2	30,807	1,1422	7,2	9,184 5,447 5.145	
	Hematita	0,5	33,163	0,16843	48,9	5,0346 5,0346 13,7473	
CuFe ₁₀ /Ti-HL	Anatásio	63,7	25,304	0,65021	12,4	3,78652 3,78652 9,48699	
	Bruquita	28,6	30,807	1,04431	7,8	9,184 5,447 5,145	1,32
	Hematita	7,7	33,163	0,30625	26,9	5,0346 5,0346 13,7473	-

Fotocatalisador	Fases	Teor (%m/m)	2 θ (°)	FWHM (°)	Tamanho de Cristalito (nm)	Parâmetro de Rede (Å)	X ²	
		· · · ·	25,305	0,80052		3,78634	- 1,30 -	
	Anatásio	51,6			10,1	3,78634		
						9,48794		
			30,807	1,15937	7,1	9,18400		
CuFe ₂₀ /Ti-HL	Bruquita	31,2				5,44700		
						5,14500		
						5,03356		
	Hematita	17,2	33,163	0,34120	24,1	5,03356		
						13,74992		
				0,84870	9,5	3,78669	- 1,63	
	Anatásio	95,6	25,307			3,78669		
Eo Ti						9,47629		
F E 5 H95	Rutilo	4,4	27,445	0,57091	14,2	4,59216		
						4,59216		
						2,95471		
						3,78588	- 1,75	
	Anatásio	91,7	25,316	0,93980	8,6	3,78588		
Fe ₁₀ Ti ₉₀						9,46544		
	Rutilo			0,57091	14,2	4,59216		
		8,3	27,445			4,59216		
						2,95471		
	Anatásio						3,78798	
		Anatásio 29	25,303	0,832932	9,7	3,787984	_ 1,72 _	
						9,469049		
	Rutilo		27,728		2,1	4,546139		
Fe ₂₀ Ti ₈₀		Rutilo 40		3,801803		4,546139		
- 20 00						2,999176		
	Bruquita	Bruquita 31	30,807	1,839460	4,4	9,184		
						5,447		
	-					5,145		

Fotocatalisador	Fases	Teor (%m/m)	2 θ (°)	FWHM (°)	Tamanho de Cristalito (nm)	Parâmetro de Rede (Å)	X ²
	Anatásio		25,303	0,83473		3,78756	
		94,7			9,7	3,78756	
Cu/Eo-Tio-						9,47559	
CU/1 C5 1 195				0,57091		4,59216	
	Rutilo	5,3	27,445		14,2	4,59216	
						2,95471	
			27,445	0,57091	14,2	4,59216	- 1,26
	Rutilo	5,3				4,59216	
						2,95471	
Cu/re ₁₀ I 190	Rutilo	8,7	27,445	0,57091	14,2	4,59216	
						4,59216	
						2,95471	
	Anatásio	o 26,5	25,301	0,813077	9,9	3,792735	_ 1,14 _
						3,792735	
						9,402041	
	Rutilo		27,780	3,861611	2,1	4,53862	
Cu/Fe ₂₀ Ti ₈₀		56,8				4,53862	
						2,99425	
	Bruquita	quita 16,7	30,807	1,082286	7,6	9,184	
						5,447	
		•	•	·	·		5,145

APÊNDICE D

- Microscopia Eletrônica de Varredura -

A seguir estão as micrografias dos fotocatalisadores que não constam no Capítulo 4.

Ti-HL

Ti-HL 550°C

Ti-MP

Cu/Ti-HL

Cu/Ti-HL 550°C

Cu/Ti-MP

CuFe₅/Ti-HL

CuFe10/Ti-HL

CuFe₂₀/Ti-HL

Cu/Fe₅Ti₉₅

Fe₁₀Ti₉₀

Cu/Fe₁₀Ti₉₀

Fe₂₀Ti₈₀

Cu/Fe₂₀Ti₈₀

A seguir estão as microscopias eletrônicas de varredura por emissão de campo de uma região do material e análise da energia de dispersão de raios X dos fotocatalisadores que não constam no Capítulo 4.

