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por exemplo, líquidos iônicos e sais fundidos nos quais a modelagem é ainda mais 

complexa e os modelos existentes são incompletos e inadequados. Para esses casos, 

propõe-se incluir correlações iônicas eletrostáticas, não consideradas na equação de 

Poisson-Boltzmann original. Neste trabalho usamos uma modificação da equação de 

Poisson-Boltzmann com correlações eletrostáticas para descrever a micelização de 

surfactantes iônicos e zwitteriônicos, descrever a capacitância diferencial de líquidos 
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highly concentrated and/or multivalent electrolyte solutions. For electrolytes without 

solvents, e.g., ionic liquids and molten salts, modeling is even more complex and the 

currently existing models are incomplete or inaccurate. Here, we used a modified 

Poisson-Boltzmann equation which takes into account ionic electrostatic correlations to 

describe the micellization phenomena of ionic and zwitterionic surfactants, in order to 

describe the differential capacitance of ionic liquids and their electrochemical 

impedance. The proposed approach has shown to be able to predict very well the 

behavior of those systems observed experimentally and in molecular simulations.  



ix 
 

Content 

Figures Index .................................................................................................................. xii 

Tables Index .................................................................................................................. xvi 

Chapter 1: Introduction ..................................................................................................... 1 

1.1 Electrolytes and their behavior ............................................................................... 1 

1.2 Objectives ............................................................................................................... 2 

1.3 Thesis organization ................................................................................................. 2 

Chapter 2: Literature Review ........................................................................................... 4 

2.1 Electrical Double Layer .......................................................................................... 4 

2.2 Ionic Specificity Effects ......................................................................................... 5 

2.3 Poisson-Boltzmann Equation ................................................................................. 6 

2.3.1 Modifications of the Poisson-Boltzmann approach ......................................... 8 

2.4 Ionic Liquids ......................................................................................................... 13 

2.5 Surfactant Systems ............................................................................................... 15 

References .................................................................................................................. 16 

Chapter 3: Effect of electrostatic correlations on micelle formation .............................. 22 

3.1 Introduction .......................................................................................................... 22 

3.2  Methodology ........................................................................................................ 24 

3.2.1 Free energy of micellization .......................................................................... 28 

3.3 Numerical strategy ............................................................................................ 35 

3.4 Results and discussions ........................................................................................ 37 



x 
 

3.5 Final Remarks ....................................................................................................... 47 

References .................................................................................................................. 48 

Chapter 4: Effects of electrostatic correlations and asymmetric ion sizes on the 

differential capacitance ................................................................................................... 52 

4.1. Introduction ......................................................................................................... 52 

4.2 Differential capacitance of ionic liquids ............................................................... 53 

4.2.1 Modeling the Differential Capacitance .............................................................. 54 

4.3 Theoretical formulation ........................................................................................ 56 

4.3.1 Differential capacitance model ...................................................................... 60 

4.3.2 Numerical strategy ......................................................................................... 63 

4.4 Results and discussion .......................................................................................... 64 

4.4.1 Correlate differential capacitance data (parameter estimation) ..................... 67 

4.5 Final Remarks ....................................................................................................... 74 

References .................................................................................................................. 75 

Chapter 5: Analytical solution for the electrochemical impedance considering 

electrostatic correlation effects ....................................................................................... 78 

5.1 Introduction ............................................................................................................. 78 

5.2 Mathematical Approach ....................................................................................... 81 

5.2.1 Validation of the analytical solution .............................................................. 87 

5.3 Results and discussion .......................................................................................... 88 

5.4  Final Remarks ...................................................................................................... 91 

References .................................................................................................................. 92 



xi 
 

Chapter 6. Final Remarks and Future Works ................................................................. 97 

Appendix A..................................................................................................................... 99 

Appendix B ................................................................................................................... 109 

Appendix C ................................................................................................................... 111 

Appendix D................................................................................................................... 121 

Appendix E ................................................................................................................... 130 

 



xii 
 

Figures Index 

Figure 1 - Path defined to describe the micellization process, from free surfactant in 

solution to surfactant in micelle structure. ...................................................................... 28 

Figure 2 - Scheme of charging layers for zwitterionic surfactant immersed in an 

electrolyte solution. ......................................................................................................... 31 

Figure 3 - Electrostatic contribution to the free energy of micellization as a function of 

the dimensionless correlation length  for the systems SDS and NaCl (a), and (b) SDS 

and CaCl2. The variables, the temperature, and the salt concentration and surfactant 

concentration were fixed. ܶ = 25℃, ܿ0 = 0.5M, ݂ݎݑݏܿ =  38 ......................... ܵܦܵܥܯܥ

Figure 4 - Calculated (continuous line) and experimental critical micelle concentration 

for solutions containing (a) SDS and NaCl, and (b) SDS and CaCl2 both at ܶ = 25℃. 

Points are experimental data from [27-30]. ..................................................................... 40 

Figure 5 - Calculated aggregation number ݃ of micelles for the systems SDS and NaCl 

(a), and (b) SDS and CaCl2 both at ܶ = 25℃. ................................................................ 41 

Figure 6  - Critical micelle concentration as a function of salt concentration for solutions 

containing (a) dodecylpyridinium chloride and NaCl, and (b) dodecylpyridinium 

chloride and CaCl2. .......................................................................................................... 43 

Figure 7 - Degree of ion binding ߚ on the surface for the surfactant C12-n-betaine. (a) 

with NaCl, where the continuous line is the model prediction of ߚ for the chloride ion, 

the dashed line is the prediction of  ߚ for the sodium ion, the squares are experimental 

data for chloride, and the triangles experimental data for sodium. (b) with CaCl2, where 

the continuous line is the model prediction of ߚ for the chloride ion, the dashed line is 

the prediction of  ߚ for the calcium ion, the squares are experimental data for chloride, 

and the triangles experimental data for calcium. All the experimental data was obtained 

from the work of [34]. ..................................................................................................... 46 

Figure 8 - Degree of ionic binding ߚ on a system containing NaCl (0.4M) and Cn-n-

betaine, as a fluctuation of surfactant The continuous line represents ߚ for the chloride 

ion and the dashed line for sodium ion. ........................................................................... 47 



xiii 
 

Figure 9 - Schematic 2D representation of the lattice model for ionic liquids considering 

that cations are larger than anions. .................................................................................. 57 

Figure 10 – Differential capacitance ܦܥ of ionic liquids obtained from the proposed 

model as a function of the dimensionless applied potential ߶0. The continuous line is 

for the correlation length ݈ܿ equal to 5 Å, the dashed line represents ݈ܿ = 10 Å, and the 

dotted line ݈ܿ = 15 Å. We fixed ܶ = ߛ ,℃25 = 0.1 , and ߦ = 0.5. ............................... 65 

Figure 11 - Differential capacitance ܦܥ of ionic liquids obtained from the proposed 

model as a function of the dimensionless applied potential ߶0. The continuous line is 

for the compressibility parameter ߛ equal to 0.001, the dashed line represents ߛ = 0.01, 

and the dotted line ߛ = 0.1. We fixed ܶ = 25℃, ݈ܿ = 10 Å , and ߦ = 0.5. ................... 66 

Figure 12 - Differential capacitance ܦܥ of ionic liquids obtained from the proposed 

model as a function of the dimensionless applied potential ߶0. The continuous line is 

for the size ratio between the anion and the cation ߦ equal to 0.1, the dashed line 

represents ߦ = 0.5, and the dotted line ߦ = 1. We fixed ܶ = 25℃, ݈ܿ = 10 Å , and 

ߛ = 0.1............................................................................................................................. 67 

Figure 13 – Comparison of the proposed model to the results obtained by Kornyshev et 

al. [11] with two-bead cation and one-bead anion model for an ionic liquid of ߝ = 5 at 

100℃. The parameters are ݈ܿ = 21.484  Å, ߛ = ߦ  ,0.0034 = 0.13 and we fixed 

݊ݎ݁ݐݏܥ = 125. ................................................................................................................ 69 

Figure 14 - Comparison of the proposed model to the results obtained by Kornyshev et 

al. [11] with three-bead cation and one-bead anion model for an ionic liquid of ߝ = 5  at 

100℃. The parameters obtained for this system are  ݈ܿ = 25.554  Å , ߛ = 0.0034,  

ߦ  = 0.272, and fixed ݊ݎ݁ݐݏܥ = 125. ............................................................................ 70 

Figure 15 - Comparison of the proposed model (continuous lines) to the results obtained 

by Jiang et al. [17] using DFT calculation (dashed lines) for an ionic liquid with reduced 

ionic density equal to 0.5 (gray dashed line) and equal to 0.01 (black dashed line). The 

parameters are: for gray continuous line:  ݈ܿ = 5.0  Å , ߛ = ߦ   ,0.9 = 1, and ݊ݎ݁ݐݏܥ =

125, and for black continuous line: ݈ܿ = 5.0  Å , ߛ = ߦ   ,0.002 = 0.9. The temperature 

is fixed at ܶ = 25℃, and the dielectric constant of the ionic liquid is ߝ = 12.5. ........... 71 



xiv 
 

Figure 16 - Comparison of the proposed model (continuous line) to the experimental 

data obtained by Lockett et al. [1] (dashed line) for hmimCl at 100℃. The parameters 

are ݈ܿ = 36.429  Å , ߛ = ߦ   ,0.005 = 0.1, and ݊ݎ݁ݐݏܥ = 125. The dielectric constant 

of the ionic liquid is considered ߝ = 5. ........................................................................... 73 

Figure 17 - Comparison of the proposed model (continuous line) to the experimental 

results obtained by Lockett et al. [1] (dashed line) for hmimCl at 120℃. The parameters 

are ݈ܿ = 36.4   Å,  ߛ = ߦ   ,0.005 = 0.1, and ݊ݎ݁ݐݏܥ = 125. The dielectric constant of 

the ionic liquid is considered ߝ = 5. ................................................................................ 74 

Figure 18 - Blocking electrodes configuration, separated by a distance of 282 .............. .ܮ 

Figure 19 - Nyquist plot of the electrochemical impedance of a symmetric electrolyte, 

considering different values of the dimensionless correlation length ݈ܿ. The continuous 

black line is the case where no electrostatic correlation is considered ݈ܿ = 0, the gray 

dotted line is ݈ܿ = 10, the dashed black line is ݈ܿ = 30, the gray continuous line is 

݈ܿ = 50,  the black dotted line is ݈ܿ = 70, and the gray dashed line is ݈ܿ = 100. .......... 89 

Figure 20 - Bode plot of the electrochemical impedance of a symmetric electrolyte, 

considering different values of the dimensionless correlation length ݈ܿ. The continuous 

black line is the case where no electrostatic correlation is considered ݈ܿ = 0, the gray 

dotted line is ݈ܿ = 10, the dashed black line is ݈ܿ = 30, the gray continuous line is 

݈ܿ = 50,  the black dotted line is ݈ܿ = 70, and the gray dashed line is ݈ܿ = 100. .......... 90 

Figure 21 – Variation of the dimensionless cation concentration between the electrodes 

as a function of the different sizes of the cation, anion, and solvent under a DC voltage. 

The continuous line is for the case where the anion, the cation and the solvent have radii 

equal to 0.3nm. The dashed line is for the cation and the anion with the same size radii 

ܽ±= 0.6nm and the solvent ܽݓ = 0.3nm. And the dotted line for when the cation is 

larger than the anion ܽ+= 0.8nm, ܽ−= 0.6nm, and ܽݓ = 0.3nm. ............................ 114 

Figure 22 – Variation of the dimensionless electrostatic potential as a function of the 

dimensionless time ߬ and the collocation points between the electrodes for the DC 

problem. We considered an ionic strength ܫ = 1M, a symmetric electrolyte 1:1, and 

ܽ+= 0.8 nm, ܽ−= 0.6 nm, and ܽݓ = 0.3 nm. ........................................................... 115 



xv 
 

Figure 23 - Variation of the dimensionless anion concentration as a function of the 

dimensionless time ߬ and the collocation points between the electrodes for the DC 

problem. We considered an ionic strength ܫ = 1M, a symmetric electrolyte 1:1, and 

ܽ+= 0.8 nm, ܽ−= 0.6 nm, and ܽݓ = 0.3 nm. ........................................................... 116 

Figure 24 - Variation of the concentration of the cation as a function of the 

dimensionless time ߬ and the collocation points between the electrodes for the DC 

problem. We considered an ionic strength ܫ = 1M, a symmetric electrolyte 1:1, and 

ܽ+= 0.8 nm, ܽ−= 0.6 nm, and ܽݓ = 0.3 nm. ........................................................... 117 

Figure 25 - Variation of the dimensionless electrostatic potential as a function of the 

dimensionless time ߬ and the collocation points between the electrodes for the AC 

problem. We considered an ionic strength ܫ = 1M, a symmetric electrolyte 1:1, and 

ܽ+= 0.3 nm, ܽ−= 0.3 nm, and ܽݓ = 0.3 nm and a dimensionless frequency ߱ = 0.3.118 

Figure 26 - Variation of the dimensionless anion concentration as a function of the 

dimensionless time ߬ and the collocation points between the electrodes for the AC 

problem. We considered an ionic strength ܫ = 1M, a symmetric electrolyte 1:1, and 

ܽ+= 0.3 nm, ܽ−= 0.3 nm, and ܽݓ = 0.3 nm and a dimensionless frequency ߱ = 0.3.119 

Figure 27 - Variation of the dimensionless cation concentration as a function of the 

dimensionless time ߬ and the collocation points between the electrodes for the AC 

problem. We considered an ionic strength ܫ = 1M, a symmetric electrolyte 1:1, and 

ܽ+= 0.3 nm, ܽ−= 0.3 nm, and ܽݓ = 0.3 nm, and a dimensionless frequency ߱ =

0.3. ................................................................................................................................... 120 

Figure 28 – Bispherical coordinate system. (WEISSTEIN, 2014) .................................. 121 

 

 

 

  



xvi 
 

Tables Index 

 
Table 1 – Classical Hofmeister series of cations and anions ............................................... 5 

Table 2 - Effects of the increase of the surfactant and salt concentration on the 

aggregation number ݃ for ܶ = 25℃ for the surfactant the surfactant dodecyl n-betaine. 44 

Table 3 - Degree of counterion binding to micelles of C12- lecithin surfactant at 

different NaCl concentrations at T = 25ºC. ....................................................................... 45 

Table 4 - Parameters used on the impedance model (S.I.). ............................................. 89 

 

  



1 
 

Chapter 1: Introduction 
 

1.1 Electrolytes and their behavior 

Electrolytes play a major role in several fields, from biological systems to 

pharmaceutical products and to petrochemical processes. Even though there has been a 

large advance in the development of experiments and technologies in these areas, the 

theoretical description of biological, pharmaceutical, and petrochemical systems still 

needs more clarification regarding their physical and chemical nature and behavior. The 

search for a satisfactory theoretical approach is driven by the need of models that can be 

used as a tool for the development for new processes and products.  

Inorganic salts are known to affect the stability of proteins, to influence the 

interactions between colloidal particles, and also to affect the aggregation between 

amphiphilic molecules such as surfactants (where the aggregates are known as micelles) 

(Goldsipe and Blankschtein, 2005). The influence of electrolytes in colloidal systems is 

due to the fact that, over charged surfaces, the binding and approximation of dissociated 

ions changes repulsive electrostatic forces.  Furthermore, in systems where the 

adsorption of dissociated ions controls their charges, these ions are responsible for the 

interactions between colloidal particles (Leontidis et al., 2014).  

Our attention now is not only focused on the development of theories for 

inorganic salts in aqueous solutions, but also on improving the description of ionic 

liquids, which can be seen as electrolyte solutions without the presence of a solvent. 

Ionic liquids have been the focus of numerous research efforts due to their unique 

electrochemical characteristics. They can be applied to supercapacitors, solar cells, 

batteries, membrane separation systems but until now there has been no simple theory 

able to describe their unique electrochemical behavior.   

Most developments in describing electrolytes are now concentrated on the use of 

molecular and atomistic simulations, which are essential for the understanding of 

microscopic phenomena involved in systems containing electrolytes. Unfortunately, 

these approaches demand a very high computational cost and are time consuming, 

which make them unsuitable to model multiscale systems of complex processes. This 
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fact motivates us in improving mean field approaches like modified Poisson-Boltzmann 

equations, which encompass the fundamental effects on the interactions between 

charged surfaces and electrolytes, but at the same time require low computational cost 

and can be used to calculate properties in different scales and to describe much more 

complex processes.  

Previous works performed in the research groups ATOMS (Applied 

Thermodynamics and Molecular Simulation) and LMSCP (Laboratory of Modeling, 

Simulation, and Process Control) of the Chemical Engineering program of COPPE – 

UFRJ (Moreira et al., 2007; Lima et al., 2007; Alijó et al. 2012; Alijó et al., 2015) 

verified the need to include modifications on the Poisson-Boltzmann equation, for a 

better description of electrochemical systems containing electrolytes. The recent boom 

in the research of micro-electromechanical devices and the tendency to miniaturize 

processes and systems make the improvement of electrochemical theories even more 

important.  

1.2 Objectives 

The main goal of this work is to improve the description of electrolyte systems 

by a modified Poisson-Boltzmann equation which takes into account effects of ionic 

electrostatic correlations. We apply this approach to the description of the micellization 

phenomena of ionic and zwitterionic surfactants, ionic liquids between charged 

electrodes (under alternating and continuous currents), and electrolyte solutions. For all 

these systems we validate the proposed approach by comparing the results obtained by 

the proposed model with experimental observations and data, as well as molecular 

simulation, and density functional theory data.    

1.3 Thesis organization 

This thesis is divided into six chapters and five appendixes. Chapter II presents a 

brief literature review of the systems studied in this work and the traditional approaches 

used to describe electrostatic interactions. The following chapters are each separated by 

the description of different systems, and are structured as individual scientific articles. 

Chapter III contains the proposed approach to describe the micellization phenomena of 

ionic and zwitterionic surfactants, where we compare our results to critical micelle 
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concentration and ionic binding experimental data. Chapter IV presents the application 

of the modified Poisson-Boltzmann equation to the description of the differential 

capacitance of ionic liquids. In this chapter we also propose an approach to consider the 

asymmetry in shape and size of ionic liquids. The model is validated by its comparison 

with experimental data and with molecular and DFT simulation results obtained from 

literature.  Chapter V presents the development of an analytical expression for the 

description of the electrochemical impedance of electrolytes (both ionic liquids and 

solutions of electrolytes). This approach is able to predict the behavior of the impedance 

curve and explains the impact of electrostatic correlations in alternating current systems. 

Finally, Chapter VI lists the final remarks of this thesis and suggestions of future works 

and developments. There are also five appendices in this work. Appendix A presents the 

article “Molecular Thermodynamics of Micellization: Micelle Size Distributions and 

Geometry Transitions” published in the Brazilian Journal of Chemical Engineering. 

Appendix B presents the numerical and optimization approach for obtaining the critical 

micelle concentration when using the molecular thermodynamics approach. Appendix C 

presents the dynamics of electrolyte solutions considering ion size asymmetry and 

electrostatic correlation effects. Appendix D presents a numerical approach developed 

for solving the modified Poisson-Boltzmann equation with electrostatic correlation 

effects in bispherical coordinate systems. Finally, Appendix E reports an application of 

the modified Poisson-Boltzmann equation to predict the adsorption of proteins on 

different supports as a function of temperature, salt concentration, salt type, and pH. 
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Chapter 2: Literature Review 
 

2.1 Electrical Double Layer 

The behavior of electrolytes close to charged surfaces is a function of different 

forces. Mostly these forces are of short or long range, and their combined effects result 

in important consequences on the properties of colloidal solutions and electrochemical 

systems. The understanding of all the forces acting in these systems is crucial for a 

complete understanding of the behavior of electrolytes. For example, if van der Waals 

forces (which are attractive forces) were the only ones acting, we would expect that all 

particles – dispersed in solution and at low temperature – would agglomerate.  

However, as we know, that is not what usually happens because there are opposing 

forces also acting. One main opposing force, for example, is the one that arises due to 

the fact that any particle dispersed in water (or other liquid of large dielectric constant) 

can develop a charged surface, leading to the rise of electrostatic repulsion forces 

(Israelachvili, 1995). 

 Any charged surface in contact with electrolyte solutions will have its charge 

balanced by a region of ions of opposed charge (counterions). Some ions (either 

counterions or coions) are bounded to the charged surface, and this region is known as 

the Stern layer. In the mean field behavior, other ions present fast thermal movement, 

known as the diffuse layer. Figure 1 is an example of the organization of the electrical 

double layer close to a negatively charged surface.  

 

Figure 1 – Representation of the electrical double layer close to a positively charged 

surface.  
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 The structure of the electrical double layer is a function not only of the charge or 

potential over the surface, but it is also intrinsically related to the nature of the ions 

(either in solution or as ionic liquids). Because of that, it is essential to consider the 

particularities of each electrolyte when we are modeling these kinds of systems.  In the 

following sections we present a brief introduction of ionic specificity effects, steric 

effects and ionic electrostatic correlations and how they can be coupled to a mean-field 

approach by the use of the Poisson-Boltzmann equation.  

2.2 Ionic Specificity Effects  

 Ionic specificity effects were first described at the end of the 19th century by the 

work of Hofmeister. This work described the effects of different salts in the solubility of 

albumin protein (Kunz et al., 2004). The observations from Hofmeister yielded the 

classification of ions according to their impact on a variety of biological and 

physicochemical systems, and it created a series, now known as the Hofmeister or 

lyotropic series. In Table 1 we present the Hofmeister series of cations and anions. 

However it is important to point out that this series might not always be followed 

(Bostrom et al., 2005), or, in some cases, it might be incomplete (especially due to the 

fact that most ions listed in the Hofmeister series are monovalent anions) (Leontidis et 

al., 2014). Ionic specificity effects have a major role in several applications. One 

important example is the chromatography separation of proteins, which is directly 

affected by the differences in solubility of different ions (Nfor et al., 2011; Lezin et al., 

2011; Tavares et al., 2005). In this case, the ions are affected by both the hydrophobic 

and the electrostatic interactions in the medium. Also, Abezgauz et al. (2010) observed 

that when different salts are added to a surfactant (cetylpyridinium bromide) aqueous 

solution, the effect of the counterion on the critical micelle concentration and on the 

micelle growth follows the Hofmeister series.  

Table 1 – Classical Hofmeister series of cations and anions 

Anions ିܨ  ܵ ସܱ
ଶି > ܲܪ ସܱ

ଶି > ݁ݐܽݐ݁ܿܽ > ି݈ܥ > ܱܰଷ
ି > ିݎܤ > ଷܱ݈ܥ

ି > ିܫ > ݈ܥ ସܱ
ି >

 ିܰܥܵ
Cations 2 2

4NH K Na Li Mg Ca           

 It is important to emphasize that the effects of electrolytes on colloidal and 

electrochemical systems is not only a function of the kind of electrolyte used; it is also a 
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function of electrolyte concentration and the characteristics of the medium and of the 

charged surface. One important contribution to the free energy that arises at high 

electrolyte concentrations, high applied potential, or in ionic liquids, is that of the 

electrostatic correlation. In these systems, one ion affects the behavior of other ions in 

its surroundings in a nonlinear way. Furthermore, due to spatial restrictions on the area 

of electrical double layer, there are steric effects that arise from the fact that each ion 

has a defined volume (free volume effect). These three terms of electrolyte free energy, 

ion specificity contributions, free volume and electrostatic correlations are described on 

Item 2.3.2 of this chapter.   

2.3 Poisson-Boltzmann Equation 
 

 As discussed in Item 2.1, ions close to a charged surface are rearranged, with 

ions of opposite charge (counterions) being attracted, and the ones with the same charge 

as the surface (coions) being repelled. The distribution of these ions can be described by 

the Boltzmann distribution and it is a function of the electric potential and the 

temperature. The Boltzmann distribution can be expressed in terms of concentration in 

the following form: 

ܿ௜ = ܿ௜,ஶ exp ൬−
௜݁߰ݖ
݇ܶ

൰ (2.1) 

where ܿ௜ is the concentration of ion ݅, ܿ௜,ஶ the concentration of ion ݅ in the bulk, ݖ௜ the 

valence of   species ݅, ݁ the elementary charge of the electron, ߰ the electrostatic 

potential, ݇ the Boltzmann constant, and ܶ the temperature.  

 The Poisson equation is an elliptical partial differential equation, and it can be 

used to describe the behavior of the electrostatic potential (߰). It is a function of the 

volumetric charge density (ߩ), and can be written as follows: 

(߰∇ߝ)∇଴ߝ =  (2.2) ߩ−

where ߝ଴ is the vacuum electric permittivity, and ߝ is the dielectric constant of the 

medium. 
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 The volumetric charge density (ߩ = ݁ ∑ ௜௜ݖ ܿ௜) can now be coupled with the 

Boltzmann distribution, and then inserted in the Poisson equation, resulting in the 

Poisson-Boltzmann equation. 

(߰∇ߝ)∇଴ߝ = −݁ ෍ ௜ݖ
௜

ܿ௜,ஶ exp ൬−
௜݁߰ݖ
݇ܶ

൰ (2.3) 

 This equation characterizes a boundary value problem, which requires two 

boundary conditions. These boundary conditions can be of three kinds: specified electric 

potential at the surface, specified charge density at the surface, and of charge regulation. 

