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A frequência de ramos de cadeias longas em polietilenos produzidos por 

catalisadores de coordenação pode ser aumentada substancialmente por meio da 

copolimerização de etileno com pequenas quantidades de dienos não conjugados. Neste 

trabalho, investiga-se a cinética da copolimerização de etileno com 1,9-decadieno, 

utilizando um catalisador de geometria constrita em um processo em solução e reator 

semi-batelada, e propõe-se um novo modelo matemático para descrever os resultados 

das distribuições de massas molares e massas molares médias. O mecanismo proposto 

inclui a etapa de reincorporação do macromonômero por intermédio das ligações duplas 

pendentes resultantes da incorporação do dieno. Uma abordagem híbrida, combinando o 

método de otimização de enxame de partículas, procedimentos de identificabilidade de 

parâmetros e o método Gauss-Newton, foi aplicada para estimar os parâmetros do 

modelo. Para a predição das distribuições de massas molares, os métodos de Monte 

Carlo e colocação ortogonal com completa adaptação foram utilizados. Em particular, 

mostra-se que os modelos propostos são capazes de descrever dados reais de 

ramificações obtidos em uma unidade de laboratório, usada para conduzir 

copolimerizações de etileno e 1,9-decadieno.  
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 The frequency of long chain branching in polyethylenes made with coordination 

catalysts can be substantially increased by copolymerizing ethylene with small amounts 

of non-conjugated dienes. In this work, the kinetics of copolymerization of ethylene and 

1,9-decadiene is investigated, using a constrained geometry catalyst in a solution 

polymerization semi-batch reactor. A novel mathematical model is also proposed to 

describe the resulting molecular weight distributions and average molecular weights. 

The proposed mechanism includes macromonomer reincorporation through pendant 

double bonds that result from the diene incorporation. A hybrid approach, combining 

Particle Swarm Optimization, parameter identifiability procedures and the Gauss-

Newton method, was applied to estimate the model parameters. For MWD predictions, 

the Monte Carlo and complete adaptive orthogonal collocation methods were used. It is 

shown that the proposed model can accurately describe actual ethylene/ 1,9-decadiene 

copolymerization data collected in a lab-scale polymerization unit. 
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1 Introduction 

The development of a modern society is unthinkable without polymer 

technologies. Regarding the relationship between the materials and the level of 

humanity development, some authors allude to the ages of the stone (ceramics), the 

bronze and iron (metals) and nowadays the age of polymers (KARAK, 2009). In fact, 

polymer formulations can lead to countless different materials and properties, which can 

be developed and applied to almost all human activities. Detailed overviews of the 

historical development of polymers can be found in different published materials 

(GNANOU and FONTANILLE, 2008, POLYMEREXPERT, 2002).  

Polymers can be obtained from natural sources (such as cellulose, natural rubber 

and polysaccharides) or produced artificially (or through synthetic chemical routes); be 

organic or inorganic nature; and usually consist of a mixture of macromolecules, which 

results from chemical combination of a large number of much smaller molecules. These 

smaller molecules are known as monomers and reactions that promote the combination 

of the monomers are called polymerizations. One macromolecule can contain hundreds, 

thousands or even more monomer molecules that are kept together by covalent bonds 

(ODIAN, 2004). In the polymer backbone, the building unit formed from the monomer 

reaction is known as mer.  

Nowadays, one of the most important classes of polymers comprises α-olefin 

based polymers. α-Olefins are molecules that contain a vinyl group at the extremity, i.e., 

the double bound is positioned at the primary position α, as illustrated in Figure 1.1.  

Among the many α-olefin based polymers, polyethylene (PE) and polypropylene (PP) 

must be highlighted, since these two polyolefins concentrate almost two-thirds of the 

world thermoplastic market (LIU et al., 2016). It is expected the annual growth rate of 

4.3 % for PE, with global demand rising from 88.1 million m. t. / year1 in 2015 to 108.8 

million m.t./ year in 2020. PP represented 26 % of the global consumption of polymers 

in 2015 (CHEMWEEK, 2016).  

                                                 
1 m. t. / year means metric ton per year. A metric ton is a unit of mass equal to 1000 kilograms (2205 
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Figure 1.1 – Illustration of an α-olefin (a vinyl terminated chain).  

 

An important advantage of polyolefins is the fact that these materials can be 

recycled easily due to their intrinsic thermoplastic properties (MARQUES et al., 1998). 

This is one of the reasons why polyolefins have replaced many other materials and 

become the most important polymer commodity.  

The starting point for the commercial use of polyolefins took place in 1937, with 

the registration of the patent entitled High Pressure – Low Density Polyethylene (HP-

LDPE) by ICI (Imperial Chemical Industries). However, the polymerization process 

used for production of this polyolefin through free-radical mechanism at high pressures 

and temperatures had already been discovered in 1933 by E. W. Fawcett and R. O. 

Gibson in the ICI laboratories (KRESSER, 1969). 

Nevertheless, the most important advances in the polyolefin field were made 

with the advent of Ziegler-Natta (ZN) catalysts in the early 1950s. The use of Ziegler-

Natta catalysts made possible the synthesis of stereospecific polymers at high rates; 

depending on the catalyst type and experimental conditions, isotactic and/or 

syndiotactic PP polymers could be produced (SOARES and MCKENNA, 2013). With 

the advent of metallocenes, new products with enhanced properties started challenging 

existing ZN based polymer markets. Metallocenes usually present higher activity when 

compared with ZN catalysts. Besides, polyolefins formed from metallocene based 

catalysts present more uniform molecular properties, narrower molecular weight 

distributions (MWD) and more uniform comonomer compositions (CHUM and 

SWOGGER, 2008). 

The formation of chain branches was one of the key points for advance of the α-

olefins polymerization technology. In the early 90s, Dow Company introduced the 

Constrained-Geometry Catalyst (CGC), leading to improvement of the physical 
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properties of polyolefins, also avoiding the falloff in processability, which occurs when 

the MWD is narrowed and the lower-molecular weight ―tails‖ are not formed (CHUM 

and SWOGGER, 2008). This was possible because of the formation of long-chain 

branches (LCB) in the polymer chains, since CGC can incorporate α-olefins of high 

molecular weights and unsaturated macromolecules into the polymer chains. For 

example, during ethylene polymerization, α-olefins terminated chains, as illustrated 

previously in Figure 1.1, can be formed by transfer to ethylene or spontaneous transfer 

(SOARES, 2004). Such α-olefin chains are indeed macromonomers and can be 

incorporated into a living growing chain by the CGC, generating a long-chain. In most 

cases, the excessive formation of branches is undesirable, but the low frequency long-

chain branching can partially compensates the absence of low-molecular-weight chains 

normally present in conventional ZN based polyolefins, increasing shear thinning, 

enhancing processability, improving melt elasticity of the material and, consequently, 

leading to desirable mechanical, adhesive and viscosity properties (KOLODKA et al., 

2002; CHUM and SWOGGER, 2008; YANG et al., 2010). Furthermore, these polymers 

still present narrow molecular weight distributions and uniform comonomer 

composition distributions, as in resins manufactured with regular metallocenes. Figure 

1.2 illustrates a branched polyolefin chain. 

 
Figure 1.2 – Illustration of long-chain branches. 

 

Despite the successful synthesis of branched polyolefins with CGCs, the fraction 

of LCBs in these polymers is usually low. It is hard to increase the LCB frequency in 

these polymers because each macromonomer contains a single branching point, which 

substantially reduces the probability of LCB formation in high molecular weight 

polymers. For this reason, the use of two distinct metallocene catalysts and the 

copolymerization of α-olefin and non-conjugated dienes with CGC are strategies 

devised to increase the LCB frequency in polyolefins under mild polymerization 

CH3

CH3

CH3
CH3

Branches
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conditions (WANG et al., 1998; BEIGZADEH et al., 2001; SIMON and SOARES, 

2002; SERNETZ et al., 1997; UOZUMI et al., 2000; NAGA and TOYOTA, 2004).  

The low LCB frequency of polyolefins made with CGC catalysts makes LCB 

quantification challenging. As a consequence, mathematical models that can predict the 

frequency and topology of LCBs in these materials are desirable. One possible approach 

is to build kinetic models that include steps for formation of LCBs, so that the final 

molecular architecture of the polymer chains can be obtained after simulations 

performed with the model. 

In the polymerization field, one can usually classify the proposed kinetic models 

as hybrid empirical-phenomenological models, since they combine phenomenological 

aspects, like proposed mechanisms, with many empirical propositions and assumptions. 

As pointed out by other authors (PINTO et al., 2011; ALBERTON, 2010), most kinetic 

models rely on assumptions that are often weak when compared to reality; as a 

consequence, models are frequently oversimplified and empirical corrections must be 

proposed, conferring an empirical nature to the models. 

Kinetic polymerization models can vary significantly in complexity and 

numerical difficulty. Generally, as the output information increases, more complex and 

hard to solve the models become, requiring additional efforts for model implementation 

and numerical solution. Besides, almost always some of the needed model parameters 

are unknown, which imposes the estimation of model parameters. The parameter 

estimation problem consists of an optimization method that leads to the most 

appropriate values for the unknown parameters, based on available reference 

experimental data. However, during the execution of this optimization process, the 

proposed mathematical model has to be simulated many times. Thus, the selection of 

the numerical method to solve the optimization problem depends on the simulation time 

required to solve the mathematical model. As a consequence, there is not an ideal 

numerical technique for the numerical solution of the model or the estimation of model 

parameters, as all the existing methods present advantages and drawbacks.  It is up to 

the researcher to find the most appropriate method to be used in his/her particular work.  

Two methods have been often applied to solve polymerization models: Monte 

Carlo and Orthogonal Collocation (BRANDÃO et al., 2015; PINTO and BISCAIA, 

1996). This explains why these methods are explored and analyzed in the present work. 

In short, Monte Carlo methods describe the kinetics of polymerization as a series of 
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random events (SOARES and HAMIELEC, 1997), while orthogonal collocation 

techniques (PINTO and BISCAIA, 1996) assume that distributions can be approximated 

by polynomial fits. 

Based on the previous comments, some questions that naturally arise are: 

x In polymerization models with LCB generation, which apparent 

mechanisms seem to rule the reaction and which corresponding model 

can fit experimental data suitably? 

x Regarding the distinct numerical approaches, what are their comparative 

performances? What are their relative advantages and disadvantages? 

In order to answer these questions, the main objectives of the present PhD thesis 

can be summarized as follow: 

x To investigate kinetic models for copolymerizations of ethylene and 1,9-

decadiene using CGC-Ti catalyst, implementing and solving the mathematical 

models that derive from the proposed mechanisms; 

x To perform the comparative evaluation of actual implementations of the Monte 

Carlo Method and of the Orthogonal Collocation Method for simulating the 

proposed models. 

Some specific objectives that are pursued are: 

x To perform experimental ethylene homopolymerization studies using the CGC-

Ti catalyst; 

x To perform experimental copolymerization studies of ethylene and 1,9-

decadiene using the CGC-Ti catalyst; 

x To propose kinetic mechanisms to describe the homo- and copolymerization of 

ethylene with a diene; 

x To develop mathematical models to describe the solution homo- and 

copolymerization of ethylene with a diene in a semi-batch reactor; 

x To estimate the homo- and copolymerization model parameters; 

x To investigate and describe the relative advantages and disadvantages of the 

proposed stochastic and deterministic approaches used in the thesis, providing 

details to guide readers in implementation of other polymerization engineering 

problems.  
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1.1 Thesis Outline 
The present PhD thesis consists of 11 chapters and is organized as follows: 

x Chapter 1 presents the introduction, research goals and thesis outline. 

x Chapter 2 contains a literature review on coordination polymerization. A brief 

review about the evolution of Ziegler-Natta catalysts is introduced and research 

works that use CGC catalysts are also presented. 

x Chapter 3 presents a literature review on the deterministic methods applied in 

the present thesis. Detailed descriptions of the numerical procedures are also 

performed, with emphasis on reviewing deterministic methods applied to 

coordination polymerization problems with LCB formation.  

x Chapter 4 introduces the Monte Carlo technique and presents some works that 

applied this approach to simulate coordination polymerizations. Different Monte 

Carlo methods are described and algorithms are also described and presented.  

x Chapter 5 describes the adopted experimental procedure, including 

polymerization methods, apparatuses and polymer characterization techniques. 

The numerical methods employed in the present thesis are also outlined in this 

chapter. 

x Chapter 6 shows the statistical procedures applied in the present thesis to 

estimate the parameters and evaluate the model predictions.  

x Chapter 7 reports a brief literature review on the kinetics of ethylene 

copolymerization with non-conjugated dienes, considering the occurrence of 

LCBs. The complete development of the mathematical model is presented, 

including the proposed kinetic mechanism, the material balances, the parameter 

estimation procedure, the calculation of average properties and the computation 

of molecular weight distributions.  

x Chapter 8 provides results for the estimation of model parameters and 

characterizes the predicted average molecular weights, long-chain branching 

frequencies and ethylene feed flow rates.  

x Chapter 9 discusses in detail the model predictions for molecular weight 

distributions. Particularly, the experimental MWDs are compared with the 

simulated ones.  



7 
 

x Chapter 10 compares the predictions and efficiency of different implementations 

of Monte Carlo methods through 5 case studies that involve coordination 

polymerization.  

x Chapter 11 summarizes the significant findings of the present research and 

presents recommendations for future works. 

x Appendix A shows the material balances for all chemical species present in the 

polymerization mechanism used as example in Chapter 3. Additionally, 

Appendix A presents the flowcharts that describe how the polynomial roots were 

calculated in the orthogonal collocation procedure and how quadrature weights 

were computed. 

x Appendix B describes of the experimental apparatuses used to perform the 

experiments.  

x Appendix C shows the derivation of the objective function used in the parameter 

estimation process.  

x Appendix D presents some convergence analyses performed during 

implementation of the complete adaptive orthogonal collocation methods, for all 

used experimental conditions.  

The present PhD thesis was developed in EngePol (Laboratório de Engenharia 

de Polímeros) of PEQ (Programa de Engenharia Química) of COPPE (Instituto Alberto 

Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia) of UFRJ (Universidade 

Federal do Rio de Janeiro), in collaboration with GAME (Group of Applied 

Macromolecular Engineering) of UA (University of Alberta).  
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2 Polyolefins with LCB: catalysts and 
properties 

 

First, it is convenient to describe some of the main structural polymer properties 

and how the catalyst types and operation conditions influence these properties. 

2.1 Background of Structural Properties 
The main structural properties described in the present text are those associated 

to distribution of chain sizes in polymers and tacticity. 

2.1.1 Properties Associated with Molecular Weight Distributions (MWD) 
The most relevant structural properties of polymer chains are associated with 

molecular weight distributions (MWD), which also define the number average 

molecular weight, the weight average molecular weight and the polydispersity index 

(PI). 

Let us consider the distribution of sizes  ( ), where  ( ) is the number of chains 

of size  . If normalized,  ( ) can be understood as the probability of randomly selecting 

a chain of size   from the mixture of polymer chains. Then,  ( ) can be understood as a 

statistical distribution. One way to characterize this distribution is based on its 

moments. Each moment    of order   of the distribution can be defined as: 

 

   ∑    ( )
 

 

 (2.1) 

 

According with this definition, the zeroth, first and second moments of the 

distribution become: 

 

   ∑    ( )
 

 

 ∑ ( )
 

 

 (2.2) 
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   ∑   ( )
 

 

 (2.3) 

   ∑    ( )
 

 

 (2.4) 

 

If   ( )  is normalized, the moment    is equal to 1, since the sum of all 

probabilities must be equal to 1.   

Now, one important question arises: what is the mean size of the chains in the 

distribution? The answer depends on the relative importance given to each size. For 

example, if one choses to weight the size in accordance with the number of chains of 

that size, then the mean (the number-average chain length   ̅) corresponds to: 

 

  ̅⏟
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Otherwise, if one choses to weight the sizes in accordance with the mass 

concentrated in each size (the weight (mass) average chain length   ̅̅̅ ), one obtains: 

 

  ̅̅̅⏟
                           

 ∑   ( )
 

 ⏟      
            
         

 ∑     ( )⏟  
       

           
      

 

 

 

  ̅̅̅  
∑     ( ) 
 
∑    ( ) 
 

 
  
  

 (2.6) 

 

In polymer science,    and    are defined as the number and weight average 

molecular weights, respectively. The molar mass of one specie is the mass of its 

molecule. If one admits that   ̅ or   ̅̅̅ are representative means of the whole distribution, 

then, the average molecular weights can be calculated as: 



11 
 

     ̅    
  
  

   (2.7) 

     ̅̅̅    
  
  

   (2.8) 

 

where MM is the average molecular weight of the structural units (mers). In most chain 

polymerizations, the average molecular weight of the structural mer is the molecular 

weight of the monomer. Figure 2.1 illustrates the distribution and the mean size values. 
 

 
Figure 2.1 – Distributions and mean size values. 

 

Since PI is defined as the ratio      , it can also be written as: 

 

   
  
  

 
  

  
 (2.9) 

 

It must be clear that PI is always greater than 1, being equal to 1 only when the 

distribution is concentrated in one singular chain size, characterizing a perfectly 

monodisperse polymer material. As PI increases, the chain size distribution becomes 

broader. So, the pairs (     ) or (     ) or (     ) are often used to indicate 

polymer properties. However, they only provide information about the first moments 

(zeroth, first and second) and, consequently, they do not provide information about the 

full distribution. 
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The control of molecular weight and molecular weight distribution is usually 

performed to obtain and improve certain desired physical properties of the final polymer 

material. It is often desirable and necessary to characterize the full distribution of 

molecular weights, since there usually is a range of molecular weights for which a given 

polymer property is appropriate for a certain application (ODIAN, 2004).  

There are many different PE commercial grades, including low molecular weight 

(MW) resins (              ), used as hot melt adhesives, and ultra-high MW 

PE (              ) applied where high draw ratio (gel-spinning) or high wear 

and fatigue resistance (hip prostheses) are required. Bimodal and multimodal MWD 

products, with exclusive mechanical and processing properties, can be applied for 

production of PE pipes of large diameter (SWALLOWE, 1999).   

Analyzing the effects of MW and MWD on resin properties constitutes a long 

standing problem in the polymer field. Although the importance of MW and MWD on 

mechanical performance has been widely recognized, it has always been difficult to 

obtain quantitative correlations among these parameters. Additionally to MW and 

MWD, mechanical properties are also controlled by a large number of additional 

structural and external factors, such as chain orientation, crystalline structure and chain 

morphology. Only if these factors are held constant or kept within allowed ranges, it 

becomes possible to analyze the specific effects of MW and MWD on the mechanical 

performance of analyzed polymer samples (SWALLOWE, 1999).   

2.1.2 Tacticity 

One of the most important properties of α-olefin based resins is the tacticity. The 

different stereoisomerisms (―tacticity‖) are illustrated in Figure 2.2. In the 

macromolecular structure (-CH2-CHX-), where X is different from hydrogen, the spatial 

position of X defines the tacticity and the material can be isotactic, syndiotactic or 

atactic (BRAUN et al., 2012). Obviously, this discussion does not make sense for 

polyethylene, since X=H for this polymer. 

Polymerizations that yield tactic structures (isotactic or syndiotactic) are 

classified as stereoselective polymerizations. Stereoselective polymerizations that yield 

isotactic and syndiotactic polymers are named isoselective and syndioselective 

polymerizations, respectively (ODIAN, 2004).  
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Chain tacticity is the main factor that affects the crystallizability of polymers 

(SOARES and ANANTAWARASKUL, 2005). Isotactic polypropylene is a crystalline 

thermoplastic product with a melting point close to 188 °C, whereas atactic PP is an 

amorphous gummy material (MADJOUR and MARK, 1998).  Isotactic PP is often used 

in several injection molding and extrusion processes due to its excellent rigidity and 

temperature resistance. Due to its irregular structure, atactic PP has low crystallinity, 

resulting in a sticky, amorphous material used mainly for adhesives and roofing tars 

(MAIER and CALAFUT, 2008), it has little commercial value (HAMIELEC and 

SOARES, 1996).  Syndiotactic PP with a crystallinity of 30 % has a melting point of 

130 °C (MAIER and CALAFUT, 2008) and it is less stiff than isotactic PP but has 

better impact strength and clarity. Syndiotactic PP possesses excellent properties to be 

applied as insulator in power cables (YOSHINO et al., 2003).  

 

 
Figure 2.2 – Tacticity of substituted vinyl polymers (Natta Projection) (adapted from BRAUN et al., 

2012). 

 

The differences among the distinct forms of PP, assuming similar MWD and 

branching frequencies, are outstanding, as one can see in Table 2.1 (SINN and 

KAMINSKY, 1980). 
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Table 2.1 – Some characteristics of polypropylene 
Characteristic Isotactic PP Syndiotactic PP Atactic PP 

Melting point (°C) 165 – 171  125 – 131  < 0 
Crystallinity (%) 55 – 65  50 – 75  0 

Tensile strength (kP cm-3) 320 – 350    
  

Besides the three classic PP configurations, new structures can also be 

synthesized with different catalysts such as the ones shown in Figure 2.3. Particularly, 

isotactic-atactic stereoblock PP presents interesting thermoplastic elastomeric 

properties. This PP can be synthesized using a metallocene catalyst that is able to 

isomerize between achiral and chiral coordination geometries (MADJOUR and MARK, 

1998).   

 

 
Figure 2.3 – Some types of PP chain configurations produced with metallocene catalysts (adapted 

from SOARES and HAMIELEC, 2012). 

 

2.1.3 Long-Chain Branching  
The rheology, processability and mechanical properties of a polymer are affected 

by the branching structure, which can be roughly divided into two groups: short-chain 

branched (SCB) and long-chain branched (LCB) polymers. What differentiates LCB 

from SCB is the branch length or branch molecular weight. LCB corresponds to a 

branch molecular weight above the critical molecular weight Mc of the respective 

polymer, which is an indicator of entanglement. One way to measure Mc is through the 

molecular weight dependence on the zero-shear viscosity (CHO et al., 2004). Other way 

to identify a branch as long is through the entanglement molar mass Me. The usual 
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concept is that Mc is approximately twice as large as Me (CHO et al., 2004).  Branches 

can be considered long-chain branches if their length exceeds the entanglement molar 

mass. For PE, Me is approximately 1300 g mol-1. Branches below Me are SCB and do 

not influence most rheological properties very significantly, although can affect other 

important properties, such as flexibility and transparency (STADLER et al., 2006).  

SCB significantly affects the formation of the crystal structure and mechanical 

and thermal properties of the polymer, whereas LCBs exert a significant effect on the 

melt rheological behavior of the melt. Even very small quantities of LCB can affect the 

polymer processing properties considerably (KOKKO, 2002), improving melt strength 

and melt processability of narrow PI polymers (ODIAN, 2004), which make these 

polymers very attractive commercially. Additionally, LCB governs die swell, 

environmental stress crack resistance in blow molding operations, bubble stability and 

lamellae orientation in films, and sag resistance in pipe and geomembranes (YANG et 

al., 2010).  