Ti HL 350°C

Ti HL 550°C

Ti Ka1

0 Ka1

APÊNDICE E

- Espectrocopia de ReflectânciaDifusa no UV-vis -

A seguir estão os gráficos empregados no cálculo dos valores de bandgap dos fotocatalisadores que não constam no Capítulo 4.

APÊNDICE F

- Espectrocopia Fotoeletrônica de Raios X -

A seguir estão os espectros para cada elemento dos fotocatalisadores que não constam no Capítulo 4.

Amostra	Cu (%	‰m/m)	Ti (%m/m)		
	XRF	XPS	XRF	XPS	
Cu/Ti-HL 550°C	2,6	5,0	97,4	50,0	

Amostra	% mássica					%Cu	
	%Cu	%Fe	%Ti	%O	%C	Cu ²⁺	Cu ¹⁺
Cu/Ti-HL 550°C	5,0	-	50,0	39,2	5,7	56	44

Cu/Ti-MP

CuFe₅/Ti-HL

CuFe₂₀/Ti-HL

Fe₅Ti₉₅

Fe₁₀Ti₉₀

Fe₂₀Ti₈₀

Cu/Fe₅Ti₉₅

Cu/Fe₂₀Ti₈₀

APÊNDICE G

- Informações dos Testes de Desempenho -

Especificações das colunas cromatográficas:

Análises Gasosas

CP-Molsieve 5Å (25m x 0,53mm x 50µm) – Part n° CP7538

PoraPLOT Q (25m x 0,53mm x 20 µm) - Part n° CP7554

Análises Líquidas

CP-Wax 52 CB (50m x 0,32mm x 1,2 µm) – Part n° CP7773

Programação de temperatura dos métodos de análise

Análises Gasosas – TCD:

	Temperatura(°C)	Taxa (°C/min)	Tempo (min)	Total (min)
1	40	-	3	3
2	80	40	3	7
3	180	50	2	11
4	250	50	37	49,4
5	40	3	0	119,4

Análises Líquidas – FID:

	Temperatura(°C)	Taxa (°C/min)	Tempo (min)	Total (min)
1	70	-	4	4
2	90	6,5	1,5	8,58
3	140	11	7	20,12
4	200	20	5	28,12

Tempos de retenção dos compostos identificados

Os tempos de retenção e os fatores de cada composto são listados abaixo:

Amostras Gasosas – PPq	Tempo de Retenção (min)	Fatores	PM (g/mol)
H ₂	0,176	3,654	2,02
Ar + CO + CH ₄	0,803	-	-
CO ₂	1,569	0,915	44,01

Amostras Gasosas – PM	Tempo de Retenção (min)	Fatores	PM (g/mol)
O ₂	3,729	0,800	32,00
N ₂	3,874	0,670	28,01
CH ₄	4,296	0,450	16,04
CO	4,771	0,670	28,01
CO ₂	12,069	0,915	44,01

Amostras Líquidas – CP Wax	Tempo de Retenção	Fatores	PM (g/mol)
C_2H_6O – Dimetileter	2,220	0,55	46,07
CH ₂ O – Formaldeído	2,796	0,23	30,03
C ₂ H ₄ O – Acetaldeído	3,000	0,5	44,05
C ₃ H ₆ O – Acetona	3,531	0,49	58,08
CH ₃ OH – Metanol	4,391	0,23	32,04
C ₂ H₅OH – Etanol	4,958	0,46	46,07
C ₃ H ₈ OH – Propanol	6,709	0,6	60,10
C ₂ H ₄ O ₂ – Ácido Acético	17,300	0,24	60,05
CH ₂ O ₂ – Ácido Fórmico	19,600	0,01	46,03

Exemplos de cromatogramas típicos das análises das fases gasosa e líquida do fotorreator:

APÊNDICE H

- Resultados dos Testes de Desempenho -

Foram realizadas reação de fotorredução catalítica de CO₂ também com o fotocatalisador Ti-HL calcinado a 550°C e o Cu/Ti-HL 550°C. Os resultados obtidos nestes testes, que foram realizados em triplicata, são apresentados abaixo.