For specified electric potential at the surface: 

 ߰|௦௨௥௙ = ߰଴ (2.4) 

  

For specified charge density (ߛ) at the surface: 

௦௨௥௙|(߰∇)ߝ  = −
ߛ
଴ߝ

 (2.5) 

Charge regulation boundary condition is used when the charged surface has 

ionizable groups, which makes the resulting charge of this surface a function of the 

conditions of the medium, such as pH, and temperature.  Ninham and Parsegian (1971) 

presented a charge regulation model where the influence of pH on the surface charge is 

considered. In this approach, the boundary condition on the surface is: 

௦௨௥௙|(߰∇)ߝ  =
ߙ݁ߨ4

଴ߝ
 (2.6) 

where ߙ is the fraction of ionizable groups on the surface. This parameter is obtained 

from the dissociation constant of the groups on the surface (ܼ) and the concentration of 

H+ ions (ܪା):  

ܼ =
ሾܪାሿௌሾିܣሿ

ሾܪܣሿ
= ሾܪାሿௌ

ߙ
1 − ߙ

 (2.7) 

and from the concentration of hydrogen in the solution: 

ሾܪାሿௌ = ܪ exp ൬−
݁߰
݇ܶ

൰  (2.8) 
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 This kind of boundary condition is widely used for modeling interactions 

between proteins. Examples of its application can be found in the works of Boström et 

al. (2005), Lima et al. (2008), Deniz and Parsons (2013), and in the work presented in 

Appendix E.  

 When we are modeling only one charged surface in an electrolyte solution we 

also consider that the electrostatic potential in the bulk tends to zero.  

 ߰|௕௨௟௞ = 0 (2.9) 

 
 The Poisson-Boltzmann equation in its classical form considers that the ions are 

punctual charges, no excluded volumes are taken into account. Furthermore, no van der 

Waals (dispersion) interactions between ions and surface are included.  Because of that, 

the classical Poisson-Boltzmann equation is only able to describe well the behavior of 

diluted electrolyte solutions, and monovalent electrolytes. This leaded to the 

development of modifications of the Poisson-Boltzmann equation in order to have a 

better description of a larger spectrum of electrolytes systems. Item 2.3.1 of this chapter 

presents several modifications on the Poisson-Boltzmann equation that make it more 

suitable to describe concentrated electrolyte solutions, multivalent electrolytes, and 

ionic liquids.  

 

2.3.1 Modifications of the Poisson-Boltzmann approach 
 

 As mentioned before, approaches which describe ions as punctual charges that 

neglect free volume effects tend to fail at high concentrations, high voltages, or due to 

electrostatic correlation interactions. This is an indication that those effects should not 

be ignored. There are modifications on the Poisson-Boltzmann equation that aim to 

describe several physical observations such as dielectric relaxation, electrostatic ionic 

correlation, and ionic volume restrictions. In the group of Applied Thermodynamics and 

Molecular Simulation (ATOMS) there was a series of works carried out in order to 

improve the Poisson-Boltzmann equation. First, Moreira et al. (2007) considered 

dispersion interaction ion-colloid and colloid-surface.  Lima et al. (2007) extended the 

approach proposed by Moreira by taking into account the shape of proteins, which 

resulted on a very effective approach to describe the interactions between proteins 
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immersed on different electrolytes solutions. Later, Alijó et al. (2012) considered ionic 

size exclusion effects on aqueous solutions, which showed to be especially relevant for 

the high electrolyte concentrations. Afterwards, Alijó et al. (2015) also considered 

electrostatic correlations and their effect on dynamic behavior. All these works 

represent a great contribution for the description of the behavior of electrolytes in 

aqueous solutions but still there are gaps to be filled, especially regarding the 

description of ionic liquids and concentrated electrolyte solutions.  

 The next sections in this chapter describe how the effects of dispersion, ionic 

sizes and electrostatic correlations can be included in the Poisson-Boltzmann equation.  

Effects of dispersion and polarizability of ions 

 On an aqueous electrolyte solution, the mean field potential close to a charged 

surface is affected not only by the size and charge of the ion but also by its 

polarizability.  Traditional models cannot explain why salts with the same valence and 

size impact in such a diverse manner in protein and colloidal systems (Tavares et al., 

2004).  Ninham and collaborators emphasized in their works that some behaviors 

caused by the ionic specificity can be described theoretically by the inclusion of ion-ion 

and ion-macroion dispersion forces (Boström et al. (2005), Moreira et al. (2006), 

Moreira et al. (2007), Mitchell et al. (1975), Fortini et al. (2004)). 

 The equivalence between electrostatic and dispersion forces is defined by taking 

the potential of interaction between an ion ݅ and a surface (Lukanov and Firoozabadi, 

2014): 

ܷ = ௜ܷ
௘௟௘௖௧௥௢௦௧௔௧௜௖ + ௜ܷ

ௗ௜௦௣௘௥௦௜௢௡ (2.10) 

The electrostatic contribution is defined as ௜ܷ
௘௟௘௖௧௥௢௦௧௔௧௜௖ =  ௜݁߰ and theݖ

dispersion energy of an ion at a distance ݎ of a charged surface can be obtained using 

the Lifshitz theory as follows:   

௜ܷ
ௗ௜௦௣௘௥௦௜௢௡ = −

௜ܤ

ଷݎ ℎ௜(ݎ) (2.11) 

 The term ℎ௜(ݎ) is a factor of shape and it considers that the ions have a finite 

size. This factor can be defined as (Lukanov and Firoozabadi, 2014): 
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ℎ௜(ݎ) = 1 +
ݎ2

ඥܽߨ௜
ቈ
ଶݎ2

ܽ௜
ଶ − 1቉ exp ቆ−

ଶݎ

ܽ௜
ଶቇ − ቈ1 +

ସݎ4

ܽ௜
ସ ቉ erfc ൬

ݎ
ܽ௜

൰ (2.12) 

Where ܽ௜ is the Gaussian radius of the ion. The values of this radius can be found in 

Parsons and Ninham (2009).  

  The dispersion coefficient (ܤ௜) can be obtained by the dynamic polarizability of 

the ions and it includes dipolar contributions of all electromagnetic frequencies. This 

coefficient can be positive (repulsion) or negative (attraction) and it is a function of the 

polarizability at different frequencies of the solvent, the surface and the ionic 

specimens. How to obtain the dispersion coefficient is well described elsewhere, e.g., 

Lukanov and Firoozabadi (2014), Tavares et al. (2004) and Boström et al. (2002). 

 

Inclusion of the effects of ionic sizes  

 Bikermann (1942) is widely known as a pioneer to consider steric effects 

between ions. His approach was one of the first to treat ions as hard bodies with a 

delimited volume. However, in a review paper by Bazant et al. (2009) it is revealed that 

a description of steric effects – very similar to the one presented by Bikermann (1942) - 

was previously presented on the remarkable work of Stern (1924). In that work, Stern 

introduces the concept of a compact layer of molecules, which is a monomolecular layer 

that separates the electrode and the electrolytes diffuse layer. In that article Stern also 

considered the volume of the ions on the electrolyte phase, and the expression he 

obtained for the ratio between charge and voltage is very similar to the one obtained by 

Bikermann (1942) twenty years later. 

 In Bikermann’s work, the first modification of the Poisson-Boltzmann equation 

was obtained, and the expression for the residual chemical potential of an ion ݅ is:  

௜ߤ
௥௘௦,஻௜௞

݇ܶ
= − ln(1 − ߶) (2.13) 

 

 

where ߶ = ∑ ܿ௜ߪ௜
ଷ

௜  the volume fraction occupied by the ions with diameter ߪ and 

concentration ܿ௜. Even though this approach was an important step on the improvement 

of the Poisson-Boltzmann equation, it has some limitations, such as, for example, the 
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fact that both anion and cation must have the same size.  We can find a large number of 

works that obtained a good description of physical and biological systems, for example 

electrolyte solutions with large ions or large biological molecules, (Wiegel and Strating 

(2007),  Boeukhov and Andelman (1997)), polyelectrolytes ( Biesheuvel (2004), Israels 

(1994),  González-Amezcua and Hernándes-Contreras (2004)), polymeric electrolytes 

(Van Soestbergen and Biesheuvel (2008)), electrophoreses of colloidal particles (López-

Garca et al. (2007) ), among others.  

  Carnahan-Starling (CS) equation of state for liquids consisting of monodisperse 

hard spheres can also be used to describe steric effects of electrolyte solutions. The 

residual chemical potential obtained with this methodology is presented below 

(Carnahan and Starling, 1969): 

௜ߤ
௥௘௦,஼ௌ

݇ܶ
=

߶(8 − 9߶ + 3߶ଶ)
(1 − ߶)ଷ  (2.14) 

Even though the Bikermann and Carnahan-Starling models are able to give 

important information on free volume of different electrolyte solutions, there are several 

systems where the asymmetry on the size of electrolytes can’t be neglected. One way to 

consider the asymmetry of ion sizes was presented by Alijó et al. (2012) where they 

used the Boublik-Mansoori-Carnahan-Starling-Leland (BMCSL) equation of state, and 

obtained the following residual chemical potential for an ion ݅: 

௜ߤ
௥௘௦,஻ெ஼ௌ௅

݇஻ܶ
=

൬ߦ଴ −
ଶߦ

ଷ

ଷߦ
ଶ൰ ௜ߪ

ଷ + ௜ߪଶߦ3 + ௜ߪଵߦ3

1 − ଷߦ
+

ଶߦ2
ଷߪ௜

ଷ

ଷ(1ߦ − ଷ)ଷߦ

+
௜ߪଶߦଵߦ3

ଷ +
ଶߦ3

ଶߪ௜
ଶ

ଷߦ
+

ଶߦ3
ଷߪ௜

ଷ

ଷߦ
ଶ

(1 − ଷߦ
ଶ)

+ ቆ−1 +
ଶߦ3

ଶߪ௜
ଶ

ଷߦ
ଶ +

ଶߦ2
ଷߪ௜

ଷ

ଷߦ
ଶ ቇ ln(1 −  (ଷߦ

(2.15) 

where ߦ௡ =
గ

଺
∑ ܿ௜ߪ௜

௡
௜ , ݊ = 1 or 2, and ߦଷ =

గ

଺
߶ is the packing fraction. This approach 

has the advantage of treating different ions with different sizes, but it also presents large 

deviations when modeling one-dimensional systems, making it still necessary for more 

improvements on the description of asymmetric electrolytes.   
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All the approaches presented here take into account the specific ion diameter. It 

is important to notice that the solvated diameter is not directly related to its atomic 

radius. For example, the diameter of an ion can depend on the solvent due to its degree 

of solvation (Bazant et al., 2009). Data of specific diameter of solvated ions can be 

found in the work of Nightingale Jr. (1959).   

Ionic Electrostatic correlations: Bazant-Storey-Kornyshev model (BSK model) 

 Electrostatic correlation effects are relevant and cannot be neglected on a wide 

variety of systems, e.g., concentrated electrolyte solutions, solutions containing 

multivalent ions (which are especially important for biological systems), and ionic 

liquids.  Storey and Bazant (2012) observed that when electrodes are placed directly in 

contact with a fluid, very high charges on the surface are observed, which are not 

predicted by the classical theories. Besides that, classical theories cannot describe ionic 

liquids and molten salts.  

 Effects of ionic electrostatic correlations can lead to overscreening, which 

consists of the first layer of ions close to the charged surface being formed in a way that 

it has an excess countercharge in relation to the surface, then the net charge difference 

would lead to the formation of another layer of ions in order to balance this difference, 

and thus successively until neutrality is obtained.  Aiming to develop a simple and 

phenomenological theory that is able to take into account electrostatic correlations, 

Bazant et al. (2011) proposed the following functional to describe the Gibbs energy of 

the system: 

ܩ = න ݎ݀ ቄ݃ + ߰ߩ −
ߝ
2

ሾ|∇߰|ଶ + ݈௖
ଶ(∇ଶ߰)ଶሿቅ + ර  ௦߰ (2.16)ݍݎ݀

where ݃ is the enthalpy density which is a function of the ions concentration, ߩ is the 

charge density in the volume ܸ, ݍ௦ is the superficial charge density on a metallic surface 

ܵ, and ߰ is the mean field electrostatic potential. The self-energy of the electric field is 

ߝ)− 2⁄ )|∇߰|ଶ. 

 The modification proposed by Bazant et al. (2011) was to include a potential 

gradient term:  
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−
ߝ
2

݈௖
ଶ(∇ଶ߰)ଶ (2.17) 

where ݈௖ is the electrostatic correlation length. Bazant and collaborators comment that 

the electrostatic correlation length for punctual charges is around the Bjerrum length, 

݈஻ = ଶ(݁ݖ) ⁄ܶ݇ߝߨ4 . For ionic liquids, their dielectric constants make the Bjerrum length 

several times longer than the ion diameter, and for these cases, it is assumed that the 

correlation length, ݈௖, is equal to the diameter of the ion.  This last suggestion is also 

recommended by the work of Alijó et al. (2015).  

 The modified Poisson equation is known as the Bazant-Storey-Kornyshev 

modification, or simply the BSK model.  

௖݈)ߝ
ଶ∇ଶ − 1)∇ଶ߰ =  (2.18) ߩ

In this approach, it is considered that the medium permissivity (̂ߝ), due to the 

electrostatic correlations, is a linear differential operator ̂ߝ = 1)ߝ − ݈௖
ଶ∇ଶ). The equation 

returns to the Poisson equation when the electrostatic correlation length is equal to zero. 

 The BSK equation is a fourth order differential equation, and for that, it 

demands four boundary conditions. The first two are the same used for the classical 

Poisson equation, for which the surface can be of specified charge, specified potential, 

or charge regulation. The extra boundary conditions arise from the consideration that 

there are no correlation effects over the charged surface, then: 

ො݊∇ (∇ଶ߰)|௦௨௥௙ = 0 (2.19) 

 This equation is able to predict overscreening and overcharging due to short 

range correlations. Bazant et al. (2010) applied this approach to charged electrodes and 

was able to reproduce data obtained by molecular dynamics simulation for multivalent 

salts. 

2.4 Ionic Liquids 

 Even though the theoretical description of aqueous dilute electrolyte solutions 

has been thoroughly developed, there are still a lot of gaps in the description of 

multivalent ions and ionic liquids and their unique behavior. Furthermore, the properties 

of the electrical double layer of ionic liquids are extremely relevant for the 
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understanding and description of systems of energy storage, such as, for example, 

batteries, supercapacitors, solar cells, and electroactuators (Ujjain et al., 2015; Bettini et 

al., 2015; Cowell et al., 2015; Appetecchi et al., 2011; Nakamoto et al., 2013; Kakibe et 

al., 2012). Ionic liquids are also used as solvents for organic systems, as well as 

extraction liquids (Kornyshev, 2007; Ferreira et al., 2016; Soares et al., 2016).  The 

wide range of applications of ionic liquids is due to their very particular properties, such 

as their high charge density, electrochemical stability, and very low volatility. 

Furthermore, ionic liquids can be seen as electrolyte solutions without solvent, which is 

very convenient when aiming to reduce the size of electrochemical devices. Another 

important characteristic is that ionic liquids can be combined in order to achieve desired 

and specific properties. In this case, a simple model that can easily predict the behavior 

of ionic liquids would be a key tool on the design of new ionic liquids and different 

applications.  

 The efforts to model ionic liquids have been mostly carried out by molecular 

simulations (Fedorov and Kornyshev, 2008; Vatamanu et al., 2010; Kirchner et al., 

2013). Most of these works have focused on understanding the behavior of the electrical 

double layer of ionic liquids close to charged surfaces. One feature observed by several 

works was that the overscreening effect observed in ionic liquids was related to the 

short-range ionic correlation interactions. They observed that the length of the tail of the 

ions might act as a solvent, which could explain some few similarities of the behavior of 

ionic liquids and diluted electrolyte solutions (Henderson et al., 2013; Gebbie et al., 

2013).  

Even though several relevant observations on the behavior of ionic liquids close 

to charged surfaces were obtained through molecular dynamics, its high computational 

cost limits its use on the description of those systems. Because of that, the mean-field 

theory with modified Poisson-Boltzmann equations is promising to adequately describe 

ionic liquids with low computational cost – so it can be employed to describe complex 

processes where ionic liquids are important. On the Chapters 4 and 5 a modified 

Poisson-Boltzmann equation is proposed to describe differential capacitance and the 

electrochemical impedance of ionic liquids. 
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2.5 Surfactant Systems 

  The aggregation of surfactants is extremely relevant to several chemical and 

biological processes. When salts are present in surfactant solutions, the formation of 

surfactant aggregates (known as micelles) is drastically changed by the specific kind of 

salt used (Lukanov and Firoozabadi, 2014). Ionic and zwitterionic surfactants are 

widely used in industry on detergents, pharmaceutical and personal care products, 

coating and lubrication, among others.  The increase of the ionic strength on surfactant 

solutions reduces the critical micelle concentration (CMC) of ionic and zwitterionic 

surfactants, and also leads to larger micelles being formed and can cause their shape 

transition – from smaller and spherical micelles to larger and elongated ones. This effect 

is associated with the reduction of the electrostatic repulsion between the surfactant 

heads. Because of that, the addition of salts into surfactant solutions is subject of several 

experimental studies, important for their commercial application. It is experimentally 

observed that the micellar properties are not only influenced by the concentration of salt 

added but also and mostly by the specific kind of counterion (Srinivasan and 

Blankschtein, 2003). 

 Multivalent counterions, such as Al3+ and Ca2+, are known for being much better 

micelle growth promoters than monovalent ions at the same ionic strength. For that, the 

development of a theory that can correctly predict the behavior of surfactant solutions 

with multivalent ions is of great interest for the selection of surfactant and salts to be 

applied to a certain process. Besides that, this theory must be able to predict properties 

of the micellization process that can be directly related to practical properties of 

surfactant solutions, such as solubility capacity and rheological behavior. This would 

reduce the time and cost of the trial and error experimentation processes.  

  In the literature, there are no models for the micellization phenomena that 

include electrostatic correlation effects, even though these effects are very important 

when describing multivalent counterion type and solutions with multivalent electrolyte 

and/or high concentrated electrolyte solutions. In this thesis, Chapter 3 presents the 

inclusion of electrostatic correlation effects on the micellization phenomena for 

solutions of both ionic and zwitterionic surfactants that contain monovalent and 

multivalent ions. 
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Chapter 3: Effect of electrostatic correlations on 
micelle formation 

 

Micellization phenomena are fundamental to countless biological and chemical 

processes. Salts can dramatically change the micellization, depending on the kind of 

electrolyte and its concentration. Traditional approaches to model and describe these 

phenomena do not take into account electrostatic correlation interactions. Those 

interactions are essential when modeling surfactant solutions containing multivalent 

and/or highly concentrated electrolytes. Therefore, the development of a theory that is 

able to correctly predict the behavior of surfactant solutions with salts is a key to 

improve the application of surfactants in industrial processes. Here, we propose a simple 

methodology that uses a mean field approach to include electrostatic correlation effects 

and we coupled it with the well-established molecular thermodynamics approach to 

describe the micellization phenomena. From the proposed model, we can obtain the 

critical micelle concentration (CMC) of surfactant solutions and information about the 

size and shape of the micelles for ionic and zwitterionic surfactants. To validate the 

model we compared our results with experimental values of CMC and counterion 

binding for different surfactants.  We obtained very good agreement with the 

experimental data with a completely predictive model.  

Keywords: micellization, electrostatic correlations, molecular thermodynamics, 

surfactants, zwitterionic surfactants. 

3.1 Introduction 

Surfactant aggregation is a very important aspect of several chemical and 

biochemical processes. When salt is present in those processes, the formation of 

surfactant aggregates (also known as micelles) can be dramatically changed by the 

specific kind of electrolyte added [1]. An increase in the ionic strength of a surfactant 

solution causes the reduction of the critical micelle concentration (CMC), and may 

cause a transition in the shape of the micelles from spheres to elongated forms [2,3]. 

This effect is associated with the decrease of the electrostatic repulsion between the 

heads of the surfactants. Furthermore, the addition of salt to induce micelle growth is 

the subject of several studies, besides being exploited on commercial applications of 
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some surfactants.  Moreover, the properties of micelles formed are strongly influenced 

by not only the counterion concentration but also by the specific kind of counterions 

present in the solution [2,4-8]. For example, Muller et al. [9] studied the impact of 

anions on different positions of the lyotropic series: one on the borderline, one 

kosmotropic, and one chaotropic. They verified that the different counterions would 

lead to different micelle shapes that are explained by how strongly the counterion 

interacts with the micelle. The anion with the strongest interaction would lead to a 

system with the more elongated micelles. 

Also, multivalent counterions, such as Al3+ and Ca2+ are known for being great 

promoters of micelle growth when compared with monovalent counterions with the 

same ionic strength, as for example Na+ [10, 11]. In this way, the development of a 

theory that is able to correctly predict the behavior of surfactant solutions with 

multivalent and highly concentrated electrolytes is very important especially in the 

selection of the surfactant to be used for a certain application. Furthermore, such theory 

should be able to predict properties of the micellization phenomena that are directly 

related with practical properties (e.g. solubilization capacity and rheology). This would 

contribute to the reduction of the time and cost involved with the experimental process 

of trial and error when deciding which is the most suitable surfactant to be applied on a 

process.  

When modeling the effect of salts on the micellization phenomena, the 

traditional approach uses a linearized form of the Poisson-Boltzmann equation to take 

into account the electrostatic repulsion of ionic surfactant heads. Some effort was done 

[1,12] in applying the full form of the Poisson-Boltzmann equation while also including 

ionic dispersion, which made it possible to observe the effects of ionic specification in 

the micellization phenomena. Even though the Poisson-Boltzmann equation is effective 

in describing different systems in different conditions, it is not adequate to describe 

solutions where the salt concentration is high or where are multivalent ions involved. 

For those systems, electrostatic correlation effects cannot be neglected. 

In the literature, as far as we know there is no model available that considers the 

effects of electrostatic correlations on the micellization phenomena [2, 13-15].  Bazant 

et al. [16] proposed the so-called BSK model, a simple way to consider electrostatic 

correlations effects via a modified Poison-Boltzmann equation.  The BSK model was 
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obtained through a gradient approximation for nonlocal electrostatics between different 

interacting ions. In this model, the permittivity is a differential operator that is a 

function of a correlation length (݈௖). With this approach it is possible to capture the 

correct behavior of electrolytes close to charged surfaces obtained by molecular 

dynamics and, at the same time, be simple enough to be used on complex systems. 

 We present here the association of the traditional model for the micellization 

phenomena with the electrostatic free energy contribution using the BSK model in order 

to have a better description of the influence of different salts on surfactant solutions. 

With this model we obtain the thermodynamically stable state of the surfactant solution 

calculating the minimum of the total Gibbs energy which provides the amount of 

micelles formed, their size and shape, and the degree of binding over the micelle of 

electrolytes. Differently from what has been presented in the literature up to now, here 

we consider that not only ionic surfactants can have free ions binding to their micelle 

surface, but that also zwitterionic surfactants can have both anions and cations binding 

to their micelle surface. This is supported by several experimental observations [11, 17-

19] which demonstrated how different kinds of electrolytes impact on the size and shape 

of zwitterionic micelles and on their critical micelle concentration.  

All the systems analyzed here are on aqueous solutions and in the following 

sections, we discuss the equations and the methodology used to calculate the Gibbs 

energy and the BSK model used to calculate the electrostatic contribution. 

3.2  Methodology 

The model for the Gibbs energy of the micellization phenomena has been 

developed through the time by different authors, being a result mainly from Nagarajan 

and Ruckenstein [20], Moreira and Firoozabadi [12, 21], and Srinivasan and 

Blankschtein [4]. Given a global specification of temperature (ܶ), pressure (ܲ), total 

number of surfactant molecules ( ௌܰ) and the number of water molecules(ܰ௪), the 

Gibbs energy (ܩ) is calculated as the sum of two main contributions: the free energy of 

formation ൫ܩ௙൯ and the free energy of mixing (ܩ௠). 

ܩ = ௙ܩ +  ௠ (3.1)ܩ
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Because we are analyzing only diluted surfactant solutions (around the critical 

micelle concentration) we neglect any interaction between micelles (supposing ideal 

mixture). The following expression for the Gibbs energy of formation ൫ܩ௙൯ is obtained 

[20]:  

௙ܩ = ܰ௪ߤ௪
௢ + ଵܰௌߤଵௌ

௢ + ෍ ௚ܰߤ௚
଴ +

ஶ

௚ୀଶ

෍ ௜ܰ
௙௥௘௘ߤ௜

଴

ஶ

௜ୀଶ

 (3.2) 

 

where ܰ௪, ଵܰௌ, ௚ܰ, and ௜ܰ
௙௥௘௘  are respectively the number of water molecules, 

number of free surfactants, number of micelles containing ݃ surfactant molecules, and 

number of free ions of the species ݅ in solution. The parameters ߤ௪
଴ , ଵௌߤ

଴ , ௚ߤ
଴ , and ߤ௜

଴ are 

the standard chemical potentials of the water, free surfactant, micelle with ݃ surfactant 

molecules, and of the ion of specie ݅.  

There are restrictions related to the mass balance of the components that must be 

respected. 