CARELLA et al. (1986) observed considerably enhanced zero-shear viscosities 

in LCB resins when compared to linear polymers with similar molecular weights, in 

star-branched hydrogenated polybutadienes (HPBs). LAI et al. (1993a) produced PE 

with long-chain branching densities (LCBD) in the range 0.01 – 3 carbons/ 1000 

carbons. These LCBD PEs were compared to their Ziegler-Natta counterparts. The 

authors observed that at narrow PIs, the shear tinning of PE could be increased by 

adding more LCB. CHUM et al. (2000) also concluded that increasing LCB content 

would lead to the increase of shear thinning.  

As one can see, the presence of LCBs in polymer chains is very desirable, so that 

controlling the LCB formation constitutes a major objective of commercial catalyst 

research. However, in order to achieve this purpose, it is first necessary to understand 

how the formation of LCBs occurs. 

2.1.3.1  Kinetic Mechanisms of LCB Formation 

Many researches attempted to demonstrate how LCBs are formed by proposing 

feasible kinetic mechanisms. The mechanism most widely accepted in literature is 

terminal branching. In the presence of the adequate catalyst and reaction conditions, 

polymer chains with terminal vinyl unsaturations, called macromonomers, can 

polymerize, generating LCBs (WOO et al., 1997; BEIGZADEH et al., 1999 & 2001; 
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COSTEUX et al., 2002; SOARES, 2001, 2002 & 2004; NELE and SOARES, 2002; 

NELE et al., 2003; SIMON and SOARES, 2005; YANG et al., 2010). The 

macromonomers are formed through β-hydride elimination or transfer to ethylene 

(SOARES et al., 2001). Figure 2.4 illustrates this mechanism for homopolymerization 

of ethylene with a Ti-catalyst. Macromonomer reincorporation can only be expected 

when the employed catalyst has high activity to polymerize long α-olefin monomers. 

FERREIRA JR. et al. (2010) extended the macromonomer concept to 

macromolecules that present terminal vinyl unsaturations and pendant double bonds. 

Thus, the generation of LCBs is possible by macromonomer reincorporation through its 

terminal unsaturation, generating one LCB, or by one of its pendant unsaturations, 

producing two LCBs, as shown in Equations (2.10) to (2.12). BRANDAO et al. (2016) 

also used this approach to justify the formation of LCBs in copolymers made of 

ethylene and 1,9-decadiene using a coordination catalyst. 

 

          
               
→                (2.10) 

          
               
→                (2.11) 

         
               
→                (2.12) 

  

where      is a living chain with size i and b LCBs;       is a dead chain with terminal 

vinyl unsaturation of chain length j and with c LCBs; and      is a dead chain that only 

contains pendant unsaturations, with size d and c LCBs. 
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Figure 2.4 – Terminal branching mechanism (adapted from WOO et al., 1997). 

YANG et al. (2010) proposed a new mechanism of LCB formation. The authors 

described their new mechanism as the intramolecular incorporation of macromonomer, 

as shown in Figure 2.5. According with this mechanism, initially the growing chain is 

coordinated with an active catalyst site. When the chain stops growing, it remains 

coordinated with the same site, even when a new chain starts growing in this active site. 

The macromonomer starts growing again when it gets covalently connected to the 

growing chain, generating one LCB.  

 

  
Figure 2.5 – Intramolecular incorporation of macromonomer (adapted from YANG et al., 2010). 
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According with YANG et al. (2010), the conventional mechanism (terminal 

branching) cannot explain some experimental results, such as the constant LCB 

frequencies with the increase of temperature for all tested metallocenes. According with 

the conventional mechanism, it might be expected that the decrease of the polymer 

molecular weight would elevate the concentration of vinyl terminal groups. 

Additionally, the vinyl groups would present higher mobility in the amorphous polymer 

regions, which would elevate LCB frequencies. However, the authors did not observe 

these effects experimentally. On the other hand, the intramolecular incorporation of 

macromonomer mechanism seems to be more adequate to explain LCB formation in 

polymerization processes conducted in the gas phase and in slurry, where the 

macromonomer is entangled in the polymer matrix (in solution polymerizations, the 

polymer chains certainly present higher mobility).  

2.2 Catalysts for Polyolefins Formation  
The main commercial processes for production of polyolefins are based on 

coordination polymerizations (HAMIELEC and SOARES, 1996). The term 

Coordination polymerization is related to the monomer addition step, when a 

coordination complex2 is formed around the catalyst active center (KURAN, 2001).  

For simple olefins, the formation of the coordination complex can be explained 

according to the Dewar-Chatt-Duncadson model, which proposes that the olefin π-

bonded filled orbital donates its electrons to an empty d-orbital of the metal, with 

reciprocal backdonation of π-backbonding into an empty π* orbital on the ethylene 

molecule (KURAN, 2001, TOREKI, 2015), as illustrated in Figure 2.6. Then, a covalent 

coordination complex is formed.  

 

                                                 
2 A coordination complex is a complex where atoms are bounded to a center atom by ―coordinate 
covalent bounds―. 
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Figure 2.6 – Chemical bonds in metal-ethylene, according to the Dewar-Chatt-Duncanson model 
(adapted from TOREKI, 2015). 

 

The important commercial catalysts used to perform coordination 

polymerization are organometallics, such as the Phillips and Ziegler-Natta catalysts. 

With these catalysts, a wide window was opened to perform stereoselective 

polymerizations. Depending on the catalyst and experimental conditions, innumerable 

types of polymers can be produced with these catalysts. Coordination polymerization 

processes and catalysts are described in details in the next sections.  

2.3 Phillips Catalysts 
Coordination processes for polyolefins production started with the discovery of 

the Phillips catalysts in the early 1950s by J. P. Hogan and R. L. Banks from ―Phillips 

Petroleum Co‖. They discovered that ethylene could be converted, when submitted to 

relatively low pressures and with the use of chromium oxide supported on silica, into a 

solid polymer called HDPE (high density polyethylene) (WANG et al., 1991). The 

application of this catalyst was extended to copolymerizations of ethylene with α-olefins 

      afterwards, generating new grades of branched polymers known as LLDPE 

(linear low-density polyethylene). 

HDPE presents few or none short-chain branches and does not present any long-

chain branches. This type of polymer is often employed in structural applications due to 

its characteristic high rigidity. The crystallinity of the HDPE falls in the range of 70 to 

90 %, with densities ranging from 0.94 to 0.96 g cm-3 (ODIAN, 2004).  
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The copolymerization of ethylene with α-olefins (generally 1-butene, 1-hexene 

or 1-octene) disturbs the order of linear polyethylene chains through the insertion of 

comonomer units and, consequently, of SCBs. As a consequence, the density, rigidity 

and crystallinity of LLDPE are lower than those of HDPE (HAMIELEC and SOARES, 

1996). Figure 2.7 illustrates typical HDPE and LLDPE molecular structures. 

 

 
Figure 2.7 – Schematic representation of HDPE and LLDPE molecular structures. 

 

Phillips catalysts achieved great commercial success because of the diversity of 

uses and products: more than 40 different types of HDPE or LLDPE could be produced 

with Phillips catalysts (WECKHUYSEN and SCHOONHEYDT, 1999). As a matter of 

fact, Phillips catalysts are used to manufacture one-quarter to one-third of all HDPE and 

LLDPE produced worldwide, but is not useful for homopolymerization of propene and 

other α-olefins, and does not yield stereoselective polymerization (ODIAN, 2004). 

2.4 Ziegler-Natta Catalysts 
The greatest milestone in the history of polymerization processes was the advent 

of Ziegler-Natta catalysts for olefin polymerization reactions. The use of these catalysts 

allowed for structural and steric control of the polymer chains, generating polyolefins 

with completely different properties than those of the materials produced before by 

other chemical routes (MACHADO and PINTO, 2011). 

Generally, Ziegler-Natta catalysts present high activity, which results in the 

expressive reduction of catalyst residues and problems related to toxicity, corrosion and 

premature aging of the final pieces. Besides, ZN catalysts can be used to control many 

of the final properties of the polymer, such as transparency, rigidity and tensile strength 

(MACHADO and PINTO, 2011).  
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Besides tacticity, ZN catalysts have also allowed for control of other 

microstructural (like the molecular weight distribution) and macrostructural (like 

porosity, morphology and particle-size distribution) properties of the polymer material. 

As a consequence, ZN allowed for reduction of the investments and process operation 

costs. 

ZN catalysts have been applied in solution, colloidal or heterogeneous forms to 

produce diverse types of polyolefins. Nevertheless, before the 1980, isotactic crystalline 

polyolefins were produced only through heterogeneous systems. The heterogeneous 

Ziegler-Natta catalyst systems brought important innovations in the manufacture of 

polyolefins such as the synthesis of HDPE, LLDPE and highly isotactic and 

syndiotactic polypropylene. For industrial applications, most Ziegler-Natta catalysts are 

based on titanium salts and aluminum alkyls (HAMIELEC and SOARES, 1996).  

2.4.1 Composition 
A ZN catalyst type is characterized by the combination of metallic compounds 

of two different classes, which are: 

� Transition metal salts in the groups IV and VIII of the periodic table, 

usually titanium, zirconium or vanadium; 

� Organometallic compounds of metals from groups I to III of the periodic 

table, often linked to alkyl groups (typically the metal is aluminum). 

These compounds are called cocatalysts.  

The high reactivity depends on the presence of both catalyst and cocatalyst; in 

the absence of any of them, reaction will not occur. However, when both compounds 

are present, they interact chemically and promote the generation of active centers that 

are efficient enough to lead to stereospecific polymerizations of dienes and α-olefins 

(SEVERN et al., 2005). 

2.4.2 Evolution of Ziegler-Natta Catalysts  
The Ziegler-Natta catalysts were discovered by Karl Ziegler and Giulio Natta in 

the early fifties of the 20th century, in 1953, with the production of PE with high 

molecular weight at low temperatures (50 – 100 °C) and low pressures (10 – 15 atm). 

This polymer was much less branched and presented better mechanical properties, when 

compared with PE resins generated by free-radical polymerization (ODIAN, 2004). This 

discovery generated a patent in november of the same year called ―Process for the 
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synthesis of high molecular poly(ethylene)s‖, causing a revolution in the chemical 

industry, since unexpectedly the polymerization of alkenes became feasible under mild 

conditions, when compared to previous techniques (FRIEBE et al., 2006). 

Exactly 10 years after the discovery of the Ziegler-Natta catalysts, Karl Ziegler 

and Giulio Natta received the Nobel Prize for this achievement. The development of this 

class of catalysts was characterized by distinct stages, classified as new generations of 

Ziegler-Natta catalysts, as summarized in Table 2.2 and Figure 2.8.  

 

 

 

 

 
Table 2.2 – Summary of the evolution of ZN catalysts (+ is high and – is low) (according to 

CERRUTI, 1999)  
 
 

  Innovation Result 

Generation Year Catalyst Co-
Catalyst Support Activity Stereo-

activity Morphology 

1st  
1957 TiCl3 purple 

phases AlEt2Cl   +  

1964  
Lewis 
bases 
added 

 - +  

2nd  1973 TiCl3 purple 
phases at  T   +   

3rd  1980   Activated 
MgCl2 

++  + 

4th  1991 TiCl3 purple 
phases at   T  Silica gel  + - 



  

23 

 
 

Figure 2.8 – Tim
eline of the evolution of coordination catalysts. 
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2.4.2.1 First Generation of ZN Catalysts 

According to CERRUTI (1999), the first generation of ZN catalysts started in 

1957. The first catalyst generation, also known as conventional ZN catalyst, is basically 

formed by solid titanium trichloride (TiCl3) co-crystallized with an aluminum halide 

(AlCl3). This system was generated by reduction of titanium tetrachloride (TiCl4) with 

an organoaluminum compound, as diethylaluminum chloride (DEAC – AlClEt2) or 

triethylaluminum (TEAL – AlEt3). Natta noted that TiCl3 presented polymorphism, 

forming four different crystalline structures (α-hexagonal, β-linear, γ-cubic and δ-

intermediate) and three of them (α, γ, δ) were stereoselective for α-olefin polymers, 

which explains the choice of Natta and Ziegler for TiCl3 (CERRUTI, 1999). In 

comparison with TiCl4, the crystalline forms α and γ of TiCl3 have lower catalytic 

activity. The β structure has low stereospecificity and only produces amorphous 

polymer. On the other hand, the δ structure is the most active crystalline form to 

generate isotactic polypropylene (ODIAN, 2004). Particularly, Natta sought to 

synthesize the catalytic system outside the reaction environment and managed to 

produce TiCl3 by reducing TiCl4 with H2 at high temperatures (SEYMOUR and 

CHENG, 1986). 

The synthesis of crystalline polymers with high configurational regularity from 

polymerization of α-olefins and dienes became possible with the advent of the first 

generation of ZN catalysts. The stereoselectivity of the 1st generation of catalytic 

systems is low, with isotactic levels ranging from 20 to 40 % for polypropylene 

(ODIAN, 2004), which turns indispensable the process step responsible to remove 

atactic fractions from the polymer product. 

The catalyst activity of the 1st ZN generation is also considered low: 

approximately 5 Kg of PP by g of catalyst (SOGA and SHIONO, 1997). According to 

ODIAN (2004), these catalytic systems were inefficient, with less than 1 % of active Ti 

during polymerization. Since the catalytic activity was considerably low, it was 

necessary to purify the polymer in order to remove residual metals through treatment 

with bases or acids (CERRUTI, 1999).   

2.4.2.2 Second Generation of ZN Catalysts 

Since 1964, a Lewis base (internal donor) was added to the catalyst in order to 

improve the polymer stereoregularity. Nevertheless, the increase in stereoregularity, 
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which actually means the increase in isotacticity, did not correspond to a similar 

increase in catalytic activity (CERRUTI, 1999). As a matter of fact, improvement of 

stereoregularity was obtained through poisoning of atactic sites, leading to reduction of 

catalyst activity. 

However, according to CERRUTI (1999), the second ZN generation was really 

initiated in 1973 with the procedure to transform β-TiCl3 in δ-TiCl3 under mild 

temperatures (lower than 100 °C) and in the presence of TiCl4. This innovation was 

responsible to quintuplicate the catalytic activity. The stereospecificity, due to the use of 

internal donors, was also increased to 95 %. This improvement was so significant that 

the removal of atactic fractions from the final polymer became dispensable.  

The second ZN generation was also marked by the new morphology of the 

catalyst particles: they became smaller, due to reduction of temperature from 160 – 200 

°C to 65 °C, and porous, as the result of the catalyst pretreatment with ether in order to 

extract AlCl3. 

2.4.2.3 Third Generation of ZN Catalysts 

In 1960, the Shell company patented a catalyst system for the polymerization of 

propylene which used TiCl4 supported on MgCl2. In 1968, the companies Montecantini 

and Mitsui, independently, patented catalysts prepared from TiCl4, MgCl2 and an 

electron donor, activated by a mixture of trialkylaluminum and a second electron donor. 

In the early 1980s, industrial plants based on this latter type of catalyst started to operate 

(CERRUTI, 1999). 

Some researchers assume that the beginning of 3rd ZN generation occurred in the 

60‘s, while others consider that the 3rd ZN generation was started in the 80‘s 

(CERRUTI, 1999). Regardless, it can be said that the third generation of Ziegler-Natta 

catalyst is characterized by the use of TiCl4 with spherical MgCl2 supports and the use 

of internal and external electron donors simultaneously, with a trialkylaluminum as a 

catalytic system.  

Catalyst supports comprise hydroxides, carbonates, halides, oxides or alkoxides 

of magnesium, manganese, iron, nickel, silicon and cobalt. Some of them originated 

catalyst systems with high activity, but low stereospecificity. However, magnesium 

chloride is able to polymerize propylene with very high stereoregularity (MONJI et al., 

2009). 
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The catalyst support activation was initially performed over long grinding times 

in the presence of a Lewis base, such as ethyl benzoate, which acted as an internal 

electron donor. After activating the support, it was brought into contact with TiCl4 and 

washed with hydrocarbons to remove soluble titanium complexes. During 

polymerization, an external electron donor was added with the aluminum alkyl 

compound (CERRUTI, 1999).  

The usual electron donors include amines, ethers and esters (HUANG and 

REMPEL, 1995). The 3rd ZN generation typically combines ethylbenzoate (EB), as 

internal donor, with EB or para-substituted benzoate as external donor. The internal 

donor is responsible to (SOGA and SHIONO, 1997): prevent the coagulation of MgCl2 

particles during the milling process, enhancing the effective surface area; prevent the 

generation of non-specific sites on the MgCl2 surface, where TiCl4 is supported to 

generate non-stereospecific sites; promote the formation of highly isospecific sites; and 

be replaced by the external electron donors, forming even more isospecific catalyst 

sites. On the other hand, the roles of the external electron donors are: selectively poison 

non-stereospecific catalyst sites; convert non-stereospecific sites into highly isospecific 

sites; convert isospecific sites into even more highly isospecific catalyst sites; and 

enhance the reactivity of the isospecific catalyst sites. 

The third generation of Ziegler-Natta catalysts achieved very high activity 

performance, being capable to produce 300 Kg of PP per g of Ti. Moreover, these 

catalyst systems achieved high isospecificity (92 – 94 %), with atactic content 

approximately between 6 and 10 wt % (CERRUTI, 1999). 

2.4.2.4 Fourth Generation of ZN Catalysts 

In 1977, the extraction process for poorly isotactic content was finally 

eliminated through use of a catalyst system prepared with new donor combination:  

diesters (as internal donor) and silanes (as external donor). This new pair of donors 

(phthalate/alkoxysilane) became part of the fourth generation catalyst, comprising 

TiCl4/ MgCl2/ phthalate and AlE3/ alkoxysilane, and has been employed for the 

industrial production of PP since its discovery.  The 4th ZN generation is capable to 

achieve isospecificity above 98 % (KAMINSKY, 2013). 

Additionally, the 4th generation of Ziegler-Natta catalysts was marked by the 

production of polymers with controlled morphology (WANG et al., 2006). This 
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achievement was possible by using spherical MgCl2 supports and chemical activation 

steps. In this case, MgCl2 and TiCl4 are usually mixed in alcoholic solutions and dried 

in spray-driers, where spherical particles are produced.    

2.4.2.5 Fifth Generation of ZN Catalysts 

Although not unanimously accepted, the fifth ZN generation was born between 

the late 1980s and initial 1990s, when a series of 1,3-diether compounds were proposed 

and used as internal donors (PARODI, 1982). Catalysts prepared with 1,3-diether as 

internal donor present quite high activities (almost two times higher than the activity 

achieved by the 4th ZN generation) and appropriate isospecificity without the use of 

external donors. Moreover, these new catalysts are more sensitive to hydrogen, allowing 

for production of PP with narrower molecular weight distribution (PI around 4), when 

compared with PPs produced with former generations of catalysts. In the following 

years, many researches tried to find new donors that would allow broadening the MWD 

without sacrificing the activity and isospecificity achieved by the fourth ZN generation. 

This eventually led to the development of heteroatom-containing donors (KAMINSKY, 

2013). 

Based on this discussion, several nitrogen-containing external donors were 

introduced. Although these donors led to unique polymer properties, the absence of the 

highest molecular weight tail in the MWD of PP and typical odor problems, among 

others, limited the application of the 5th ZN generation to some special grades. Despite 

that, the fifth and fourth ZN generations are still the most modern catalyst systems 

employed industrially to produce PP (PATERN et al., 2002).  

The catalyst that uses succinate as the internal donor is often classified as a sixth 

generation Ziegler-Natta catalyst. Since the third generation, the evolution of 

heterogeneous Ziegler-Natta catalysts is related to finding new donors, since they can 

modify not only the catalyst activity, but also physical properties of PP, by changing 

isotacticity, MWD and comonomer incorporation. However, it is important to remark 

that the essential catalyst structure is not only influenced by donors, but also by the 

chemical preparation routes. Thus, the seventh generation might appear as the 

combination of new electron donors and new catalyst preparation techniques 

(KAMINSKY, 2013). 
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2.4.2.6 Metallocenes 

Metallocenes constitute a special class of Ziegler-Natta catalysts. Metallocenes 

are organometallic complexes containing a transition metal, from groups IV to VII of 

the periodic table, usually zirconium, titanium or hafnium, bonded to at least one 

aromatic ring, such as cyclopentadienyl (Cp), indenyl (Ind) or fluorenyl (Flu), which 

can be substituted or not by π-type bonds formed by an electron of the transition metal 

and another electron shared by all carbon atoms in the ring (η5). For these complexes to 

act as catalysts, the presence of a cocatalyst is also required and methylaluminoxane 

(MAO) is the most employed cocatalyst nowadays (MARQUES et al., 1998).  

The advent of metallocenes occurred in the early 1950s of the 20th century, when 

KEALEY and PAUSON (1951) and MILLER et al. (1952) synthesized the 

bis(cyclopentadienyl)Fe or ferrocene (Figure 2.9). The structure of ferrocene was 

elucidated in 1952 by WILKINSON et al. (1952). These findings stimulated scientific 

research in the field of organometallic chemistry and, as a result, in 1973, Wilkinson 

and Fischer received the Nobel Prize for their scientific contributions in the field 

(COLLMAN et al., 1987). 

 

 
Figure 2.9 – Ferrocene. 

 

BRESLOW and NEWBURG (1957, 1959) are in the group of the first 

researchers to employ metallocene catalysts in the polymerization of ethylene. They 

used soluble bis(cyclopentadienyl)titanium derivatives as catalysts and alkylaluminums 

as cocatalysts. Several other researchers also followed these footsteps, including Natta. 

Nevertheless, these catalytic systems presented low activities and stabilities to 

polymerize ethylene, synthesizing only low molecular weight polymers. Besides, these 

catalytic systems were not active for polymerization of propylene (HAMIELEC and 

SOARES, 1996).  
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REICHERT and MEYER (1973), using the catalytic system Cp2TiEtCl/AlEtCl2, 

observed that, through the controlled addition of water in the polymerization reactor, it 

becomes possible to considerably increase the activity of reaction due to the formation 

of alkylaluminoxane. This result was confirmed by other experimental tests using 

various catalyst systems and alkylaluminiums.  

Based on experimental evidences, it is believed that aluminoxane acts as an 

alkylating agent, participates in the formation of active sites, prevents the deactivation 

of active sites by bimolecular processes, stabilizes the active species and removes 

impurities (HAMIELEC and SOARES, 1996).  

UEYAMA et al. (1974) reported that an oligomeric alkylaluminoxane 

compound is produced by reacting a trialkylaluminum compound with water, such as 

methylaluminoxane, according with the following reaction: 

 

   (   )       ,     (   )  -        (2.13) 

 

SINN and KAMINSKY (1980) proved that alkylaluminoxane could be used 

directly as cocatalyst, obtaining high reaction activities in the order of 40 ·  106 g PE/ g 

Zr/ h. Furthermore, additional experiments showed that MAO exerts higher influence on 

metallocene activation than other alkylaluminoxanes.  CIHLÁŘ et al. (1978, 1980) 

believed that this high catalytic activity, resulting from use of MAO as cocatalyst, 

occurs because of the significant increase of the propagation rate due to formation of 

aluminate anions. Since then, the use of MAO as cocatalyst has been highly indicated 

for polymerization of olefins.  

This unique discovery led to the development of a new class of metallocene 

catalyst systems / methylaluminoxane, which is nowadays the most promising branch of 

the Ziegler – Natta catalyst family. However, until now, the composition, structure and 

chemical modifications imposed by MAO as a cocatalyst have not been fully elucidated. 

It is known that MAO is a mixture of oligomers of similar composition 

(   (  )  )   (MARQUES et al., 1998). According to GHIOTTO et al. (2013), one 

of the most important characteristics of MAO, responsible to gives its reactivity as a 

catalyst activator, is its trimethylaluminum content.  
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 Although metallocenes present various advantages over conventional ZN 

catalysts (higher activity; more uniform physical properties; narrower MWD; more 

precise and uniform comonomer incorporation; among others), today they find limited 

applications in the polyolefins industry. One of the reasons is the fact that 

polymerizations conducted by metallocenes are carried out in solution, requiring large 

amounts of solvent and preventing the appropriate control of the polymer morphology. 

The polymer is typically obtained as a fine powder after precipitation, which results in 

the increase of the system viscosity and causes significant reactor fouling. Besides, the 

high cocatalyst/ metallocene ratios required impose high operational costs and generate 

metallic residues in the polymer mass that must be removed (MARQUES et al., 1998). 

For industrial applications, metallocene catalysts must be heterogenized (ALT, 

1999). As an attempt to respond to this fundamental requirement, metallocenes have 

been supported on a variety of inorganic and organic compounds, such as SiO2, MgCl2, 

Al2O3, MgF2 and CaF2 (HAMIELEC and SOARES, 1996). However, this constitutes a 

big challenge, since heterogenization usually causes significant loss of catalyst activity, 

when compared with the homogeneous metallocenes.  

In 1990, Exxon started the commercialization of its EXACT LLDPE resin, made 

through metallocene/single-site technology. In the early 90s, Dow claimed to take 

single-site technology a step further, through enhancement of the physical properties. 

The strategy adopted by Dow was to avoid the falloff in processability that occurs 

because of the low polydispersity of the polymer (low PI) and the absence of the lower-

molecular weight ―tails‖ of the MWD. This strategy was possible through employment 

of a constrained-geometry catalyst (CGC) technology in a solution process that was 

capable to sustain the polymer processability through generation of long-chain branches 

(LCB). This occurs through incorporation of macromolecules by a constrained 

geometry ligand attached to a transition metal center (PAUL, 2015).  

2.4.2.6.1 A Special Metallocene Class: Constrained Geometry Catalysts (CGC) 

The constrained geometry catalyst is also known as the monocyclopentadienyl 

catalyst or the half sandwich.  Figure 2.10 illustrates an example of a CGC. The absence 

of a second cyclopentadienyl ring facilitates the access of the active site to bulkier α-

olefin comonomers. Consequently, polymer chains with a terminal vinyl group 

(SOARES, 2002) or pendant unsaturations (FERREIRA et al., 2010), known as 
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macromonomers or macromers (WANG et al., 1998), can be copolymerized with 

ethylene and other α-olefins to form LCBs (SOARES and HAMIELEC, 1996).  

 

 
Figure 2.10 – Example of constrained geometry catalyst (CGC). 

 

The low frequency of long-chain branches in the polyolefin chains synthesized 

with the CGC partially compensates the absence of low-molecular-weight components, 

increasing shear thinning, enhancing processability and improving melt elasticity of the 

material (SOARES and MCKENNA, 2012). Furthermore, these polymers continue to 

present narrow molecular weight distributions and uniform comonomer composition 

distributions, as those made by regular metallocenes.  

2.4.2.6.1.1 Polymerization of Ethylene 

LAI et al. (1993a,b) were the pioneers to synthesize PEs with long-chain 

branches using a constrained geometry catalyst at high-temperature homogeneous 

CSTR. The advantages of high-temperature homogeneous CSTR processes for long-

chain branches include the high concentration and low diffusion barrier of 

macromonomers in the polymerization medium (SOARES and HAMIELEC, 1996). 

SWOGGER and KAO (1993) and SUGAWARA (1994) applied the procedure 

proposed by Lai and coworkers and produced polyethylenes with various branching 

degrees. WANG et al. (1998) produced polyethylenes with LCBs in a high-pressure and 

high-temperature CSTR system. The same group characterized LCB PEs and linear PEs 

prepared with the CGC through gel permeation chromatography (GPC) coupled with 

laser light scattering (LS), differential refractive index (DRI) and viscosity (CV) 

detectors. Using the Zimm-Stockmayer equation (ZIMM and STOCKMAYER, 1949), 

they could estimate the distributions of long-chain branch frequency (LCBF) and 

density (LCBD) as functions of the molecular weight of the chain. The authors showed 
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that LCBDF increased with the increase of molecular mass. While LCB affected the 

viscosity of the system, it did not improve the processing characteristics of the resin 

(WANG et al., 2004). 

BEIGZADEH et al. (1999) polymerized ethylene with a mixture of two catalysts 

in a semi-batch reactor. One catalyst was a CGC, able to polymerize monomers and 

macromonomers, incorporating LCBs, while the second catalyst (regular metallocene) 

could only polymerize monomers and generate macromonomers. The combination 

selected was: CGC-Ti/Et[Ind]2ZrCl2. The authors showed that an optimum ratio of 

CGC-Ti/Et[Ind]2ZrCl2 can be found to maximize the amount of LCB of the formed PE. 

YOUNG and MA (2002) investigated the kinetics of ethylene polymerization 

with CGC. They reported that the increase of monomer concentration caused the 

increase of the polymer yield and that the MAO/CGC ratio did not influence the 

polymer yield significantly.  

MEHDIABADI and SOARES (2009) studied the polymerization of ethylene in 

a semi-batch reactor at 120 °C under distinct monomer pressures and catalyst 

concentrations. Two different types of catalysts were used: rac-Et(Ind)2ZrCl2 and CGC-

Ti, both activated by MAO. The authors described the kinetics of ethylene 

polymerizations performed with rac-Et(Ind)2ZrCl2 as a first order polymerization, in 

presence of catalyst deactivation. On the other hand, with the CGC-Ti the authors 

observed second order polymerization kinetics, in presence of catalyst decay. Three 

years later, the same authors investigated the influence of ethylene concentration, 

temperature, MAO and catalyst concentrations on ethylene polymerization kinetics 

performed with the CGC-Ti and proposed a novel mathematical model to explain the 

polymerization kinetics and molecular weight response. They proposed the occurrence 

of reversible activation and deactivation steps with MAO and spontaneous thermal 

deactivation of the catalyst for the model to be able to capture the measured 

polymerization rates (MEHDIABADI and SOARES, 2012). 

2.4.2.6.1.2 Copolymerization of Ethylene with α-Olefins 

SOGA et al. (1996) and XU and RUCKENSTEIN (1998) produced ethylene/1-

octene copolymers using CGC catalysts activated with MAO. SOGA et al. (1996) also 

copolymerized ethylene with oligoethylene. Several studies on copolymerization of 

ethylene/propylene with CGC have been published (WANG et al., 2004; KOLODKA et 
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al., 2002; KOLODKA et al., 2003; GALIMBERTI et al., 1999; SOGA et al., 1991; 

SOGA et al., 1994). Particularly, WANG and ZHU (2000) studied the chain structures 

of ethylene/propylene copolymers made in solution in a CSTR and using CGC. The 

authors observed that the increase of propylene feed composition increased the 

sequences of one and two methylene units and decreased the sequences of six and more 

consecutive methylene units. On the other hand, they also observed that the 

uninterrupted methylene sequence distributions did not suffer much influence from 

reaction temperature. In another work, the same group produced ethylene/propylene 

copolymers with low propylene ratios with CGC and rac-Et(Ind)2ZrCl2 (EBI). The 

authors concluded that CGC was more active for propylene incorporation than EBI and 

that LCB were formed through terminal vinyl macromonomer incorporation (WANG et 

al., 2000). GALIMBERTI et al. (1999) performed ethylene/propene copolymerizations 

in solution using a single centre catalyst system (CGC titanium dichloride) and MAO. 

The authors determined the reactivity ratios for ethene and propene based on rigorous 

statistical treatment of the polymerization data and concluded that this catalyst system 

promoted an almost random distribution of ethene and propene in the chains, providing 

similar reactivity ratios for both monomers, which is unusual. 

2.4.2.6.1.3 Copolymerization of Ethylene with Diene 

Despite the successful production of branched polyolefins with CGCs, the 

fraction of LCBs in these polymers is usually quite low (NELE et al., 2003; WANG et 

al., 1998). It is hard to increase the LCB frequency in these polymers because each 

macromonomer has only one branching point – a terminal vinyl group, which 

substantially reduces the probability of LCB formation in high molecular weight 

polymers. For this reason, some chemical routes used to increase the LCB frequency in 

polyolefins under mild polymerization conditions have been devised. One of them 

involves the simultaneous use of two metallocenes (BEIGZADEH et al., 1999, 2001; 

SIMON and SOARES, 2002; MEHDIABADI et al., 2008). Another strategy is to 

copolymerize an α-olefin and a non-conjugated diene with a metallocene (SERNETZ et 

al., 1997; NAGA and TOYOTA, 2004; SARZOTTI et al., 2005; MEHDIABADI and 

SOARES, 2011). In this case, only one double bond of the diene participates in the 

copolymerization reaction, producing polymer backbones with pendant double bonds. 

These unreacted double bonds can then be used to attach functional groups, form LCBs 

or build cyclic structures (PIETIKÄINEN et al., 1999). Besides, these strategies open 
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possibilities for the development of new products with improved mechanical properties 

and processability.  

Despite the previous discussion, dienes do not have the same efficiency for 

induction of LCBs. The use of 1,5-hexadiene, for example, generates five-carbon rings 

in the polymer chains and does not form any considerable amount of coupling between 

two distinct polymer chains (PIETIKÄINEN et al., 1999). Longer dienes are less 

vulnerable to cyclization. For instance, the use of 1,9-decadiene generates LCBs without 

producing cycles that can be detected by nuclear-magnetic resonance (NMR) analyses 

(UOZUMI et al., 2000). 

NAGA and TOYOTA (2004) investigated the copolymerization of ethylene and 

1,7-octadiene (OD) with a CGC and found a unique insertion mode of OD units in the 

penultimate position, after the ethene insertion step, forming a cyclic structure (1,5-

disubstituted cyclononane unit). SARZOTTI et al. (2005) copolymerized ethylene with 

1,7-octadiene using CGC/MAO. They reported that the vinyl content of the copolymers 

increased when the concentration of diene in the reactor was increased. They also 

observed that more LCBs were formed due to the incorporation of macromonomers 

with pendant or terminal vinyl groups.  

MEHDIABADI and SOARES (2011) produced ethylene/ α-olefin/ 1,9-

decadiene copolymers, using rac-Et(Ind)2ZrCl2 (EBI) in a first polymerization step and 

CGC-Ti in a second polymerization step. With EBI, macromonomers with pendant and 

terminal vinyl groups were generated and copolymerized with ethylene and 1-butene or 

1-octene using a CGC-Ti. This procedure allowed for production of branched polymers 

containing three main fractions: high-crystallinity fractions (macromers), low-

crystallinity or amorphous fractions (α-olefin copolymer) and a cross-product (cross-

linking of the two previous fractions). 

BRANDAO et al. (2016) produced ethylene/ 1,9-decadiene copolymers under 

semi-batch operation using a CGC catalyst. The authors showed that the increase of the 

1,9-decadiene content in the feed caused the decrease of the intrinsic viscosity (for the 

same molecular weight), since additional LCBs were formed. According with their 

experimental results, the use of higher catalyst concentrations led to higher 

concentrations of living polymer chains and macromonomers, increasing the probability 

of LCB formation. They proposed a novel mathematical model, which included 

macromonomer reincorporation through pendant double bonds resulting from the diene 
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incorporation. Experimental average molecular weights and ethylene feed flow rates 

were successfully predicted with help of the proposed model. 

2.4.2.7 Post-metallocenes 

Even after 50 years of the discovery of the Ziegler-Natta catalysts, the evolution 

of these catalysts continues nowadays.  There is the commercial desire to design and 

produce polymers with well-defined properties through selective choice of the initiator, 

including branched, hyperbranched and block polymers, for example. Additionally, 

commercial interests require the continuing search for new initiators that have not yet 

been patented (ODIAN, 2004).  

In 1995, Brookhart and coworkers reported a new family of late transition metal 

catalysts with unique chain architectures and capable to polymerize α-olefins, producing 

dendritic polymers (with includes dendrimers and hyperbranched polymers) (DONG 

and YE, 2012). These catalysts are much less oxophilic than conventional Ziegler-Natta, 

Phillips or metallocene catalysts, allowing the copolymerization of olefins with polar 

comonomers. In this new catalyst group, Ni(II) (JOHSON et al., 1995; KILLIAN et al., 

1996), Co(II) (BROOKHART et al., 1995), Pd(II) (JOHSON et al., 1995; RIX and 

BROOKHART, 1995) and Fe(II) (SMALL and BROOKHART, 1998) are very active 

for polymerization of olefins (Figure 2.11). This discovery opened new possibilities to 

produce polyolefins with short- and long-chain branches simultaneously (BRITOVSEK 

et al., 2003). Additionally, these catalysts can also be used to synthesize diblock and 

triblock poly(α-olefins) (KILLIAN et al., 1996).  

 

 
Figure 2.11 – Iron based catalyst for oligomerization of ethylene to linear α-olefins (R = Me, Et, i-

Pr). 
 

In 2004, Dow, in partnership with Symyx Techonologies, launched the 

plastomers and elastomers VERSIFYTM, which constitute a new family of copolymers 

based on ethylene and propylene, produced with a new post-metallocene system called 
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pyridyl amine catalyst (STEVENS and VANDERLENDE, 2005; TAU et al., 2005). 

Plastomers and elastomers VERSIFYTM present very narrow molecular weight 

distributions and broad chemical composition distributions, when compared to materials 

produced by other single-site catalysts. These new polymers present higher transparency 

and are easier to process than the analogous ethylene based polymers.   

In 2006, Dow announced a new family of block copolymers based on ethylene 

and octene: INFUSETM. In order to produce this new polymer, two catalysts must be 

employed: one forms high density PE with high melting point, while the other generates 

elastomers with high octene incorporation. An external agent (diethyl zinc) is 

responsible for switching the catalyst systems while the polymer chain is growing 

(CHUM and SWOGGER, 2008). 

2.5 Kinetic Studies on Olefin Polymerizations Performed with 
Metallocenes 

The knowledge of the polymerization kinetics is essential for process scale-up 

and optimization. It is also important for development of new products with novel 

properties (MEHDIABADI and SOARES, 2009). Intense experimental investigations 

have been made about olefin homo- and copolymerizations with metallocenes. 

Consequently, studies were done to understand the polymerization kinetics of these 

systems and mechanisms were proposed as attempts to explain the collected 

experimental results. In these works, some proposed reaction steps are common and for 

this reason will be described in the next sections. 

2.5.1 Catalyst Activation 
The activation mechanism has not been clearly established. The need to use high 

excess of MAO and its role during polymerization are not well understood (MANDAL, 

2013). MAO performs two main functions: alkylation of a metal-chloride bond and 

abstraction of the second chloride, to yield a metallocenium cation with a vacant 

coordination site (ODIAN, 2004): 
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Figure 2.12 – Activation mechanism of Ti metallocene precatalyst (adapted from ODIAN, 2004). 

  

The mechanism illustrated in Figure 2.12 can be summarized as shown in 

Equation (2.14): 

 

     
            →       (2.14) 

 

Usually, the catalyst activation step is assumed to be very fast and to occur 

instantaneously, especially for CGC catalysts of high activity. This hypothesis has been 

adopted in many works: WANG et al. (1998), NELE and SOARES (2002), SOARES 

(2002), MEHDIABADI and SOARES (2009), FERREIRA Jr. et al. (2010), 

MOGILICHARLA et al. (2014), KONSTANTINOV et al. (2016).  

2.5.2 Chain Initiation 
The chain initiation step is characterized by the first monomer insertion, 

producing a living polymer chain with length 1 (   ) as shown in Figure 2.13.  

 

 
Figure 2.13 – Chain initiation mechanism using a Ti metallocene catalyst (adapted from ODIAN, 

2004). 
 

2.5.3 Monomer Propagation 
Monomer propagation consists of successive monomer insertions into the living 

and growing polymer chain, increasing its length to 2, 3, …, r until a chain transfer 

reaction occurs or the catalyst active site deactivates, as illustrated in Figure 2.14.  
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Figure 2.14 – Monomer propagation mechanism using a Ti metallocene catalyst (adapted from 

ODIAN, 2004). 

 

2.5.4 Chain Transfer Reactions 
Chain transfer reactions control the polymer average molecular weights and can 

occur spontaneously through transfer to hydrogen, monomer, cocatalyst and through β-

hydride elimination.  

2.5.4.1 Chain Transfer to Hydrogen 

Hydrogen is the chain transfer agent used most often during olefin 

polymerization, since metallocene and late transition metal catalysts are normally very 

sensitive to hydrogen (SOARES and HAMIELEC, 2012). Chain transfer to hydrogen is 

illustrated in Figure 2.15:   

 

 
Figure 2.15 – Chain transfer to hydrogen (adapted from ODIAN, 2004). 

 
The metal hydride site generated after transfer to hydrogen may also initiate 

other growing chain, according to the mechanism shown in Figure 2.16. The active 

species from Figure 2.16 differs from the active species in Figure 2.13 because of the 
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hydrogen atom placed at the chain end. This slight difference can be associated to the 

decrease in the overall ethylene polymerization rate that is normally observed in the 

presence of hydrogen (SOARES and HAMIELEC, 2012).  

 

 
Figure 2.16 – Initiation of a metal hydride site (adapted from ODIAN, 2004). 

 

2.5.4.2 Chain Transfer to Monomer 

In the case of ethylene polymerization, chain transfer to ethylene forms a dead 

chain containing a terminal unsaturation (a vinyl-terminated chain) and a living chain 

with length 1, as one can see in Figure 2.17. 

 

 
Figure 2.17 – Chain transfer to ethylene (adapted from ODIAN, 2004). 

 

2.5.4.3 Chain Transfer to Cocatalyst 

The cocatalyst can also act as a chain transfer agent, according to the mechanism 

illustrated in Figure 2.18. 
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Figure 2.18 – Chain transfer to cocatalyst (adapted from ODIAN, 2004). 

 

2.5.4.4 Spontaneous Transfer  

β-Hydride elimination, usually called spontaneous transfer, forms a vinyl-

terminated chain, in ethylene polymerizations, as shown in Figure 2.19. For propylene 

polymerizations, after spontaneous transfer, a vinylidine-terminated chain is generated.  

 

 

Figure 2.19 – β-Hydride elimination (adapted from ODIAN, 2004). 

 

2.5.5 Catalyst Deactivation 
After yielding a maximum polymerization activity, most coordination catalysts 

deactivate, following a dynamic deactivation profile that depends on catalyst type, 

polymerization temperature and levels of impurities present in the reaction medium.  

WANG et al. (1998) concluded that a first order catalyst decay was not appropriate to 

predict the results obtained from ethylene homopolymerizations performed with CGC in 

a CSTR. MEHDIABADI and SOARES (2009) concluded that the catalyst decay in 

polymerizations of ethylene performed with CGC-Ti catalyst and MAO could be 

described by a second order kinetics, while the order of polymerization changed from 2 

to 1 with the increase of ethylene pressure. In other work, MEHDIABADI and 
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SOARES (2012) proposed the occurrence of reversible activation and deactivation steps 

with MAO with the simultaneous thermal deactivation of the catalyst to explain their 

experimental results, obtained during ethylene polymerizations carried out with CGC in 

a semi-batch reactor.  Recently, BRANDÃO et al. (2016) successfully used a second 

order deactivation step to explain how living chains deactivate in ethylene 

polymerizations performed with CGC-Ti and MAO under semi-batch mode operation.  

2.6 Concluding Remarks 
Based on the information provided in Chapter 2, it can be said that the presence 

of long-chain branches in the polymer backbone may be desired since it can affect the 

polymer processing properties considerably, improving melt strength and melt 

processability of polymers with narrow PI, making these polymers very attractive 

commercially.  

Given the positive effects that LCB cause on rheology, processability and 

mechanical properties of a polymer resin, many studies have been done to understand 

the mechanism responsible to form LCBs. As shown in this chapter, the mechanism 

most widely accepted is terminal branching, which was extended to include the 

incorporation of the macromonomer through pendant double bonds.  

It can also be said that the evolution of the Ziegler-Natta catalysts did not stop 

until nowadays. The commercial desire to design and produce polymers with well-

defined properties is one of the reasons that stimulate the search for new catalyst types. 
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3 Deterministic Numerical Methods 

3.1 Summary 
This chapter presents an overview of some deterministic numerical procedures 

used for model solving. Herein, the method of moments and MWD interpolation 

methods, such as the Orthogonal Collocation method and Polynomial Approximations 

based on the Moments of the Distributions, are described.  

In order to illustrate the central idea of each method, a simple example can be 

proposed based on a simple living polymerization scheme: 

 

 
            →       (          ) 

    
              
→          (          ) 

     
              
→              (           ) 

 

The material balance equations for the species present in the proposed 

mechanism can be written as: 

 

   ( )      (     ) (3.1) 

    ( )  (      (     )) (3.2) 

  
  

   (3.3) 

    

  
      

 
 
  (

  

 
 
   

 
) (3.4) 

    

  
      

 
 
   (

     

 
 
   

 
) (3.5) 

 

 In this example, the monomer concentration is kept constant during the 

polymerization, as the monomer is supplied on demand to maintain the constant reactor 

pressure. The only distributed species in this proposed example is the living chain    , 

which can have length ranging from unity to infinity (or a large natural number). 
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Thus, the most difficult problem associated with the solution of the EDO system 

is the balance of species    , since   (   ). Even if infinity is limited to a feasible 

sufficiently large natural number (for example, 300000), the CPU time required to 

numerically integrate the equations using traditional ODE solvers, such as Runge-Kutta 

(CARTWRIGHT and PIRO, 1992), BDF (Backward differentiation formula) 

(PETZOLD, 1982), among others, would be impracticable. Therefore, in order to avoid 

solving infinite balance equations, which actually is impossible, strategies were 

developed to overcome this limitation and each method will deal with this problem in 

some peculiar manner. Among the deterministic approaches, one can emphasize the 

relevance of the method of moments and the methods that propose functional 

approximations of the MWD. For MWD approximation, the orthogonal collocation 

method and polynomial approximations based on moments of the distribution are 

described here. In Chapter 7 these methods will be applied to more complex cases that 

were investigated in this thesis both theoretically and experimentally. 