ௌܰ = ଵܰௌ + ෍ ݃ ௚ܰ

∞

௚ୀଶ

 (3.3) 

 

௜ܰ = ௜ܰ
௙௥௘௘ + ෍ ௜ߚ݃ ௚ܰ

ஶ

௚ୀଶ

 (3.4) 

 

where ௜ܰ is the number of ions of specie ݅ in solution, ߚ௜ the degree of biding of 

the counterions of the specie ݅, which means the average fraction of counterions of 

specie ݅ that are bounded to the surface of the micelle per surfactant unity.   

Now considering the mass balances just presented, we can reorganize and 

rewrite Equation 3.2:  
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௙ܩ = ܰ௪ߤ௪
଴ + ௌܰߤଵௌ

଴ + ෍ ௚ܰ݃∆ߤ௚
଴

∞

௚ୀଶ

+ ෍ ௜ܰߤ௜
଴

௜

 (3.5) 

  

 Where ݃∆ߤ௚
଴ = ௚ߤ

଴ − ଵߤ݃
଴ − ∑ ௜ߤ௜ߚ݃

଴
௜  is the free energy of micellization, and 

ௌܰ is the total number of surfactant molecules added to the solution.   

 With the considerations of ideal mixture of micelles, the free energy of mixing 

can be calculated as: 

௠ܩ = ݇ܶ ቎ܰ௪ ln ܺ௪ + ଵܰௌ ln ܺଵௌ + ෍ ௚ܰ ln ௚ܺ

∞

௚ୀଶ

+ ෍ ௜ܰ
௙௥௘௘ ln ܺ௜

௙௥௘௘

௜

቏ (3.6) 

 

where ܺ௔ is the mole fraction of  component ܽ, and ݇ is the Boltzmann constant. 

The mole fractions (ܺ௔) are calculated as follows: 

ܺ௔ = ௔ܰ

ܰ௪ + ଵܰௌ + ∑ ௚ܰ௚ + ∑ ௜ܰ
௙௥௘௘

௜

      ∀ ܽ = ,ݓ ,ݏ1 ݃, ݅ (3.7) 

And rewriting the equation for the free energy of micellization we obtain:  

ܩ = ܰ௪ߤ௪
଴ + ௌܰߤଵௌ

଴ + ෍ ௚ܰ݃∆ߤ௚
଴

∞

௚ୀଶ

+ ෍ ௜ܰߤ௜
଴

௜

+ ݇ܶ ቎ܰ௪ ln ܺ௪ + ଵܰௌ ln ܺଵௌ + ෍ ௚ܰ ln ௚ܺ

∞

௚ୀଶ

+ ෍ ௜ܰ
௙௥௘௘ ln ܺ௜

௙௥௘௘

௜

൩ 

(3.8) 

 

It is possible to reorganize the previous equation separating the terms that 

depend only on the fixed variables to the left hand side of the equation 

(ܶ, ܲ, ௦ܰ, ௜ܰ, and, ܰ௪) [21]. 
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ܩ ′ = ܩ − ܰ௪ߤ௪
଴ − ௦ܰߤଵ

଴ − ෍ ௜ܰߤ௜
଴

௜

= ෍ ௚ܰ݃∆ߤ௚
଴

∞

௚ୀଶ

+ ݇ܶ ቎ܰ௪ ln ܺ௪ + ଵܰௌ ln ܺଵௌ + ෍ ௚ܰ ln ௚ܺ

∞

௚ୀଶ

+ ෍ ௜ܰ
௙௥௘௘ ln ܺ௜

௙௥௘௘

௜

൩ 

(3.9) 

 

And dividing the expression by ݇ܶ:  

ܩ ′

݇ܶ
= ෍

௚ܰ݃∆ߤ௚
଴

݇ܶ

∞

௚ୀଶ

+ ܰ௪ ln ܺ௪ + ଵܰௌ ln ܺଵௌ + ෍ ௚ܰ ln ௚ܺ

∞

௚ୀଶ

+ ෍ ௜ܰ
௙௥௘௘ ln ܺ௜

௙௥௘௘

௜

 

(3.10) 

In Equations 3.8, 3.9 and 3.10 it is considered that there is a size distribution of 

micelles formed. However, some surfactants present a very narrow size distribution and 

for these cases we can approximate this distribution with the maximum term method. 

The applicability of this approximation for micelle formation was shown in [22]. 

Several authors used the same approximation [1, 12, 20, 21]. This method consists on 

considering that there is one representative micelle size that can describe all micelle size 

distributions. When we use this methodology the previous equation is reduced to, where 

݃ is the average number of surfactants in the micelles:  

ܩ ′

݇ܶ
=

௚ܰ݃∆ߤ௚
଴

݇ܶ
+ ܰ௪ ln ܺ௪ + ଵܰௌ ln ܺଵௌ + ௚ܰ ln ௚ܺ + ෍ ௜ܰ

௙௥௘௘ ln ܺ௜
௙௥௘௘

௜

 (3.11) 

Equation 3.11 is then minimized to obtain the most stable state of the solution 

considering that we have a micelle size distribution, and 3.11 considering the maximum 

term methodology. We have shown that both methodologies are equivalent for low 

concentration of surfactant [22]. 
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3.2.1 Free energy of micellization  

The free energy of micellization is calculated as a sum of different contributions. 

The path we considered here starts with the break of the bond between the head and the 

tail of the surfactant. Next, the tail is transferred from the aqueous medium to a liquid 

hydrocarbon corresponding to the tail. After, the tails are reorganized on the micelle 

core. This happens because one of the ends of the surfactant tail must be located at the 

surface of the micelle. Following this rearrangement we are able to reconnect the heads 

to the tails located on the interface water-micelle interface. Because this interface is 

spatially limited, some effects due to repulsion between the surfactant heads occur.  

Those effects constitute the last step on the path to describe the micellization 

phenomena. The following infographic illustrates (Fig. 1) the steps on the path between 

the initial and final state of the micelle formation. Therefore, the free energy of 

micellization can be calculated by Eq. 3.12 [12, 20, 21].  

 

Figure 1 - Path defined to describe the micellization process, from free 

surfactant in solution to surfactant in micelle structure. 

ቆ
௚ߤ∆

଴

݇ܶ
ቇ = ቆ

௚ߤ∆
଴

݇ܶ
ቇ

௧௥௔௡௦

+ ቆ
௚ߤ∆

଴

݇ܶ
ቇ

ௗ௘௙

+ ቆ
௚ߤ∆

଴

݇ܶ
ቇ

௜௡௧

+ ቆ
௚ߤ∆

଴

݇ܶ
ቇ

௦௧௘௥௜௖

+ ቆ
௚ߤ∆

଴

݇ܶ
ቇ

௜௢௡௜௖

 (3.12) 

In this work our focus is on a better description of the ionic electrostatic 

interactions of the surfactants heads and its contribution to the free energy of 

micellization (subindex ionic). The trans contribution stands for the energy spent on the 

transfer of the surfactant tail from an aqueous environment to a hydrocarbon medium. A 

detailed description of this contribution can be obtained in Nagarajan and Ruckenstein 

Break the bond that connects the head and the tail of the surfactant
and transfer the tail from the water phase to a hydrocarbon phase.

Restoration of the contact between the water phase and the phase 
composed by the tails, forming a drop of hydrocarbon phase. 

Consideration of the restriction that one of the ends of each tail 
must be on the interface water-micelle core. 

Rebound of the heads to the tails.
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[20]. The def contribution takes into account the free energy on the deformation and 

packing of the tails of the surfactants in the hydrocarbon nucleus due to the imposed 

limitation that one of the ends of the tails must be located at interface of the nucleus. 

This contribution is calculated on a similar way as by Moreira e Firoozabadi [21]. The 

int contribution takes into account the energy lost in the formation of the interface 

between the water and the hydrocarbon micelle core. It is a function of the area and the 

interfacial tension of this new interface. For this contribution we used the approach 

presented by Moreira and Firoozabadi [22]. The steric contribution considers the steric 

effects that arise due to the restrictions of space on the interface of the micelle occupied 

by the surfactants head. For that we considered the approach proposed by Nagarajan and 

Ruckenstein [20]. 

Free energy of the electrostatic interactions between the heads ൫∆ૄ܏
૙ ⁄܂ܓ ൯

܋ܑܖܗܑ
  

For ionic surfactants 

Electrostatic interactions between the heads of surfactants become relevant when 

the surfactants in the solution are either ionic or zwitterionic.  In this section we discuss 

the approach for ionic surfactants and in the next section for zwitterionic surfactants. 

The contribution of the ionic electrostatic interactions to the free energy of micellization 

was analyzed using the methodologies proposed by Lukanov and Firoozabadi [1] and 

Srinivasan and Blankschtein [4]. For ionic surfactants we consider that the counterions 

from surfactant head and from added electrolyte can bind to the charged surfaces of the 

micelles. This directly impacts on the ionic contribution to the micellization free energy 

൫∆ߤ௚
଴ ݇ܶ⁄ ൯

௜௢௡௜௖
 represents the amount of work performed to assemble the charged 

surface of the micelle and the electrical double layer on surrounding. Considering a 

reversible isothermal process, it can be calculated as follows: 

ቆ
௚ߤ∆

଴

݇ܶ
ቇ

௜௢௡௜௖

=
ܽ௖௛

݇ܶ
න ߰଴(ߪ ′)݀

ఙ

଴
ߪ ′ (3.13) 

where ߪ is the final charge density on the surface per molecule of surfactant,  ߰଴ is the 

electrostatic potential on the surface of the micelle per molecule of surfactant for a 

surface of charge (ߪ), and ܽ௖௛ is the area per molecule of surfactant calculated as:  
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ܽ௖௛ =
௖௛ܴߨ4

ଶ

݃
 (3.14) 

The radius ܴ௖௛ is defined as a function of the equivalent radius of the micelle 

൫ܴ௘௤൯ and the distance between the center of the micelle’s nucleus and the surface of 

the micelle (݀௖௛). The last one is a tabled value available for some surfactants. And 

with this information we can calculate the charge density on the micelle’s surface (ߪ). 

ܴ௖௛ = ܴ௘௤ + ݀௖௛ (3.15) 

ߪ =
݁൫ݖ஺ + ∑ ௝௝ߚ௝ݖ ൯

ܽ௖௛
 (3.16) 

Where ݖ஺ is the valence of the surfactant head, ݖ௝ is the valence of the counterions ݆, ߚ௝ 

is the degree of counterion binding on the micelle surface, and ݁ is the elementary 

charge. 

 For zwitterionic surfactants 

To model the electrostatic contribution to the free energy of micellization for an 

aqueous solution of zwitterionic surfactants and salts we adapted the model presented 

by Goldsipe and Blankschtein [23] and Moreira and Firoozabadi [12] as shown 

hereafter.  

We first consider here that the anion of the salt added to the solution can bind to 

the positive part of the dipole, the same way the cation can bind to the negative pole. As 

presented on the previous item for ionic surfactants, the charging contribution is treated 

as the reversible work to charge the surface of the micelle as presented by Equation 

3.13. However, this equation must be applied to each charged surface of the micelle 

(Fig. 2). For that, we need to know the charge structure of a micelle formed by 

zwitterionic surfactants. Figure 2 presents a scheme for the charged surfaces for a 

micelle formed by zwitterionic surfactant immersed in an electrolyte solution. 



 

Figure 2 - Scheme of charging layers for zwitterionic surfactant 

In Figure 2, the layer number 3 represents

charge on surfaces 1 and 2 can be calculated as a function of the charge on the d

and the degree of binding of anions and cations. We need to calculate 

surfaces 1 and 2, and for that, the final charge on each of those surfaces  

calculated as follows: 

And the total ቀ
∆ఓ೒

బ

௞்
ቁ

௜௢௡௜௖
 can be written as:

ቆ
ߤ∆
݇ܶ

In this equation and in 

surface of charge ݅, and it is calculated through a modified version of the Poisson

Boltzmann equation where we include effects of ionic e

surface van der Waals interactions

Aiming to have a better description of systems containing multivalent 

electrolytes and/or higher salt concentration we included the effects of ionic 

Scheme of charging layers for zwitterionic surfactant 

electrolyte solution. 

In Figure 2, the layer number 3 represents the Stern surface of the micelle. The 

charge on surfaces 1 and 2 can be calculated as a function of the charge on the d

and the degree of binding of anions and cations. We need to calculate 

surfaces 1 and 2, and for that, the final charge on each of those surfaces  

ଵߪ =
௜௡௡௘௥஺ݖ)݁ + (ାݖାߚ

ܽ௖௛
 

ଶߪ =
௢௨௧௘௥஺ݖ)݁ + ߚି (ିݖ

ܽ௖௛
 

can be written as: 

ቆ
௚ߤ

଴

݇ܶ
ቇ

௜௢௡௜௖

= ෍ න ߰଴௜(ݍ)
ఙ೔

଴
ݍ݀

ଶ

௜ୀଵ

 

In this equation and in Equation 3.13,  ߰଴௜ is the electrostatic potential in the 

, and it is calculated through a modified version of the Poisson

equation where we include effects of ionic electrostatic correlations and ion

van der Waals interactions.   

Aiming to have a better description of systems containing multivalent 

electrolytes and/or higher salt concentration we included the effects of ionic 
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Scheme of charging layers for zwitterionic surfactant immersed in an 

the Stern surface of the micelle. The 

charge on surfaces 1 and 2 can be calculated as a function of the charge on the dipoles 

and the degree of binding of anions and cations. We need to calculate ቀ
∆ఓ೒

బ

௞்
ቁ

௜௢௡௜௖
 for 

surfaces 1 and 2, and for that, the final charge on each of those surfaces  (ߪ) can be 

(3.17) 

(3.18) 

(3.19) 

is the electrostatic potential in the 

, and it is calculated through a modified version of the Poisson-

lectrostatic correlations and ion-

Aiming to have a better description of systems containing multivalent 

electrolytes and/or higher salt concentration we included the effects of ionic 
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electrostatic correlations by using the approach proposed by Bazant et al. [16].  Their 

mean field approach considers that the permittivity is a linear operator with a 

contribution for the ion-ion correlations. That consideration when coupled with the 

Poisson-Boltzmann equation leads to a fourth order differential equation.  

We considered on this analysis that the micelles are charged flat plates. This 

consideration is based on the fact that the dimensions of micelles are much larger than 

the size of any ion in solution, and, from the point of view of an ion, the micelle can be 

seen as a sphere of infinite radii (a flat plane). For this case, the unidirectional Fourth 

order Poisson equation (BSK model) in Cartesian coordinates is written as:  

݈௖
ଶ ݀ସ߰

ସݔ݀ −
݀ଶ߰
ଶݔ݀ =

ߩ
ߝ

 (3.20) 

where ݈௖ is the correlation length. Here we follow the definition for the correlation 

length proposed by Alijó et al. (2015) where ݈௖ is the radii of the hydrated ion.  

The boundary conditions of this problem are related to a specific charge (ߪ) on 

the surface that is a function of the number of surfactants on the micelle (݃) and the 

degree of binding of counterions ߚ௜ , that can be calculate by Eq. 3.16, for ionic 

surfactants, and by Eqs. and 3.17 and 3.18 for zwitterionic surfactants. Then the 

boundary condition can be written as:  

 ݀߰
ݔ݀

ฬ
௫ୀ଴

=
ߪ−
ߝ

 (3.21) 

The other boundary conditions are defined bellow, as suggested by Bazant et al. 

[16]:   

 ݀
ଷ߰

ଷݔ݀ ቤ
௫ୀ଴

= 0 (3.22) 

߰(∞) = 0 (3.23) 

 ݀߰
ݔ݀

ฬ
௫ୀ∞

= 0 (3.24) 
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A new dependent variable is proposed to reduce the order of the differential 

equation to be solved.  

(ݔ)߶ =
݀ଶ߰(ݔ)

ଶݔ݀  (3.25) 

Applying this to the previous equation and the boundary conditions we obtain:  

݈௖
ଶ ݀ଶ߶

ଶݔ݀ − ߶ =
ߩ
ߝ

 (3.26) 

 ݀߰
ݔ݀

ฬ
௫ୀ଴

=
ߪ−
ߝ

 (3.27) 

 ݀߶
ݔ݀

ฬ
௫ୀ଴

= 0 
(3.28) 

߰(∞) = 0 (3.29) 

߶(∞) = 0 (3.30) 

And the fourth order differential equation to be solved is converted into a system 

of two second order differential equations. From the solution of this system we can 

obtain the profile of the electrostatic potential and the concentration profile of the ions 

as a function of the distance from the micelle surface. To enhance the numerical 

solution we expressed the independent variable ݔ in terms of dimensionless variable ߞ:  

ߞ = 1 − expሾ−ݔߢሿ (3.31) 

The differential operators considering the new independent variable ߞ are 

expressed for a generic dependent variable ݂:  

݂݀
ݔ݀

= 1)ߢ − (ߞ
݂݀
ߞ݀

 (3.32) 

݀ଶ݂
ଶݔ݀ = ଶ(1ߢ − (ߞ ቈ(1 − (ߞ

݀ଶ݂
ଶߞ݀ −

݂݀
ݔ݀

቉ (3.33) 

This change allows the independent variable, that before was defined from zero 

to infinite, to be now defined on a bounded finite interval ߞ = ሾ0,1ሿ.  We also defined 
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the dimensionless electrostatic potential and ion concentration ݕ = ݁߰ ݇ܶ⁄  and ߯௜ =

ܿ௜ ܿ௜,଴⁄ . The charge density ߩ is ߩ = ݁ ∑ ௜ܿ௜௜ݖ , where ݁ is the elementary charge, 

 ௜ and ܿ௜ are the valence and concentration of ion ݅. The dimensionless concentration ofݖ

ion ݅ can be written as ߯௜ = exp (ݖ௜ݕ − ௜ܷ), where ௜ܷ is the nonelectrostatic 

nondimensional potential (van der Waals interaction between the ion ݅ and the micelle 

surface).  

௜ܷ = −
௜ܤ

ଷݔ      for ݔ >  ௜ (3.34)ݎ

The parameter ܤ௜ is the dispersion parameter of the ion ݅, and ݔ is the 

perpendicular distance between the center of the ion ݅ and the surface of the micelle. 

Details can be found in Lima et al. [24] and Tavares et al. [25]. 

 The Debye length (ߢ) is defined as follows:  

ߢ = ඨ
2݁ଶܫ

଴݇ܶߝߝ
 (3.35) 

where ܫ is the ionic strength, defined as ܫ =
ଵ

ଶ
∑ ௜ݖ

ଶ
௜ ܿ௜,଴. 

Applying all the variable changes proposed we obtain the system of differential 

equations to be solved here to calculate the electrostatic contribution to the free energy 

of micellization.  

݈௖
ଶ(1 − (ߞ ቈ(1 − (ߞ

݀ଶ߶
ଶߞ݀ −

݀߶
ߞ݀

቉ − ߶ =
݁ଶ

ଶߢܶ݇ߝ ෍ ௜ܿ௜,଴߯௜ݖ

௜

 (3.36) 

߶ = (1 − (ߞ ቈ(1 − (ߞ
݀ଶݕ
ଶߞ݀ −

ݕ݀
ߞ݀

቉ (3.37) 

 

And the boundary conditions: 

ݕ݀ 
ߞ݀

ฬ
఍ୀ଴

=
݁ߪ−
ܶ݇ߝߢ

 (3.38) 



35 
 

 ݀߶
ߞ݀

ฬ
఍ୀ଴

= 0 
(3.39) 

(1)ݕ = 0 (3.40) 

߶(1) = 0 (3.41) 

 

3.3 Numerical strategy 

To solve the system consisted by Eqs. 3.36 and 3.37 we applied the finite 

differences method with the central difference approximation to describe the 

derivatives.  After obtaining the profile around the micelle of the electrostatic potential 

(߰) considering the electrostatic correlation effect, we are able to calculate the 

contribution to the free energy of micellization due to the electrostatic interactions 

between the heads of the surfactants. For that, we need to solve Equation 3.13 (for ionic 

surfactants) or Equation 3.19 (for zwitterionic surfactants) -which accounts for the 

contribution due to the electrostatic interactions between surfactant heads -, and these 

equations contain an integral of the electrostatic potential at the micelle surface as a 

function of the surface potential. The Composite Simpson’s Rule is used to obtain the 

numerical result of these integrals. 

 To calculate the most stable state of the surfactant + electrolyte aqueous 

solution, we minimize the expression for the free energy (Equation 3.11) with respect to 

some optimization parameters. Two sets of optimization variables were defined: one for 

solutions of surfactants and salts where it is not expected to obtain vesicular micelles, 

and the other for solutions of surfactants and salts where it is expected to obtain 

vesicular micelles. For the first ones we defined the optimization variables to be the 

number of micelles formed ൫ ௚ܰ൯, the number of surfactants on each micelle formed or 

aggregation number (݃) and the degree of biding (ߚ௜) of ions to the surface of the 

micelle. For vesicular micelles, the set of optimization variables included the same ones 

defined above and also the number of surfactants on the intern layer of the vesicle (݃௜) 

and the Radius of the outer part of the vesicle (ܴ௢).   
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In this work we did not consider the size distribution of the micelles because we 

are interested in analyzing conditions close to the critical micelle concentration, at 

which narrow size distribution of the micelles are formed [22]. The optimization was 

performed with the deterministic algorithm fmincon from Matlab which is a constrained 

nonlinear optimizer based on the trust region reflective algorithm. The optimization 

parameters ௚ܰ and ݃ were constrained to be only positive numbers, as we cannot have a 

negative number of micelles being formed or micelles with a negative number of 

surfactants. Also, by definition, the number of surfactants in the micelle should be 

bigger or equal to 2. The degree of binding of the ions (ߚ௜) is constrained between 0 and 

1. Regarding the optimization parameters ݃௜ and ݃ for vesicular micelles, there is a 

constraing due to the fact that the number of surfactants in the inner part of the micelle 

(݃௜)  cannot be greater than the total number of surfactants in the micelle (݃). The 

proper definition of the optimization variables is a very important step when we are 

minimizing the Gibbs energy (if we over specify the number of parameters to be 

minimized we might obtain a sharp Gibbs energy function and erroneous interpretations 

of the results). 

Each most stable state is obtained for a specified condition at fixed temperature, 

pressure, salt and surfactant concentrations. From this state we are able to obtain the 

number of micelles formed, their size and shape. To validate our model we compare the 

predictive calculations with critical micelle concentration (CMC) data. Experimentally, 

the critical micelle concentration (CMC) is defined as the concentration where there is 

an abrupt change on one property of the surfactant solution. The approach used here is 

the same proposed by Santos et al. [22] to calculate the critical micelle concentration 

from the minimization of the free energy of the surfactant solution. To obtain the CMC, 

we perform different simulations of a solution containing an increasing amount of 

surfactant. Then, for each solution with a different amount of surfactant added we 

performed the minimization of the Gibbs free energy. This procedure makes it possible 

to relate the total number of surfactant molecules added (NS) with the number of free 

surfactant molecules in the solution (N1). The CMC is then defined as the concentration 

of surfactant added (NS) where an inflexion of the curve is observed. To obtain this 

point automatically, a regularization function is used which relates N1 as a function of 

NS, and it is presented in equation 4 of the Appendix A. 
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3.4 Results and discussions 

First, to observe the impact of electrostatic correlations on the electrostatic 

contribution to the free energy of micellization ൫∆ߤ௚
଴ ݇ܶ⁄ ൯

௜௢௡௜௖
 we fixed the 

optimization variables, temperature, surfactant and salt concentration and observed how 

the variation of the correlation length (݈௖) impacts on this term. A higher correlation 

length represents a system where electrostatic correlation interactions are stronger. For 

the surfactant sodium dodecyl sulfate (SDS) we performed this analysis for a solution 

containing sodium chloride (NaCl) and one containing calcium chloride (CaCl2) (Fig. 

3). We can observe that increasing the electrostatic correlations length on the system, 

the electrostatic contribution to the micellization increases, increasing the electrostatic 

repulsion between the surfactant heads. It is important to notice that here we opted to 

consider the correlation length is equal to the mean hydrated radii of the ionic species as 

suggested elsewhere [26]. Therefore, larger ions will contribute to increase the 

൫∆ߤ௚
଴ ݇ܶ⁄ ൯

௜௢௡௜௖
 contribution.  

To validate the proposed methodology we calculated the CMC for different 

surfactant aqueous solutions with different salts, both monovalent and multivalent, for a 

wide range of salt concentration. The ionic surfactants analyzed were sodium dodecyl 

sulfate (SDS) and dodecylpyridinium chloride (C12PyCl), and the zwitterionic 

surfactants are dodecyl n-betaine (C12-betaine), and decyl lecithin (C10-lecithin). As the 

focus of this work is to obtain a better description of micellar solutions at elevated salt 

concentrations and/or in the presence of multivalent ions, we concentrated our analysis 

for two different salts: sodium chloride (NaCl) and calcium chloride (CaCl2).  For a 

specific analysis of the ionic specificity effects please refer to the work of Moreira and 

Firoozabadi [11]. The proposed methodology converges for values reported by the 

Moreira and Firoozabadi work when the electrostatic correlation is neglected (i.e., 

݈௖ = 0). 
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Figure 3 - Electrostatic contribution to the free energy of micellization as a function of 

the dimensionless correlation length for the systems SDS + NaCl (a), and (b) SDS + 

CaCl2. The variables, the temperature, and the salt concentration and surfactant 

concentration were fixed. ൫ࢀ = ૛૞℃, ૙ࢉ = ૙. ૞ۻ, ࢌ࢛࢙࢘ࢉ =  ൯ࡿࡰࡿ࡯ࡹ࡯

Figure 4 presents the critical micelle concentration (CMC) of SDS as a function 

of the salt concentration for NaCl (a) and CaCl2 (b) compared to experimental data. 