3.2 Method of Moments 
The method of moments allows for resolution of a finite number of balance 

equations, instead of the originally infinite set of balance equations that constitute the 

original problem. As previously described in Section 2.1.1, the distribution of sizes 

 ( ), where  ( ) is the number of chains of size  , can be interpreted as a statistical 

distribution (after normalization). Thus, one way to characterize this distribution is 

through its moments. For simple models, the model can be rearranged in terms of the 

moments of the distribution, making the implementation and simulation relatively 

simple. Usually, the first three moments are regarded as the most important ones, since 

the number and weight average molecular weights (and, consequently, the 

polydispersity index) can be calculated with them, as described in Section 2.1.1 

(GALVAN and TIRREL, 1986).  

For the example represented in Section 3.1, the balance equations for    , with 

  (   ), can be replaced by the following set of equations (derivation in Appendix 

A): 

 
   
  

      
 
 
  (

  

 
) (3.6) 
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    (3.7) 

   
  

      
 
 
 (      )       

 
 
 (       ) (3.8) 

 

When the polymerization mechanism leads to moment closure problems, when 

the ith–moment balance equation requires the definition of the (i+1)th moments, the 

balance equation cannot be solved, unless one can propose the use of a closure method. 

HULBURT and KATZ (1964) developed a closure method that can be written in the 

form of algebraic expressions, using a distribution approximation procedure.3 This 

approach has been applied successfully to eliminate closure problems in many different 

polymerization systems (PLADIS and KIPARISSIDES, 1998; IEDEMA and 

HOEFSLOOT, 2002; BRANDOLIN et al., 2007; BRANDÃO et al., 2016). 

3.3  MWD Approximation Functions 
The obtainment of molecular weight distributions through numerical solution of 

mathematical models is essential when one investigates nonlinear polymerizations. In 

these cases, the MWD may present multimodalities or high molecular weight tails and, 

consequently, molecular average weights may not be representative of the resin 

characteristics (NELE and SOARES, 2003; SAYER et al., 2001).  

The calculation of distributions as described by mechanistic models constitutes a 

hard task, since the computation of these distributions is characterized by the solution of 

an infinite number of nonlinear differential-difference equations, turning the reduction 

of the dimension of these models fundamental for the study of the system dynamics and 

for optimization analyses (PINTO and BISCAIA Jr., 1988; NELE et al., 1999). 

Order reduction techniques that preserve the discrete nature of the original 

system usually belong to the family of discrete weighted residual methods (DWRMs) 

(CANU and RAY, 1991). One of the best known methods from this group is orthogonal 

collocation. This method approximates the dependent variables by polynomial functions 

                                                 
3The closure expressions for   ,    and    were obtained as approximate algebraic equations in the form (IEDEMA and 

HOEFSLOOT, 2002):     
  

    
(         ),    

 (          )(                     )
      

, 

     (                                                           )
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of the independent variables, so that the equations must be satisfied at certain 

interpolation points called collocation points. These points are the roots of a certain 

family of orthogonal polynomials (PINTO and BISCAIA Jr., 1988).  Comprehensive 

discussions regarding this method can be found in VILLADSEN and MICHELSEN 

(1978) and FINLAYSON (1981a; 1981b).  

Many workers have employed orthogonal collocation methods to different 

chemical engineering processes. WONG and LUUS (1980) were the first to use 

orthogonal collocation procedures for order reduction and solution of discrete models 

used to describe staged separation systems. STEWART et al. (1985) proved that better 

and more reliable reduced models can be obtained through discrete orthogonal 

polynomials. PINTO and BISCAIA (1988) also employed orthogonal collocation to 

solve models of discrete staged separation systems. ALVAREZ and ALVAREZ (1987; 

1989) used collocation methods to solve summation-difference equations. Particularly, 

the authors applied employed examples of staged processes and polymerization reactors 

to illustrate the technique. CANU and RAY (1991) reviewed the basic concepts of 

DWRMs and highlighted the relative advantages of the collocation and Galerkin 

formulations. The authors applied DWRM to simulate discrete chain length 

distributions in polymerization reaction problems. RIBEIRO et al. (2015) presented a 

technique to reduce the order of staged separation systems based on the sum of 

moment-weighted residuals. The performance of the classical method of orthogonal 

collocation on a discrete domain was compared with the performance of the proposed 

technique, and the last method was shown to present better performance for the 

investigated cases.  The authors showed that the points where the residuals are canceled 

are fixed in the orthogonal collocation method, while the proposed technique would 

lead to moving interpolation points, providing an adaptive characteristic to the proposed 

technique. 

Despite the successful applications in a large number of problems, some 

questions remain unanswered, regarding how one should select weighting functions and 

how the approximation function should be designed. PINTO and BISCAIA (1996) 

improved the robustness of polynomial approximation techniques by proposing a 

complete adaptation procedure; in other words, the authors employed the approximate 

solution as the new weighting function during the iterative numerical scheme. Thus, the 

weighting function was continuously updated, allowing to incorporate instantaneous 
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changes of the MWD. This new approach avoided some of the pitfalls of classical 

orthogonal collocation methods. NELE et al. (1999) and SAYER et al. (2001) applied 

the adaptive orthogonal collocation technique to successfully compute MWDs in 

nonlinear polymerization reactions, reinforcing the appropriateness of the proposed 

approach. 

3.3.1 Orthogonal Collocation Method 
Consider the initial boundary condition problem: 

 

  
  

  ( (   )  )          (   )     (3.9) 

 

The basic idea behind discrete weighted residual methods is the proposal of an 

approximating function  ̃(   ) to represent the sought solution  (   ). Assuming that 

 ̃(   ) is the proposed approximation in Equation (3.9), a function called residue   can 

be obtained. 

 

 (   )  
  ̃(   )
  

  ( ̃(   )  ) (3.10) 

 

If the approximation  ̃(   ) is exact, the residue is identically equal to zero at all 

points of the analyzed interval, which obviously does not demand a numerical solution. 

A typical function used as the approximating function for  ̃(   ) is: 

 

 ̃(   )   ( )  ∑  ( )    ( )
 

   

 (3.11) 

 

where  ( ) is a reference or weighting function.  ( ) is a strictly positive function, 

summable over the whole analyzed interval.   ( )     (   ) are the coefficients that 

must be determined to achieve the best approximation  ̃(   ) of  (   ) and   ( )     

(   ) are the Lagrange interpolating polynomials, defined in the form of Equation 

(3.12), with the properties defined in Equation (3.13): 
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  ( )  ∏
    
     

 

   
   

 (3.12) 

  (  )  {              
               (3.13) 

 

where            are the nodal interpolation points.  

One possible way to improve the accuracy of proposed solution  ̃(   ) is to 

choose nodal points        (   ), as roots of a certain orthogonal polynomial of order 

 , considering the reference function  ( ) as the weighting function (PINTO and 

BISCAIA Jr., 1988). 

The reference function  ( ) should be as close as possible to the true solution 

 (   ) in order to improve the accuracy of the method (PINTO and BISCAIA Jr., 1988). 

The polynomial coefficients can be calculated by making the residues at each 

collocation point            is equal to zero; in other words, by obliging the 

approximate equation to be satisfied at the nodal interpolation points. So: 

 

 (    )    

  ̃(    )
  

  ( ̃(    )  ) 
     (   ) (3.14) 

 

Inserting Equation (3.11) into Equation (3.14): 

 

 (  )  
 (∑   ( )    (  ) 

   )
  

  ( ̃(    )  )      (   ) (3.15) 

 

As ∑   ( )    (  ) 
      ( ), due to the fundamental property of Lagrange 

interpolating polynomials, when applied to the nodal points and defined in Equation 

(3.13), Equation (3.15) becomes: 

 

   ( )
  

 
 ( (  )    ( )  )

 (  )
            (   )  (3.16) 

 

Hence, Equation (3.16) leads to a system of   differential equations. One should 

note that, by making the residual null at all nodal points, the functions to be integrated 
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in time are the coefficients   ( )     (   ) of the proposed approximation. The 

numerical procedure implemented to calculate the nodal points is presented in Appendix 

A. 

When this methodology is applied to the example shown in the beginning of this 

chapter, the living chains     can be approximated as: 

 

     (   )   (   )∑  ( )    (   )
 

   

 (3.17) 

 

But if one considers the values of     only at the nodal points, Equation (3.17) 

becomes: 

 

 (    )   (    )∑  ( )    (    )
 

   

 (3.18) 

 

Inserting Equation (3.18) into Equations (3.4) and (3.5), the following equations 

can be obtained: 
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(3.19) 

   ( )
  

     
 
 
,
[ (      )∑   ( )  (      ) 

   ]
 

 
[ (    )  ( )]

 
-  (3.20) 

 

where j ranges from 2 to N. 

As commented before, the reference function  ( ) should be as close as possible 

to the true distribution in order to improve the precision of the solution. As the 

investigation regards the application of the adaptive orthogonal collocation method in 
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polymerization problems, the reference function is frequently admitted to be the Flory 

distribution, which depends on the parameter  , calculated as: 

 

  (     )   ⁄

 ( )  (   )[ (   )]
(      ) (3.21) 

  

The ODE system (Equations (3.19) and (3.20)) must be integrated in time 

interval ,     -, resulting in new values for    (       ). Thus, if |  (  )    (  )|  

        (   ), the collocation points, Lagrange polynomial, reference function and 

coefficients    have to be updated. The assumption is that the MWD (and, therefore, the 

approximating coefficients) should not be allowed to vary too much before adaptation, 

to keep the numerical approximation sufficiently accurate. 

Possible ways to update the reference function includes (i) update parameters of 

the weighting function (admitted to be the distribution of Flory); or (ii) take the 

distribution calculated so far as the new reference function (leading to the complete 

adaptive orthogonal collocation procedure). Thus: 

 

   
  ( )    ( )

  ( )
  ( )  (    )0  (   )1

(             ( ) 
                                               ) 

or 

  ( )   ( )  ∑  ( )    ( )
 

   

   (             (  ) 
                                  ) 

 

Obviously, if one believes that the Flory distribution is not appropriate (and in 

this problem it is not, because the known analytical solution is the Poisson distribution 

(HINES et al., 2003)), then alternative (ii) should be chosen.  In practice, a usual 

procedure is to define some critical time    below which alternative (i) is chosen, and 

above which alternative (ii) is selected. 

Even so, regardless whether either alternative (i) or alternative (ii) has been 

chosen, every time the reference function is updated, new nodal points must be 
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calculated, also imposing the adaptation of the approximation coefficients in the form of 

Equation (3.22). 

 

    
 (   )∑     (   ) 

   

  (   )
 (3.22) 

 

When alternative (ii) is chosen, the new coefficients will naturally be equal to 1 

at the new nodal points, i.e.,    ( )         (   ), since the new approximating 

function must coincide with the old approximating function at the new nodal points: 

 

 ̃ (     )   ̃(     ) 

  (     )   (     ) 

  (   )  ∑   ( )     (   )
 

   

  (   )  ∑  ( )    (   )
 

   

 

  (   )     ( )   (   )  ∑  ( )    (   )
 

   ⏟                
  (  

 )

 

   ( )    

(3.23) 

 

After calculating the new nodal points, coefficients and reference function, they 

become the new state variables (      (   )): 

 

       (3.24) 

       (3.25) 

  (  )    (  ) (3.26) 

* The reference function just need to be calculated at nodal points 

 

Then, Equations (3.19) and (3.20) can be integrated again along the next time 

interval ,     -. If |  (  )    (  )|          (   ), then nodal points, reference 

function and coefficients should be updated once more. The process must be repeated 

until the simulation reaches the final polymerization time. An algorithm for this 

numerical procedure is presented in Figure 3.1. 
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 Figure 3.1 – Flowchart of the complete adaptive orthogonal collocation procedure. 

 

3.3.2 Polynomial Approximation based on the Moments of the Distributions 
When the polymerization mechanism does not lead to moment closure problems, 

the MWD can be calculated with the reference integration collocation procedure based 

on the moments of the distributions (NELE et al., 1999).  

The true distribution  ( ) is unknown. Then, according to this method, the 

approximation for  ( ) can be written as:  

 

 ( )   ( )  ∑       
 

   

 (3.27) 

 

Again, the reference function  ( ) should be as close as possible to the true 

solution for improved accuracy. However, since the true solution is unknown, it is usual 

to admit that  ( ) follows a classical analytical distribution, such as the Schultz-Flory 

distribution function (Equation (3.21)).  
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The moment equations of the living chains are represented by Equations (3.6) to 

(3.8). Expanding    according to its definition, as shown in Equation (3.27), the 

following expressing can be obtained: 

 

   ∑    ( )
 

   

 ∑   (  ( )∑      
 

   

)  ∑  

 

   

 

   

 ∑         ( )
 

   

 (3.28) 

 

In Equation (3.28), the inner sum is nothing more than the moment of order 

      of the reference function  ( ): 

 

  (     )  ∑ ( )   (     )
 

   

 (3.29) 

 

Then, the moment of order   of  ( ) can be written as: 
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  (     )  (3.30) 

 

Writing Equation (3.30) for the first     moments of the distribution: 

 

[
 
 
 
 
            
          
            
    

                ]
 
 
 
 

⏟                  
  

 

[
 
 
 
 
  
  
  
 
  ]

 
 
 
 

⏟
 

 

[
 
 
 
 
  
  
  
 

    ]
 
 
 
 

⏟  
 

 (3.31) 

 

which can be written in matrix form as: 

 

       (3.32) 

 

Now, as previously seen in Section 3.2, the method of moments can also be 

applied to allow for computation of moments for both the reference function  ( ) and 
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the proposed approximation  ( ). With the obtained solution, one can compute the 

coefficients   as:  

 

        (3.33) 

 

For better comprehension of the method, let the moments be defined in the 

proposed example as: 
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 (3.34) 

 

Selecting four moments to be used in the polynomial approximation (N = 4), an 

additional expression for the third moment is needed, as described in Equations (3.6) to 

(3.8). 

 
   
  

      
 
 
         

 
 
 (          ) (3.35) 

 

Thus, after integrating the EDO system comprising Equations (3.6) to (3.8) and 

Equation (3.35) until the final polymerization time   , the first four moments of the 

distribution will be known at   . Then, the Flory coefficient q can be calculated as: 

 

  
     
  

 (3.36) 

 

Finally, matrix    can be build as shown in the following equation: 
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Then matrix    is inverted, originating matrix     . The polynomial coefficients 

are then calculated with Equation (3.33). Finally, the full MWD can be calculated by 

using Equation (3.27). 

3.4 Deterministic Methods Applied in Coordination Polymerization 
Problems with LCB 

Several works dedicated efforts to understand how LCBs are formed in ethylene 

and propylene homopolymerizations (HAMIELEC and SOARES, 1997; BEIGZADEH 

et al., 1999; YIANNOULAKIS et al., 2000; IEDEMA et al., 2004a, 2004b; 

MEHDIABADI and SOARES, 2012; MOGILICHARLA et al., 2014). 

YIANNOULAKIS et al. (2000) developed a dynamic model for calculation of the 

molecular weight and long chain branching distributions in ethylene polymerizations 

performed with metallocene catalyst. The authors used a numerical fractionation 

method (PLADIS and KIPARISSIDES, 1998) to simulate the MWD of the branched 

polymer. The numerical fractionation method assumes that the final MWD is the sum of 

the MWD produced at each time interval, weighted by the respective polymer yields. 

However, the MWD is computed with help of analytical approximate solutions at each 

time interval (TEYMOUR and CAMPBELL, 1994). IEDEMA et al. (2004a) used a 

Galerkin finite element model to predict the bimodal size distribution of PE produced 

with a mixed metallocene system and also applied a Monte Carlo method  to simulate 

the branched architectures of these types of polymers (IEDEMA et al., 2004b). 

MOGILICHARLA et al. (2014) proposed a model to describe propylene 

polymerizations with LCB formation using a twin catalyst system. Their model 

successfully predicted the experimental evolution of molecular weights and grafting 

density. 

FERREIRA Jr. et al. (2010) developed a mathematical model that 

simultaneously considered the generation of LCBs through macromonomer 

reincorporation and short-chain branches (SCB) by chain walking. The chain walking 

mechanism assumes that the active carbon site of the living chain can change (or walk) 

during the chain growth (SIMON et al., 2000). The authors also assumed that the rate of 

macromonomer incorporation increased with the number of pendant double bonds 

present in the macromonomer. Model predictions were compared with experimental 

data for ethylene polymerizations performed with a nickel catalyst and for 1,3-butadiene 
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polymerizations performed with a neodymium catalyst. The authors assumed a dual site 

system, but their model could be extended to catalysts with a higher number of sites. 

The authors claimed that the model fitted the experimental data adequately, but their 

model was complex, with 4 independent dimensions (chain length, LCBs, unsaturated 

double bonds, and active center placed at moving carbons on the polymer chain), and 

several kinetic reaction steps. 

Nevertheless, only few publications proposed mathematical models to describe 

the polymerization kinetics and microstructure of olefin-diene branched copolymers 

(NELE et al., 2003; DIAS and COSTA, 2007; GUZMÁN et al., 2010). NELE et al. 

(2003) investigated the evolution of MWD and LCB distributions for olefin-diene 

copolymerizations performed in semi-batch reactors with help of a mathematical model. 

The authors included ring and LCB formations in their mechanism, and assumed that 

the reactivity of the macromonomer was proportional to the number of double bonds in 

the polymer backbone. Their model showed that, when diene is copolymerized with 

ethylene and other α-olefins, highly branched polymers can be produced in a controlled 

manner, and suggested that low diene concentrations should be used to produce LCB 

polymers in industrial polymerization reactors. Their simulation studies, however, were 

not supported by experimental data. DIAS and COSTA (2007) studied the coordination 

polymerization of two mono-vinyl monomers and a non-conjugated diene under semi-

batch operation. The authors proposed a kinetic method that took into account 

crosslinking and long-chain branching and used generating functions to solve the 

mathematical model. Their model was able to predict the microstructure and molecular 

size of non-linear terpolymers before and after gelation. Gelation regards the formation 

of a hyper-branched tri-dimensional structure that leads to polymer precipitation. 

Generally, gelation takes place when the average molecular weights grow significantly 

and approach infinity. GUZMÁN et al. (2010) developed an analytical model to 

simulate the onset of gel formation in ethylene/1-octene/1,9-decadiene 

terpolymerizations using CGC catalysts. They produced polymer resins in a continuous 

stirred-tank reactor and validated the model predictions for polymer properties, 

beginning of gel formation and reactor fouling. Their model was shown to be a useful 

tool to prevent unintended reactor fouling during the duration of the experimental 

campaign.  
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3.5 Concluding Remarks 
Based on the information provided in Chapter 3, it can be said that efficient 

deterministic strategies were devised in order to avoid solving an excessively large 

number of equations. Among these strategies, Chapter 3 presented the method of 

moments and two MWD interpolation methods (Orthogonal Collocation and 

Polynomial Approximations based on the Moments of the Distributions).  

The method of moments is very useful and popular in polymerization 

applications, but it can only provide average properties. On the other hand, MWD 

interpolation methods can build the whole molecular weight distribution, but require 

additional implementation and CPU time.  

When the polymerization mechanism does not lead to moment closure problems, 

the use of polynomial approximation based on the Moments of the Distributions 

constitutes a good alternative since it is much simpler than Orthogonal Collocation.  

Orthogonal Collocation is a very efficient method to model MWDs but it 

depends on the selection of the reference function to work properly. In some cases, it is 

required to update the reference function during the simulation, leading to the adaptive 

orthogonal collocation procedure. 
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4 Monte Carlo Methods  

4.1 Summary 
This chapter presents the basis of Monte Carlo methods and discusses works that 

applied this technique in problems of coordination polymer reaction engineering. 

Additionally, variations of Monte Carlo algorithms are presented and their 

implementations are discussed. 

4.2 Introduction 
Monte Carlo (MC) methods apply random numbers to select one event among a 

set of possible outcomes. Events are selected according with probabilities calculated 

from macroscopic or microscopic parameters. MC methods can be employed in most 

fields of the natural sciences and engineering. For instance, these methods find several 

applications in polymer science and engineering (MEIMAROGLOU and 

KIPARISSIDES, 2014), being used to simulate polymer microstructural properties that 

are difficult or impossible to obtain with other modeling techniques (SOARES and 

HAMIELEC, 2007; BANNISTER et al., 2009). This is arguably the most important 

advantage of the MC approach in polymer science and engineering.  

In polymer reaction engineering, MC methods can be used to model the degree 

of polymerization, comonomer sequence length distribution, short and long-chain 

branching, crosslinking density, terminal group functionality, and other polymer 

microstructural features. These properties are usually hard to predict using other 

mathematical methods, and even harder to measure (MOHAMMADI et al., 2005). MC 

methods can be applied to multicomponent non steady-state copolymerizations, for 

which conventional modeling methods require a high level of sophistication, and often 

use questionable simplifying assumptions (NAJAFI et al., 2007). If sufficient 

computational power is available, the applications of MC simulation are limitless 

(MAAFA et al., 2007). 

The principles of MC modeling are easy to grasp. Let us consider a rather simple 

example: the integration of the function y = x3 in the interval [0,1]. In this case, the 

event is the generation of points in the x-y plane, and the decision to be made is whether 
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these points fall below or above the y = x3 curve. Figure 4.1 shows a flowchart for this 

MC algorithm. 

 
Figure 4.1 – Monte Carlo algorithm to estimate the value of ∫      

 . 

 

The variables yrnd and xrnd are random numbers generated from a uniform 

distribution in the interval [0,1]. When a point defined by the coordinates (xrnd, yrnd) is 

generated, the algorithm checks whether it falls below the y = x3 curve. The variable n 

counts all points generated in the simulation, while the variable S sums how many of 

them fall under the y = x3 curve. The integral is estimated as the ratio S/n. Figure 4.2 

shows that the quality of the estimate depends on the number of generated points. When 

50 random points are used, the estimate for ∫      
  is 0.129, far from the analytical 

value of 0.25; when 3000 points are used, however, the value estimated for the integral 

is 0.248, which is a good approximation of the analytical solution for this integral.  

Even though this example is extremely simple, it demonstrates two of the 

defining features of all MC simulations: 1) events are selected based on the generation 

of random numbers, and 2) simulation results are better when more events are 

generated. 
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Figure 4.2 – Numerical Monte Carlo integration of ∫      

  with 50 (left) and 3000 (right) random 
points.  

 

For polymerization, the events could be, for example, monomer propagation or 

chain transfer. By selecting propagation, the MC algorithm would build polymer chains, 

one monomer at a time, tracking the formation of a polymer population under a set of 

polymerization conditions. As the polymerization mechanism becomes more complex, 

for instance by including termination, long and short chain branch formation, and 

crosslinking steps, other probabilities must be associated with the additional events, but 

the rationale behind the MC model remains the same.  

4.3 Steady-State Monte Carlo Methods  
Steady-state polymerizations are easy to simulate with MC algorithms. Most of 

the steady-state MC models have been used to describe olefin polymerizations, as 

commercial polyolefins are produced in continuous reactors operated at steady state.  

SOARES and HAMIELEC (1997) and BEIGZADEH et al. (1999a) developed 

the first MC models to describe the long chain branch (LCB) distribution of 

polyethylene made with single-site coordination catalysts. Even though their 

manuscripts applied constrained geometry catalysts (CGC), their approach is valid for 

any single-site catalyst that follows the same polymerization mechanism. In 

coordination polymerization, LCBs are formed by terminal branching: polymer chains 

with terminal double bonds (or macromonomers) are incorporated into growing 

polymer chains in a way that is similar to a copolymerization step (SOARES and 

HAMIELEC, 1996; WOO et al., 1997). SOARES and HAMIELEC (1996) used MC 

simulations to prove the analytical solution provided for the joint distribution of chain 
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length and LCB. BEIGZADEH et al. (1999a) extended their original model to classify 

the LCBs as comb or dendritic (or branches-on-branches), as illustrated in Figure 4.3. 

Particularly, BEIGZADEH et al. (1999a) showed that terminal branching can widen the 

chain length distribution (CLD) towards higher chain lengths, leading to significant 

deviations of the Schultz-Flory distribution. The authors also showed that, after a 

certain characteristic chain length, all chains have LCBs. After even higher size values, 

all chains have dendritic LCB topology. The authors suggested that the presence of 

hyper-branched, high molecular weight chains might be responsible for enhancing the 

rheological properties of polyethylene resins that contain LCBs. 

 

 
Figure 4.3 – LCB structures for polyethylene made with single-site catalysts: (a) comb, (b) dendritic 

(branches-on-branches) (adapted from BEIGZADEH et al., 1999a). 

 

SIMON and SOARES (2002) extended the MC model proposed by 

BEIGZADEH et al. (1999) to LCB formation when two catalysts are employed. They 

considered that one catalyst produced polyethylene with LCBs (branching catalyst) 

while the other one produced only linear chains (linear catalyst). 

Later, BEIGZADEH (2003) modified the previous MC model (BEIGZADEH et 

al., 1999)  to simulate the polymerization of ethylene with LCBs using different dual-

site catalysts in a continuous stirred tank reactor (CSTR), including cases when both 

catalysts generated and reincorporated macromonomers.  

HAAG et al. (2003) extended the model of SIMON and SOARES (2002) to 

describe the molecular structure of graft-block thermoplastic elastomers. These 

polymers are formed by the coordination copolymerization of amorphous backbones 

and semi-crystalline macromonomers. The LCBs, formed via macromonomer 

incorporation, create semi-crystalline domains that act as physical crosslinks between 

the amorphous backbones. They applied the model to map the branching topologies of 

polypropylene (isotactic polypropylene chains grafted onto atactic backbones, aPP-g-

iPP) and ethylene/α-olefin (polyethylene chains grafted onto ethylene/D-olefin 
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amorphous copolymers, PEαO-g-PE) elastomers. The MC model predicted the length, 

number, and crystallizability of free arms and inner segments. Figure 4.4 illustrates 

some of the morphological details captured by their model. 

 

 
Figure 4.4 – Structural details of olefin branch-block elastomers (adapted from HAAG et al. 2003). 

 

SIMON and SOARES (2005) further extended their model to classify polyolefin 

chains made with dual branching/linear catalyst systems into several distinct families. 

Chains were classified according to the number of LCBs: linear, 1LCB/chain, 

2LCBs/chain and so on. Families with 3 LCB/chains or more were further subdivided 

into members with distinct LCB topologies 

BEIGZADEH et al. (2001) applied a MC method to describe the fractionation of 

polyolefins by crystallization analysis fractionation (CRYSTAF). CRYSTAF 

fractionates semi-crystalline polymers according to their crystallizabilites in a batch 

solution process. The authors assumed that the longest crystallizable ethylene sequence 

in the chain determined when the chain would crystallize from solution. Copolymer 

chains generated with their MC algorithm were used to calculate the weight distribution 

of the longest crystallizable sequences in the sample. This distribution was then 

transformed into a crystallization temperature distribution using the Gibbs-Thompson 

equation. 

COSTEUX et al. (2002) used a MC algorithm to simulate the polymerization of 

olefins with a single-site catalyst in a CSTR. They used two probabilities: propagation 

probability and monomer selection probability. These probabilities were calculated from 

the rates of four polymerization steps: monomer addition, macromonomer addition, 

transfer to a chain transfer agent or  -hydride elimination. Taking into consideration 

distinct chain segment types–linear chains, free arms and inner segments–the authors 

represented the topology of long-chain branched polyethylenes with help of an elegant 
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ternary diagram. The authors proposed a modification of the MC algorithm, by 

considering that the length of the segments between branch points obeys the Schultz-

Flory distribution. Instead of adding one monomer at time during the simulation, 

segments that followed the Schultz-Flory distribution were added during the 

propagation events. This enhanced MC algorithm leads to results that are statistically 

equivalent to those obtained with the traditional MC method, but requires shorter 

computation times, since whole polymer segments between branching points are 

simulated in a single step.  

COSTEUX (2003) extended this model for branched polyethylenes made with a 

mixture of single-site catalysts. The melt rheological behavior in shear and extensional 

flows were estimated qualitatively, using the topological information obtained via MC 

simulation. COSTEUX et al. (2002) also continued the investigation initiated by 

BEIGZADEH et al. (2001) to model CRYSTAF and temperature-rising elution 

fractionation (TREF) using MC techniques.   

ALSHAIBAN and SOARES (2011) modified their previous MC model 

(ALSHAIBAN and SOARES, 2009) to describe the microstructure of polypropylene 

produced with single-site and Ziegler–Natta catalysts, including the reversible site 

transformation from the aspecific state to the stereospecific state by external electron 

donors (Do), as shown in Figure 4.5. The authors simulated propylene polymerization in 

steady-state and dynamic reactors. The MC model described how molecular weight 

distributions, average molecular weights and tacticity of the resins answered to changes 

in concentrations of hydrogen, external donors, and propylene during the 

polymerization. Interestingly, the developed model was used to predict the 13C NMR 

spectra of polypropylene synthesized under different polymerization conditions. 

 

 
Figure 4.5 – Aspecific to stereospecific TiCl4/MgCl2 site transformation via reversible donor 

complexation (adapted from ALSHAIBAN and SOARES, 2009). 



 

63 
 

 

MADKOUR and MARK (1995) used MC simulations to model the 

stereoregularity and crystallinity of poly[methyl(3,3,3-trifluoropropyl)siloxane. The 

simulations generated representative monomer sequences that were used to study the 

packing of such sequences into crystalline regions. MADKOUR and MARK (1997) 

used MC algorithms to relate microstructure to polymer crystallinity for isotactic 

polypropylene. NELE et al. (2000) used the method of MADKOUR and MARK (1997) 

to relate crystallinity to polymerization conditions for polypropylene made with 

fluxional metallocene catalysts. In a later work (NELE et al., 2001), the same research 

group developed a general kinetic model for these systems, which was used to deduce 

the fundamental behavior of individual catalysts. MADKOUR and MARK (1998) also 

applied MC methods to model the microstructure of stereoblock polypropylene chains.  

ANANTAWARASKUL et al. (2012) used MC methods to simulate the 

formation of linear olefin block copolymers (OBCs) via chain shuttling polymerization 

in steady-state and dynamic systems (TONGTUMMACHAT et al., 2016). 

DRACHE and SCHMIDT-NAAKE (2007) studied styrene polymerization with 

benzyl dithiobenzoate as a RAFT agent. RAFT initialization included pre-equilibrium 

and main-equilibrium steps. In the pre-equilibrium step, a growing macroradical is 

inserted into the sulfur-carbon double bond of the initial dithioester compound (RAFT), 

producing a carbon-centered intermediate radical that suffers  -scission reactions to 

either yield back the reactants or to form an initiating radical    and a polymeric 

dithioester compound (polyRAFT). The main equilibrium consists of analogous 

reactions, in which a polymeric RAFT agent (polyRAFT) reacts with a growing 

macroradical, producing an intermediate radical that suffers subsequent  -scission 

reactions, either forming the reactants or generating a growing macroradical and a 

RAFT agent. These chain transfer events induce equilibrium between dormant and 

living chains (Figure 4.6) (DRACHE et al., 2005).  

DRACHE et al. (2005) used two coefficients, Ctr (Ctr = ktr/kp) and C-tr (C-tr = k-

tr/ki), to describe the reaction path of the propagating radical and the leaving group 

during the initialization of RAFT reaction. These coefficients were estimated by MC 

simulation, which could be regarded as a novelty, since MC simulations, due to their 

long computation times, are seldom used to estimate model parameters. 
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Figure 4.6 - Basic reaction steps during RAFT polymerization (adapted from DRACHE et al., 

2005).  

 

DRACHE and SCHMIDT-NAAKE (2008) also simulated the initialization 

period of RAFT agents with different leaving groups (benzyl dithiobenzoate (Bz-DB), 

1-phenylethyl dithiobenzoate (PhEt-DB) and cumyl dithiobenzoate (C-DB)) for the bulk 

polymerization of styrene.  

SANTOS et al. (2007) proposed a stochastic model to simulate the distribution 

of branches in poly(1-hexene)s synthesized with α-diimine nickel catalysts. Their model 

was able to predict the formation of methyl, butyl and longer chain branches. The 

information about polymer microstructure provided by their model can be useful in 

molecular simulation investigations to determine the conformational properties based on 

the Monte Carlo and molecular dynamics techniques.  

4.4 The Chemical Master Equation (CME) 
The chemical master equation (CME) is the starting point for the discussion of 

dynamic MC techniques. Even though the CME is usually hard to solve, most dynamic 

MC methods rely on the CME methodology to describe chemically reacting systems. 

The number of molecules of each component in a homogeneous reacting 

chemical system defines its state.  According to GILLESPIE (1992), the time evolution 

of this state cannot be treated as a deterministic problem because chemical reactions are 

intrinsically stochastic. The following assumptions are used to model the stochastic 

nature of chemically reacting systems (GILLESPIE, 1992; MACQUARRIE, 1967):  

� The system is homogeneous, in thermal equilibrium, and has fixed 

volume. 
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� Considering N species {S1, …, SN}, the system is described by a set of 

states along time {X(t) = [X1(t), …, XN(t)]T}, where each Xi(t) represent 

the number of molecules of specie Si in the system at time t. 

� There are M reaction types in the system, {R1, R2, …, RM}. 

� The dynamics of these M reactions are characterized by M propensity 

functions {a1(X)dt,…, aM(X)dt}. 

� A state change vector νj = {ν1j,…, νNj} is associated to each reaction type 

j. The parameter νij is the number of molecules of each species i that are 

formed or consumed by reaction path j in the analyzed time interval, 

considering the two possible states.  

State changes are considered to be Markov processes (CAO and CHEN, 1997). 

The future state of a Markov process can be predicted based only on its present state, 

independently of anything that has happened in the past. All polymerizations are 

Markov processes. 

Each propensity function is associated to one reaction type and is calculated as 

the product of the microscopic reaction rate constant and the number of feasible ways 

the reaction may occur (MCCOLLUM et al., 2006). Propensity functions are reaction 

frequencies for the elementary steps involved in a reaction mechanism. 

The probability that the system will be at state X at time t is given by the CME: 

 

  (   |     )
  

 ∑[  (    ) (      |     )    ( ) (   |     )]
 

   

 (4.1) 

 

The CME is a system of linear ordinary differential equations (ODE), with one 

ODE for each possible state. The function P(X, t|X0, t0) is the probability that the 

system will be at state X at time t, starting from state X0 at time t0. The state vector X 

may vary over a large set of discrete values (HIGHAM, 2008). 

In order to illustrate the CME, let us consider a reaction mechanism involving 

only three elementary steps,  

                        
              →                

                           
              →         
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              →        

The state change vectors and the propensity functions for these reactions are 

shown in Table 4.1. 

 

 
Table 4.1.  State change vectors and propensity functions for reactions R1, R2 and R3. 

State Change Vectors Propensity Functionsa) 

ν1= [-1  1  0]T   ( )       

ν2= [-1  -1  1]T   ( )         

ν3= [0  0  -1]T   ( )       
a)ki: microscopic reaction rate constants; Xi: number of reactant molecules in the system at a 

given state. 

Let us start with K molecules of S1 and no molecules of S2 and S3. The state 

vector at t0 = 0 is,  

 

 ( )  [
 
 
 
] (4.2) 

 

The state vector at time t > t0 may assume many possible values, such as,  
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]  (4.3) 

 

Figure 4.7 illustrates this state transition process.  
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Figure 4.7 – Schematic representation of state changes due to chemical reaction. 

 
The CME generates the entire probability distribution for a chemically reacting 

system. It is easy to compute a single realization of the state vector, but the complete 

solution of the CME can be very hard to obtain (GIBSON and BRUCK, 2000; 

DRAWERT et al., 2010). Monte Carlo algorithms offer a more efficient way to handle 

this problem, as described in the following sections.  

4.5 Stochastic Simulation Algorithms (SSA) 
GILLESPIE (1976; 1977) developed two exact stochastic simulation algorithms 

(SSA) that apply MC methods to simulate the Markov processes described by the CME: 

the Direct method (DM) and the First Reaction method (FRM). Instead of solving the 

CME to obtain the probability density function of the state vector X(t), the SSA obtains 

a random sample of X(t) (GILLESPIE, 2007). One finds results equivalent to solving 

the CME by averaging many realizations of the SSA (GILLESPIE, 2008).  

The SSA simulates the time evolution of a chemically reacting system by 

updating the state vector according to the answers given to two questions (CAO et al., 

2004):  

Â When will the next reaction occur? 

Â Which reaction will happen next?  

In order to build the time trajectory for X(t), the following probability function 

has to be defined, 
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 (   |   )    probability that, given X(t) = X, the next reaction will 
occur within the time interval ,          ) and will be of type Rj. 

(4.4) 

 

If the system is at state X at time t, the probability density function in Equation 

(4.4) depends on two random variables: τ, the time when the next reaction will occur; 

and j, the index of the next reaction type. An exact formula for  (   |   ) was 

presented by Gillespie,  

 

 (   |   )     ( )   (   ( ) ) (4.5) 
 

where   ( ) is the sum of all propensity functions (or sum of all microscopic reaction 

rates),  

 

  ( )  ∑  ( )
 

   

 (4.6) 

 

Many exact MC methods can be applied to generate samples of the random 

variables τ and j. One of the simplest procedures is the Direct Method, as explained in 

the next section. 

4.5.1 The Direct Method (DM) 
In the Direct Method (DM), two random numbers r1 and r2, are sampled from a 

uniform distribution in the interval [0,1] to calculate the random variables τ and j, 

 

  
 

  ( )
  (

 
  
) (4.7) 

∑   ( )
 

    

     ( ) (4.8) 

 

where j is the smallest integer that satisfies Equation (4.8). Figure 4.8 is a graphical 

representation of how Equation (4.8) can be used.  
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Figure 4.8 – Reaction selection in the SSA direct method. 

 

The DM generates two random numbers: one to select the time increment W, and 

the other to choose the reaction type j, that takes place within that time increment. The 

state vector is updated after each reaction step, and the process is repeated until the 

specified simulation time is reached. Figure 4.9 shows a flowchart for the DM.  

 

1.   Initialize time t = to and system state X = 

Xo. 

2.  Calculate aj(X) {j = 1…M} and their sum 

ao(X), Equation (4.6). 

3.   Generate values for τ using Equation 

(4.7), and for j using Equation (4.8). 

4.   Execute reaction j updating the state 

vector X←X + νj and t ← t +τ.  

5.   Record (X, t) as desired. If t is lower than 

the final simulation time, return to 

step 2; else, stop simulation. 

 Figure 4.9 – Flowchart for the Direct Method. 

 

The DM is simple to implement, even for reaction mechanisms with several 

elementary steps. Unfortunately, this method requires long computation times because 

of the term W  = 1/a0(X), which can be very small when the number of at least one of the 

reactants is large (GILLESPIE, 2008). Simplicity is the main advantage of DM; long 

computational times is its biggest drawback.  

4.6 Monte Carlo Reaction Rate Constants 
Each polymerization step is assigned a MC reaction rate, also called propensity 

function,     , with j varying from 1 to the total number of steps in the polymerization 
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mechanism. The MC reaction rates are defined with the help of microscopic rate 

constants,    , 

 

           (4.9) 
 

where Nc is the number of unique combinations between reactant molecules inside the 

control volume. The parameter Nc depends on how many molecules participate in the 

reaction, on the reaction order, and whether or not the reactants are of the same type 

(MAAFA et al., 2007). 

The microscopic reaction rate constants kMC can be calculated with the 

macroscopic reaction rate constants kexp, as shown in Table 4.2 (MAAFA et al., 2007). 

Finally, Table 4.3 shows how to calculate MC reaction rates for unimolecular, 

bimolecular, and termolecular reactions for free-radical polymerization. 

 
Table 4.2. Conversion of macroscopic reaction rate constants into microscopic MC rate constants. 

Unimolecular reactions          

Bimolecular reactions between different 

molecules 
    

    

   
 

Bimolecular reactions between equal 

molecules 
     

    

   
 

Termolecular reactions between equal 

molecules 
     

    

     
 

  : Avogadro number. 

 

Table 4.3. Definition of MC reaction rates.  
Unimolecular reactions           

Bimolecular reactions between different 

molecules 
            

Bimolecular reactions between equal 

molecules 
         (    )  ⁄  

Termolecular reactions between equal 

molecules 
         (    )(    )  ⁄  

     : Number of molecules of reactants i and j in the control volume. 
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4.7 Control Volume Selection 
Before starting the simulation, a suitable control volume, containing all reactants 

(monomer, free radicals, and living and dead polymer chains) must be selected. When 

the control volume is small, random fluctuations affect the accuracy of the simulation; 

when it is excessively large, computation times may be unacceptably long. Therefore, 

the size of the control volume has to be large enough to provide accurate results at 

acceptable computation times (AL-HARTHI et al., 2006), ensuring convergence of 

polymer properties (CHAFFEY-MILLAR et al., 2007).   

4.8 SSA Applied in Coordination Polymerization Problems 
The DM has been applied to several problems in polymer science and 

engineering, including free radical, living free radical and coordination polymerization 

systems. These investigations have broadened the understanding of these 

polymerization systems by predicting the dynamic evolution of several microstructural 

distributions under different polymerization conditions. A review on MC methods 

applied in polymer reaction engineering problems was presented by BRANDÃO et al. 

(2015). In the present work, focus will be given to discussion about MC techniques 

applied to coordination polymerization problems. 

SOARES and HAMIELEC (2007) used MC simulations to validate a proposed 

analytical solution for the time evolution of the CLD of polyolefins made with 

coordination catalysts during short polymerization times. These conditions are 

encountered in stopped flow reactors (SFR), as the one shown in Figure 4.10. The 

authors assumed the polymerization mechanism described in Table 4.4 and used the 

algorithm shown in Figure 4.11. As the polymerization proceeds, the peak of the CLD 

of living chains moves towards higher chain lengths, ―dragging‖ a tail with sorter chains 

produced by transfer reactions, as depicted in Figure 4.12.  

 
Table 4.4. Polymerization mechanism proposed by SOARES and HAMIELEC (2007). 

Elementary Step Chemical Equations a) Reaction number 

Initiation       
  
→    Reaction 1 (R1) 

Propagation       
  
→      Reaction 2 (R2) 

Transfer         
         Reaction 3 (R3) 
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a)  : catalyst,   : living chain with length r,   : dead chain with length r, M: monomer, CTA: chain 

transfer agent.  

 

 
Figure 4.10 – Schematic diagram for a stopped-flow reactor. 

 

The authors used dynamic CLDs to determine when the steady-state hypothesis 

became valid for chains of different lengths. Their MC model was extended to 

polymerizations with multiple-site catalysts under short polymerization times. They 

showed that the time required for the CLD to reach its fully developed shape depends 

on the types of active sites, even when the final CLD is the same.  

 

 
Figure 4.11 –  Monte Carlo simulation flowchart for dynamic olefin coordination polymerization. 

Vectors P(i) and D(i) store the length, r, of living and dead chains, respectively. The variables r1, r2, 
and r3 are random numbers between [0,1] that follow a uniform distribution. 
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Figure 4.12 –  CLD of living polymer chains produced at 0.5, 1.0, 1.5, 2.0 and 2.5 s (from left to 

right). The Flory distribution is represented by the dotted line. Reproduced with permission from 
ref. (SOARES and HAMIELEC, 2007). Copyright 2007, John Wiley & Sons. 

 

SOARES and NGUYEN (2007) used a MC model to show how the common 

assumption of instantaneous catalyst activation, made in several articles that describe 

the use of SFR, could predict CLDs that were not observed experimentally. According 

to the authors, the non-instantaneous site activation could be associated to a slow 

(relatively to the residence time in the reactor) rate of site activation, although it could 

also be caused by mass transfer and mixing limitations. In a later article, SOARES and 

HAMIELEC (2008) investigated these effects in more details using MC models and 

analytical solutions.  

SALAMI-KALAJAHI et al. (2009) used a MC model to describe how different 

active site types contributed to the polymerization of ethylene with a multiple site type 

Ziegler-Natta catalyst. They concluded that the molecular weight distribution of each 

active center follows a Schultz–Flory distribution. However, the total molecular weight 

distribution obtained by all catalyst centers together does not follow a Schultz–Flory 

distribution. The authors also concluded that the introduction of hydrogen does not 

mainly affect the polymerization kinetics. 

KHORASANI et al. (2014) used a MC model to simulate the 

consecutive/simultaneous trimerization and polymerization of ethylene using two 

catalysts. Oligomers made by the oligomerization catalyst were copolymerized with 

ethylene by the polymerization catalyst. The authors applied their model to the reaction 

scheme suggested by ZHANG et al. (2008) and shown in Figure 4.13. Their model 
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predicted the instantaneous copolymer composition for several pre-trimerization times. 

Figure 4.14 shows that longer pre-trimerization times allowed for increase of the 

instantaneous 1-hexene consumption rates because 1-hexene was accumulated in the 

reactor before the onset of the copolymerization step. The copolymer also became more 

homogeneous due to the more uniform incorporation of 1-hexene molecules.  

 
Figure 4.13 – LLDPE production by tandem catalysis: ethylene oligomerization to 1-hexene 

(Catalyst I) followed by copolymerization of ethylene and 1-hexene (Catalyst II).  
 

 
Figure 4.14 –  Instantaneous molar fraction of 1-hexene in the copolymer as function of the 

polymerization time at different pre-trimerization times (tp). Reproduced with permission from ref. 
(KHORASANI et al., 2014). Copyright 2014, Elsevier. 