Sodium dodecyl sulfate is an anionic surfactant and, when in aqueous solution, the 
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sodium ion unbinds from its head. In the event of the formation of a micelle, this 

unbound cation might reconnect again to the surfactant head present on the surface of 

the micelle. If there are different kinds of cations on the solution they also can bind to 

the surface of the micelle. As the final charge on the micelle surface is a function of the 

amount of those counterions bound to it. Therefore, the stability of the micelle formed is 

a function of which and how much counterions are bound on the micelle surface. In the 

first example, Na+ is the counterion from the surfactant head and from the added 

electrolyte. In the second case, the counterion from the added electrolyte is calcium, a 

divalent ion. Their different charges impact on the amount of counterion binding to the 

micelle surface, and also on the critical micelle concentration. Furthermore, the increase 

of the aggregation number (݃) as the salt concentration increases is observed for both 

cases as shown in Figure 5. 
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Figure 4 - Calculated (continuous line) and experimental critical micelle concentration 

for solutions containing (a) SDS and NaCl, and (b) SDS and CaCl2 both at ࢀ = ૛૞℃. 

Points are experimental data from [27-30]. 
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Figure 5 - Calculated aggregation number (ࢍ) of micelles for the systems SDS and 

NaCl (a), and (b) SDS and CaCl2 both at ࢀ = ૛૞℃. 

These calculations predict the substitution of the counterion from the surfactant 

head with the bivalent ion from the added salt, as expected from experimental 
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observations. Lima et al. [3] observed experimentally that multivalent counterion 

caused a larger aggregation number (݃) as the counterion concentration increased. The 

same was shown by Koroleva and Victorov [2] for monovalent ions and three different 

ionic surfactants. For both cases studied we verified the reduction of the critical micelle 

concentration with the increase of salt concentration, and that is a feature observed 

already experimentally. Besides that, it is also known that multivalent ions provide the 

formation of larger micelles [23], what is observed by our model. 

The model also provides the degree of counterion biding on the surface of the 

micelle. For a solution containing the surfactant SDS and NaCl, both the counterion 

from the surfactant head and the counterion from the added salt are the same (sodium). 

Thereby, we expect that the degree of biding of the counterion from both sources have a 

similar value. For the solution with SDS and NaCl 4mM, the degree of binding for the 

counterion from the surfactant head was equal to 0.27 and for the counterion from the 

added salt was equal to 0.24, then the behavior was as expected. Now for the SDS 

solution with 12.5mM of CaCl2 the degree of biding of ion sodium (from the surfactant 

head) was equal to 0.002 while for the ion calcium was 0.14. For the solution of SDS 

and 2.5mM of CaCl2, the ion sodium presented a degree of binding equal to 0.004 and 

the ion calcium 0.22.  

For a cationic surfactant, when NaCl and CaCl2 are added, the counterion is for 

both cases the chloride ion. Therefore we expect that both salts would have similar 

effects on the micellization of cationic surfactants. From Figure 6 we can see that 

crititical micelle concentration (CMC) of the cationic surfactant dodecylpyridinium 

chloride (C12PyCl) is slightly impacted on a higher way on the presence of multivalent 

electrolytes. This is explained by the fact that for the same salt concentration, the 

concentration of chloride ions is larger for the multivalent electrolyte than for the 

monovalent one. But the reduction on the CMC is on the same order of magnitude for 

both salts, which was not the case for the SDS example, where the NaCl concentration 

has to be much higher than the concentration of CaCl2 in order to obtain the same 

reduction on the critical micelle concentration.  
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Figure 6  - Critical micelle concentration as a function of salt concentration for solutions 

containing (a) dodecylpyridinium chloride and NaCl, and (b) dodecylpyridinium 

chloride and CaCl2. 
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To analyze aqueous solutions containing zwitterionic surfactants and 

electrolytes, we modeled  surfactant solutions of C12-lecithin and Cn-n-betaines. It is 

important to notice that Cn-lecithins are known for forming vesicular micelles, so it is 

important to consider on the model the geometrical restrictions of this kind of micelle. 

The full geometrical relations for vesicular micelles can be found elsewhere [31-32]. 

Another important consideration when modeling Cn-lecithins is that these surfactants 

present a double tail, thus demanding small alterations on the contributions to the 

micellization free energy [33]. In the other hand, Cn-n-betaines tend to form smaller and 

spherical micelles as can be observed in Table 2.    

Table 2 shows how the addition of NaCl and the increase in the surfactant 

concentration influences on the size of the formed micelles. As it is observed from our 

calculations and from experimental data [34], the aggregation number (݃) shows a very 

small change when electrolytes and surfactants are added to the solution on the same 

proportion. 

Table 2 - Effects of the increase of the surfactant and salt concentration on the 

aggregation number (ࢍ) for ࢀ = ૛૞℃ for the surfactant the surfactant dodecyl n-

betaine.  

C12-n-betaine 
[M] 

NaCl 
[M] 

݃ 
(model) 

݃ 
(experiment) [34] 

0.197 0 63 80 
0.194 0.194 70 85 
0.467 0.467 69 82 

 

 

As observed by different experimental works [17, 34] and also predicted by our 

model (Figure 7), ions from the added salt do bind to the surface of the micelle formed 

by zwitterionic surfactants. Because they are more polarizable, anions tend to have a 

degree of biding (ߚ) higher than the cations.  As we can see, comparing Figures 7(a) 

and 7(b), the degree of binding of the anion for the multivalent salt is higher than the 

one for the monovalent ion and again can be related to the larger concentration of 

chloride ions in the CaCl2 salt, when compared to the same salt concentration of NaCl.  
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Furthermore, Priebe et. al. [35] observed that regardless the order of the charges 

on the dipole of the zwitterionic surfactant, micelles are preferentially associated to 

anions than to cations, leading to negative zeta potentials. Our model showed to be able 

to predict this trend, as the surfactants n-betaine and lecithin have opposite order of their 

dipole charges and both of them presented a larger degree of binding for the anions, as it 

can be seeing in Table 3 where we present the results for the C12-lecithin surfactant and 

NaCl.   

Table 3 - Degree of counterion binding to micelles of C12-lecithin surfactant at different 

NaCl concentrations at T = 25ºC. 

C12-lecithin 
[M] 

NaCl 
[M] 

 ஼௟ߚ ே௔ߚ
 

0.016 0.007 0.13 0.31 
0.008 0.1 0.095 0.28 
0.008 0.4 0.084 0.27 
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Figure 7 - Degree of ion binding (ࢼ) on the surface for the surfactant C12-n-betaine. (a) 

with NaCl, where the continuous line is the model prediction of ࢼ for the chloride ion, 

the dashed line is the prediction of  ࢼ for the sodium ion, the squares are experimental 

data for chloride, and the triangles experimental data for sodium. (b) with CaCl2, where 

the continuous line is the model prediction of ࢼ for the chloride ion, the dashed line is 

the prediction of  ࢼ for the calcium ion, the squares are experimental data for chloride, 

and the triangles experimental data for calcium. All the experimental data was obtained 

from the work of [34]. 
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Finally, in Figure 8 we observe that the model is also able to predict that the 

degree of ion binding in the surface of a zwitterionic surfactant reduces as the length of 

the surfactant tail increases. This behavior was experimentally observed by Okano et al. 

[36]. The authors suggested that a larger alkyl group near the head of the surfactant 

reduces the Coulombic repulsions between the surfactant heads. 

 

Figure 8 - Degree of ionic binding (ࢼ) on a system containing NaCl (0.4M) and Cn-n-

betaine at the critical micelle concentration, as a function of the length of the surfactant 

tail. The continuous line represents ࢼ for the chloride ion and the dashed line for sodium 

ion.  

   

 

3.5 Final Remarks 

Here we analyzed the effects of electrostatic correlation on the micellization 

phenomena. We improved the classical molecular thermodynamics approach by 

considering a modified version of the Poisson-Boltzmann equation (BSK model) to 

better calculate the electrostatic contributions. Electrostatic correlations had shown to 

increase the electrostatic contribution to the micellization. This effect is particularly 

relevant for solutions containing concentrated and/or multivalent electrolytes. The 

proposed model showed to be able to predict experimental data of critical micelle 
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concentration (CMC) for a large range of salt concentrations.  Furthermore, we were 

able to predict the tendency of ion binding on the surface of zwitterionic micelles 

supported by experimental data, which reassures the model assumptions and contributes 

to its validation.  

All the analyses presented here confirm the importance of ionic electrostatic 

correlations for micelle formation and that the micellization phenomena can be 

calculated by the completely predictive model proposed here. This approach can be 

extended for microemulsions and may be useful for the design of surfactants.  
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Chapter 4: Effects of electrostatic correlations 

and asymmetric ion sizes on the differential 

capacitance 

4.1. Introduction  

Differential capacitance (ܥ஽) is essential information of electrochemical systems 

and it is used as an aid to understand the characteristics and behavior of the electrical 

double layer of a particular system. It shows how the structure of the electrical double 

layer (EDL) behaves as a function of the applied potential over an electrode. This 

structure acts contributing or preventing the transport of electrons to the surface of the 

electrode and, consequently, impacts on the kinetics of electrochemical reactions in the 

system (e.g. electrosynthesis, corrosion and charging/discharging of batteries) [1].  

Because of that, the performance of these systems depends mostly on the electrical 

double layer close to the electrodes.  

The dependence of the differential capacitance with the voltage, ܥௗ(ܷ), 

quantifies the response of a capacitor of varying capacitance to the variation of the 

applied voltage. The shape of the differential capacitance curve varies depending on the 

kind of electrolyte used. For example, the differential capacitance of diluted electrolyte 

aqueous solutions usually is a camel shaped ܥ஽(ܷ)  curve. For highly concentrated 

electrolyte solutions, bell shaped differential capacitance curves are observed. 

Following these facts, it would be expected that ionic liquids (liquid electrolytes with no 

solvent) would present a differential capacitance curve tending to a bell shape – just as a 

very concentrated electrolyte solution. Nonetheless, what is observed is that ionic 

liquids actually present a camel shape on their differential capacitance curve. The 

reason for this behavior is still controversial. Most authors [2] support that the humps on 

the differential capacitance curve arise from the effect of neutral tails of one of the ions, 

which would behave as a solvent on an electrolyte solution, while other authors [3] 

affirm that the camel shape is due to the loss of the effect of van der Waals attractions 

near a charged electrode.  
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Another observation obtained from ܥ஽ data is that the width of the electrical 

double layer increases as function of the applied potential for high values of the surface 

charge. When trying to model this behavior, the classical Poisson-Boltzmann equation 

is not able to predict it, nor the camel shape of differential capacitance curves, unless 

steric effects are considered [4]. 

 The objective of this work is to obtain an approach for modeling the differential 

capacitance of ionic liquids where the asymmetry of the ions (shape and size) is 

considered together with ionic electrostatic correlations. The model is validated by 

comparing our results with differential capacitance data from experiments, molecular 

simulations, and density functional theory (DFT) simulations.   

 

4.2 Differential capacitance of ionic liquids 

As mentioned before, the ܥௗ(ܷ) curve for ionic liquids has been reported to 

have a camel shape, thus containing two asymmetrical peaks. From experiments with 

ionic liquids, it was observed that the difference between both peaks of the differential 

capacitance is associated with size difference of both ions. For example, a higher value 

of ܥ஽ close to the positive electrode can be attributed to the smaller size of anions that 

are able to pack more closely to the electrode surface, creating a stronger structure of 

the electrical double layer. One aspect observed by Li et al. [5] for two ionic liquids, 

with the same anion but with different alkyl chain length of the cation, is that the 

electrical double layer is more structured for the longer cation chain. This can be 

explained by the fact that a longer alkyl chain would increase solvophobic interactions, 

and for consequence the organization near the electrode. Costa et al. [6] also observed 

that, by increasing the alkyl chain of cations, the width of the electrical double layer 

also increases, suggesting that there is a multilayer of interpenetrating layers of cations 

and anions on the interface of the electrode. These multilayering and packing observed 

in systems containing ionic liquids indicate that ionic electrostatic correlation effects do 

play an important role and cannot be neglected.   
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4.2.1 Modeling the Differential Capacitance 

 The majority of the attempts to describe the behavior of ionic liquids rely on 

molecular simulations and density functional theory (DFT) approaches [7-10]. Although 

they have enabled us to understand several peculiarities of ionic liquids, their elevated 

computational cost is a drawback and causes difficulties to use them as simple 

methodologies to describe and design systems and processes containing ionic liquids. 

Furthermore, they are not recommended when trying to describe the impact of several 

parameters and conditions, nor for large and complex systems. In order to fulfill this gap 

on the description of ionic liquids, the mean field theory approach with a adequate 

modified Poisson-Boltzmann equation can be an alternative of low computational cost. 

In this case, data obtained from molecular and DFT simulations can be used to validate 

and refine mean field theory models.  

 In the following items we describe some of the most important observations 

obtained by different methodologies to model the differential capacitance of ionic 

liquids. 

Modeling of ionic liquids by molecular dynamics 

As ionic liquids are very large molecules, an usual approach is to model them as 

charged hard spheres. Fedorov and Kornishev [11] used this approach in molecular 

dynamics to simulate an ionic liquid placed between two charged plates. The cation and 

anion were modeled as hard spheres of different sizes. In this work they observed that 

short-range ionic correlations were responsible for the overscreening effect, which 

cannot be predicted by the fundamental mean field theory. They also observed that size 

asymmetry of ions resulted on the characteristic asymmetric camel shape of the 

differential capacitance curve. Later, Kornishev et al. [12] expanded their previous 

analysis and considered that anions and cations would differ in sizes and charge 

densities. The cations, composed by two hard spheres, one uncharged and one charged 

sphere – would have the alkyl chain usually present in the cation of ionic liquids 

represented by the uncharged sphere. This study brought the attention to the effect of a 

neutral tail to the behavior of ionic liquids, which was later studied thoroughly by 

Henderson et al. (2013). These authors observed that the neutral tail of ionic liquids 

behave the same way as the solvent on an electrolyte solution, and this would explain 
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why ionic liquids have differential capacitance curves similar in shape to the aqueous 

electrolyte solutions.  

Breitsprecher et al. [8] modeled an ionic liquid between two charged electrodes 

using the coarse grained technique. They considered the ions as soft spheres, which 

could be of different sizes and valences. Their work made possible to reproduce 

qualitatively the behavior of the differential capacitance, as a function of both size and 

valence of the ions. Furthermore, the authors were able to predict a transition between 

the shapes of the ܥ஽(ܷ) curve, from camel to bell shape by just changing the density of 

the ionic liquid. This might indicate that the free volume of an ionic liquid is a relevant 

parameter when considering the position of each peak of the differential capacitance 

curve. These peaks would be located closer to each other for ionic liquids with a very 

low free volume, with the  extreme case being the one where both peaks are so close 

together that they merge to form a bell shaped differential capacitance curve – the same 

shape observed on the differential capacitance curve of highly concentrated aqueous 

electrolyte solutions. On their following work, Breitsprecher et al. [9] considered that 

the cation had a triangular geometry. This made possible to observe that the distribution 

of charges over a complexly shaped cation impacts on the cation orientation close to the 

charged surface. This structure close to the electrode showed to strongly influence the 

behavior of the differential capacitance. Merlet et al. [14] also observed through 

molecular dynamics simulations of ionic liquids that the orientation of the ions close to 

the charged surface impacts on the electrical double layer structure, and then on the 

differential capacitance. 

Besides the characteristic of the ionic liquids being analyzed, the electrode might 

also play an important role on the behavior of the differential capacitance. Vatamanu et 

al. [15] used atomist simulations to predict the differential capacitance of the ionic 

liquid [Cnmim][TFSI] between flat and rough electrode surfaces. The same way as 

experimentally observed [1,16] Vatamanu et al. [15] observed that the structure of the 

electrode surface (if it is smooth or rough) also affects the values of differential 

capacitance, but not the shape of the ܥ஽(ܷ) curve. Here, we opted to consider that the 

ionic liquid is placed between flat blocking electrodes in order to observe just the 

influence the differential capacitance in ionic liquids.  

Modeling of ionic liquids by density functional theory 
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Density functional theory (DFT) had also being applied to describe the 

differential capacitance of ionic liquids. The same way as molecular simulations, the 

DFT approach was able to predict the transition between the camel and bell shape of the 

differential capacitance curve. Furthermore, Liang et al. [17] and Ma et al. [7] predicted 

the formation of alternating layers of anions and cations close to the electrode surfaces, 

which is not predicted by the Classical Poisson-Boltzmann approach, but that it can be 

predicted by the inclusion of the electrostatic correlations on the modified Poisson-

Boltzmann equation.   

 

Modeling of ionic liquids by Poisson-Boltzmann equation 

When using the Gouy-Chapman simplification of the Poisson-Boltzmann 

equation, the curve of differential capacitance as a function of the electrode potential 

diverges for high voltages, which leads to a U-shaped curve. Furthermore, it neglects 

free volume effect by considering ions as point-like charges, which makes it unsuitable 

to be used to describe any electrolyte solution that is not diluted. In order to overcome 

the restrictions of the Gouy-Chapman approach, Kornyshev [18] took into account the 

effects of the ion sizes. Instead of the U-shaped differential capacitance curve, 

Kornyshev [18] observed a differential capacitance curve with its maximum located 

close to the potential of zero charge, i.e., a bell-shaped curve. This approach was 

derived from a mean-field lattice-gas description of a concentrated electrolyte and the 

observed bell-shape of the differential capacitance is the same as the one predicted by 

the Bikerman-Freise model for an aqueous electrolyte solution when the solvent 

concentration is zero [11]. If we consider that an ionic liquid is incompressible with no 

free volume, this would be the expected behavior of its differential capacitance. 

However, the camel shaped curve is experimentally observed, and cannot be described 

by their approaches.  

 

4.3 Theoretical formulation 

 Here, we coupled the modified Poisson-Boltzmann equation that takes into 

account electrostatic correlations together with a lattice model to account for free-
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volume and ionic size asymmetry on the ions of ionic liquids. To consider the steric 

effects we modified the approach developed by Han et al. [19].  

In this approach [19], the Helmholtz free energy of the system can be defined as: 

ܨ = ݁߶( ାܰ − ିܰ) − ݇ܶ ln Ω (4.1) 

Where ାܰ and ିܰ denote the number of cations and anions respectively, ߶  is 

the mean-field electrostatic potential, ݁ is the elementary charge, ܶ is the temperature, ݇ 

the Boltzmann constant and Ω is the number of possible different configurations of the 

ions in the lattice. Following Han et al. (2014), we computed Ω = ΩାΩି. We also 

considered that the anions are hard spheres of radius ିݎ  and the cations are chains of 

tangent ߙ hard spheres with radius ݎା each as illustrated on Figure 9. 

 

          

          

          

          

          

          

          

          

          

          

Figure 9 - Schematic 2D representation of the lattice model for ionic liquids considering 

that cations are larger than anions. 

Regarding the consideration of spaces on the lattice, molecular simulations have 

predicted large free volume (cavities) inside ionic liquids justifying that some sites of 

the lattice may not be occupied by any ion [20].  

We can calculate  Ωା following Han et al. (2014) as: 
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Ωା =
ܰ!

ߙ ାܰ! (ܰ − ߙ ାܰ)!
 (4.2) 

It is convenient to define a parameter that describes the degree of asymmetry 

between the cation and the anion. Then we can define the parameter ξ as the ratio 

between the anion and cation volumes.  

ߦ =
ܸି

ାܸ
=

ଷݎି

ାݎ ߙ
ଷ (4.3) 

For a large number of ionic liquids it is expected that ߦ varies from 0 to 1. Thus, 

the number of vacancies in the lattices left for the anions is ሾ(ܰ − ߙ ାܰ) ⁄ߦ ሿ, where the 

brackets denote the integer part of this number. Then Ωି is given by: 

Ωି =
ሾ(ܰ − ߙ ାܰ) ⁄ߦ ሿ!

ିܰ! (ሾ(ܰ − ߙ ାܰ) ⁄ߦ ሿ − ିܰ)!
 (4.4) 

And the total number of configurations is: 

Ω =
ܰ!

ߙ ାܰ! (ܰ − ߙ ାܰ)!
 

ሾ(ܰ − ߙ ାܰ) ⁄ߦ ሿ!

ିܰ! (ሾ(ܰ − ߙ ାܰ) ⁄ߦ ሿ − ିܰ)!
 (4.5) 

Using the Stirling approximation, is (for ܰ ≫ 1) 

ln ܰ! ≈ ܰ ln ܰ − ܰ (4.6) 

the partition function Ω can be rewritten: 

ln Ω = ܰ ln ܰ + ሾ(ܰ − ߙ ାܰ) ⁄ߦ ሿ lnሾ(ܰ − ߙ ାܰ) ⁄ߦ ሿ − ߙ ାܰ ln ߙ ାܰ

− (ܰ − ߙ ାܰ) ln(ܰ − ߙ ାܰ) − ିܰ ln ିܰ

+ ሼሾ(ܰ − ߙ ାܰ) ⁄ߦ ሿ − ିܰሽ lnሼሾ(ܰ − ߙ ାܰ) ⁄ߦ ሿ − ିܰሽ 
(4.7) 

From Eqs. (4.1) and (4.7), we can express the chemical potential of each ion: 

ାߤ =
ܨ߲

߲ ାܰ
 (4.8) 
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ାߤ = ݁߶ − ݇ܶ ൜−
ߙ
ߦ

ln ൤
ܰ − ߙ ାܰ

ߦ
൨ − ߙ ln ߙ ାܰ + ߙ ln(ܰ − ߙ ାܰ)

+
ߙ
ߦ

ln ൬
ܰ − ߙ ାܰ

ߦ
− ିܰ൰ൠ 

(4.9) 

ିߤ =
ܨ߲

߲ ିܰ
 (4.10) 

ିߤ = − ݁߶ − ݇ܶ ൜ln ൬൤
ܰ − ߙ ାܰ

ߦ
൨ − ିܰ൰ − ln ିܰൠ (4.11) 

 

For the ions in the bulk, far from the charged electrode, we have ߶ = 0 and 

ାܰ = ିܰ = ଴ܰ and their chemical potentials are: 

ା଴ߤ = −݇ܶ ൜−
ߙ
ߦ

ln ൤
ܰ − ߙ ଴ܰ

ߦ
൨ − ߙ ln ߙ ଴ܰ + ߙ ln(ܰ − ߙ ଴ܰ)

+
ߙ
ߦ

ln ൬
ܰ − ߙ ଴ܰ

ߦ
− ଴ܰ൰ൠ 

(4.12) 

଴ିߤ = −݇ܶ ൜ln ൬൤
ܰ − ߙ ଴ܰ

ߦ
൨ − ଴ܰ൰ − ln ଴ܰൠ (4.13) 

 

Considering the local chemical equilibrium states, the chemical potential of each 

component is the same anywhere. With this we can write the following equalities: 

ାߤ − ା଴ߤ = 0 = ݁߶

− ݇ܶ ൜−
ߙ
ߦ

ln ൤
ܰ − ߙ ାܰ

ܰ − ߙ ଴ܰ
൨ − ߙ ln ାܰ

଴ܰ
+ ߙ ln ൬

ܰ − ߙ ାܰ

ܰ − ߙ ଴ܰ
൰

+
ߙ
ߦ

ln ൬
ܰ − ߙ ାܰ − ߦ ିܰ

ܰ − ߙ ଴ܰ − ߦ ଴ܰ
൰ൠ 

(4.14) 

ିߤ − ଴ିߤ = 0 = − ݁߶ − ݇ܶ ൜ln ൬
ܰ − ߙ ାܰ − ߦ ିܰ

ܰ − ߙ ଴ܰ − ߦ ଴ܰ
൰ − ln ିܰ

଴ܰ
ൠ 

(4.15) 
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Using the auxiliary parameters of porosity (ߛ) and compressibility (ߟ): 

ߛ =
2 ଴ܰ

ܰ
 (4.16) 

ߟ =
2
ߛ

− ߙ −  (4.17) ߦ

and rewriting equations 4.16 and 4.17 in terms of concentrations, we obtain: 

exp ൬−
݁߶
݇ܶ

൰ −
1
η

൤
2
γ

− ߙ
cା

c଴
− ξ

cି

c଴
൨ +

cି

c଴
= 0 (4.18) 

exp ൬
݁߶
݇ܶ

൰ − ൬
1
η

൤
2
γ

− ߙ
cା

c଴
− ξ

cି

c଴
൨൰

ଵ
ஞ

+
cା

c଴
+ ൬

1
η

൤
2
γ

− ߙ
cା

c଴
൨൰

ଵିஞ
ஞ

= 0 (4.19) 

 When ߙ = 1, equations 4.18 and 4.19 recover the model proposed by Han et al. 

(2014). 

4.3.1 Differential capacitance model 

From its definition, the differential capacitance (ܥ஽) is a parameter that relates 

the dependence of the charge (ߪ) of an electrode surface as a function of the applied 

potential (߶) for a given condition (considering constant ߤ, ܶ, and ܲ). Then we have: 

஽ܥ = ൬
ߪ߲
߰ߪ

൰
ఓ,்,௉

 (4.20) 

To predict the differential capacitance of ionic liquids using the mean field 

approach, we consider that the electrostatic potential (߶) can be described using the 

fourth order Poisson equation (BKS model) [21] – where the electrostatic correlations 

are taken into account, and the charge density expression (ߩ) includes the effects of the 

size asymmetry of anion and cation. Both expressions are presented below, where ݈௖ is 

the electrostatic correlation length. 