 
The pre-trimerization time also affected the average ethylene sequence length of 

the copolymer (Figure 4.15). Longer ethylene sequences were produced without pre-

trimerization (tp = 0), and significant copolymer composition drift was observed. The 

pre-trimerization time could, however, be used to control the average length of the 

ethylene sequences and uniformity of the copolymer composition.  
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Figure 4.15 – Evolution of the number average ethylene sequence length without (main plot) and 

with pre-trimerization (insert). Reproduced with permission from ref. (KHORASANI et al., 2014). 
Copyright 2014, Elsevier.  

 
ZHENGHONG et al. (2006) used MC simulations to investigate the 

polymerization of propylene and determine the effects of impurities on the 

polymerization kinetics. They found that the polymerization rate decreases with the 

increasing initial concentration of the impurity and after approximately 400 s of 

reaction, the impurity hardly affects the polymerization rate.  

BRANDÃO et al. (2016) compared the performances of different dynamic MC 

methods to simulate olefin polymerization with coordination catalysts. These results 

will be discussed in Chapter 9 of the present thesis. 

4.9 Variations of Monte Carlo Algorithms 
As aforementioned, SSA is a specific class of exact MC methods and simulates 

one reaction event a time. For polymerizations, chains are built one monomer a time 

until chains stop growing through termination or transfer reactions. The first SSAs to be 

introduced in the literature were the Direct and the First Reaction methods 

(GILLESPIE, 1976). Although these methods are accurate, they also require long 

computational times. Attempts to improve the efficiency of the direct methods led to 

additional SSA techniques, such as the Next Reaction (GIBSON and BRUCK, 2000), 

Optimized Direct (CAO and PETZOLD, 2004), and Sorting Direct (MCCOLLUM et 

al., 2006) methods.  Unfortunately, the computational times demanded by these 

methods may still make them unsuitable to simulate complex systems, such as 

polymerizations.  
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As a matter of fact, it may be necessary to sacrifice some of the accuracy of SSA 

methods to shorten the simulation time. One of these compromising techniques is the τ-

Leaping method (CAO et al., 2005; 2006). Instead of moving from one reaction event to 

the next one, the τ-Leaping method ‗leaps‘ during the system history from one time 

subinterval to the next, executing many reactions in the same subinterval as shown in 

Figure 4.16.  

 

 
Figure 4.16 – Schematic comparison between the DM and τ-Leaping method. 

 

The applications of DM, FRM, NRM and τ-Leaping methods will be explained 

below with the simple polymerization mechanism proposed by SOARES and 

HAMIELEC (2007) to simulate the polymerization of ethylene, using a single-site 

catalyst in a stopped-flow reactor (Table 4.4). However, the rate constant for chain 

initiation was assumed to be different from the rate constant for propagation. 

4.9.1 Direct Method (DM) 
The DM is the most straightforward method among all SSA techniques. A random number is used 
to select which reaction will take place at a given time interval (also determined at random), and 
the number of reactants and products are updated accordingly. The process is iterated until it 

reaches the final polymerization time.  
 

Figure 4.17 shows the flowchart of the basic DM algorithm. Figure 4.18 lists the 

computation steps needed to simulate the polymerization mechanism presented in Table 

4.4 using the DM.  
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Figure 4.17 – Flowchart for the Direct Method algorithm. 
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Figure 4.18 – Direct Method algorithm applied to the stopped-flow polymerization of ethylene with 

a single-site catalyst. 

 
 

4.9.2 First Reaction Method (FRM) 
Figure 4.19 shows a flowchart for the FRM. Figure 4.20 lists the sequence of 

steps needed to simulate the mechanism shown in Table 4.4 using the FRM. One can 
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notice that the only difference between the DM and the FRM regards how the next 

reaction is selected. In the DM, the sum of all rates of reaction is used to select the next 

reaction; while in the FRM, the reaction with the shortest characteristic time is the one 

that takes place next.  

 

 
Figure 4.19 – Flowchart for the FRM algorithm. 

 

The DM and FRM produce the same results (GILLESPIE, 1976;1977). They use 

the same distribution to generate the pair of simulation parameters τ and j. However, the 

DM is more efficient than the FRM because the FRM generates M times but discards 

M-1 times at each interaction, while the DM only generates two random numbers at 

each interaction (CAO and PETZOLD, 2004). 
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Figure 4.20 – First Reaction Method algorithm applied to the stopped-flow polymerization of 

ethylene with a single-site catalyst. 
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4.9.3 Next Reaction Method (NRM) 
GIBSON and BRUCK (2000) modified the FRM to make it more efficient, 

generating the Next Reaction Method (NRM).  The NRM is faster than the FRM 

because the M-1 unused reaction times, determined with    
 

  ( )
  . 

  
/  (     )  are 

modified and reused during the simulation. Moreover, the random parameter pair τ and j 

is calculated more efficiently with the use of data storage structures (dependency graph 

and indexed priority queue).  

Figure 4.21 shows the flowchart for the NRM.  
 

Figure 4.22 lists the steps needed for the NRM to simulate the polymerization 

mechanism presented in Table 4.4.  

 

 

 
Figure 4.21 – Flowchart for the NRM algorithm. 
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Figure 4.22 – Next Reaction Method algorithm applied to the stopped-flow polymerization of 
ethylene with a single-site catalyst. 
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4.9.4 τ-Leaping Method 
All SSA methods described in the last two sections are exact simulation 

algorithms. They might have shorter simulation times than the DM, but still simulate 

one reaction at a time. Thus, they may not be fast enough for some practical 

applications. The τ-Leaping method was formulated to decrease simulation time, at the 

cost of lower accuracy. 

Instead to proceeding one reaction at a time, the W-leaping method leaps along 

the time axis from one subinterval to the next. The leap time   is selected with help of a 

Poisson random variable, being small enough to satisfy the leap condition (GILLESPIE, 

2008). The leap condition requires that the value of the propensity functions   ( ) 

remain approximately constant in the interval ,     -, 

 
  ( )              ,     -    (4.10) 

 

If Equation (4.10) is satisfied, aj(X)dt becomes the probability of reaction Rj 

occuring in every dt subinterval in [t, t + W]. By definition, the Poisson random variable 

P(aj(X)t) is the number of times reaction Rj will take place in the interval ,     -. 

Therefore, the state at time (   ) is determined from the state X at time t with the 

expression,  

 

 (   )   ( )   ∑ (  ( ) )  

 

   

 (4.11) 

 

Equation (4.11) is known as the explicit  -leaping formula. Its accuracy depends 

on how well the leap condition is satisfied.  

In the W-leaping method originally proposed by GILLESPIE (2001), the 

algorithm initially selects a value for   that would satisfy the leap condition. Then, the 

procedure would generate the Poisson random variable P(aj(X)t) and multiply this value 

by νj for each reaction type. Finally, the algorithm would update the system state using 

Equation (4.11).  
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Selecting   is the most sensitive step in the W-leaping method. If   is excessively 

small (with a value lower than a few multiples of    ( )⁄ , the time step expected in 

the exact solution of the SSA), the W -leaping method becomes inefficient because too 

few reactions will take place during the time leap (GILLESPIE, 2008). If   is 

excessively large, the system will also change excessively during the leap and the 

hypothesis that the propensity functions are nearly constant during the leap can no 

longer be valid. However, if   is large but still compatible with the leap condition, the W 

-leaping method will be faster than the exact SSA. 

Many procedures have been proposed to guarantee that the leap condition is 

respected (GILLESPIE, 2001; CAO et al., 2006; GILLESPIE and PETZOLD, 2003). 

Particularly, the method proposed by CAO et al. (2006) is accurate, easier to code, and 

fast. This method assures that changes in all propensity functions remain bounded by an 

accuracy control parameter ɛ (0 < ɛ << 1), 

 

        *      +              (    ) (4.12) 

 

where       ∑  (  ( ) )   
   , the term used to calculate the change in the system 

state in Equation (4.11), and Irs is the set of indices of all reactant species. 

The condition defined in Equation (4.12) requires that the relative change in Xi, 

'W�Xi, be bounded by   , assuring that the relative changes in all propensity functions are 

bounded by ɛ, and that Xi be changed by an amount larger than or equal to 1. To 

calculate   , all reactions need to be analyzed individually before the simulation begins, 

as summarized in Figure 4.23. 
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Figure 4.23 – Procedure used to calculate values for    in order to obtain relative changes in the 
propensity functions bounded by  . Reproduced with permission from ref. (BRANDAO et al., 

2015). Copyright 2015, John Wiley & Sons. 

 
CAO et al. (2006) proposed a procedure for selecting proper values for    in 

order to guarantee that the relative changes in the propensity functions will all be 

bounded by  , thus satisfying the leap condition: 

x For each i     , determine the value of HOR(i), the highest order of 

reaction for which species i is a reactant. For instance, if species i is a 

reactant only in 1st order reactions, then HOR(i) = 1; if species i is a 

reactant in 1st and 2nd order reactions, then HOR(i) = 2. 

x Determine    using the relation:       ⁄ . 

o If HOR(i) = 1,     . 

o If HOR(i) = 2,      if only one molecule of i is involved in the 

reaction. 

o If HOR(i) = 2,       (    )⁄  if two molecules of i are 

involved in the reaction. 

o If HOR(i) = 3, see CAO et al. (2006). 
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The polymerization example in Table 4.4 will be used to clarify some of the 

features of the W-leaping algorithm. 

CAO et al. (2006) suggested setting ɛ to 0.03 and nc between 2 and 20 

(GILLESPIE, 2001; CAO et al., 2006). The next step is to determine   (    ) according 

to the procedure devised by CAO et al. (Figure 4.23). The main points of the τ-Leaping 

method are summarized in Figure 4.24. 

The algorithm presented in Figure 4.24 should be applied to all non-distributed 

species in the system. In polymerizations, however, there are at least two distributed 

species: live and dead polymer chains. The algorithm can only update the number of 

molecules of live and dead polymers, but it cannot calculate how many chains of 

different lengths are present at a given time in the reactor. Thus, BRANDÃO et al. 

(2016) adapted the τ-leaping method to account for these chain populations just like 

done for the SSA algorithms. The algorithm presented in Table 4.5 describes the 

proposed adaptation for the polymerization mechanism described in Table 4.4.  

Figure 4.24 shows the flowchart used to update the chain lengths of living and 

dead polymer chains after updating the state of the system with the τ-Leaping 

simulation method. 

Table 4.5. Algorithm used to update the chain lengths of distributed species, applying the τ-Leaping 
method. 

1. This algorithm starts after step 12 in Figure 4.24:  

x Set Count1, Count2 and Count3 to zero. These variables count how many times 

reactions R1, R2 and R3 are executed during the current iteration. 

2. Execute the DM procedure until reaction R1 is executed  (  ( ) ) times, R2 is 

executed  (  ( ) ) times, and R3 is executed  (  ( ) ) times. The variable   refers 

to a Poisson random variable and P is the vector of live chains, containing at each 

vector position the length of the correspondent chain. 

This procedure ends when Count1 =  (  ( ) ), Count2 =  (  ( ) ) and Count3 = 

 (  ( ) ) 

3. Return to step 4 in Figure 4.24. 
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Figure 4.24 – τ-Leaping method algorithm. 
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Figure 4.25 – Flowchart for the τ-Leaping method considering distributed species. 

 

4.10 Concluding Remarks 
As one can see, the Monte Carlo method may constitute an efficient tool when 

used in polymerization reaction engineering problems. Its simplicity is attractive, so that 

complex polymerization problems can be solved with MC algorithms without solving 

differential equations, allowing for simulation of molecular weight, chain composition 

and branching distributions. The main criticism against MC methods is related to the 

computational time required to solve the problems under investigation. However, the 

development of faster personal computers and the easier access to parallel computing 

and computer clusters is rapidly dismissing this criticism.  

In the present work, a personal computer was used to run all the simulations 

performed in this thesis. MC method will be shown to constitute a very good alternative 

for numerical applications in olefin polymerization systems. However, it is important to 

comment that the experimental reactions carried out in this work lasted 10 to 15 

minutes, facilitating the use of the MC direct method. Besides, it must be emphasized 

that the selection of the numerical method depends on many different aspects, including 

the skills of the researcher and the competitive advantages and disadvantages of each 

method.  
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5 Experimental and Numerical 
Methods 

5.1 Summary 
This chapter describes the experimental and numerical methods adopted in the 

present work.  

5.2 Experimental section 

5.2.1 Materials 
The following materials were used to perform the experiments: 

o Methylaluminoxane (MAO, 10 wt % in toluene, Sigma-Aldrich, USA) 

o Anhydrous Ethyl Alcohol  ( ≥ 99.5 %, Sigma-Aldrich, USA) 

o Toluene anhydrous (99.8 %, Sigma-Aldrich, USA)  

o Dimethylsily (N-tert-butylamido) (tetramethylcyclopentadienyl) titanium 

dichloride (CGC) (85.0 –  99.8 %, Boulder Scientific, USA) 

o 1,9-Decadiene (98 %, Sigma-Aldrich, USA) 

o Triisobutylaluminum (TIBA) (25 wt % in toluene, Sigma-Aldrich, USA) 

o n-Butyllithium solution, 2.5 M in hexane (Sigma-Aldrich, USA)  

o Sodium  ( ≥ 99 % , stored in mineral oil, Sigma-Aldrich, USA)  

o Nitrogen ( > 99.998 %, Praxair, USA) 

o Ethylene ( > 99 %, Praxair, USA) 

 

Ethylene and nitrogen were purified by flowing through molecular sieves (3 and 

4 Å) and CuO/Al2O3 packed beds to remove oxygen and water residues. Toluene was 

distilled over butyl lithium and metallic sodium to remove polar impurities and residual 

moisture, dried over molecular sieves, and purged with nitrogen. CGC was dissolved 

with purified toluene inside the glovebox (OMNI-LAB VAC 101965, Vacuum 

Atmospheres Company, USA) to make a solution with concentration of 1.02 x 10-4 g 

CGC/g toluene. MAO was used as received. 1,9-Decadiene was dried with molecular 

sieves and purged with nitrogen. All air sensitive compounds were handled under inert 

atmosphere in a glovebox. 
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5.2.2 Reaction unit 
The reaction unit used in the present work is represented in Figure 5.1. Reactions 

were performed in a 300 mL Parr autoclave reactor operated in semi-batch mode (in the 

reaction, ethylene was continuously added to the reactor).   

 
 Figure 5.1 – Illustrative scheme of the experimental unit. 

 

The polymerization temperature was controlled with an electrical band heater 

and internal cooling coils placed inside the reactor. Two independent proportional-

integral derivative controllers were employed to control the cold water flow in the 

cooling coil and the power input to the electric heater, as shown in Figure B.1 of 

Appendix B. The reactor was also equipped with a stirrer (comprising a pitched blade 

turbine impeller connected to a magneto-driver stirrer, set to the agitation speed of 1200 

rpm. The stirrer, cooling coil, reactor vessel and heating mantle used in the experiments 

are illustrated in Figure 5.2. 

An in-line mass flow meter was installed in the gaseous ethylene feed line to 

supervise the monomer mass flow rate, monitored with help of the LabView software 

(National Instruments, USA)4. The temperature control calculations were also 

                                                 
4 www.ni.com/labview; visited on january 1st, 2017. 
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performed with LabView. An in-line pressure regulator was installed in the ethylene 

feed line to regulate the reactor pressure. 

 
 

 

 
Figure 5.2 – Illustration of stirrer, cooling coil, reactor vessel and heating mantle used in this work. 

 

5.2.3 Experimental procedure and related computations 
Prior to polymerization, the reactor was submitted to reactor purging, applying 

six cycles of nitrogen venting and vacuum at 125 °C to remove oxygen from the reactor. 

Then, 150 mL of toluene and 0.5 g of triisobutylaluminum (impurity scavenger) were 

charged to the reactor. The reactor temperature was increased to 120 °C and kept 

constant during approximately 20 minutes. 

5.2.3.1 Homopolymerization Reactions 

After reactor purging, 150 mL of toluene were charged into the reactor at 

ambient temperature. A solution of MAO was prepared inside the glovebox by adding 

2.0 g of MAO and a small volume of toluene in a 20 mL sampling cylinder, which was 

then sealed and removed from the glovebox. The MAO solution was transferred to the 

reactor with a cannula under nitrogen pressure.   
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The band heater was powered on to heat the reactor until reaching the desired 

polymerization temperature (120, 130 or 140 °C). Then, ethylene was added to the 

reactor in order to saturate the toluene solvent. After stabilizing the reactor temperature, 

the catalyst solution was fed into reactor with pressurized nitrogen. After starting the 

polymerization, a small temperature increase (1 – 2 °C) could be observed for about 1 

minute, after which the temperature became constant throughout the polymerization, 

with variations of ± 0.15 °C from the set point.  Ethylene was supplied on demand to 

keep a constant reactor pressure of 120 psig, and the ethylene flow rate was monitored 

with a mass flowmeter. After 15 minutes, the polymerization was interrupted by closing 

the ethylene valve, and immediately blowing out the reactor contents into a 1 L beaker 

filled with 100 – 250 mL of ethanol. The polymer was kept overnight in a beaker under 

constant stirring. Afterwards, the polymer powder was filtered and dried in an oven. 

Table 5.1 shows the homopolymerization conditions employed in the present work. The 

proposed experiments allowed for analysis of temperature and catalyst concentration 

effects on the final properties of the polymerization products. Triplicates were 

performed in order to evaluate the magnitude of the experimental variability. 

Table 5.1. Homopolymerization Conditions 
Sample ID Catalyst (μmol L-1) Temperature (°C) Polymerization Time (min) 

A1 0.767 120 15 
A2 0.767 120 15 
A3 0.767 120 15 
B1 0.767 130 15 
B2 0.767 130 15 
B3 0.767 130 15 
C1 0.767 140 15 
C2 0.767 140 15 
C3 0.767 140 15 
J1 0.271 120 10 
J2 0.174 120 10 

 

5.2.3.2 Copolymerization Reactions 

The required amount of 1,9-decadiene was diluted in a small volume of toluene 

in a 20 mL sampling cylinder. The cylinder was sealed and removed from the glovebox. 

The copolymerization procedure was analogous to the homopolymerization procedure 

described previously. The only difference regards the fact that, after adding MAO to the 

reactor, the comonomer solution was injected into the reactor following the same 

procedure used to feed MAO. Table 5.2 presents the copolymerization conditions used 
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in the present work. The proposed experiments allowed for analysis of comonomer 

concentration, catalyst concentration and reaction time effects on the final properties of 

the polymerization products. 

Table 5.2. Copolymerization Conditions. 
Sample 

ID 
Catalyst 

(μmol L-1) 
1,9-Decadiene 

(g) 
Temperature 

(°C) 
Polymerization Time 

(min) 
D1 0.325 0.10 120 10 
E1 0.325 0.20 120 10 
F1 0.325 0.30 120 10 
G1 0.271 0.30 120 2 
G2 0.271 0.30 120 4 
G3 0.271 0.30 120 6 
G4 0.271 0.30 120 8 
G5 0.271 0.30 120 10 
H1 0.271 0.40 120 4 
H2 0.271 0.40 120 6 
H3 0.271 0.40 120 8 
H4 0.271 0.40 120 10 
I1 0.368 0.40 120 6 
I2 0.174 0.40 120 6 

 

5.2.3.3 Calculation of Ethylene Concentration in Toluene 

For each experiment, the calculation of ethylene concentration in the liquid 

phase was performed with help of simple modeling procedure, since kinetic modeling 

requires knowledge of the ethylene concentration. The total volume of toluene inserted 

into the reactor at room temperature (T0 = 25 °C) was 150 mL. This was assumed to be 

the total solution volume, since the other liquid compounds (MAO and diene) were 

present in much smaller amounts. When the reactor was heated up until the desired 

reaction temperature (Tf  = 120, 130 or 140 °C), it can be assumed that the vessel 

operated as a flash reactor. Using the engineering software simulator Aspen Hysys 

(Aspen Technology)5, it was possible to calculate the molar concentrations of toluene 

liquid and vapor in equilibrium at reaction temperature. The Peng–Robinson equation of 

state was used to calculate the fugacity coefficients in the gas phase, and UNIQUAC 

model was used to determine the activity coefficients (Equation (5.1)) in the liquid 

phase. 

 

                                                 
5 https://www.aspentech.com/hysys/; visited on january 1st, 2017. 
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       * (
        

  
)+ (5.1) 

 

where     is non-temperature dependent energy parameter between components i and j 

(cal gmol-1),     is temperature dependent energy parameter between components i and j 

(cal gmol-1 K-1), T is the temperature in K and   is the ideal gas constant (in this case, R 

= 1.987 cal gmol-1 K-1). 

The parameters     and     employed to determine the activity coefficients of 

ethylene and toluene in the liquid phase are presented in Table 5.3. 

 
Table 5.3. Parameters     and     of Equation (5.1) from UNIQUAC model provided by Aspen 

Hysys (ethylene = 1 and toluene = 2). 
    Parameter value     Parameter value 

    0     0 

    17.005     -0.399 

    -1404.117     -3.810·10-3 

    0     0 

 

By knowing the toluene vapor pressure at Tf and the total system pressure PT, 

the toluene and ethylene molar fractions in the gas phase at Tf could also be calculated. 

Given the saturation condition and solving the flash equations, the toluene and ethylene 

molar fractions and concentrations in the liquid phase could also be determined. By 

multiplying the solution volume by the respective molar concentrations in the liquid 

phase, the total amounts of ethylene and toluene in both liquid and gas phases might be 

calculated. This procedure was performed for different reaction temperatures, Tf, as one 

can see in Table 5.4.   

Table 5.4. Ethylene and toluene liquid compositions in equilibrium at P = 120 psig for 150 mL of 
toluene. 

  (°C)                ,    -(mol L-1)       (mol) 

90 0.92228 0.07772 0.70090 0.10514 

100 0.92973 0.07027 0.62355 0.09353 

110 0.93626 0.06374 0.55644 0.08347 

120 0.94237 0.05763 0.49472 0.07420 
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130 0.94816 0.05184 0.43732 0.06560 

140 0.95395 0.04605 0.38141 0.05721 

 

5.2.4 Polymer Characterization 

5.2.4.1 High-Temperature Gel Permeation Chromatography (GPC) 

Average molecular weights, molecular weight distributions and intrinsic 

viscosity of polymer samples were measured with a Polymer Char high-temperature gel 

permeation chromatography (GPC) unit coupled with three detectors (infra-red, light 

scattering and differential viscosimeter) and calibrated with polystyrene standards and 

using a universal calibration curve. The GPC was operated at 140 °C, using 1,2,4-

trichlorobenzene (TCB) as solvent at flow rate of 1 mL min-1.  

High-temperature GPC, also known as high-temperature size-exclusion 

chromatography (SEC), is the most widely used technique for determination of 

polyolefins molecular weight distributions of polyolefins. High temperatures are 

required because most commercial polyolefins are only soluble at temperatures above 

120 °C in chlorinated solvents (SOARES and MCKENNA, 2013).  