௖݈)ߝ
ଶ ∇ସ߰ − ∇ଶ߰) =  (4.21) ߩ

ߩ = ݁(ܿା − ܿି) (4.22) 
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For a better mathematical treatment of these expressions we defined dimensionless 

variables, as follows: 

ሚ݈
௖ =

݈௖

஽ߣ
 (4.23) 

ݕ =
݁߶
݇ܶ

 (4.24) 

෤ݔ =
ݔ

஽ߣ
 (4.25) 

෤ߩ =
ߩ

݁ܿ଴
 (4.26) 

Where the square of the Debye length (ߣ஽
ଶ ) is: 

஽ߣ
ଶ =

ܶ݇ߝ
2݁ଶܿ଴

 (4.27) 

Then on the dimensionless form we have: 

ሚ݈
௖
ଶ ∇ସݕ − ∇ଶݕ =  ෤ (4.28)ߩ

To study the differential capacitance of ionic liquids in blocking electrode, we 

consider flat electrode and a one-dimensional problem: 

ሚ݈
௖
ଶ  

݀ସݕ
෤ସݔ݀ −

݀ଶݕ
෤ଶݔ݀ =  (4.29) (෤ݔ)෤ߩ

To solve it using the solver for boundary value problem bvp4c on Matlab, we 

need to transform the previous fourth order differential equation into four first order 

differential equations. For that, we define the following group of auxiliary variables. 

ݑ =
݀ଶݕ
 ෤ଶ (4.30)ݔ݀

߶ଵ =
ݕ݀
෤ݔ݀

 
(4.31) 

ଵݑ =
ݑ݀
෤ݔ݀

 
(4.32) 
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Then the resulting set of equations is: 

 
ଵݑ݀

෤ݔ݀
=

1
ሚ݈
௖
ଶ

(෤ݔ)෤ߩ  +  (4.33) ݑ

ଵݕ݀

෤ݔ݀
=  (4.34) ݑ

ݑ݀
෤ݔ݀

=  ଵݑ
(4.35) 

ݕ݀
෤ݔ݀

=  ଵݕ
(4.36) 

 

The boundary conditions are defined at the surface of the electrode (ݔ෤ = 0) and 

on the bulk of the electrolyte solution ݔ෤ → ∞. The boundary conditions are defined as: 

௫෤ୀ଴|ݕ  =  ଴ (4.37)ݕ

௫෤ୀஶ|ݕ  = 0 (4.38) 

 ݀
ଷݕ

෤ଷቤݔ݀
௫෤ୀ଴

= 0 (4.39) 

 ݀
ଶݕ

෤ଶቤݔ݀
௫෤ୀஶ

= 0 (4.40) 

 

When using the auxiliary variables from Eqs. 4.30 to 4.32, the resulting set of 

boundary conditions used to solve the set of first order differential equations 4.33 to 

4.36 becames: 

௫෤ୀ଴|ݕ  =  ଴ (4.41)ݕ

௫෤ୀஶ|ݕ  = 0 (4.42) 

ଵ|௫෤ୀ଴ݑ  = 0 (4.43) 
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∞௫෤ୀ|ݑ  = 0 (4.44) 

 After obtaining the profile of the electrostatic potential we can calculate the 

differential capacitance (ܥ஽) for a certain applied potential to the surface (ݕ଴). From 

Equation 4.20, we can express the capacitance relative to the Debye-Huckel capacitance 

஽ுܥ) = ߝ ⁄஽ߣ ) as follows (Storey and Bazant, 2012): 

ܥ
஽ுܥ

= −
1

(0)ݕ
ݕ݀
෤ݔ݀

 (4.45) 

And considering the capacitance of the Stern layer ܥ௦௧௘௥௡, we will arrive on the final 

expression for the differential capacitance(ܥ஽): 

1
஽ܥ

=
1
ܥ

+
1

௦௧௘௥௡ܥ
 (4.46) 

In this work we considered the ܥௌ௧௘௥௡ to be a constant. The capacitance of the 

electrode (ܥா௟) is not taken into account because, for metallic electrodes or glassy 

carbon electrodes, ܥா௟ is usually very high and would not have a significant contribution 

for the measured differential capacitance (Lockett et al., 2010). If the electrodes are 

composed by semiconductors, ܥா௟ must be considered.  

 

4.3.2 Numerical strategy 

 The resulting set of partial differential equations was solved using the solver 

bvp4c of Matlab. This solver uses the collocation method for the boundary value 

problems. One of its requirements is a good initial guess.  Taking into account that this 

problem must be solved several times, we used the result of former electrostatic 

potential as a better initial guess for a higher potential. To describe one curve of the 

differential capacitance we usually have its value calculated for different electrostatic 

potentials on a range ሾ−ܸ, ܸሿ. Then on this approach we start with a positive and very 

small value of electrostatic potential applied (߶଴) and the numerical result of the system 

of differential equations would be the initial guess for the next simulation considering a 
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small increase (߶଴ +  on the surface potential. The same procedure is repeated to (ߜ

cover the full range ሾ−ܸ, ܸሿ. 

 As the model presented here has three parameters that define the structure of 

double layer in ionic liquids (compressibility ߛ, ionic size ration ߦ, and correlation 

length ݈௖) these parameters were analyzed and results obtained here were compared to 

experimental, molecular simulation, and DFT data. For each set of data we defined the 

parameters to be fitted and for the parameter fitting we performed the optimization by 

using the lsqnonlin optimizer from Matlab, which is suitable for nonlinear data-fitting 

problems. This tool searches for the parameters that lead to the minimum of the sum of 

the difference between the differential capacitance obtained by our model and the one 

from experiments (or molecular/DFT simulation), i.e. the objective function is ܨ௢௕௝ =

∑ ൫ ܥ஽|௠௢ௗ௘௟ − ஽|௘௫௣௘௥௜௠௘௡௧௔௟൯ܥ 
ଶ

௜  . 

 

4.4 Results and discussion  

 To better understand the impact of ionic electrostatic correlations on the 

differential capacitance of ionic liquids, we first analyzed how the correlation length 

affects the ܥ஽(ܷ) curve. For that, we fixed all other parameters of this model and 

considered a hypothetical ionic liquid that has a cation larger than the anion. In this 

work we follow the definition of the correlation length proposed by Alijó et al. [23] 

where the correlation length is defined as a function of the radius of the electrolyte ions. 

Because of that, the size of the electrolytes and the correlation length are directly 

related. From Figure 10 we can observe that while increasing the correlation length, the 

dimensionless differential capacitance reduces significantly. This can be related to the 

modification on the permittivity of the electrical double layer due to electrostatic 

correlations effect. This is particularly important when describing differential 

capacitance with mean-field approaches because they tend to overestimate the value of 

 ஽ , and attempts to fit them to experimental data might lead to a super estimation ofܥ

steric effects on the system, resulting on the prediction of larger ions than they really are 

[22].   
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Figure 10 – Differential capacitance (ࡰ࡯) of ionic liquids obtained from the proposed 

model as a function of the dimensionless applied potential (࢟૙). The continuous line is 

for the correlation length (ࢉ࢒) equal to 5 Å, the dashed line represents ࢉ࢒ = ૚૙ Å, and 

the dotted line ࢉ࢒ = ૚૞ Å. We fixed ࢀ = ૛૞℃, ࢽ = ૙. ૚ , and ࣈ = ૙. ૞. We also fixed 

࢔࢘ࢋ࢚࢙࡯ = ૚૛૞, ࢿ = ૞ and ࢀ = ૛૞℃. 

 

 We also analyzed the impact caused by the ionic liquid compressibility (ߛ) on 

the differential capacitance calculated by the proposed model. The way the 

compressibility is defined here reflects the magnitude of the amount of free volume 

present in the ionic liquid. A small compressibility parameter ߛ means that there is a 

small amount of ions occupying a certain volume of ionic liquid, which implies that 

there is a large amount of voids in this ionic liquid. From Figure 11, we can observe that 

as we increase the value of  ߛ, the peaks of the differential capacitance curve tend to get 

closer.  In the limit of this behavior, larger ߛ, the model converges to a bell-shaped 

capacitance curve as observed using DFT and molecular simulations by, respectively, 

Jiang et al. [17] and Fedorov & Kornyshev [11].  
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Figure 11 - Differential capacitance (ࡰ࡯) of ionic liquids obtained from the proposed 

model as a function of the dimensionless applied potential (࢟૙). The continuous line is 

for the compressibility parameter (ࢽ) equal to 0.001, the dashed line represents ࢽ =

૙. ૙૚, and the dotted line ࢽ = ૙. ૚. We fixed ࢀ = ૛૞℃, ࢉ࢒ = ૚૙ Å , and ࣈ = ૙. ૞. We 

also fixed ࢔࢘ࢋ࢚࢙࡯ = ૚૛૞, ࢿ = ૞ and ࢀ = ૛૞℃. 

 We analyzed the impact of the size asymmetry of the ions in the differential 

capacitance curve. For that, we considered three cases: the cation is ten times larger than 

the anion (ߦ = 0.1), the cation is two times larger than the anion (ߦ = 0.5) and the 

cation and the anion have the same size(ߦ = 1). As we can observe from Figure 12, as 

we change the ratio between the anion and the cation size (ߦ), the difference of the 

peaks of the capacitance curve starts to increase, and the largest asymmetry of those 

peaks is observed for the biggest difference between the size of the anions. This is 

explained by the fact that the smaller ion (in these cases the anion) is able to pack more 

close to the charged electrode, increasing the differential capacitance for positive values 

of potential applied to the electrode.  
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Figure 12 - Differential capacitance (ࡰ࡯) of ionic liquids obtained from the proposed 

model as a function of the dimensionless applied potential (࢟૙). The continuous line is 

for the size ratio between the anion and the cation ࣈ equal to 0.1, the dashed line 

represents ࣈ = ૙. ૞, and the dotted line ࣈ = ૚. We fixed ࢀ = ૛૞℃, ࢉ࢒ = ૚૙ Å , and 

ࢽ = ૙. ૚. 

 

4.4.1 Correlate differential capacitance data (parameter estimation) 

 In order to test the proposed model for describing differential capacitance of 

different ionic liquids, we compared it to different sets of data, from experiments, 

molecular simulations and from density functional theory approaches.  As this model 

considers some parameters that are not straight forward to be obtained because they are 

related to the structural characteristics of the ionic liquids (compressibility, size ratio of 

the ions, and correlation length), we performed a parameter fitting for each set of data. 

The validation of the model is related with physical meaning of the parameters obtained 

for each system.    

 The first set of data is from Kornyshev et al. (2008). In order to analyze the 

effects of ion size asymmetries, Kornyshev et al. performed a Monte Carlo simulation 
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of asymmetric ionic liquids, considering that the cation is represented by a different 

number of beads. We first compare results from the proposed model to the results 

presented by Kornyshev et al. [11] for an ionic liquid where the cation is represented by 

two beads. In Figure 13 we can observe that our model (continous line) is able to 

describe the same qualitative behavior obtained by the Kornyshev model (dashed line). 

The very small value for the compressibility parameter (ߛ) is associated with high free 

volume expected for mixtures of dimmers and monomers. The same is observed for the 

second case (Figure 14) where a cation is described by three beads. Again we obtain a 

good description of the differential capacitance when compared to Kornyshev et al. 

[11]. In this analysis we opted for also adjusting the correlation length (݈௖). For both 

sets of data we obtained  ݈௖ = 21.484  Å and ݈௖ = 25.554  Å. These values are very 

close to the radius of the beads used in the molecular simulations performed by 

Kornyshev et al. [11] ൫25 Å൯, which helps to reinforce the methodology adopted by 

Alijó et al. [23] where they define the correlation length as the radius of the ions in 

solution, and suggests that the parameters obtained are physical and reasonable.  
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Figure 13 – Comparison of the proposed model to the results obtained by Kornyshev et 

al. [11] (dashed line) with two-bead cation and one-bead anion model for an ionic liquid 

of ࢿ = ૞ at ૚૙૙℃. The parameters are ࢉ࢒ = ૛૚. ૝ૡ૝  Å, ࢽ = ૙. ૙૙૜૝,  ࣈ = ૙. ૚૜ and 

we fixed ࢔࢘ࢋ࢚࢙࡯ = ૚૛૞. 
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Figure 14 - Comparison of the proposed model to the results obtained by Kornyshev et 

al. [11] (dashed line) with three-bead cation and one-bead anion model for an ionic 

liquid of ࢿ = ૞  at ૚૙૙℃. The parameters obtained for this system are  ࢉ࢒ = ૛૞. ૞૞૝  Å 

ࢽ , = ૙. ૙૙૜૝,   ࣈ = ૙. ૛ૠ૛, and fixed ࢔࢘ࢋ࢚࢙࡯ = ૚૛૞. 

 We also compared the differential capacitance of ionic liquids from our model to 

the results obtained by Jiang et al. [17] who used a density functional theory approach. 

In their work they analyzed the impact of different ionic densities on the shape of the 

differential capacitance curve. In Figure 15 we present the differential capacitance 

curves (dashed lines) for two different reduced packing fractions, according to the 

methodology presented by Jiang et al. [17],  one equal to 0.5 that represents a very 

dense ionic liquid, and one equal to 0.01, which is a less denser system. Then in our 

simulation we aimed to adjust the parameter ߛ that describes the compressibility of the 

ionic liquid in order to verify how it varies for different conditions of packing of the 

ionic liquid. 
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Figure 15 - Comparison of the proposed model (continuous lines) to the results obtained 

by Jiang et al. [17] using DFT calculation (dashed lines) for an ionic liquid with reduced 

ionic density equal to 0.5 (gray dashed line) and equal to 0.01 (black dashed line). The 

parameters are: for gray continuous line:  ࢉ࢒ = ૞. ૙  Å , ࢽ = ૙. ࣈ   ,ૢ = ૚, and ࢔࢘ࢋ࢚࢙࡯ =

૚૛૞, and for black continuous line: ࢉ࢒ = ૞. ૙  Å , ࢽ = ૙. ૙૙૛,   ࣈ = ૙. ૢ. The 

temperature is fixed at ࢀ = ૛૞℃, and the dielectric constant of the ionic liquid is 

ࢿ = ૚૛. ૞. 

 As we can observe, our model is able to predict fairly well the differential 

capacitance obtained by Jiang et al. [17], and the compressibility (ߛ) modeled in our 

work reduces as the density of the ionic liquid is reduced. This reassures the importance 

of considering the effects of free volume of ionic liquids, and verifies that the 

compressibility (ߛ) parameter has a physical meaning and can be used to obtain 

information about the packing fraction of ionic liquids.  

 Finally, we compared the ܥ஽ calculated from the proposed model with 

experimental data obtained by Lockett et al. [1] for the ionic liquid hmimCl at two 

different temperatures 100℃ and 120℃. As we don’t have information about the size 

of the hmim+ cation, or of the compressibility of this ionic liquid, we adjusted the 

correlation length (݈௖), the compressibility (ߛ), and the ratio of anion and cation sizes 
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 ஽ at 100℃, and applied the obtainedܥ We performed this adjustment for the .(ߦ)

parameters to describe the data at 120℃. 

The model was able to describe well the peaks of differential capacitance with 

the parameters presented in Figure 16 and Figure 17. However, it was not possible to 

provide good values of the differential capacitance curve close to the zero electrostatic 

potential. Kornyshev et al. [11] with molecular simulations tried to describe the ܥ஽ data 

for hmimCl at 100ºC. Similar to our model, they were not able to describe the valley of 

the differential capacitance curve. But when we compare our model to Kornyshev’s 

molecular simulation we have a very good description of the valley observed by them, 

the same way as our simulations are in accordance with the ones performed by Jiang et 

al. [17] . That might be an indicative that some effects that are important at lower 

magnitudes of applied potentials are not being considered by our model, and was also 

not considered on Kornyshev’s Monte Carlo simulations, nor Jiang’s density functional 

theory simulations. These effects might be related to long range screening interactions 

at low applied voltages which are not included in our model.  
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Figure 16 - Comparison of the proposed model (continuous line) to the experimental 

data obtained by Lockett et al. [1] (dashed line) for hmimCl at ૚૙૙℃. The parameters 

are ࢉ࢒ = ૜૟. ૝૛ૢ  Å , ࢽ = ૙. ૙૙૞,   ࣈ = ૙. ૚, and ࢔࢘ࢋ࢚࢙࡯ = ૚૛૞. The dielectric constant 

of the ionic liquid is considered ࢿ = ૞. 
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Figure 17 - Comparison of the proposed model (continuous line) to the experimental 

results obtained by Lockett et al. [1] (dashed line) for hmimCl at ૚૛૙℃. The 

parameters are ࢉ࢒ = ૜૟. ૝   Å,  ࢽ = ૙. ૙૙૞,   ࣈ = ૙. ૚, and ࢔࢘ࢋ࢚࢙࡯ = ૚૛૞. The dielectric 

constant of the ionic liquid is considered ࢿ = ૞. 

 4.5 Final Remarks 

Here, we provide a model to calculate the differential capacitance that takes into 

account both the electrostatic correlations and the asymmetry in size and shape of ions. 

Electrostatic correlations play an important role in the differential capacitance, being 

responsible for the reduction of the magnitude of ܥ஽. Furthermore, the present approach 

is able to describe very well the differential capacitance of ionic liquids obtained by 

both molecular simulations and density functional theories. When compared directly to 

experimental data, the model provides good information of the peaks of the differential 

capacitance curve, which are directly related to the ion sizes of the ionic liquid. For low 

applied potentials our model does not predict well the differential capacitance which can 

be associated to long range screening interactions between the ions that are not included 

in mean field models. 
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Chapter 5: Analytical solution for the 

electrochemical impedance considering 

electrostatic correlation effects 

 Electrochemical impedance is a key property on the description and analysis of 

the phenomena involved on systems under an applied alternated voltage. With the 

advent of ionic liquids – which nowadays have been widely studied for several 

applications including taylor-made electrolyte for electrochemical devices – the 

electrochemical impedance spectroscopy can be important aid on the better 

understanding of the behavior of ionic liquids close to charged surfaces. In this present 

work, we aimed to analyze the effects of electrostatic correlations on a system 

composed of blocking electrodes and an ionic liquid as electrolyte under an AC voltage. 

Here, we obtained an analytical expression for the electrochemical impedance which 

showed that electrostatic correlations can expressively change the behavior of the 

electrochemical impedance, mainly caused by the overscrenning of the electrolytes 

close to a charged surface.  

Keywords: electrochemical impedance, ionic liquids, electrostatic correlations.  

 

5.1 Introduction 

 Impedance, similarly as the resistance, represents the ability of a circuit to resist 

the passage of current through itself. It is a very useful measurement as it reflects 

different phenomena occurring in electrochemical devices (e.g. diffusion, faradic 

reactions, adsorption, and the formation of electrical double layers, among others) [1-5]. 

Impedance spectroscopy has been widely used to describe a variety of systems 

containing electrolytes. For example, impedance is used to obtain information about the 

corrosion process of metallic structures and formation of oxide films [6-9], mass 

transport and charge transfer on the surface of electrodes [10], and supported ionic 

liquid membranes [11,12]. 
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The electrochemical impedance can also be a tool to understand the behavior 

and properties of room temperature ionic liquids (RTIL). Nowadays there is an 

increasing interest on the use of ionic liquids. This can be attributed to their special 

ensemble of properties which makes them suitable for different applications: batteries, 

supercapacitors, chromatography, solar cells, and others [13]. Modeling the impedance 

of ionic liquids can be a helpful way to understand the phenomena involved in the 

double layer formed close to charged surfaces and to better understand the behavior 

observed experimentally.  

In the literature we find works where the impedance is modeled on a 

phenomenological basis, however none of them have a deep description of the 

electrostatic behavior of the system. For example, Ferrari et al. [14] presented an 

analysis of the influence of the radial and normal contributions of local current density 

to local electrochemical impedance. For that they performed an experimental analysis of 

a system with tri-electrode probe and compared their results with mathematical models, 

both for blocking electrodes and electrodes with Faradic reactions using cylindrical 

coordinates to take into account the shape of the disk electrodes. To describe the 

electrostatic potential on that system they used the Laplace equation, not considering 

any non-electrostatic effects neither electrostatic correlation. 

Previous works from Huang et al. [15-17] have mathematically analyzed the 

global and local impedance for blocking electrodes, and for electrodes with faradaic 

reactions. Even though they didn’t consider any electrostatic correlation or non-

electrostatic effects on the description of the electrostatic potential, they were able to 

observe a constant-phase-element behavior on disk electrodes. The same way as ref. 

[14], they considered only the Laplace equation to describe the behavior of the 

electrostatic potential. More recently Michel & Montella [18] developed a very detailed 

computational approach to model the admittance and impedance of disk blocking 

electrodes. For that, they considered a non-uniform current through the electrodes and 

used an infinite series solution method. This made possible to them to observe the effect 

of ohmic and interfacial contributions to impedance, however once again considering 

only Laplace’s equation to describe the behavior of the electrical potential.  

 For modeling ionic liquids it is necessary to describe the system as molten salts 

at low temperature, which present special features. As they are basically electrolytes 
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with no solvent, the interactions between the ions are much stronger than the ones 

observed in dilute solutions. Therefore, traditional approaches that are used to model 

dilute electrolyte solutions are not adequate to describe ionic liquids. One of the main 

effects that must be taken into account when modeling ionic liquids is the ionic 

electrostatic correlations which have been shown by Bazant et al. [19] on the so called 

BSK model, to play a key role on the behavior of ionic liquids close to charged surfaces. 

The BSK model was obtained through a gradient approximation for nonlocal 

electrostatics between different interacting ions. In this model the permittivity is a 

differential operator that is a function of a correlation length. With this approach it was 

possible to capture aspects of the behavior of electrolytes described by molecular 

dynamics and, at the same time, be simple enough to be used on the description of 

complex systems, as for example, electrokinect flows [22]. Molecular dynamics 

simulations [21] had also been used to verify the effects of electrostatic correlations in 

dense ionic solutions, showing that the correlation length tends to increase with the 

increase of the ionic strength, with its limit being for ionic liquids.  

 The BSK model does well for large voltage when compared to molecular dynamics 

simulation [19,22] and also helps to describe electrokinetic phenomena [20,23]. 

However it does not describe the very long range (many times larger than the Debye 

length) for electrostatic screening with charge oscillations in ionic liquids and 

concentrated electrolytes, although it predicts a slightly increase on the screening length 

with the same scaling as predicted by Smith et al. [24]. 

 Recently, Jiang et al. [25] applied the BSK model to describe the behavior of 

room temperature ionic liquids inside conical pores. This model made possible to 

predict the occurrence of rectification for different surface charges densities of the 

pores, a behavior that was only experimentally observed before. This motivates and 

supports the application of the BSK model to describe complex systems, especially the 

transport of ions of ionic liquids in non-equilibrium conditions. Also Lee et al. [26] 

performed a dynamical analysis of the transport of ions considering a mobility matrix 

and obtained the same expression for the modified Poisson-Boltzmann equation as the 

one in the BSK model. Furthermore, electrostatic correlations had shown to be directly 

related to the osmotic pressure of ionic liquids close to charged surface [27]. Yochelis 

[28,29] have also shown that electrostatic correlations are a key on understanding and 
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describing nomonotonic and monotonic decays on the diffuse layer of ionic liquids 

under confinement.  

 It is important to notice, that the BSK model, up to now, has been applied mostly 

to systems under direct current, the only exception is the work of Alijó et al. [30] which 

showed that electrostatic correlations play an important role in the transient behavior of 

charging and discharging processes. Then developing a model for electrochemical 

impedance considering electrostatic correlations also contributes to a better treatment of 

AC systems.  

The consideration of electrostatic correlations is also important on the 

description of the behavior of highly concentrate electrolyte solutions, being applied to 

aqueous electrolyte solutions in biological ion channels, describing very well 

experimental data of single channel current [31], ion exchanging mechanisms [32], 

activity of single ions in strong electrolyte solutions [33], and as well to describe 

biological calcium channels such as heart muscles [34].  

 The goal of this work is to obtain an analytical expression for the 

electrochemical impedance of blocking electrodes considering the effects of ionic 

electrostatic correlations using the mean field approach by the BSK model. Here, we 

consider a symmetric electrolyte under an AC voltage in order to obtain an analytical 

expression. This analytical expression allows us to observe features of the equivalent 

circuit of the electrode for monovalent electrolyte solutions and monovalent ionic 

liquids.  

 

5.2 Mathematical Approach 

 

Impedance is a measurement of the ability of a circuit to resist the passage of 

current through itself, as a function of the frequency of the voltage applied to it. 

Analogously to the Ohm’s Law for the resistance we can obtain an expression for the 

impedance (ܼ) as a function of the voltage (߶) and the current (ܫ) at a time [35] ݐ. 

ܼ =
߶
ܫ

 (5.1) 



 

In this work we analyzed the effects of electrostatic correlations on the 

electrochemical impedance of blocking 

electrodes is important on the behavior of the electrochemical impedance [36], we 

considered that the modeled electrode has a smooth surface, so we could observe solely 

the influence of electrostatic correlat

ܼ we need an expression for the electrostatic potential 

capacitive current (ܬ) acting over the circuit

symmetric, binary electrolyte solution 

electrostatic correlation using the Fourth Order Poisson Equation. Figure 1

scheme of the modeled system.

Figure 18 - Blocking electrodes configuration, separated by a distance of 

The electrodes are subject to an applied AC voltage and we consider a linear 

response in a neutral solution, which means that the sum of the concentrations of cations 

and anions are approximately constant at any position and time 

2ܿ଴ =  ሿ. This approximation is valid for low concentrated solutions and/orݐ݊ܽݐݏ݊݋ܿ

low applied potential. In order to obtain an analytical solution we considered that both 

ions have the same valency 

  .(ܦ

To model this system we start describing the conservation law through the 

Nernst-Planck equations for the anion and the cation, as follows: 

In this work we analyzed the effects of electrostatic correlations on the 

electrochemical impedance of blocking electrodes (Figure 18). As the roughness of the 

electrodes is important on the behavior of the electrochemical impedance [36], we 

considered that the modeled electrode has a smooth surface, so we could observe solely 

the influence of electrostatic correlations. Then to obtain the analytical expression of 

we need an expression for the electrostatic potential (߶) and for the 

acting over the circuit. In order to obtain them, we modeled a 

symmetric, binary electrolyte solution or ionic liquid, considering the effect of 

electrostatic correlation using the Fourth Order Poisson Equation. Figure 1

scheme of the modeled system. 

 

Blocking electrodes configuration, separated by a distance of 

The electrodes are subject to an applied AC voltage and we consider a linear 

response in a neutral solution, which means that the sum of the concentrations of cations 

roximately constant at any position and time ሾܿା(ݔ

. This approximation is valid for low concentrated solutions and/or 

low applied potential. In order to obtain an analytical solution we considered that both 

ame valency ൫หݖ±ห = ൯ and the same constant ionic diffusivityݖ

To model this system we start describing the conservation law through the 

Planck equations for the anion and the cation, as follows:  

82 

In this work we analyzed the effects of electrostatic correlations on the 

. As the roughness of the 

electrodes is important on the behavior of the electrochemical impedance [36], we 

considered that the modeled electrode has a smooth surface, so we could observe solely 

ions. Then to obtain the analytical expression of 

and for the transient 

obtain them, we modeled a 

or ionic liquid, considering the effect of 

electrostatic correlation using the Fourth Order Poisson Equation. Figure 18 presents the 

Blocking electrodes configuration, separated by a distance of ૛ࡸ. 

The electrodes are subject to an applied AC voltage and we consider a linear 

response in a neutral solution, which means that the sum of the concentrations of cations 

,ݔ) (ݐ + ,ݔ)ିܿ (ݐ ≈

. This approximation is valid for low concentrated solutions and/or 

low applied potential. In order to obtain an analytical solution we considered that both 

ionic diffusivity (ܦ± =

To model this system we start describing the conservation law through the 
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߲ܿ±

ݐ߲
= ܦ ቆ

߲ଶܿ±

ଶݔ߲ ±
߲

ݔ߲
±ܿ݁ݖ

݇ܶ
߲߶
ݔ߲

ቇ, (5.2) 

where ݁ is the elementary charge, ݇ is the Boltzmann constant, ܦ is the diffusivity, 

considered equal for both ions, and  ܶ is the temperature. 

 We subtract one equation from the other and consider the expression of the 

charge density ߩ =
௭௘

ఌ
(ܿା − ܿି) (for symmetric electrolytes) and the neutral solution 

assumption ܿା(ݔ, (ݐ + ,ݔ)ିܿ (ݐ ≈ 2ܿ଴ so that we can obtain the following expression: 

ߝ
ߩ߲
ݐ߲

= ܦ ቆߝ
߲ଶߩ
ଶݔ߲ +

ଶ2ܿ଴(݁ݖ)

݇ܶ
߲ଶ߶
ଶݔ߲ ቇ. (5.3) 

 

Identifying the square of the Debye length (ߣ஽
ଶ ). 

஽ߣ
ଶ =

ߝܶ݇
ଶ2ܿ଴(݁ݖ)

 (5.4) 

Now it is necessary to define the expression that describes the electrostatic 

potential (߶). For that, we use the fourth order Poisson equation which takes into 

account the effect of electrostatic correlations by considering that the permittivity can be 

described as linear differential operator, as a function of the correlation length (݈௖) 

(Bazant et al., 2010).  

݈௖
ଶ ߲ସ߶

ସݔ߲ −
߲ଶ߶
ଶݔ߲ =  (5.5) ߩ

The blocking electrodes are subject to an AC voltage, and for that, we want to 

express the dependent variables ߩ and ߶ on the frequency domain: 

,ݔ)ߩ (ݐ = Reߩො(ݔ)݁௜ఠ௧, (5.6) 

,ݔ)߶ (ݐ = Re߶෠(ݔ)݁௜ఠ௧. (5.7) 

It is convenient to work with dimensionless variables, so we define: 
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෤ߩ =
ߩ

଴ܿ݁ݖ2
, (5.8) 

෤ݔ =
ݔ

஽ߣ
, (5.9) 

ሚ݈
௖ =

݈௖

஽ߣ
, (5.10) 

߶෨ =
߶݁ݖ
݇஻ܶ

, 

 
(5.11) 

෥߱ = ߱߬, 

 (5.12) 

where ߬ = ஽ߣ
ଶ ⁄ܦ . 

Rewriting equations 3 and 5 on dimensionless form and on the frequency 

domain we obtain the set of equations that must be solved: 

ො෨ߩ ∙ ݅ ∙ ෥߱ =
߲ଶߩො෨

෤ଶݔ߲ +
߲ଶ߶෠෨

෤ଶݔ߲ , 

 
(5.13) 

ሚ݈
௖
ଶ ߲ସ߶෠෨

෤ସݔ߲ −
߲ଶ߶෠෨

෤ଶݔ߲ = ො.෩ߩ  

 
(5.14) 

This problem is subject to a couple of symmetry restrictions: 

ො෨(0)ߩ = 0,                        ߶෠෨(0) = 0. (5.15) 

Furthermore, the potential over each surface ൫߶෨଴൯ is known, which implies that:
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߶෠෨௦ = ߶෨଴. (5.16) 

Also, as we are modeling blocking electrodes we considered that there is no 

Faradaic current (ܬி) passing through the surface of each electrode. The Faradaic 

current can be expressed as:  

,ܮ±)ிܬ (ݐ = ାܨ)݁ݖ ± ܨି ), (5.17) 

where the ionic fluxes (ܨ±) are defined as follows: 

±ܨ = ±ܿ∇൫ܦ− ± ܿ଴∇߶෨൯, (5.18) 

and these statements lead us to the following relation at surfaces (ܵ = ܵ and ܮ =  :(ܮ−

ො෨ߩ߲ 

෤ݔ߲
ቤ

ௌ

+  ߲߶෠෨

෤ݔ߲
อ

ௌ

= 0. (5.19) 

To complete the set of boundaries conditions to solve the problem we assume 

that there is no electrostatic correlation effects taking place on the electrode surfaces, 

and for that we have: 

 ߲
ଷ߶෠෨

෤ଷݔ߲ อ
ௌ

= 0. (5.20) 

We solved analytically equations 13 and 14 and the result obtained was 

expressed in terms of hyperbolic functions instead of the exponential form, and from the 

symmetry conditions we can rewrite the equations in terms of hyperbolic sine.   

(෤ݔ)ො෨ߩ =
1

4ሚ݈
௖
ଶ

ሾܣଵ (ܽଷ
ଶ − 2ܽଷ) sinh(ܽଵ ݔ෤) + ଶ (ܽସܣ

ଶ − 2ܽସ) sinh(ܽଶ ݔ෤)ሿ (5.21) 

߶෠෨(ݔ෤) = ଵܣ sinh(ܽଵ ݔ෤) + ଶܣ sinh(ܽଶ ݔ෤) +  ෤ (5.22)ݔ ଷܣ

where the parameters ܽଵ, ܽଶ, ܽଷ, and ܽସ are functions of the dimensionless electrostatic 

correlation length ൫ሚ݈
௖൯ and the frequency ( ෥߱).  
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ܽଵ =
ඥ2ܽଷ

2ሚ݈
௖
 

 (5.23) 

ܽଶ =
ඥ2ܽସ

2ሚ݈
௖
 

 (5.24) 

ܽଷ = ݅ ሚ݈௖
ଶ ෥߱ + 1 − ඥ(5.25) ߛ 

ܽସ = ݅ ሚ݈௖
ଶ ෥߱ + 1 + ඥ(5.26) ߛ 

ߛ = − ෥߱ଶ ሚ݈௖
ସ − 2 ݅ ෥߱ ሚ݈௖

ଶ − 4 ሚ݈௖
ଶ + 1 (5.27) 

 The constants ܣଵ, ܣଶ, and ܣଷ were obtained by applying the boundary and 

symmetry conditions, and they are presented in the appendix. 

 Even though there is no charge transfer on the surface of the blocking electrodes 

there is still a transient capacitive current which can be obtained from the Maxwell 

displacement current per area (ܬ): 

ܬ = −
ܦ߲
ݐ߲

= ߝ
߲
ݐ߲

߲߶
ݔ߲

. (5.28) 

 This current expressed in the frequency domain ൫ܬመ൯ allows us to obtain the 

expression for the electrochemical impedance over the surface of the blocking electrode 

ݔ) =   .based on the definition of equation 1 (ܮ

ܼ =
߶෠(ܮ)

መܬ−
 (5.29) 

That, in the dimensionless form, can be written as: 

෨ܼ =
ܼܦߝ
஽ߣܮ

ଶ =
߶෨෠൫ܮ෨൯

݅ ෥߱ܮ෨
߲߶෨෠൫ܮ෨൯

෤ݔ߲

. (5.30) 

 Applying equation 22 to equation 28 and 29 we can obtain the analytical 

expression for the electrochemical impedance taking into account the electrostatic 

correlations. 
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෨ܼ =
1

݅ ෥߱ + 1
+ ߙ

tanh൫ܽଵܮ෨൯

݅ ෥߱ܮ෨
+ ߚ

tanh൫ܽଶܮ෨൯

݅ ෥߱ܮ෨
    (5.31) 

where the coefficients ߙ and ߚ are: 

ߙ = ሚ݈
௖

√2
2

݅ ෥߱ ሚ݈
௖
ଶ + 1 + ߛ√

ඥ݅ ෥߱ ሚ݈
௖
ଶ + 1 − ݅) ߛ√ ߛ√ ෥߱ + 1)

, (5.32) 

ߚ = ሚ݈
௖

√2
2

−݅ ෥߱ ሚ݈
௖
ଶ − 1 + ߛ√

ඥ݅ ෥߱ ሚ݈
௖
ଶ + 1 + ݅) ߛ√ ߛ√ ෥߱ + 1)

. (5.33) 

 

5.2.1 Validation of the analytical solution 

 If we take the limit of the dimensionless correlation length ൫ሚ݈
௖
 ൯ going to zero we 

can derive the impedance expression for the traditional approach, where the electrostatic 

potential is described by the classical Poisson-Boltzmann equation.  

෨ܼ =
1

݅ ෥߱ + 1
−

݅ ∙ tanh ቆ√2݅ ෥߱ + 4
2 ෨ቇܮ 

(݅ ෥߱ + 1)ଷ ଶ⁄   ෥߱ܮ෨
    

(5.34) 

 As expected, the proposed expression shows a consistent limit when ሚ݈௖ → 0. 

The analytical expression was also validated by the reduction of the AC problem 

to a system were a DC voltage is applied. For that, we take the limit of the frequency 

going to zero ( ෥߱ → 0). Now we are able to define the capacitance on the surface of the 

electrodes, and this result was compared to the one presented by Storey & Bazant 

(2012). 

ܥ
஽ுܥ

=
 ට8 ൫−4 ሚ݈௖

ଶ + 1൯

ሚ݈
௖ ൣܽଷ

ଷ/ଶ  tanh൫ܽଶ ܮ෨൯ − ݀ଷ/ଶ  tanh൫ܽଵ ܮ෨൯൧
 (5.35) 

Where the parameters are: 
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ܽଵ =
√2
2

 
ඥܽଷ

ሚ݈
௖

, (5.36) 

ܽଶ =
√2
2

 
√ܽସ

ሚ݈
௖

, (5.37) 

ܽଷ = 1 − ට−4 ሚ݈௖
ଶ + 1, (5.38) 

ܽସ = 1 + ට−4 ሚ݈௖
ଶ + 1. (5.39) 

 Then equation 36 was compared with Equations 44 and 47 from the article of 

Storey & Bazant (2012), obtaining the same numerical values. Therefore, the proposed 

expression shows correct limits when ሚ݈௖ → 0 and  ෥߱ → 0. 

 

5.3 Results and discussion 

 The behavior of the electrochemical impedance as a function of the electrostatic 

correlation effects is shown by the Nyquist plot of the dimensionless impedance for 

different values of the dimensionless electrostatic correlation length ൫ሚ݈
௖൯. The Nyquist 

plot relates the real part of the impedance ൫ ෨ܼோ൯ with the negative of its imaginary part 

൫− ෨ܼூ൯ for several values of the frequency ( ෥߱). In Figure 19 we varied the frequency 

from 0.01 to 1000 and steps of 0.001. The effect of the electrostatic correlations was 

analyzed for six different values of ሚ݈
௖: 0, 10, 30, 50, 70, and 100. The same results are 

presented in Figure 20 on the form of Bode plots where the absolute value of the 

impedance and its argument are plotted as a function of the frequency. The parameters 

used on these simulations are presented in Table 4. All the variables presented in 

Figures 2 and 3 are on their dimensionless form.  
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Table 4 - Parameters used on the impedance model (S.I.). 

ܶ = 298.15 K ߝ = 4.427093585 × 10ିଵଵ  Cଶ J m⁄  

݁ = 1.602 × 10ିଵଽ C ݇஻ = 1.38065 × 10ିଶଷ  J K⁄  

 

 

Figure 19 - Nyquist plot of the electrochemical impedance of a symmetric electrolyte, 

considering different values of the dimensionless correlation length ൫࢒ሚࢉ൯. The continuos 

black line is the case where no electrostatic correlation is considered ࢒ሚࢉ = ૙, the gray 

dotted line is ࢒ሚࢉ = ૚૙, the dashed black line is ࢒ሚࢉ = ૜૙, the gray continuous line is 

ࢉሚ࢒ = ૞૙,  the black dotted line is ࢒ሚࢉ = ૠ૙, and the gray dashed line is ࢒ሚࢉ = ૚૙૙.  
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Figure 20 - Bode plot of the electrochemical impedance of a symmetric electrolyte, 

considering different values of the dimensionless correlation length ൫࢒ሚࢉ൯. The 

continuous black line is the case where no electrostatic correlation is considered ࢒ሚࢉ = ૙, 

the gray dotted line is ࢒ሚࢉ = ૚૙, the dashed black line is ࢒ሚࢉ = ૜૙, the gray continuous 

line is ࢒ሚࢉ = ૞૙,  the black dotted line is ࢒ሚࢉ = ૠ૙, and the gray dashed line is ࢒ሚࢉ = ૚૙૙.  

We observe that the electrostatic correlation effects cause a main change on the 

shape of the impedance curve for values of dimensionless frequency ( ෥߱) lower than 

one. For values of ෥߱  higher than one the electrochemical impedance presents similar 

behavior to the one described by the classic theory, where the electrochemical potential 

is given by the Poisson-Boltzmann Equation. The change of the shape of the 

electrochemical impedance curve can be associated with the change on the structure of 

the electrical double layer. The increase of electrostatic correlation effects is related to 

the growth of the overcrowding effects (which is explained in details by Bazant et al. 

work from 2010). Analyzing the influence of the overcrowding effects on an equivalent 

circuit model, it could appear as a series association of the capacitance of double layer, 

which could be represented by the last two terms of the analytical expression of the 

electrochemical impedance obtained here (Equation 31). The first term of that equation 

is equivalent to the contribution of the bulk resistance of the system studied. 
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5.4  Final Remarks 

We proposed an analytical expression for the electrochemical impedance taking 

into account electrostatic correlations which can play a lead role on the performance of 

electronic devices containing ionic liquids or concentrated electrolytes. The expression 

obtained shows that the electrochemical impedance is largely affected by electrostatic 

correlations especially at low frequencies. This fact is related to the increase of the 

overscreening close to electrode surfaces for electrolytes highly correlated. Electrostatic 

correlation effects are relevant to the description of ionic liquids, because of their highly 

charged nature. When a large electrostatic potential is applied to the system, or/and 

multivalent ions are involved, electrostatic correlations cannot be neglected, and then 

the proposed approach to describe the electrochemical impedance here is recommended. 

Because the impedance is a linear response to a small perturbation, the long range 

screening effects at low voltages may be important and missing in the BSK model, but 

the analysis presented in this work are aimed to observe the trend predicted by the BSK 

model that is a signature of electrostatic correlations.  Finally, we would like to 

highlight that the present analytical expression for the electrochemical impedance is 

valid not only for ionic liquids, but rather to any symmetric electrolyte solution, with 

only the appropriate use of the parameters marking the difference between these two 

kind of systems.    

Appendix 

The coefficients ܣଵ, ,ଶܣ and ܣଷ from the analytical solutions from equations 5.21 

and 5.22 are presented bellow as follows: 

ଵܣ = 4 ܽଶ
ଷ ሚ݈

௖
ଶ cosh൫ܾܮ෨൯ ߶෨଴ 

෨ܮ) / cosh൫ܽଵ ܮ෨൯ cosh൫ܽଶ ܮ෨൯ ܽଵ ܽଶ ൣܽଵ
ଶ൫ܽସ

ଶ + 4ሚ݈
௖
ଶ − 2ܽସ൯

− ܽଶ
ଶ൫ܽଷ

ଶ + 4ሚ݈
௖
ଶ − 2 ܽଷ൯൧ + 4ܽଶ

ଷ ሚ݈
௖
ଶ sinh൫ܽଵ ܮ෨൯ cosh൫ܽଶ ܮ෨൯

− 4ܽଵ
ଷ ሚ݈

௖
ଶ cosh൫ܽଵ ܮ෨൯ sinh൫ܽଶ ܮ෨൯ , 

(5.40) 
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ଶܣ = 4ܽଵ
ଷ ሚ݈

௖
ଶ cosh൫ܽଵܮ෨൯ ߶෨଴

෨ܮ)/ cosh൫ܽଵܮ෨൯ cosh൫ܽଶ ܮ෩ ൯ ܽଵܽଶൣܽଵ
ଶ൫ܽସ

ଶ + 4ሚ݈
௖
ଶ − 2ܽସ൯

− ܽଶ
ଶ൫ܽଷ

ଶ + 4ሚ݈
௖
ଶ − 2ܽଷ൯൧ + 4 ܽଶ

ଷ ሚ݈
௖
ଶ sinh൫ܽଵܮ෨൯ cosh൫ܽଶܮ෨൯

− 4ܽଵ
ଷ ሚ݈

௖
ଶ cosh൫ܽଵܮ෨൯ sinh൫ܽଶ ܮ෨൯, 

(5.41) 

ଷܣ = ൫ܽଵ
ଶܽସ

ଶ + 4ܽଵ
ଶ ሚ݈

௖
ଶ − ܽଶ

ଶܽଷ
ଶ − 4ܽଶ

ଶ ሚ݈
௖
ଶ − 2ܽଵ

ଶܽସ

+ 2ܽଶܽଷ
ଶ)ܽଶܽଵ cosh൫ܽଶܮ෨൯ cosh൫ܽଵܮ෨൯ ߶෨଴

෨ܮ)/ cosh൫ܽଵܮ෨൯ cosh൫ܽଶܮ෨൯ ܽଵܽଶൣܽଵ
ଶ൫ܽସ

ଶ + 4ሚ݈
௖
ଶ − 2ܽସ൯

− ܽଶ
ଶ൫ܽଷ

ଶ + 4ሚ݈
௖
ଶ − 2ܽଷ൯൧ + 4ܽଶ ܽଶ

ଷ ሚ݈
௖
ଶ sinh൫ܽଵܮ෨൯ cosh൫ܽଶ ܮ෨൯

− 4ܽଵ
ଷ ሚ݈

௖
ଶ cosh൫ܽଵܮ෨൯ sinh൫ܽଶ ܮ෨൯. 

   

(5.42) 

where ߶෨଴ is the potential applied at the surface. 
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Chapter 6. Final Remarks and Future Works 

In this thesis we analyzed the effect of electrostatic ionic correlations in different 

systems. As these correlations are relevant for a large variety of systems, we focused on 

the description of the following cases: the micellization phenomena of ionic and 

zwitterionc surfactants in the presence of monovalent and multivalent electrolytes; the 

differential capacitance of asymmetric ionic liquids; and the electrochemical impedance 

of ionic liquids. For that, the modified version of the Poisson-Boltzmann equation (BSK 

model) is used. 

For the micellization phenomena, the inclusion of electrostatic correlations made 

it possible to obtain a good description of experimental behavior of surfactant solutions 

containing highly concentrated electrolytes and/or multivalent electrolytes. We also 

proposed a new approach to calculate the free energy of micellization of zwitterionic 

surfactants. We considered that micelles formed by zwitterionic surfactants can have 

both cations and anions binding to its surface, and it directly impacts on the behavior of 

the surfactant solution. Our model was able to correctly predict experimental 

observations of ion binding for zwitterionic surfactants. Most importantly, all 

calculations for the micellization phenomena are predictive, i.e. did not use any fitting 

parameter to experimental data. Comparison results confirm the importance of ionic 

electrostatic correlations for micelle formation in solutions with high salt concentrations 

and multivalent electrolytes. 

Regarding the differential capacitance (ܥ஽) of ionic liquids, we observed that 

electrostatic correlations play an important role in the differential capacitance, being 

responsible for the reduction of the ܥ஽ magnitude. The asymmetry of ion sizes is also 

relevant when describing ionic liquids due to the large difference between their cations 

and anions. Furthermore, the present approach was able to predict very well the 

differential capacitance of ionic liquids from molecular simulations and density 

functional theories. For differential capacitance experimental data of ionic liquids we 

obtained a fair description for elevated applied potentials. Conditions of large applied 

voltage can induce a large accumulation of ions close to the electrode surface, which 

makes electrostatic ionic correlations the dominant effect in these conditions, justifying 

our model.  
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When used in simpler calculations, we presented here an analytical expression 

for the electrochemical impedance taking into account electrostatic correlations, which 

can play an important role in the performance of electronic devices containing ionic 

liquids or concentrated electrolytes. The expression obtained shows that the 

electrochemical impedance is largely affected by electrostatic correlations, especially at 

low applied frequencies. This fact is related to the increase of the overscreening close to 

electrode surfaces observed experimentally.  

The work presented here can be useful for several applications. One promising 

use of the approaches proposed here is for the description of complex electrochemical 

devices and processes in which the dynamics of electrolytes are relevant; for example, 

electrodialysis, electroactuators, batteries, among others. In Appendix C we present a 

brief analysis of the dynamical problem for electrolyte solutions considering the effect 

of the solvent size together with electrostatic correlation effects. The analysis performed 

and the methodology presented can be useful for future developments in the 

aforementioned areas.  

Electrostatic correlations are also fundamental to the description of biological 

systems, which usually contain multivalent electrolytes. One example of a biological 

system where electrostatic correlations are important is the adsorption of proteins for 

separation processes. The description of interactions between different proteins and 

between proteins and charged surfaces as a function of salt type, salt concentration, 

temperature, and pH is essential for modeling the adsorption process. In Appendix E we 

present the calculation of the adsorption of spherical proteins using an approach based 

on a modified Poisson-Boltzmann equation. Even though that work only considered the 

effects of van der Waals interactions, it can be extended to include the effects of 

electrostatic correlations. For that, in Appendix D we present a numerical methodology 

to solve the BSK model in bispherical coordinates.  

Finally, the methodology presented here for the micellization phenomena of 

ionic and zwitterionic surfactants can be extended to the description of microemulsions 

and to the process of selection and design of surfactants. 
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Appendix B 

Algorithm to obtain the critical micelle concentration from 

molecular thermodynamics simulations 

1) Input data: (i) amount of water; (ii) amount, kind and physicochemical properties of 

the surfactant; (iii) temperature of the solution; 

2) Minimization of the Gibbs free energy: 

2.1) Calculation of the Gibbs free energy: 

 2.1.i) Calculate the molar fractions of water, free surfactant, micelles and ions; 

 2.1.ii) Calculate the free energy of micellization for each geometry; 

 2.1.iii) Calculate the Gibbs free energy for each geometry;  

2.1.iv) Compare the values of the Gibbs free energy for each geometry of the 

micelles. The lowest one will be assumed to be the most stable state of the 

surfactant solution. 

2.2) Minimize the Gibbs free energy – using a hybrid method of optimization 

(PSO followed by SQP). From this minimization we can obtain the number of 

micelles formed, their sizes, their morphology and the number of free surfactants 

in the solution.  

3) Increase the amount of surfactant in the solution and return to step 1. From this stage, 

step 2.2 uses as an initial guess of the optimization variables the results obtained from 

the previous optimization, thus only the SQP method is used after the first amount of 

surfactant is simulated. 