In GPC, the separation is based on size exclusion. The columns are packed with 

particles of different pore sizes. The pore volume (Vp) of the gel particles is summed to 

the interstitial volume (V0) (which is the volume occupied by the mobile phase 

circulating around the particles) to form the total volume available for the mobile phase 

(LUCAS et al., 2001). The GPC separation principle is illustrated in Figure 5.3. 

 
Figure 5.3 – GPC separation principle. 

 

When a solution, containing polymer molecules of different sizes, is injected 

into the mobile phase, it flows through a series of packed columns. The elution time of a 

polymer chain depends on its hydrodynamic volume (its volume in solution). Chains 

with higher volumes elute first, as they penetrate into fewer pores. The elution time or 
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elution volume of larger polymer chains depends essentially on the interstitial volume 

(V0). On the other hand, chains with very small volumes penetrate deeper into the pores, 

requiring larger amounts of solvent for complete removal from the column. The elution 

time of small molecules depends on the total mobile phase volume (V0 + Vp) and they 

are eluted last.  Finally, polymer chains with intermediate volumes diffuse only into few 

pores, presenting elution times between V0 and V0 + Vp (GABORIEAU and 

CASTIGNOLLES, 2011). The mass detector monitors the polymer concentration 

exiting from the column. A calibration curve is required to relate the elution volume to 

the molecular weight of the chains, as shown in Figure 5.4. The hydrodynamic volume 

of polymer chains depends on the chain length, branching topology, solvent type and 

also temperature (SOARES and MCKENNA, 2012).  

 
Figure 5.4 – Log(MW) as a function of the SEC elution volume. 

 

When the GPC is coupled with specific functional detectors, the characterization 

of polymer chains can improve significantly, making possible not only the 

determination of molecular weight distributions but also branching distributions 

(TRIEBE et al., 2006). 

5.2.4.2 Gravimetric Analysis 

Gravimetric analysis consists in determining the reaction states based on sample 

weights. In order to achieve this, the weight of a filter paper was measured (m0). Then, 

the filter was placed in a plastic funnel supported on an empty 1 L beaker.  The reactor 

content plus ethanol (after staying approximately 12 hours under constant stirring) was 

poured into the funnel, separating the polymer from toluene and ethanol. The filter 
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paper with the filtrated polymer was placed in the oven to dry. When the polymer and 

the filter were completely dried, the weight of the filler was measured (m1). The 

polymer weight (mp) could be calculated by discounting m0 from m1 as: mp = m1 – m0.  

5.3 Numerical methods 
In all problems investigated in the present thesis, the final model was written as 

a set of ordinary differential equations with well-defined initial conditions. A simple 

example of this type of model is presented in Equations (3.1)-(3.5). Different numerical 

approaches were employed to solve this type of models: 

x Method of moments coupled with DASSL solver (Chapter 8) to predict 

average molecular weights of polymer samples and chemical species 

concentrations; 

x Polynomial approximation based on the moments of the distributions to 

build the MWDs of the PE samples (Chapter 9).  

x Adaptive Orthogonal Collocation Method and Monte Carlo Method for 

computation of the full MWD of polymer samples (Chapter 9) 

These methods were chosen because they are commonly used to solve polymer 

reaction engineering problems. Besides, obtaining simulation results and executing 

statistical evaluation of different models, makes possible to compare the performances 

of the different numerical approaches used to solve the kinetic model proposed herein. 

Details of numerical implementations are presented in Chapter 7, where the main model 

developed in the present thesis is described. 
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6 Statistical Methods 

6.1 Summary 
This chapter describes the statistical procedures used in the present thesis to 

estimate model parameters and evaluate model performances. The parameter estimation 

procedure consists in finding parameters for a model so that model predictions become 

as close as possible to the available experimental data (SCHWAAB and PINTO, 2007), 

considering the experimental uncertainty. The parameter estimation problem can be 

divided into three parts: 

1. definition of the objective function; 

2. minimization of the objective function; 

3. statistical analysis of parameter estimates and model quality. 

6.2 Objective Function 
In the present work, the objective function used in the parameter estimation 

process was the well-known weighted least-squares function (BARD, 1974) (see 

APPENDIX C): 

 

     ∑∑
[         (     )]

 

     

  

   

  

   

 (6.1) 

 

where    is the total number of available experiments,    is the total number of 

dependent variables,      is a dependent variable measured experimentally (variable j 

from experiment i),       is a dependent variable calculated with the mathematical model 

(variable j from experiment i),     is a vector of independent variables measured 

experimentally (from experiment i),   is the vector of model parameters and     
  is the 

variance of the experimental fluctuations of the dependent variable j in experiment i. 

6.3 Parameter Estimation 
In the present work, the computational package ESTIMA (SCHWAAB and 

PINTO, 2007) was used to solve the parameter estimation problem. ESTIMA employs a 

hybrid optimization scheme, combining particle swarm stochastic optimization 
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(KENNEDY and EBERHART, 1995) with the deterministic Gauss-Newton method 

(ANDERSON et al., 1978), with the accelerator of LAW and BAILEY (1963). 

Interested readers should refer to SCHWAAB (2005) and SCHWAAB et al. (2008).  

The Gauss-Newton method frequently fails when dealing with ill-posed 

problems, making impossible the determination of parameter uncertainties (as the 

covariance matrix of parameter uncertainties cannot be obtained). In these cases, first, 

particle swarm optimization can be applied. Then, with the point of minimum obtained, 

an identifiability procedure (see Section 6.4.2) can be applied to determine which set of 

model parameters can have their uncertainties evaluated. Afterwards, ESTIMA can be 

applied to estimate the selected parameters and refine the minimum of the previously 

estimated model parameters. Figure 6.1 illustrates this process. 

 
 

Figure 6.1 – Employed parameter estimation procedure. 

The experimental data used to estimate the parameters included the number and 

weight average molecular weights (     ) of the polymer samples and the observed 

ethylene feed rates. 

 

6.4 Statistical Analyses 
Parameter estimation procedure should not be ceased when the optimization 

problem is solved. It is important to perform the statistical analysis of the obtained 
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results in order to calculate the confidence limits of the parameter estimates and to 

classify the quality of the model predictions (SCHWAAB and PINTO, 2007). 

6.4.1 Parameter Uncertainty 
The parametric uncertainty is normally characterized by the covariance matrix of 

parameter uncertainties   , which can be obtained through the quadratic approximation 

of the objective function in respect to the model parameters, whose derivation can be 

found elsewhere (SCHWAAB and PINTO, 2007; BARD, 1974). First, the Fisher 

Information Matrix     and its inverse    can be obtained as: 

 

        
    

         
(6.2)  

 

where   is the sensitivity matrix: 

  *
   (    )

  
+ (6.3)  

 

Admitting that the parametric errors can be described by the t-Student 

distribution, the confidence intervals of estimated model parameters can be given by: 

 

      (
   
 

)              (
   
 

)     (6.4)  

 

where the normalized variable      follows the t-Student distribution, with    degrees 

of freedom and confidence level  .      is the standard deviation associated with model 

parameter   , placed at the main diagonal of matrix   .  

6.4.2 Parameter Identifiability Procedure 
The matrix     can be readly obtained. However, depending on the model 

structure and/or available experimental data,     can be singular. In this case, the 

matrix    cannot be obtained, and the parameter uncertainties remain unknown. One 

possible alternative is to select a subset of model parameters that can be estimated with 

their respective uncertainties; the other parameters must be kept constant and equal to 

their original values. This procedure is called parameter identifiability. 
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In general, parameter identifiability procedures comprise two basic steps: (i) 

selection and (ii) ordering of model parameters, which are normally carried out 

simultaneously in most algorithms. The goal of the parameter selection step is to 

identify the model parameters that can be estimated from the available experimental 

data. Then, the selected parameters are classified as estimable parameters and must be 

estimated using an optimization method. The remaining parameters are classified as 

non-estimable parameters and an alternative solution must be searched to estimate their 

values. A conventional choice is to maintain the non-estimable parameter values at the 

original value (that can be obtained from literature, professional experience or 

arbitrated) (ALBERTON, 2013).  

Probably, the invertibility of     is associated with linear independence of the 

columns of matrix  . The methodology proposed by YAO et al. (2003) is based on 

local sensibility analysis and is characterized by its simplicity to interpret the results and 

ease of implementation. This procedure analyzes the parameters estimability by 

evaluating the parameter sensitivity matrix in respect to the normalized model 

prediction obtained by the Gram-Schmidt orthogonalization method (RICE, 1966).  The 

selection order of parameters values are based on the magnitude and correlation of the 

columns of the matrix  , using a cut-off value previously specified as a stop criterion of 

selection. THOMPSON et al. (2009) replaced this criterion for the point where the 

parameter estimation problem becomes ill-posed. The algorithm developed by YAO et 

al. (2003) with the stop criterion proposed by THOMPSON et al. (2009) is presented 

next: 

 

(1) Build the local sensitivity matrix B and normalize this matrix, generating 

matrix BN (Figure 6.3). 

(2) Calculate the sum of the squares of the elements of each column of BN as 

shown next.  

 

   [‖   ‖  ‖    ‖]  [∑  (   ) 
  

   

 ∑  (    ) 
  

   

] (6.5) 
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(3) Select the parameter for which the column of matrix Nb presents the largest 

value as the first identifiable parameter. 

(4) Build the local sensitivity matrix for the selected parameters Bsel. When the 

first parameter is selected, k = 1, Bsel has only one column. When the 

following parameters are selected, Bsel has k columns. 

(5) Calculate Borth, which is the orthogonal correspondent matrix of the 

complete local sensitivity matrix B, according with: 

 

          (    
     )

  
    
   (6.6) 

 

where     
      is the FISHER information matrix (FIM) of the selected 

parameters. 

(6) Calculate the residual matrix R: 

 

          (6.7) 

 

(7) Calculate the sum of the squares of the elements of each column of matrix R. 

The column that provides the highest value corresponds to the next 

identifiable parameter. 

(8) Select, in matrix B, the correspondent column obtained in step (7) and add it 

to matrix Bsel.  

(9) Repeat steps (4) to (8) until all parameters are selected or until singularity 

problems are found during the FIM inversion procedure.  
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Figure 6.2 – Normalized local sensitivity matrix BN and sensitivity vectors of parameters (adapted 
from ALBERTON (2013)). 

 
 
 

 
Figure 6.3 – Illustration of YAO et al. (2003) procedure for 3 parameters (adapted from 

ALBERTON (2013)).  
 

6.4.3 Confidence Region of the Model Parameters 
In the present work, the confidence regions of the estimated model parameters 

were built according with the following expression: 

 

    ( )      ( ̂) [  
  

(    )
         ] (6.8)  
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where,     ( ) is the objective function value calculated with the estimated model 

parameters  ̂ and           is the upper limit from the Fisher distribution with degrees 

of freedom equal to      and confidence level α. 

According to SCHWAAB and PINTO (2007), although Equation (6.8) can be 

obtained from the quadratic approximation of the objective function, the shape of the 

confidence region is not restricted to the elliptical shape. Elliptical confidence regions 

only occur when the experimental data follow the normal distribution and if the model 

is linear. Thus, in the case of nonlinear models, confidence regions that are closer to the 

real confidence region can be obtained with Equation (6.8). This can be done by using 

the particle swarm optimization method for objective function minimization, since this 

method naturally performs a high number of objective function evaluations.  

6.4.4 Model Quality 
After defining the objective function, considering the hypotheses presented in 

the last section, model predictions and objective function can be seen as variables that 

follow certain probability distributions. Thus, in the case of the maximum likelihood 

functions developed from the hypothesis that the fluctuations between the experimental 

and predicted values follow the normal distribution, the objective function is equivalent 

to the weighted sum of the squares of deviations weighted by the respective variances. 

This is the definition of the normalized variable chi-square (  ). Thus, the confidence 

limits of the objective function, at the point of optimum, can be calculated with the chi-

square values, which depend on the confidence level α and the degrees of freedom DF. 

 

     .   
 
/      (    )      .   

 
/ (6.9)  

 

where DF is calculated by: 

            (6.10)  

 

where    is the number of estimated parameters. 

When the objective function value lies between limits given by the    

distribution, given the degrees of freedom and confidence level, the model can be 

considered adequate and describes well the experimental data. If the lower limit of the 
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   distribution is higher than the objective function, the model describes the 

experimental data with a precision that is higher than the precision given by the 

experimental errors, indicating that the model might be over-parameterized. On the 

other hand, if the upper limit of the    distribution is lower than the objective function, 

the model is not capable of describing the experimental data with the precision of the 

experimental measurements; consequently, the model can be considered inadequate. 

6.4.5 Model Prediction Uncertainty 
In order to be possible to analyze the quality of the model predictions, it is 

required to calculate how the parametric errors propagate through the model and 

become prediction errors. So, the prediction uncertainties are characterized by the 

prediction covariance matrix  ̂ , which can be described according with: 

 

 ̂        (6.11)  

 

Therefore, the elements positioned at the diagonal of the prediction covariance 

matrix correspond to the prediction variances. Similarly, the confidence intervals of 

model prediction can be defined as:  

 

       (
   
 

)  ̂              (
   
 

)  ̂   (6.12)  

 

6.5 Reparameterization 
Parameter correlation is undesirable since it introduces numerical and 

interpretation difficulties into the problem. One well-known form that presents high 

parameter correlation is the Arrhenius expression        . 
 
  
/ (SCHWAAB and 

PINTO, 2007). 

Reparameterization procedures propose that model expressions be written in 

different ways in order to reduce the parameter correlation. Several propositions for 

reparameterization have been proposed in the literature; the commonest ones use a    

reference temperature to allow for reduction of parameter correlation in Arrhenius 

expressions, which can also lead to reduction of the computational effort required to 
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estimate the model parameters (ESPIE, 1988). SCHWAAB & PINTO (2007, 2008) 

showed that a more proper form to write the Arrhenius equation is: 

 

     *   (
(    )

 
)+ (6.13) 

 

where  

 

  
 
   

 (6.14) 

    (  )  
 
   

   (  )    (6.15) 

 

The reference temperature can be selected to reduce the correlation of the 

parameters. 

Other typical reparameterization procedure is associated with the order of 

magnitude of model parameters. Since the parameters to be estimated can present 

different orders of magnitude, the following variable change has been proposed for 

some of the model parameters: 

 

      ( ) (6.16)  

 

where   represents the order of magnitude of the parameter estimates  . Therefore, 

instead of estimating  , one may estimate the order of magnitude of   ( ). By doing 

this, the estimation of parameters with different orders of magnitude (for example, 

between 10-4 and 104) become much simpler, as the new parameters present the same 

orders of magnitude (for example, between -4 and 4). 
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7 Model Development  

7.1 Summary 
In this chapter a brief introduction is presented about works published in the 

literature that investigated the kinetics of ethylene polymerization and copolymerization 

with non-conjugated dienes and that consider the formation of LCBs. Based on 

literature and some assumptions, a model is proposed to describe the copolymerization 

of ethylene and 1,9-decadiene. Some details regarding the implementation of the 

numerical techniques are also given. 

7.2 Introduction 
As previously presented in Chapter 2, CGC catalysts can promote the chain 

incorporation of higher α-olefins and dead chains that contain terminal (SOARES, 

2002) and/or pendant double bonds (FERREIRA Jr. et al., 2010), usually known as 

macromonomers (WANG et al., 1998). In the case of ethylene homopolymerization, the 

macromonomers are formed in-situ through β-hydride elimination or transfer to 

ethylene reactions. Particularly, macromonomers form LCBs when they are re-

incorporated into the growing polymer chains.  

Many experimental investigations have been devised to understand how LCBs 

are generated in ethylene and propylene homopolymerizations (WANG et al., 1998; 

KOKKO et al., 2000; WANG et al., 2004; STADLER et al., 2006, MEHDIABADI and 

SOARES, 2012). However, only few publications presented kinetic polymerization 

studies that included LCB generation steps in the copolymerization mechanism of 

olefins and dienes (WANG et al., 2000; KOKKO et al., 2001; SARZOTTI et al., 2005; 

MEHDIABADI and SOARES, 2011), as already mentioned in Chapter 2. 

KOKKO et al. (2001) reported that the copolymerization of ethylene and 1,7-

octadiene with metallocene catalysts presented higher selectivities for branch formation 

and could lead to formation of LCBs. NAGA and IMANISHI (2002) investigated the 

copolymerization of ethylene and 1,7-octadiene or 1,9-decadiene with different 

zirconocenes. According to these authors, one of the feasible propagation reactions of 

   -non-conjugated dienes and ethylene takes place between the pendant double bond 

in the polymer backbone and a growing chain, generating a LCB. They reported the 
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presence of 1-hexenyl branches in ethylene/ octadiene copolymers, and of 1-octenyl 

branches in ethylene/ decadiene copolymers.  

The low LCB frequency of polyolefins made with coordination catalysts makes 

the LCB quantification a considerable challenge. Therefore, the development of 

mathematical models that can predict the frequency and topology of LCBs in these 

materials is desirable. In this chapter, a mathematical model is proposed to describe the 

ethylene solution polymerization with a CGC in a semi-batch reactor. Then, the 

mechanism is adapted to simulate the copolymerization of ethylene with a non-

conjugated diene, considering the formation of LCB through reincorporation of 

macromonomers presenting terminal or pendant double bonds. The model is solved 

with help of the method of moments and with Monte Carlo procedures to predict 

comonomer, catalyst, polymer concentration, polymer average molecular weights, and 

LCB frequencies as functions of time. The model can be eventually employed to select 

polymerization conditions that lead to production of branched polyethylenes with 

desired microstructures.  

7.3 Kinetic Mechanism Proposed 
The mechanism for the copolymerization of ethylene and diene is described by 

Equations (7.1) to (7.7). When diene propagation (Equation (7.4)) and reincorporation 

(Equation (7.7)) rate constants are set to zero, the model describes only ethylene 

homopolymerization. 

 

Catalyst activation  
            →       (7.1) 

Initiation     
              
→            (    ) (7.2) 

Propagation (Ethylene)      
              
→              (    ) (7.3) 

Propagation (Diene)      
              
→               (    ) (7.4) 

Transfer to monomer and E-hydride 
elimination    

            →           (7.5) 

Living chain deactivation         
             →               (7.6) 

Macromonomer reincorporation        
             →           (       ) (7.7) 

 

where   is the catalyst precursor;    is an active catalyst site;   is ethylene;   is diene; 

   is a dead catalyst site;   and  are the total amounts of ethylene and diene inserted 
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into the growing polymer chains, respectively;     is the total number of long chain 

branches in the polymer;     is a living polymer chain with chain size  ;     is a dead 

polymer chain that contains a terminal unsaturation and has chain size  ; and    is a 

dead polymer chain without a terminal unsaturation. 

It is assumed that the initiation rate constant is equal to the propagation rate 

constant for ethylene (    ). Moreover, it is also assumed that diene-, ethylene-, and 

LCB-terminated living polymer chains present similar reactivities, meaning that 

propagation is controlled by the chemical nature of the monomer species. It is also 

important to emphasize that kp11, kp12 and kb are not assumed to be equal, meaning that 

rates of propagation are not equal for the different monomer species. 

In the activation reaction step shown in Equation (1), the activation rate constant 

is equivalent to    ,   -. Since the cocatalyst is present in large excess, the product 

      ,   - may be considered constant for these polymerizations (SOARES, and 

MCKENNA, 2012). 

Since ethylene concentration is kept constant during the polymerization and does 

not vary from one experiment to another, transfer to ethylene and  -hydride elimination 

can be grouped into a single effective reaction rate constant, represented as    

   , -    , as shown in Equation (7.5). 

It is assumed the catalyst decay follows the second-order mechanism described 

in Equation (7.6), since a first order decay rate could not fit the experimental results 

adequately. Previous modeling results also show that a second order decay rate is more 

adequate for this catalyst system (MEHDIABADI and SOARES, 2012). 

The step responsible for formation of LCBs is the macromonomer 

reincorporation reaction described in Equation (7.7), where a macromonomer, through 

one of its pendant vinyl groups, is reincorporated into a propagating chain, generating 

two LCBs, as illustrated in Figure 7.1. Since pendant vinyl groups in the polymer 

backbone are the loci for LCB formation, it is assumed that the reactivity of the 

macromonomer is proportional to the number of pendant double bonds in the chain. 

Thus, the reincorporation reaction rate constant    has to be multiplied by the factor  , 

defined as, 
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(   )
  (7.8) 

 

where   is the average frequency of pendant double bonds in the polymer chains and   

is the macromonomer chain length. Therefore,   is the total number of pendant 

unsaturations present in     or   . 

It is important to emphasize that reincorporation of macromonomer through 

terminal unsaturation is not taken into account in the mechanism. According to the 

obtained experimental data (Chapter 8), branches were not present in the homopolymer 

PE, indicating that reincorporation of macromonomer through terminal unsaturation did 

not occur at significant rates. Besides, when copolymerization is considered, the 

probability of macromonomer reincorporation through pendant diene double bonds is 

much higher than the probability of reincorporation through the terminal double bonds, 

given the relatively high amounts of decadiene incorporated into the polymer chains.  

 
Figure 7.1 – Macromonomer reincorporation through pendant double bonds into a growing 

polymer chain. 

7.4 Material Balances 
The mass balance equation for an arbitrary species   can be represented by: 

 

   

  
  ̇ 

    ̇ 
    ∫ . ∑        

           

/
 

   (7.9) 
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where    is the number of mols of species k,  ̇   and  ̇    are the input and output 

molar flow rates respectively,      is the stoichiometry coefficient for species   in 

reaction   and   is the system volume. 

In the studied system, species   can be the catalyst precursor, active catalyst site, 

ethylene, diene, dead catalyst site and living or dead polymer chains 

*  *               +   (   )+. For sake of simplicity, in Equations (7.10) to 

(7.20), the number of mols will be directly written in terms of the species variables. For 

example, for catalyst precursor  , instead of representing the number of mols of catalyst 

precursor as    , it will be written as   .  

Since the important model variables are related to the liquid phase, the molar 

balances can be written in terms of the liquid phase. The following additional 

hypotheses are also assumed: 

x The total number of mols of the monomer in the liquid phase remains 

practically constant during the reaction time, i.e.,   
  

  , since the 

monomer is constantly fed during the reaction by the feeding gaseous 

ethylene system; 

x The liquid phase is homogeneous, since the mixing is efficient; then 

∫ (∑                   )      ∑                    

It is important to observe that the energy balance is not necessary, because the 

temperature was kept constant during the reaction time in all experiments. 

Then, for the kinetic model described in Equations (7.1)-(7.7), the molar 

balances become. 