4) When the final amount of surfact is simulated, we can relate the number of molecules 

of free surfactant in the solution with the number of molecules of surfactant added to the 

solution. This curve is used to obtain the critical micelle concentration using the 

expression proposed in the work of Santos et al. (2016)  
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Appendix C 
 

The dynamics of electrolyte solutions considering the ion size 

asymmetry and the solvent size 

 Here, we considered the dynamics of electrolyte solutions between charged 

electrodes. For that, we start considering the Nernst-Planck equation for the ion ݅.  

߲ܿ௜

ݐ߲
+ ∇Γ௜ = 0 

Where ܿ௜ is the concentration of ion ݅, ݐ is the time and Γ௜ is the ionic flux, which is 

calculate from the following relation: 

Γ௜ = −
ܦ
݇ܶ

ܿ௜∇ߤ௜ 

With ܦ being the diffusivity of the ions, ݇ the Boltzmann constant, ܶ the temperature 

and ߤ௜ the electrochemical potential of the ion.  

 To include the effects of the electrolyte and solvent sizes we used the work 

developed by Kilic (2008) where, using a lattice approach he took into account steric 

effects of electrolyte solutions.  

±ߤ = ߰݁ݖ + ݇ܶ ቈln ൬
ܿ±

ܿା + ܿି + ܿ௪
൰ −

ܽ±
ଷ

ܽ௪
ଷ ln ൬

ܿ௪

ܿା + ܿି + ܿ௪
൰቉ 

In this expression, the index + and – are related to the cation and anion 

respectively, and ݓ for the solvent, which here we consider to be the water. The 

parameter ܽ is the hydrated radii of the ions and of the water. To obtain the electrostatic 

potential (߰) we coupled the previous equations with the modified Poisson-Boltzmann 

equation which takes into account electrostatic correlation effects.  

௖݈)ߝ
ଶ∇ସ߰ − ∇ଶ߰) =  ߩ

 The parameter ݈௖ is the electrostatic correlation length and on this analysis we 

considered it to be equal to the hydrated radii of the ion. To enhance the numerical 
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solution of the equations of this problem we defined dimensionless variables and an 

auxiliary variable as follows:  

߯௜ =
ܿ௜

ܿ଴
 

ݕ =
݁߰
݇ܶ

 

Γത௜ =
Γ௜

ߢ଴ܿܦ
 

௜ߤ̅ =
௜ߤ − ௜଴ߤ

݇ܶ
 

ߞ =
ݔ
ܮ

 

߬ =
ܦߢݐ

ܮ
 

߶ = ଶߙ ቆ
߲ଶݕ
ଶቇߞ߲ −  ݕ

where ܮ is the distance between the electrodes, and ߢ = ටଶேಲ௘మூ

ఌ௞்
 is the Debye length for 

a given ionic strength (ܫ).  

 For the boundary conditions we have that there is no ion flux on the surface of 

the electrodes, which leads to: 

 Γത௜|఍ୀ଴ =  Γത௜|఍ୀଵ = 0 

Furthermore, it is considered that there are no electrostatic correlations on the surface of 

the electrode: 

 ൬
ݕ߲
ߞ߲

+
߲߶
ߞ߲

൰ฬ
఍ୀ଴

=  ൬
ݕ߲
ߞ߲

+
߲߶
ߞ߲

൰ฬ
఍ୀଵ

= 0 

 Here we considered two different systems, one where a direct current is applied 

(DC problem) and one where an alternate current is applied over the electrodes (AC 
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problem). For the DC problem, we have a specified potential (ݕ଴) applied over both 

electrodes, which results on the following boundary conditions: 

఍ୀ଴|ݕ  = ଴ݕ− ቂ1 − ݌ݔ݁ ቀ−
߬

0.1
ቁቃ 

఍ୀଵ|ݕ  = ଴ݕ ቂ1 − ݌ݔ݁ ቀ−
߬

0.1
ቁቃ 

And for the AC problem: 

௦ݕ − ఍ୀ଴|ݕ  = ߣߜ− ݕ߲ 
ߞ߲

ฬ
఍ୀ଴

 

௦ݕ − ఍ୀଵ|ݕ  = ߣߜ ݕ߲ 
ߞ߲

ฬ
఍ୀଵ

 

The parameters ߙ,  can be find on the work of Alijó et al., 2015. Lastly, it is also ߣ and ,ߜ

necessary to define the initial condition for both problems, which is assumed that the 

concentration of the ions at the beginning is equal to the bulk concentration at any place 

between the electrodes.  

 ߯௜|ఛୀ଴ = 1 

 The equations were numerically solved using orthogonal collocation on finite 

elements on the EMSO software. The distribution of the collocation points was defined 

to be concentrated on the regions close to the electrodes in order to have a better 

description of the fast changes on the dependent variables close to the electrodes. All 

the results here present the independent variable ߞ as a function of the collocation points 

for a better visualization of the behavior of the dependent variables on the electrical 

double layer.  
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Figure 21 – Variation of the dimensionless cation concentration between the electrodes 

as a function of the different sizes of the cation, anion, and solvent under a DC voltage. 

The continuous line is for the case where the anion, the cation and the solvent have radii 

equal to 0.3nm. The dashed line is for the cation and the anion with the same size radii 

±ࢇ = ૙. ૟ܕܖ and the solvent ࢝ࢇ = ૙. ૜ܕܖ. And the dotted line for when the cation is 

larger than the anion ࢇା = ૙. ૡିࢇ ,ܕܖ = ૙. ૟ܕܖ, and ࢝ࢇ = ૙. ૜ܕܖ. 

Figure 21 shows how the different size of the ions impact on the concentration 

of the cation between the electrodes for the DC problem where a dimensionless 

potential ݕ଴ = 1 is applied to the electrodes. As the size of the cation increases the 

concentration of cations reduces close to the electrode that is charged negatively as a 

response on the increase of steric effects. From Figure 22  to Figure 24 we present the 

results obtained for a DC problem with the cation, anion, and the solvent (water in this 

case) having different sizes. And on Figure 25 to Figure 27 we present the results for the 

AC problem for an electrolyte solution where anion, cation, and solvent present the 

same sizes.  
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Figure 22 – Variation of the dimensionless electrostatic potential as a function of the 

dimensionless time (࣎) and the 

problem. We considered an ionic strength 

ାࢇ = ૙. ૡ ିࢇ ,ܕܖ = ૙. ૟ ܕܖ

Variation of the dimensionless electrostatic potential as a function of the 

) and the collocation points between the electrodes

. We considered an ionic strength ࡵ = ૚ۻ, a symmetric electrolyte 1:1, and 

࢝ࢇ and ,ܕܖ = ૙. ૜ ܕܖ. 
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Variation of the dimensionless electrostatic potential as a function of the 

collocation points between the electrodes for the DC 

, a symmetric electrolyte 1:1, and 



 

Figure 23 - Variation of the dimensionless anion concentration as a function of the 

dimensionless time (࣎) and the collocation points between the electrodes

problem. We considered an ionic strength 

ାࢇ = ૙. ૡ ିࢇ ,ܕܖ = ૙. ૟ ܕܖ

Variation of the dimensionless anion concentration as a function of the 

) and the collocation points between the electrodes

. We considered an ionic strength ࡵ = ૚ۻ, a symmetric electrolyte 1:1, and 

࢝ࢇ and ,ܕܖ = ૙. ૜ ܕܖ. 
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Variation of the dimensionless anion concentration as a function of the 

and the collocation points between the electrodes for the DC 

, a symmetric electrolyte 1:1, and 



 

Figure 24 - Variation of the concentration of the cation as a function of the 

dimensionless time (࣎) and the collocation points between the electrodes

problem. We considered an ionic strength 

ାࢇ = ૙. ૡ ିࢇ ,ܕܖ = ૙. ૟ ܕܖ

 

 

 

Variation of the concentration of the cation as a function of the 

) and the collocation points between the electrodes

. We considered an ionic strength ࡵ = ૚ۻ, a symmetric electrolyte 1:1, and 

࢝ࢇ and ,ܕܖ = ૙. ૜ ܕܖ. 
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Variation of the concentration of the cation as a function of the 

and the collocation points between the electrodes for the DC 

, a symmetric electrolyte 1:1, and 



 

Figure 25 - Variation of the dimensionless electrostatic potential as a function of the 

dimensionless time (࣎) and the collocation points between the electrodes

problem. We considered an ionic strength 

ାࢇ = ૙. ૜ ିࢇ ,ܕܖ = ૙. ૜ 

࣓ = ૙. ૜. 

Variation of the dimensionless electrostatic potential as a function of the 

) and the collocation points between the electrodes

. We considered an ionic strength ࡵ = ૚ۻ, a symmetric electrolyte 1:1, and 

࢝ࢇ and ,ܕܖ  = ૙. ૜ ܕܖ and a dimensionless frequency 
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Variation of the dimensionless electrostatic potential as a function of the 

and the collocation points between the electrodes for the AC 

, a symmetric electrolyte 1:1, and 

and a dimensionless frequency 



 

Figure 26 - Variation of the dimensionless anion concentration as a function of the 

dimensionless time (࣎) and the collocation points between the electrodes for the AC 

problem. We considered an ionic strength 

ାࢇ = ૙. ૜ ିࢇ ,ܕܖ = ૙. ૜ 

࣓ = ૙. ૜. 

 
 

Variation of the dimensionless anion concentration as a function of the 

) and the collocation points between the electrodes for the AC 

problem. We considered an ionic strength ࡵ = ૚ۻ, a symmetric electrolyte 1:1, and 

࢝ࢇ and ,ܕܖ  = ૙. ૜ ܕܖ and a dimensionless frequency 
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Variation of the dimensionless anion concentration as a function of the 

and the collocation points between the electrodes for the AC 

, a symmetric electrolyte 1:1, and 

and a dimensionless frequency 



 

Figure 27 - Variation of the dimensionless cation concentration as a function of the 

dimensionless time (࣎) and the collocation points between the electrodes for the AC 

problem. We considered an ionic strength 

ାࢇ = ૙. ૜ ିࢇ ,ܕܖ = ૙. ૜ 

࣓ = ૙. ૜. 

 

Variation of the dimensionless cation concentration as a function of the 

) and the collocation points between the electrodes for the AC 

problem. We considered an ionic strength ࡵ = ૚ۻ, a symmetric electrolyte 1:1, and 

࢝ࢇ and ,ܕܖ  = ૙. ૜ ܕܖ, and a dimensionless frequency 
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Variation of the dimensionless cation concentration as a function of the 

and the collocation points between the electrodes for the AC 

, a symmetric electrolyte 1:1, and 

, and a dimensionless frequency 
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Appendix D 

 To analyze the effect of electrostatic correlations in the interaction between two 

charged spherical colloidal particles or proteins we can use the BSK model for the 

modified Poisson equation in bispherical coordinates. In this appendix we present a 

brief introduction to bispherical coordinate system, how to couple it to the BSK model 

and finally a proposed numerical method to solve the resulting partial differential 

equation system.  

 A convenient way to describe the curvature effect between two spherical 

colloidal particles is by considering the bispherical coordinate system.  This system 

turns the mash of the region between the two spheres into a rectangular and finite 

element, which is associated with several numerical advantages.  

 

Figure 28 – Bispherical coordinate system. (WEISSTEIN, 2014) 

 This system is defined in the dimensions , ,   , where surfaces with constant   

are spheres, surfaces with constant   have an apple shape if 2   or lemon-shape if 

2  , and surfaces with constant   are semi-planes.  (MOON & SPENCER, 1961). 

Therefore, if we consider that exists symmetry across the z axis, we can express this 

coordinate system in terms  e    only. For those cases, the Laplacian operator is given 

by: 
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∇ଶ߰ =
(cosh ߟ − cosh (ߠ

ܽଶ sin ߠ
 ൤

߲
ߠ߲

 ൬
sin ߠ

cosh ߟ − cosh ߠ
 
߲߰
ߠ߲

൰

+ sin ߠ
߲

ߟ߲
൬

1
cosh ߟ − cosh ߠ

 
߲߰
ߟ߲

൰ ൨ 

 (D.1) 

 The value of   in the surface of the spheres being studied  0  is obtained as a 

function of the radius of the spheres  r   and the distance between them  d .  

cosh ଴ߟ =
݀
ݎ

 (D.2) 

  When describing colloidal and protein particles it is not necessary to study the 

region inside of this spherical particles, and because of that, the domain of this kind of 

system is  −ߟ଴ ≤ ߟ ≤ ଴ and 0ߟ ≤ ߠ ≤ At last, we need to define the variable a .ߨ  

which is a function of   in the surface of the sphere (ߟ଴): 

−
ܽ

sinh ଴ߟ
=  (D.3) ݎ

 To go from the bispherical coordinate system to the Cartesian coordinate 

system we  apply the following relations:  

ݔ =
ܽ sin ߠ

cosh ߟ − sin ߠ
 

ݕ =
ܽ cos ߠ

cosh ߟ − sin ߠ
 

ݖ =
ܽ sinh ߟ

cosh ߟ − sin ߠ
 

(D.4) 

 

Electrostatic correlations (BSK model) in bispherical coordinates 

 The BKS model in terms of the dimensionless electrostatic potential (ݕ), is 

defined as follows: 

݈௖
ଶ ∇ସݕ − ∇ଶݕ =

݁ଶ

ܶ݇ߝ
෍ ௜ܿ௜ݖ

௜

 (D.5) 
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 To avoid the use of the fourth order differential operator, the following variable 

change is applied:  

ܽଶ∇ଶݕ = ߶ (D.6) 

 Multiplying both sides of the previous equation by ܽଶ and defining a new 

dimensionless variable መ݈௖ = ݈௖ ܽ⁄  we obtain:  

መ݈
௖
ଶ ∇ଶ߶ −  ߶ =

ܽଶ ݁ଶ

ܶ݇ߝ
෍ ௜ܿ௜ݖ

௜

 (D.7) 

Now we express equations D.6 and D.7 in bispherical coordinates.   

   

(cosh ߟ − cos ଷ(ߠ

sin ߠ
 ൤

߲
ߠ߲

 ൬
sin ߠ

cosh ߟ − cos ߠ
 
ݕ߲
ߠ߲

൰ + sin  ߠ
߲

ߟ߲
 ൬

1

cosh ߟ − cos ߠ
 
ݕ߲
ߠ߲

൰൨ = ߶ 
(D.8)

  

መ݈
௖
ଶ

(cosh ߟ − cos ଷ(ߠ

sin ߠ
൤

߲
ߠ߲

 ൬
sin ߠ

cosh ߟ − cos ߠ
 
߲߶
ߠ߲

൰ + sin  ߠ
߲

ߟ߲
 ൬

1

cosh ߟ − cos ߠ
 
߲߶
ߠ߲

൰൨

= ߶ +
ܽଶ ݁ଶ

ܶ݇ߝ
෍ ௜ܿ௜ݖ

௜

 

 

(D.9)

  

The boundary conditions for systems containing spherical particles with 

specified electrostatic potential on their surface is presented below:   

,ߠ)ݕ (଴ߟ− =  ଴ଵݕ

,ߠ)ݕ (଴ߟ =  ଴ଶݕ

 ൬
ݕ߲
ߠ߲

൰ฬ
ఏୀ଴

=  ൬
ݕ߲
ߠ߲

൰ฬ
ఏୀగ

= 0 

 ൬
߲߶
ߠ߲

൰ฬ
ఏୀ଴

=  ൬
߲߶
ߠ߲

൰ฬ
ఏୀగ

= 0 

 ൬
߲߶
ߟ߲

൰ฬ
ఎୀିఎబ

=  ൬
߲߶
ߟ߲

൰ฬ
ఎୀఎబ

= 0 
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 The domain of the independent variables is defined between ߠ = ሾ0,  ሿ andߨ

ߟ = ሾ−ߟ଴,  ଴ሿ. It is also important to notice that the ionic concentration (ܿ௜) is aߟ

function of the electrostatic potential (ݕ) and because of that the resulting system of 

equations is coupled. 

 To solve this system we define two new auxiliary variable (ߟ)ݑ and (ߟ)ݒ: 

 

(ߟ)௝ݑ =
1

cosh ߟ − cos ௝ߠ
 
(ߟ)௝ݕ݀

ߟ݀
 

(ߟ)௝ݒ =
1

cosh ߟ − cos ௝ߠ
 
݀߶௝(ߟ)

ߟ݀
 

(D.10) 

 

We propose a numerical methodology to solve this problem that is based on 

performing a polynomial approximation over the independent variable ߠ. This approach 

is detailed in the following item.  

 

Polynomial approximation  

 This approach to solve a system of equations in bishperical coordinates consists 

in approximating the dependent variables ݕ and ߶ as polynomial of degree ݊ in ߠ, 

choosing ߠ௝ = ௝ݔ where 0 ,ߨ  < ଵݔ < ଶݔ < ⋯ < ௡ݔ < 1 are the ݊ roots of the Legendre 

polynomial normalized for the interval [0,+1]. 

With that, we can approximate variables ݕ and ߶ as: 

,ߠ)ݕ (ߟ ≅ ,ߠ)(௡ାଵ)ݕ (ߟ = ෍ ݈௜(ߠ)
௡ାଵ

௜ୀ଴

 (D.11) (ߟ)௜ݕ 

 

,ߠ)߶ (ߟ ≅ ߶(௡ାଵ)(ߠ, (ߟ = ෍ ݈௜(ߠ)
௡ାଵ

௜ୀ଴

 ߶௜(ߟ) (D.12) 

where ݕ௜(ߟ) = ,௜ߠ)(௡ାଵ)ݕ (ߟ)and ߶௜ (ߟ = ߶(௡ାଵ)(ߠ௜ ,   .(ߟ
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 From the previous definitions we can express the derivatives of the dependent 

variable related to ߠ as a function of matrixes A and B.  Bellow we exemplify this 

construction for the dimensionless electrostatic potential ݕ: 

,ߠ)(௡ାଵ)ݕ߲  (ߟ

ߠ߲
ቤ

ఏೕ

=
1
ߨ

  
,ݔ)(௡ାଵ)ݕ߲ (ߟ

ݔ߲
ቤ

௫ೕ

=
1
ߨ

෍ (ߠ)௝,௜ܣ
௡ାଵ

௜ୀ଴

 (D.13) (ߟ)௜ݕ 

 ߲
ଶݕ(௡ାଵ)(ߠ, (ߟ

ଶߠ߲ ቤ
ఏೕ

=
1
ߨ

  
߲ଶݕ(௡ାଵ)(ݔ, (ߟ

ଶݔ߲ ቤ
௫ೕ

=
1
ߨ

෍ (ߠ)௝,௜ܤ
௡ାଵ

௜ୀ଴

 (D.14) (ߟ)௜ݕ 

 The system of equations to be solved will assume the form of a system of 

ordinary differential equations in relation to the independent variable ߟ, and this system 

is presented here: 

௝ݕ݀

ߟ݀
= ൫cosh ߟ − cos ௝ݑ ൯݆ߠ   (D.15) 

௝ݑ݀

ߟ݀
=

1

൫cosh ߟ − cos ൯݆ߠ
ଷ ൥߶௝(ߟ) − ൫cosh ߟ − cos ൯݆ߠ

ଶ
 ෍ (ߠ)௝,௜ܤ
௡ାଵ

௜ୀ଴

(ߟ)௜ݕ 

−
൫cosh ߟ − cos ൯൫cosh݆ߠ cos ߟ ݆ߠ − 1൯

sin ݆ߠ
൩ ෍ (ߠ)௝,௜ܣ

௡ାଵ

௜ୀ଴

 (ߟ)௜ݕ 

(D.16) 

݀߶௝

ߟ݀
= ൫cosh ߟ − cos ௝ݒ൯݆ߠ   (D.17) 
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መ݈
௖
ଶ

௝ݒ݀

ߟ݀
=

1

൫cosh ߟ − cos ൯݆ߠ
ଷ ൥߶௝(ߟ) +

ܽଶ ݁ଶ

ܶ݇ߝ
෍ ௜ܿ௜ݖ

௜

− መ݈
௖
ଶ൫cosh ߟ − cos ൯݆ߠ

ଶ
෍ ௝,௜ܤ

௡ାଵ

௜ୀ଴

௜ݕ

−
መ݈
௖
ଶ൫cosh ߟ − cos ൯൫cosh݆ߠ cos ߟ ݆ߠ − 1൯

sin ݆ߠ
 ෍ ௝,௜ܣ

௡ାଵ

௜ୀ଴

 ௜൩ݕ

(D.18) 

For j =1, 2, …, m-1 and – η0 < η <  η0. 

And the boundary conditions can be written as:  0 01jy y  ,  0 02 jy y  ,

 0 0 j  v and  0e 0j  v .  

This problem can be defined as a system of differential equations involving 

values in the boundaries which can be solved considering the search for the values of 

   0 0 e j ju     that will lead to    0 02 0 e 0j jy y   v . 

Obtaining matrixes A and B for the polynomial approximation 

Proposing  డ௬

డఏ
ቚ

ఏೕ

= ∑ ௝,௜ܣ
௡ାଵ
௜ୀ଴ ௜,  డమ௬ݕ

డఏమቚ
ఏೕ

= ∑ ௝,௜ܤ
௡ାଵ
௜ୀ଴ ݆ ௜ forݕ = 1, 2, … , ݊ where 

,ߠ)ݕ (ߟ ≅ ,ߠ)(௡ାଵ)ݕ (ߟ = ∑ ௡ାଵ(ߠ)௜ݍ
௜ୀ଴ (ߟ)௜ݕ in which (ߟ)௜ݕ  = ௜ߠ)(௡ାଵ)ݕ ,  .(ߟ

The function  iq   is a polynomial function of degree  1n   in   and it 

satisfies: 

௝൯ߠ௜൫ݍ = ௜,௝ߜ = ൜
1 for i = j 
0 for i ≠ j

  (D.19) 

௝൯ߠ௜൫ݍ݀ 
ߠ݀

ቤ
ఏୀ଴

= ௝൯ߠ௜൫ݍ݀ 
ߠ݀

ቤ
ఏୀଵ

= 0 (D.20) 

For i, j = 1, 2, … , n.  
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 Besides that, we select ߠ௝ = ௝ݔ where 0 ,ߨ  < ଵݔ < ଶݔ < ⋯ < ௡ݔ < 1 are the n 

roots of the p Legendre polynomial normalized on the interval [0,+1]. This leads us to: 

(ߠ)௜ݍ݀

ߠ݀
= ߨ) ߠ − ෍ (ߠ ௞ିଶߠ௞,௜ܯ

௡

௞ୀଶ

= ෍ ௞ିଵߠ ߨ௞,௜ ൫ܯ − ௞൯ߠ

௡

௞ୀଶ

 (D.21) 

And then, 

(ߠ)௜ݍ = ଵ,௜ܯ + ෍ ௞,௜ܯ  ቆ
௞ߠߨ

݇
−

௞ାଵߠ

݇ + 1
ቇ

௡

௞ୀଶ

 (D.22) 

 

With the conditions presented in equation D.19, we can obtain the values of the 

elements ܯ௞,௜: 

ଵ,௜ܯ + ෍ ௞,௜ܯ  ቆ
௝ߠ ߨ

௞

݇
−

௝ߠ ߨ
௞ାଵ

݇ + 1
ቇ

௡

௞ୀଶ

=  ௜,௝ (D.23)ߜ

We can also define the expression for ܩ௝,௞: 

݇,݆ܩ = ൝
1   for ݇ = 1

݆ߠ ߨ
݇

݇
−

݆ߠ ߨ
݇+1

݇ + 1
    for ݇ = 2, … , ݊ 

  (D.24) 

Where ࡳ ∙ ࡹ = ࡵ → ࡹ =  ଵିࡳ

The first and second derivatives on the points ߠ௜ = ௜ݔ  :are calculated from ,ߨ 

݇,݅ܣ = (ߠ)݅ݍ݀ 

ߠ݀
ቤ

݆ߠ

݇,݅ܤ  ݀݊ܽ   =  ݀
(ߠ)݅ݍ2

2ߠ݀ ቤ 
݆ߠ

 (D.25) 

 Which lead us to: 
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݇,݅ܣ = ߨ൫ ݆ߠ − ൯݆ߠ  ෍ ݆ߠ ݅,݇ܯ
݇−2

݊

݇=2

 (D.26) 

݇,݅ܤ = ෍ ݇)ߨൣ ݅,݇ܯ − ݆ߠ (1
݇−2 − ݆ߠ ݇

݇−1൧

݊

݇=2

 (D.27) 

 For the boundary conditions, we suggest the use of a Taylor series expansion for 

the derivatives in ߠ. For a value of ߠ଴ = 0 < ߠ <  ଵ we can expresses for theߠ

dimensionless electrostatic potential: 

ݕ߲
ߠ߲

= ݕ߲ 
ߠ߲

ฬ
ఏభ

+  ߲
ଶݕ

ଶቤߠ߲
ఏభ

ߠ) − (ଵߠ → ݕ߲ 
ߠ߲

ฬ
ఏబୀ଴

= ݕ߲ 
ߠ߲

ฬ
ఏభ

+  ߲
ଶݕ

ଶቤߠ߲
ఏభ

଴ߠ) − (ଵߠ = 0 (D.28) 

(ߟ)ଶݕ − (ߟ)଴ݕ

ߠ∆ 2
−  ߠ∆

(ߟ)ଶݕ − (ߟ)ଵݕ 2 + (ߟ)଴ݕ

ଶߠ∆ → (ߟ)଴ݕ =
(ߟ)ଵݕ4 − (ߟ)ଶݕ

3
 (D.29) 

The same is applied for the auxiliary variable :  

߶଴(ߟ) =
4߶ଵ(ߟ) − ߶ଶ(ߟ)

3
 (D.30) 

We can use the same approach for the second boundary and for ߠ௠ିଵ < ߠ < ௠ߠ =  ,ߨ

we have: 

ݕ߲
ߠ߲

= ݕ߲ 
ߠ߲

ฬ
ఏ೘షభ

+  ߲
ଶݕ

ଶቤߠ߲
ఏ೘షభ

∙ ߠ) − (௠ିଵߠ → ݕ߲ 
ߠ߲

ฬ
ఏ೘ୀగ

= ݕ߲ 
ߠ߲

ฬ
ఏ೘షభ

+  ߲
ଶݕ

ଶቤߠ߲
ఏ೘షభ

௠ߠ) − (௠ିଵߠ = 0 
(D.31) 
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(ߟ)௠ݕ − (ߟ)௠ିଶݕ

ߠ∆ 2
−  ߠ∆

(ߟ)௠ݕ − (ߟ)௠ିଵݕ 2 + (ߟ)௠ିଶݕ

ଶߠ∆ → (ߟ)௠ݕ

=
(ߟ)௠ିଵݕ4 − (ߟ)௠ିଶݕ

3
 

(D.32) 

And the same for the auxiliary variable: 

߶௠(ߟ) =
4߶௠ିଵ(ߟ) − ߶௠ିଶ(ߟ)

3
 (D.33) 
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ABSTRACT 

 

Ion-exchange chromatography has been widely used as a standard process in 

purification and analysis of protein, based on the electrostatic interaction between the 

surface of the stationary phase and the protein. A variety of models and considerations 

were made through the years, improving the thermodynamics of colloids but short 

attempts were applied for direct predict the behavior of proteins. Here, we present an 

improved methodology for solving the modified Poisson-Boltzmann equation 

considering bispherical geometry aiming the prediction of the adsorption equilibrium 

constant. By including the dispersion interaction between ions and protein, and between 

ions and surface, the modified PB equation is able to describe the Hofmeister effect. We 

solve the modified Poisson-Boltzmann equation to calculate the potential of mean force 

protein-surface, treated as spherical colloid-plate system, as a function of process 

variables. The Henry constants of adsorption, for different protein and surfaces, are 

shown as function of pH, salt concentration and temperature. In addition, we performed 

a sensitivity analysis to verify the behavior of different kind of salts and its impact on 

the Hofmeister effects. 

 

Keywords: Poisson-Boltzmann; Bispherical coordinates; Ion-colloid dispersion; 

Hamaker. 

 

1. INTRODUCTION  

Protein adsorption is the key phenomenon of countless biological process as well 

of many protein separation and purification technologies. It is mainly governed by 

electrostatic interactions between the protein surface and the adsorbate and, because of 

that, it is crucial to have a good description of the electrostatics of the system when 

modeling this phenomenon.   One of the first attempts to model the behavior of colloidal 

systems came from the Derjaguin-Landau-Verwey-Overbeek theory (DLVO) that 

considers a electrostatic double layer being formed on the surroundings of a charged 

surface [1] which could be described by a linearized form of the Poisson-Boltzmann 

(PB) equation [2]. Later, based on the Hamaker [3] contribution, Verwey [2] and long 

after Ståhlberg et al. [4], improved this approach by combining the attractive London-

van der Waals potential with electrostatic interactions.  
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When aiming to specifically describe microscopic adsorptive processes, 

information about the amount of protein adsorbed per area (or per mass) of adsorbent is 

an essential parameter for the description of this process. It is a function of the pH of the 

solution and its ionic strength, and it affects the interaction between adsorbent and 

adsorbate because of the changes in the charge of their surfaces and because of the non-

electrostatic effects caused by the kind of salt applied. Recently, a model based on the 

linearized PB equation was used to correlate adsorption of proteins in Ion-Exchange 

Chromatography (IEC) by the estimation of the amino acids residue densities [5–7], 

since they are directly related to the surface charge density of the protein.  

Another approach often used to model protein adsorption is the Sterical Mass-

Action method (SMA) [8,9]. SMA applies a stoichiometric binding theory and couples, 

in a set of correlation parameters, all the electrostatic and equilibrium information of the 

system, not considering important effects like non-electrostatic (NES) and co-ion effects 

[10], leading to a poor precision at higher salt concentrations or pH values  close to the 

protein isoelectric point (pI) [9]. The same happens to all the models based on the 

DLVO theory because it does not take into account any non-electrostatic effects. Even 

though NES effects can be neglected at low ionic strength (0.01 M), they cannot be 

neglected when modeling highly concentrated electrolyte solutions or multivalent ions. 

This directly impacts on the need for the improvement of the colloid theory for 

biological application [11]. Furthermore, it was shown that different ions affect in 

different ways the behavior of proteins, most of the time their impact follows directly 

the Hofmeister series. To be able to predict this kind of behavior it is essential  to 

consider dispersion forces in the model [12].  

Another way to improve the theoretical description of protein adsorption was 

suggest by Roth and Lenhoff [15] which takes into account the three-dimensional 

configuration of the protein, using information of the mesh conformation of lysozyme 

while interacting with a stationary surface. This approach, though, still uses the 

linearized form of the Poisson-Boltzmann equation. Because of that, the result from this 

study showed a good agreement with experimental data for lysozyme at small ionic 

strength, as expected, but did not obtain a good fit for wide ionic strength range, even 

considering Hamaker interaction. 

When applying the Poisson-Boltzmann equation to describe systems containing 

protein or any spherical colloids it is important to define correctly the coordinate 

systems in which this equation will be applied. This helps on a  better physical 
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understanding of the interaction between two colloids or a colloid-surface interaction in 

contrast with using approximations for a planar geometry such as the Derjaguin 

approximation to adapt for the spherical-planar geometry [5,16,17]. The PB equation in 

Bispherical Coordinates was chosen by Lima et al. [13] as a more realistic model that 

also provides a good computational time and accuracy. This model was able to predict 

the osmotic second virial coefficient as a function of ionic strength considering the 

interaction between two charged colloids (globular proteins). The article also reports the 

application of the Hamaker force and analyzes the effect of the kind of salt arising due 

to non-electrostatic interactions. 

In order to predict the influence of protein adsorption on IEC, here we calculate 

the Henry constant of a protein modeled as a charged colloid adsorbed on an ion-

exchange adsorbent using the PB equation in bispherical coordinates. We consider the 

dispersion interactions between ions and protein and between ions and adsorbent 

surface and also the Hamaker potential. With this, we are able to predict the Henry 

constant as a function of pH, ionic strength, ionic specificity, and temperature. 

 

 

2. ELECTROSTATIC MODEL FOR DIFFERENT COORDINATE SYSTEMS 

 

An equilibrium model was reported by Ståhlberg et al. [18] showing the 

relationship between the electrostatic free energy and the retention factor (relative to 

adsorption equilibrium constant for a diluted system, i.e. Henry constant) for ion-

exchange chromatography of protein. To achieve the main goal to predict the adsorption 

behavior of different mAbs variants on IEC based on their interaction with the charged 

surface, we need the Henry constant.  

Using the equilibrium condition for the chemical potential of protein, we obtain 

[19]:    

 










Tk

hpHIW
cc

B

,,
exp0  (1) 

where c is the concentration of the colloid, 0c is bulk concentration of the colloid , h is 

the distance between the protein surface and the surface of the stationary phase, I is the 

ionic strength of the solution, W  is the free energy of interaction between the colloid 



134 
 

and the adsorbate, Bk  is the Boltzmann constant, and T the absolute temperature (here 

298.15 K). 

Knowing that the surface excess concentration can be obtained by:  

   



0

0, dhccIpHq  (2) 

where q is the surface excess concentration of the protein for a given desired pH and 

ionic strength, I. 

The Henry equation is written as a function of the potential of mean force (or the 

free energy, W) after combining both equations (Eq. 1-2) [5]: 

   






















00

1
,,

exp
,

dh
Tk

hpHIW

c

IpHq
K

B

 (3) 

where K is the dimensional Henry constant (m). 

The simplification used to calculate the potential of mean force have an effect on 

the behavior of the K constant in colloid science. The widely used method to obtain 

electrostatic free energy from the linearized PB equation [17,18] neglects the possibility 

of including NES effects. In contrast, the solution of the nonlinear PBE in bispherical 

coordinates permits to add NES terms that convey to be relevant to the system, as 

discussed in the following sections. 

 

2.1 Modified PBE in Bispherical Coordinates 

In face of those previous studies, we presume that a nonlinear model using 

bispherical coordinates, or a similar way to describe plane-sphere interactions and the 

contributions of electrostatic, ionic specificity and van der Waals force for a diluted 

system, provides an acceptable profile behavior without the need of parameter 

estimation. 

Based on those considerations, the Poisson-Boltzmann equation including the 

ion-protein dispersion is given by the following equation: 

      UU  expexp
2

12  (9) 

where 2 is the Laplacian operator in bispherical coordinates [20], given by: 
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 
   




















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





























coscosh

1
sin

coscosh

sin

sinsinh

coscosh
2

0

3
2

hkD

 (10) 

here U  is the van der Waals interaction between the ions and the protein, ( , ) are 

the independent variables of the bispherical coordinate system where the rotation of 

symmetry is assumed to be a line orthogonal to the plate passing through the center of 

the sphere, 0  is the value of   at the sphere surface. For the evaluation of the plane-

sphere force, we perform the integration over the surface at 
2

0   for a realistic 

approach. 

 The boundary conditions in  are writing as: 

 
   

 
   




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
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
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
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
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sinh
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0
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0

2
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
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










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







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



hk
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D

D

 (11) 

 Boundary conditions in  : 

0
0























  





 (12) 

The equation for the non-electrostatic term relative to ionic specificity is given by 

[22]: 

    3
2

3

3

3
13

1

3

2
1

r

rB

R

Rr
Rr

rB
U ionP

sphere

sphere
sphere

ionS 












 



  (13) 

Here, sphereR  is the hydraulic protein diameter, ionr  is the ion radius; the BS is the ion-

sphere and BP is the ion-plate dispersion constant. We assumed the same surface 

dielectric propriety on the plate and colloid, thus, PS BB  ; 1r  is the distance between 

the ion and the center of the colloid equal to  22
ZDX   and 2r  is the distance 

between the ion and the planar surface equal to  22
ZDX  : being X  and Z  the 
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Cartesian coordinates associated with the bispherical variables and D is the half center-

to-center distance between sphere-plate. 

The relationship with Cartesian coordinates and the numerical details are better 

described by Lima et al. [23], even so it is noteworthy point that the integration is 

calculated by Composite Simpson’s rule and the differential equation is solved using 

Finite Volume Method linked with the Thomas algorithm. 

Here we treat sodium chloride as the main salt in solution accounting for ionic 

strength, so the following values are taken in consideration for the dispersion constant 

[24]: 0.138 TkB  for sodium ion and 1.086 Bk T for chloride ion. For sensitivity analysis, 

different kinds of ions are studied: bromide (1.348 Bk T), iodide (1.735 Bk T), potassium 

(0.574 T) and strontium (0.575 Bk T) (same reference as above). A cutoff radius of 2  Å 

was assumed for the ions to secure the potential convergence at the interfaces [11]. 

The expression for the nondimensional force in bispherical coordinates is given 

by [25], which is obtained by the integration of the stress tensor over a suitable surface, 

as a function of the electric field and the difference in the osmotic pressure [26]. 
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The free energy can be calculated in two different ways: (1) through an equation 

using information of the potential with respect to the volume control and surface 

integrals and (2) using an expression for integration of the force as a function of the 

distance between the colloid and the plane surface. For a plane-surface case, the first 

method may lead to a poor accuracy [25], so the second method was select as the most 

efficient way to find the potential of mean force:  
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 (15) 

Where PBW  is the electrostatic contribution from the PBE equation to the interaction 

potential of mean force between the protein and the adsorbent for a given distance ( hkD

). This potential of mean force takes into account temperature, charge densities of 

Bk
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protein and adsorbend (related with pH), salt concentration (related with PB equation) 

and salt type (related with dispersion interaction between ions and protein and ions and 

adsorbent surface). 

The total potential of mean force between the protein and adsorbent is given by 

three contributions: 

hsHamPB WWWW   (16) 

where hsW is the hard-sphere contribution: (1) hsW  for 0h  and (2) 0hsW  for 

0h . HamW  is related to the non-Coloumbic potential between the protein and the 

surface of the adsorbent, known as the Hamaker dispersion. The method for calculating 

HamW  is resumed as follows [13,27]: 
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where Hr corresponds to the protein hydration-layer thickness, 1.5 Å [13]. The 

parameter H represents the Hamaker constants, which are different for each pair of 

colloid-adsorbent. For the interaction between mAbs and YMC BioPro SP, the Hamaker 

constant is established as 2kBT [6]. It is assumed H = 5 Bk T for the interaction with 

Fractogel EMD SE HiCap as a frequent value for protein interaction in aqueous solution 

[24]. 

 

2.2 Charge density calculation 

 

Equations including direct information of the potential at the surfaces are used to 

find the resolution of the free energy, but for IEC it is more effective to represent the 

model as a function of the charge density [21] since the information of the surface 

amino acid groups can be found by simple experimental titrations. 
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The surface charge density was writing as suggested by Ehrl et al. [28] and also 

applied by Guélat et al. [5] to determinate the charge of amino e histidine density 

groups: 

  iClanionHi

i

KsccKa

F







 



1

 (18) 

where F is the Faraday constant (96,485 C mol-1), i denote the amino or histidine 

groups, i  represent the density of ionizable surface groups i (mol m-2), iKa is the 

effective dissociation constant of the acid grupos i (mol L-1),   is the activity 

coefficient of the chosen salt, iClKs  is the effective association constant of the groups i 

(L mol-1) and anionc  is the concentration of salt anion (mol L-1). 

 Moreover, a similar equation describes the density of carboxyl and sulfonate 

groups: 
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 



1

 (19) 

where j denote the carboxyl or sulfonate groups, j  represent the density of ionizable 

surface groups j (mol m-2), j
Ka is the effective dissociation constant of the basic grupos 

j (mol L-1), jNaKs is the effective association constant of the groups j (L mol-1) and anionc  

is the concentration of salt cation (mol L-1). The values of the effective dissociation and 

association constant is found elsewhere [5]. 

 H
c refers to the concentration of ions H+ at the region between the IEC surface 

interface and the solution. We applied the charge regulation calculation for high pH 

(above pH 5.0) to correlate the ion surface concentration. For lower pH, deviations 

appears when compared with experimental data probably by the surface model 

simplicity, which works with a general DLVO approach. Here we used instead the bulk 

concentration as an approximation for the H+ concentration at the interface surface at 

the region where the charge regulation is insufficient to give the potential prediction 

(pH < 5.0). 

 

3. PROTEIN AND STATIONARY SURFACE DATA 
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The study of the adsorption phenomenon of monoclonal antibodies (mAbs) 

reported by  Guélat et al. [5] and Guélat et al. [6] (change the reference) showed that a 

linearized PB equation is suitable to describe the behavior of the Henry constant, 

defined as a function of pH and ionic strength in IEC for different stationary phases: 

Fractogel EMD SE HiCap (binding group -(CH2)2SO3
-) and YMC BioPro SP (10 μm) 

(binding group -(CH2)3SO3
-) for interaction with mAb1; and YMC BioPro SP (5 μm) 

for Bevacizumab and Trastuzumab adsorption. However, in both studies, it was 

necessary to re-estimate the ionizable amino acid surface groups to obtain an agreement 

with the experimental data. 

The data analyzed here comes from those papers. The density of amino, histidine 

and carboxylic component groups are calculated by the ratio between the number of 

ionic groups (obtained by the references after the proper counting of amino acid 

sequence available at Protein Data Bank and DrugBank online database) and the protein 

surface area. 

The hydrodynamic radius of mAb1 was defined as 5 nm [5], and the same value 

was specified for Trastuzumab [7,29]. For Bevacizumab, the radius of 6.3 nm was 

measured by Wen et al. [30] using dynamic light scattering and applied here for the 

calculation the density of groups. The main parameters used are resumed in Table 1. 

 

Table 1. Parameters considered on the model. Other parameters, as the effective 

association constants or acid-base dissociation constants of each component, can be 

found at the cited references. (rever o valor! Estao no arquivo em FORTRAN. PS: 

temos 3 fases estacionarias.) 

 The density of groups (mol m-2) Reference 

Protein Amino Histidine Carboxyl  

mAb1 6.872∙ 10-7 1.374∙ 10-7 6.237∙ 10-7 [5] 

Bevacizumab 5.844∙ 10-7 8.938∙ 10-8 4.194∙ 10-7 
[31] 

Trastuzumab 8.034∙ 10-7 1.480∙ 10-7 6.343∙ 10-7 

Stationary phase Sulfonate groups  

Fractogel EMD SE 
HiCap 

5.64 ∙ 10-6 

[5] 

YMC BioPro SP 1.90 ∙ 10-6 
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4. RESULTS AND DISCUSSION 

 

Before the model analysis, we need to first acknowledge the charge at the surfaces 

and assure that we are observing an ion-exchange process at the range of pH studied. 

Fig. 2 was obtained using the method described by Ehlr et al. [28] for the computation 

of the surface charge density via the activity of the salt [32], solution pH and 

information about effective association constants and acid-base dissociation constants:  

 

 
Figure 2. Surface charge density of proteins and stationary phase throughout the pH for 

a NaCl concentration of 0.3 mol L-1: ( ̶ ) represents the behavior of Fractogel EMD SE 

HiCap;  (  ̶   ̶  ) is for YMC BioPro SP (5 μm) and  (·  ̶  ·) is for YMC BioPro SP (10 μm); 

( ̶  · ·) is the Bevacizumab charge density and the profile of mAb1 (  ̶  ) and Trastuzumab 

(···) overlap almost over all the pH range. Only after the mAb1 pI (approximately 6.3), 

the Trastuzumab shows a slight increase on the charge density. 
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As noted, on the range of 4.4 to 7.0, all the proteins have a prevailing positive 

charge and the stationary phase surfaces have a constant negative charge, making the 

adsorption process purely electrostatic. Thus, since at the pI the colloid has a null net 

charge, it is expected that the addition of salt disturb the adsorption in a negative way. 

We can see more clearly this result after solving the potential of mean force with 

respect to the pH at a fixed NaCl concentration (0.3 mol L-1) for mAb1. In Fig. 3, for pH 

close to the pI (approximately 6.3), the protein shows a repulsive behavior; whereas, for 

the lower pH region the protein exhibits positive characteristics, leading to the IEC 

adsorption. 

 

 
Figure 3  Effect of pH on the potential of mean force from the PBE for different 

dimensionless distances between the surfaces of plane-sphere system. NaCl 

concentration is equal to 0.3 mol L-1 (Fractogel EMD SE HiCap). 

In addition to this study, Stankovich and Carnie [25] suggested that the force 

integration range relies between 0.1 and 2 hkD , however, as showed in Fig. 4, the bulk 

condition is achieved after 7 hkD  and a loss of information occurs at any integration 

before this point. 



142 
 

As mentioned earlier, hkD  represent the dimensionless separation distance 

between a spherical surface, representing the colloid, and the stationary phase, defined 

as a plane surface. For a short distance, the potential of mean force will display a 

significant attraction and a repulsive behavior for points after the isoelectric point. As 

the sphere is separated from the plane surface, the intensity of the potential of mean 

force is reduced as shown in Fig. 3. The region where pH is lower than 1.68 represents 

the region where the ionic groups, from the plane surface, become more positive (Fig. 

2) affecting the IEC, even with no apparent modification on the protein charge. 

 

 
Figure 4.  Potential of mean force from the PBE over the distance between the 

protein surface and the plane with a salt concentration of 0.3 mol L-1 NaCl (Fractogel 

EMD SE HiCap). 

 
 
In order to acknowledge the Hofmeister effect, we solved the PBE potential of 

mean force for four different kinds of salts: NaBr and NaI to analysis the influence of 

the anion; and KCl and SrCl2 for the cations. As we can see, NaCl keeps the major 

contribution in  PBW  and its aftereffects are discussed along with the Henry constant 

results. 
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Figure 5.  Comparison between the dimensionless potential of mean of three 

different type of (A) anions and (B) cations. The sphere-plate distante is fixed at кh =1, 

for the analysis purpose with ionic strength  equal to 0.3 mol L-1 (Fractogel EMD SE 

HiCap). 
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Finally, Fig. 6 shows the Henry constant solved using Eq. 3 integrated with the 

total potential of mean force given by Eq. 16, for bispherical coordinates, considering 

the ion-colloid dispersion and van der Waals force, compared to experimental data. 
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Figure 6.  Henry constant behavior for protein adsorption process: mAb1 on (A) 

Fractogel EMD SE HiCap and (B) YMC BioPro SP; Bevacizumab (C) and 

Trastuzumab (D) on YMC BioPro SP as a function of salt concentration and pH. The 

filled curves are related to the theoretical results without parameter estimation and the 

circles are experimental data from [5,20]. 
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As we can see, the model was able to predict with a good agreement the 

adsorption behavior for two different adsorbent on ion-exchange chromatography. 

Fractogel EMD SE and YMC BioPro SP are both considered strong anion-exchangers, 

even though Fractogel had almost three times more ionic groups on the surface (Tab. 1). 

For pH equal to 4.4, where the system is strongly electrostatic, the curve decays 

gradually with the salt concentration, while at pH  7.0 the effect is substantial. 

The selection of the Hamaker constant was consistent with the set of assumptions 

made in this work, thus for a better agreement with experimental data, this parameter 

could be re-estimated for each protein taking into consideration the entire set of pH 

curves. 

In addition, the type of salt also alters the adsorption performance (Fig. 7) as 

noted before by the variation in the PBE free energy contribution (Fig. 5), where the 

anion has a bigger influence on the value of the Henry constant. The Hofmeister series 

is followed for both cation and anion in study, with the higher Henry constant 

corresponding to the system containing NaCl. The co-ion effect tends to be minor in 

contrast with the counterion behavior, as is resumed by the KCl and NaCl profiles. 

However, the impact of Sr2+ calculated shows a considerable reduction in the Henry 

constant in Fig. 7 and a singular profile in Fig. 5b. The difference of valence (2:1) leads 

to a rapid decay of the adsorption due the sites competition, and also by the different 

ionic polarizability between the analyzed ions. 
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Figure 7.  Theoretical effect of the influence of three different types of (A) anion 

and (B) cation types on Henry's constant for mAb adsorption. 

 

The results presented in this work demonstrate that no parameter adjustment is 

necessary after the inclusion of van der Waals force and ion specificity and a more 

realistic geometry structure to have a good description of experimental Henry constants, 

reassuring the importance of those effects on the description of systems with the 

adsorption of proteins.  
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5. CONCLUSIONS AND PERSPECTIVE  

 

This work applied the Poisson-Boltzmann equation in bispherical coordinates with 

the inclusion of ionic dispersion parameters and Hamaker force for IEC study. The 

results show a very good prediction with the monoclonal antibodies adsorption behavior 

as a function of pH and ionic strength for two different stationary phases, without any 

fitted parameters, then the model presented here is fully predictive. In addition, a 

sensibility study was performed where we observed that the effects of ions on the 

system follows with the Hofmeister anionic series for different values of pH. The 

prediction of the electrostatic response represents an important step in colloidal science, 

making possible to improve the simulation of complex systems that present Coulombic 

forces as, for example, the multimodal chromatography. This work can be extended 

with the inclusion of ion size effects and of electrostatic correlations, which can be 

relevant for systems containing concentrated electrolyte solutions.  
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SYMBOLS 

 

BS Ion-sphere dispersion constant  

BP Ion-plate dispersion constant 

c Concentration of the colloid 

0c  Bulk concentration of the colloid 

D  Half center-to-center distance between sphere-plate. 

e  Elementary charge of the electron 

f  Nondimensional force 

I  Ionic strength 

h  Distance protein surface and the stationary phase surface 
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H Represents the Hamaker constants  

K  Dimensional Henry constant 

Bk    The Boltzmann constant 

Dk    Inverse Debye length 

0
in   Number of ions i per cm3 in the bulk 

q  Surface excess concentration 

*q   Characteristic charge of the ion 

ir   Distance between the ion and the center of the two spheres 

1r   Distance between the ion and the center of the colloid 

2r   Distance between the ion and the planar surface 

ionr   Ion radius 

Hr  Protein hydration-layer thickness 

sphereR   Hydraulic protein diameter 

T  Absolute temperature (298.15 K) 

u   Free energy of the system 

U   van der Waals interaction ion-protein 

W  Potential of the mean force of sphere-plate interaction  

PBW  Contribution of the electrostatic free energy 

hsW  Hard-sphere contribution of free energy 

HamW   Non-Coloumbic potential 

x  Charged region between the surfaces 

X   Cartesian coordinate associated with the bispherical variables 

Z  Cartesian coordinate associated with the bispherical variables 

iz  Ions valence 

 

Greek symbols 

 

0   Vacuum permittivity 

R   Dielectric constant of the medium 
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 ( , )Independent variables of the bispherical coordinate system 

1   Colloid charge density 

2   Stationary phase charge density 

  Electrostatic potential 

   Dimensionless electrostatic potential  Tke B   
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