For catalyst   

  
  

    (
 
 
)  

(7.10) 

For active sites    

   

  
   (

 
 
)      (

  

 
) (

 
 
)    ∑(

   

 
)

 

   

  
(7.11) 
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For dead sites    
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)

 

   

∑(
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(7.12) 

For monomer   

  
  

   
(7.13) 

For diene   (comonomer) 
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)  

(7.14) 

For the total amount of M added to polymer chains,   

 ( )
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(7.15) 

For the total amount of D added to polymer chains,   

 ( )
  

     ∑(
   

 
)

 

   

(
 
 
)  

(7.16) 

For the total amount of LCB added to polymer chains,     

 (   )
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(7.17) 

For the number of living polymer chains with size one     
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For the number of  living polymer chains with size greater than one       

(   ) 
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(7.19) 

For the number of  dead polymer chains       (   ) 
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(7.20) 

where             

Equations (7.11) to (7.20) define a system of infinite discrete ordinary 

differential equations. As previously commented, the concentration of ethylene in the 

reaction mixture is practically constant throughout the polymerization, calculated as 

described before (Section 5.2.3.3).  

7.5 Numerical Approach  
As discussed in Section 5.3, the model was solved by using: 

x the Method of Moments, coupled with the DASSL solver, for solving the 

system of differential equations; 

x the Adaptive Orthogonal Collocation Method and the Monte Carlo 

Method, calculation of MWDs. 

One must observe that Monte Carlo simulations do not require a traditional 

solver for solution of the discretized set of ODE.  

7.5.1 Material Balances after Applying the Method of Moments 
The material balances of Section 7.4 can be rewritten using the moments defined 

in Chapter 3. For the non-distributed species (Equation (7.11) to (7.17)), all summations 
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have to be replaced by a moment; the substitution is straightforward. For distributed 

species (living and dead chains), the molar balances must be replaced by zeroth, first 

and second moment balance equations, resulting in the following expressions (see 

APPENDIX D). 
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By using the method of moments, the problem to be solved changes from a 

system of infinite discrete-differential equations to a finite, and relatively small, set of 

differential equations. 

Macromonomer reincorporation through pendant unsaturations gives rise to a 

moment closure problem. To solve this problem, the method of HULBURT and KATZ 

(1964) presented in Section 3.2 was used. 
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During the polymerization, the volume of the reacting system changes slightly 

because of the polymer formation. This effect was accounted for by using the following 

expression, 

 

  
  

 (
   
  

 
   
  

)
  
   

 (7.27) 

 
where     is the specific volume of polyethylene. 

Equation (7.11) to (7.17) and Equations (7.21) to (7.27) were solved with the 

backward differentiation formula, as available in DASSL code, with relative and 

absolute tolerances of 10−4 (PETZOLD, 1982). 

After solving the model, the average polymer properties could be obtained. The 

weight and number average molecular weights and polydispersity index were calculated 

with the calculated moments as shown in Chapter 3. The equations are rewritten below. 
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 (7.30) 

 

The average molar mass of the repeating unit    can be calculated as 

 

        (   )    (7.31) 

 

where     and     are the molar masses of diene and ethylene, respectively, and M 

is the average molar fraction of diene in the copolymer. Since the molar fraction of 

diene is very small for the copolymers studied in the present investigation,    can be 

approximated to the molar mass of ethylene without much influence on the final 

numerical results. 
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The average LCB per 1000 carbon atoms and average LCB per chain can also be 

calculated with the help of the moments,  

 

              ⁄      
   

 (     )
 (7.32) 

        ⁄  
   

(     )
 (7.33) 

7.5.2 Estimation of Homopolymerization Parameters  
As already commented in Chapter 6, model parameters were estimated using the 

computational package ESTIMA (SCHWAAB et al., 2008). The method described by 

YAO et al. (2003) was used to verify which parameters could be estimated with their 

respective uncertainties. The non-estimable parameters were kept constant during the 

parameter estimation process. Figure 6.1 illustrates this process. 

With the exception of the propagation rate constant, the homopolymerization 

rate constants were written using the following reparameterized form of the Arrhenius 

equation, 

 

     *   (
(    )

 
)+ (7.34) 

 

where   and Tr are reaction and reference temperatures, respectively; and   is the 

reaction rate constant. The reference temperature is usually defined as a suitable average 

temperature for the analyzed experimental data (SCHWAAB et al., 2008). In this work, 

   was set to       .  

Table 7.1 summarizes the parameters estimated for the homopolymerization 

reactions and shows how the pre-exponential factor    and the activation energy   can 

be recovered.  

It was assumed that the activation energy for propagation was equal to 20520 J 

mol-1, based on a previous work performed with this very same catalyst system 

(MEHDIABADI, 2011). Thus,       was represented by the traditional Arrhenius 

expression as: 
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) (7.35) 

 

 Table 7.1. Kinetic reaction constants for the mechanism shown in Equation (7.1) to (7.7). 

Reaction Step 
Reparameterized Arrhenius 

Equation 
Traditional Arrhenius 

Parameters 

Catalyst 

activation  
      ,     *

(    )
 

+-               (     ) 

Monomer 

transfer &  -

hydride 

elimination  

      ,     *
(    )

 
+-               (     ) 

Living chain 

deactivation  
       ,     *

(    )
 

+-                 (     ) 

 

For ethylene homopolymerizations, 7 parameters were defined (          ). 

On the other hand, for copolymerization of ethylene and diene at 120 °C, two 

parameters were estimated (       ), and the other parameters were set equal to the 

values estimated for the homopolymerization reactions.  

7.5.3 Adaptive Orthogonal Collocation Method 
The adaptive orthogonal collocation method was used to build the molecular 

weight distributions and the final curves were compared with those obtained by 

simulation with the MC method and with the experimental MWDs provided by Polymer 

Char high-temperature gel permeation chromatography. As already mentioned in 

Chapter 3, it was initially assumed that the Flory distribution could be used as an 

appropriate reference function.  Then, when a certain time was reached (tc), the 

reference function was updated and made equal to the distribution of the last iteration, 

as shown in Figure 3.1.  

Let   represent either        in the balance equations. As commented in Chapter 

3, for the orthogonal collocation method, the following approximation is proposed.  
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(7.36) 

 

where   is equal to either   or  . It must be pointed out that the reference function and 

nodal points of   and   can be different. Based on this approach, the dependent 

variables are the Lagrange polynomial coefficients     and    . It is important to 

emphasize that the residue at the collocation points are equal to zero. Inserting Equation 

(7.36) into Equations (7.18) to (7.20), the material balances can be rewritten as shown 

in Equations (7.37)-(7.39). The first collocation point for the living polymer chain 

approximation is always equivalent to one in the present work. So, a separate ODE must 

be solved for the coefficient    : 
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(7.37) 

 

The other     polynomial coefficients for the living polymer chain 

approximation are computed according with Equation (7.38), with   varying from 2 to 
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(7.38) 

 

The population balance for the dead polymer chains are similarly substituted by 

Equation (7.39). 
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where        . 
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All balance equations for the non-distributed species that depend on     must 

also be modified, by replacing     by Equation (7.40): 

 

 ( )    ( )∑      (   )
 

   

 (7.40) 

 

where   =   or  . 

MWDs can be obtained from the number chain length distribution (CLD). While 

the number CLD is represented with respect to the chain length (polymerization 

degree), the MWD is represented as a function of the molecular weight (chain length 

multiplied by the molecular weight of the monomer unit) (SAYER et al., 2001). Thus, 

after running the complete adaptive orthogonal collocation (Figure 3.1), the MWD can 

be obtained as follows: 

 
Figure 7.2– Scheme to obtain MWD from the number CLD. 

 

7.5.4 Monte Carlo Technique 
The Monte Carlo basic principles were described thoroughly in Chapter 4. As 

commented there, the number of molecules of each species present in the reaction 

system must be updated after each time increment and saved in a position of vector  . 

The set of initial conditions for each simulation are written in Table 7.2. 

Table 7.2. Number of molecules of each species present in the system at the initial time.a) 
 Species Number of molecules at t = 0 
     , -       
      0 
      0 
     ,    -     
     , -       

Living chains        
Dead chains      0 

a)sID is the experimental condition used to produce sample ID;    is the Avogadro number, and 

  is the control volume selected to run the simulation. 



 

122 
 

The most adequate control volume selected to perform all the MC simulations in 

the present work was         L. Table 7.3 summarizes all MC reaction rate 

expressions and the implemented algorithm for Equations (7.10) to (7.20).  

Then, the Monte Carlo steps could be implemented as follows: 

Â Step 1: Define the initial time        and initial conditions for all 

species (Table 7.2).  

Â Step 2: Convert the macroscopic reaction rate constants into microscopic 

MC rate constants. For unimolecular reactions         ; for 

bimolecular reactions between different molecules         

   
; for 

bimolecular reactions between equal molecules          

   
 (Table 4.2). 

Â Step 3: Calculate all MC reaction rates, also called propensity functions 

(Table 4.3). 

Â Step 4: Calculate the sum of all propensity functions and save the result 

in the variable   ( ), 

  ( )  ∑  ( )
  

   

 

where    is the total number of reaction channels (in this case, 7). 

Â Step 5: Calculate the time step   for the current iteration, 

  
 

  ( )
  (

 
  
) 

where r1 is a random number sampled from a uniform distribution in the 

interval [0,1]. 

Â Step 6: Select the reaction that must be executed, finding the value for j 

in the equation, 

∑   ( )
 

    

     ( ) 

where j is the smallest integer that satisfies the inequality and r2 is a random 

number sampled from a uniform distribution in the interval [0,1]. 
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Â Step 7: Execute reaction Rj, updating the state vector       , where 

νj is the stoichiometric vector for reaction j. 

Â Step 8: Update time: 

      

Â Step 9: Save (       ) as desired. If t is lower than the final simulation 

time, return to Step 3; else, stop simulation. 

The Monte Carlo method was implemented to simulate the polymerization 

mechanism described by Equations (7.1) to (7.7), but a few changes were made in some 

of the reaction steps in order to include the number of pendant double bonds and LCBs 

in the living and dead chains. Because of these modifications, it was not necessary to 

consider species  ,   and    , since they can be calculated precisely for each chain. A 

structure (or matrix) called   was used to store all the information regarding the dead 

chains. Each position of   saved the chain length, number of double bonds and number 

of LCBs for a certain dead polymer chain, as illustrated in Figure 7.3.  

The overall MC procedure employed to simulate the copolymerization of 

ethylene with 1,9-decadiene using CGC-Ti in semi-batch operation is illustrated in 

Figure 7.4. 

Table 7.3. Monte Carlo computation steps for each chemical reaction and their respective MC 
reaction rates.6 

Reaction Type MC Reaction Rates 
Catalyst activation 

 
            →       

  ( )    
          

Initiation 
    

              
→            

  
  ( )    

              

Propagation 
      
   

              
→              

  
  ( )    

              

Propagation 
      
   

              
→                

  
  ( )    

              

Monomer transfer &  -hydride elimination 
      
             →              

  
  ( )    

          

Living chain deactivation 
      
        

              →                         ( )    
            

 
 

Macromonomer reincorporation 
      
                     →                    

  
  ( )    

           
a) 

a) where    corresponds to the total number of pendant double bonds in the dead chains.  

                                                 
6 All dead chains were saved in  :        and        . 
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Figure 7.3 – Calculation of the total number of pendant double bonds in dead chains (πt). 

 
 

 
 

Figure 7.4 – Monte Carlo flowchart (      and   are uniform random numbers in the interval 
[0,1]). 
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8 Prediction of Average Molecular 
Weights and LCB Frequencies  

 

8.1 Summary 
In this chapter, the estimation results obtained for homo – and copolymerization 

reactions are presented and discussed. For the homopolymerization model parameters, 

not all of them could be estimated, as some of them were classified as non-estimable 

parameters. Nevertheless, the confidence region for the model parameters could be built 

according to the Particle Swarm Optimization method. The model predictions calculated 

with the method of Moments are also compared with the available experimental data. 

The simulation results for long-chain branching frequencies using the method of 

moments and using the method of Monte Carlo are compared with each other. 

Additionally, the MC technique is used to predict the MWD of the copolymers. 

8.2 Ethylene Homopolymerization  
As presented in the experimental section, the investigated conditions included 

different temperatures and catalysts concentrations, as shown in Figure 8.1.  

 
Figure 8.1 – Experimental conditions for homopolymerization reactions. 

 

To facilitate reading, the proposed kinetic mechanism and the final expressions 

of the homopolymerization model reaction rate constants are rewritten as:  
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Catalyst activation  
            →       (8.1) 

Initiation     
              
→            (    ) (8.2) 

Propagation (Ethylene)      
              
→              (    ) (8.3) 

Propagation (Diene)      
              
→               (    ) (8.4) 

Transfer to monomer and E-hydride 
elimination    

            →           (8.5) 

Living chain deactivation         
             →               (8.6) 

Macromonomer reincorporation        
             →           (       ) (8.7) 

 

As commented in Section 6.5, the homopolymerization model parameters (  , 

    ,    and     ) were expressed in the form of reparameterized Arrhenius equations, 

with the exception of      , since the activation energy is already known (20520 J mol-1 

(MEHDIABADI, 2011)), resulting in seven parameters to be estimated which are 

shown in Table 8.1. 

Table 8.1. Kinetic reaction constants for the mechanism shown in Equations (7.1) to (7.7). 
Reaction Step Final Expression for the model parameter 

Catalyst 
activation        ,     *

(    )
 

+- 

Monomer 
transfer &  -

hydride 
elimination  

      ,     *
(    )

 
+- 

Living chain 
deactivation         ,     *

(    )
 

+- 

Ethylene 
propagation        ( 

     
       

) 

 

8.2.1 Parameter Estimation 
The experimental data used to estimate the model parameters are the number and 

weight average molecular weights of the polymer samples and the observed ethylene 

feed rates. These experimental data and the fit of the model after the estimation 

procedure are shown in Section 8.2.2. 

Initially, the seven parameters (          ) defined for the 

homopolymerization reactions had their values determined stochastically by the PSO 

algorithm. The obtained values are presented in Table 8.2. 



 

128 
 

Table 8.2. Values of parameters from PSO 

 
Parameter 

   -2.92 

   25.2 

   2.58 

   17.2 

   10.91 

   30.12 

   7.56 

 

It is very common in kinetic polymerization studies to take some parameters 

from the literature and estimate others. One can argue that this can lead to misleading 

confidence regions of parameters uncertainties, and this topic will be explored in more 

details here. 

Figure 8.2 represents the confidence regions of parameter uncertainties obtained 

with the PSO and after random generation of model parameters values. In the left 

column, the confidence regions were represented for pair of parameters (keeping the 

others equal to the values presented in Table 8.2); in the right column, the confidence 

regions were generated considering all 7 parameters varying simultaneously, as 

obtained through the PSO. 

 

Model parameters calculated with the PSO 
 

  
(a) (b) 
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Model parameters calculated with the PSO 
 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 
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Model parameters calculated with the PSO 
 

  
(i) (j) 

  
(k) (l) 

  
(m) (n) 
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Model parameters calculated with the PSO 

 
 

  

(o) (p) 

  

(q) (r) 

  

(s) (t) 



 

132 
 

 
 

Model parameters calculated with the PSO 
 
 

  
(u) (v) 

  
(w) (x) 

  
(y) (z) 
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Model parameters calculated with the PSO 

 

  
(aa) (ab) 

  
(ac) (ad) 

  
(ae) (af) 
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Model parameters calculated with the PSO 

 
 

  
(ag) (ah) 

  
(ai) (aj) 

  
(ak) (al) 
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Model parameters calculated with the PSO 
 
 

  
(am) (an) 

  
(ao) (ap) 

 
Figure 8.2 – Values of model parameters calculated with the PSO 

 

As one can observe in Figure 8.2, pairs of parameters almost always lead to near 

elliptical confidence regions of parameter uncertainties. However, the inclusion of other 

parameters makes the confidence region of parameter uncertainties much bigger 

(remember that the reparameterization for k7 was performed in terms of 10 elevated to 

the original parameter values), also suggesting that the confidence region of parameters 

uncertainties become open (SWCHAAB et al., 2008), indicating estimability problems. 

In fact, the estimation of all parameter uncertainties simultaneously is infeasible, since 

the matrix     cannot be inverted. Thus, application of parameter identifiability 

procedure becomes essential. Additionally, the confidence regions located at the right 

were built by running the PSO algorithms for numerous set of parameter combinations. 

These combinations were generated using the Monte Carlo algorithm. For each 

parameter, a limit range was defined (lower and upper limit). For each region in Figure 
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8.2, 5,000,000 combinations of the 7 parameters were generated and tested with the 

PSO algorithm. Then, new parameter combinations were generated again, but 

extrapolating the previous considered interval. This time, 1,000,000 combinations were 

produced and run in the PSO method. That is the reason why some isolated points can 

be observed in the confidence regions positioned at the right column, indicating that 

these confidence regions possibly have open boundaries (SWCHAAB et al., 2008).  

The details regarding the identifiability procedure used in the present thesis were 

presented in Section 6.4.2. After application of this procedure, the identifiability 

analysis indicated that only four parameters could be estimated simultaneously 

(           ). The remaining parameters (        ), although important for model 

computations, could not be estimated independently with the available experimental 

data; therefore, they were kept constant and equal to the values provided by the particle 

swarm optimization method and shown in Table 8.2. Then, the four selected parameters 

were estimated using the computational package ESTIMA. Table 8.3 lists the 

parameters estimated using ESTIMA.  

Table 8.3. Parameter estimates for ethylene homopolymerization. 
 Parameter 
   2.58 ± 0.08 
   10.91 ± 0.95 
   30.12 ± 2.10 
   7.56 ± 0.07 

 

The confidence region for these parameters, keeping non-estimable parameters 

constant, are presented in Figure 8.3. In all confidence regions the parameter values 

from Table 8.3 are highlighted. 

Keeping some parameters at constant values and estimating others is similar to 

applying an identifiability procedure. Identifiability procedures unavoidably neglect part 

of the uncertainty that cannot be assessed from data and model structure, reducing the 

uncertainty to a subset of parameters. Obviously the full uncertainty picture cannot be 

recovered, considering all model parameters. However, the procedure allows for 

quantification of the uncertainty of model parameters and model predictions that can be 

regarded as more significant and meaningful for model interpolation and interpretation. 
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                      (a)                                                                (b) 

 
                      (c)                                                                (d) 

 

 
                      (e)                                                                (f) 

Figure 8.3 – Values of estimable parameters obtained with PSO. 
 

8.2.2 Model Prediction and Statistical Evaluation 
Table 8.4 presents the reaction rate constants for ethylene homopolymerization, 

as shown in Equation (8.1) to (8.3), (8.5) and (8.6). 
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Table 8.4. Ethylene homopolymerization reaction rate constants at different temperatures. 

 
                  Unit 

   0.02847 0.05 0.10     

     67736.5 79150.0 91792.1   (     )   

   8.5 13.2 20.0     

    25456.3 54770.1 113549.2   (     )   

 

The quality of the model fit was evaluated with the chi-square (  ) statistical 

test. According to this test, the model is admitted to be suitable if the final objective 

function      lies between limits given by the    distribution, given the degrees of 

freedom. A 95% confidence degree was adopted. The final value of      was equal to 

156.6, with the lower and upper    of 149.2 and 224.5, respectively. According to the 

   statistical test, the proposed model fits the experimental data adequately. 

Figure 8.4 shows the experimental data for ethylene feed flow rates used to 

estimate the model parameters in Table 8.3. The model predicted ethylene feed flow 

rates for all three polymerization temperatures and for experimental conditions J1 and 

J2 satisfactorily, given the experimental uncertainties. 

 
(a) Experimental data and model predictions for  ̇  as a function of time at 120 °C. 
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(b) Experimental data and model predictions for  ̇  as a function of time at 130 °C. 

 
 

 
(c) Experimental data and model predictions for  ̇  as a function of time at 140 °C. 
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(d) Experimental data and model predictions for  ̇  as a function of time at 120 °C and with 

catalyst concentration equals to 0.271 μmol L-1. 
 

 
(e) Experimental data and model predictions for  ̇  as a function of time at 120 °C and with 

catalyst concentration equals to 0.174 μmol L-1. 
Figure 8.4 – Comparison between experimental data and model predictions for ethylene feed flow 
rate versus polymerization time at different temperatures: a) 120 °C, b) 130°C and c) 140 °C and 

with different catalyst concentrations: d) condition J1 and e) condition J2. 

 

All experimental errors presented in the present work were calculated according 

with Equation (8.8): 
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    ̅    
          
√    

 (8.8) 

 

where  ̅    is the average of the dependent measured variables      (replicates) and    

is the standard deviation for each      as measured from replicates. 

Figure 8.5 and Figure 8.6 compare model predictions for Mn and Mw with 

experimental data, showing that the model can represent these averages adequately 

within the experimental uncertainties. Although the propagation kinetic constant 

increases with the increasing of temperature, both Mn and Mw decayed with the increase 

of temperature due to the more accentuate increase in the values of kdP than the increase 

of kp11, leading to a faster catalyst deactivation at higher temperatures and, 

consequently, lower Mn and Mw at higher temperatures.  The transfer kinetic constant kt 

also increases with the increasing of temperature, which contributes for decreasing the 

average molecular weights when the reaction temperature increases. 

 

 
 

Figure 8.5 – Comparison between experimental data and model predictions of number average 
molecular weights at different temperatures: 120 °C, 130 °C and 140 °C.  
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Figure 8.6 – Comparison between experimental data and model predictions of weight average 
molecular weights at different temperatures: 120 °C, 130 °C and 140 °C.  

 

Figure  compares model predictions for PI with experimental data. According to 

the model, PI does not vary with the increase of temperature, but as one can see the 

available experimental PI slightly increased when temperature was increased from 120 

to 140 °C. Given the experimental uncertainties, fair agreement could be noted between 

experimental data and model predictions for PI. 

 
 

Figure 8.7 – Comparison between experimental data and model predictions of polydispersity 
indexes at different temperatures: 120 °C, 130 °C and 140 °C.  

 

  Figure 8.8 illustrates how Mn and Mw vary when the catalyst concentration 

increases. Increasing the amount of catalyst used leads to an increase in the catalytic 
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activity which affects directly in the increase of average molecular weights of the 

polymer. More catalyst in the system consumes more monomer and, consequently, 

more monomer is fed in the reactor in order to maintain constant the total pressure.  

 

 
(a) 

 
(b) 

 
Figure 8.8 - Comparison between experimental data and model predictions of number and weight 
average molecular weights and polydispersity index for experimental conditions J2 and J1 (from 

left to right). 

 

Figure 8.9 illustrates the comparison between experimental data and model 

predictions for PI of polymers synthesized with different catalyst concentrations. Very 

good agreement was obtained with experimental data and model predictions. As one can 
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see, the increase in the catalyst concentration did not change the polydispersity index of 

the polymers, as expected.  

 

 
Figure 8.9 - Comparison between experimental data and model predictions for polydispersity 

indexes for experimental conditions J2 and J1 (from left to right). 

 

Table 8.5 presents the polymer yields obtained in the homopolymerization 

reactions at different temperatures.  

 

Table 8.5. Polymer yield for the homopolymerization runs at different temperatures. 
Sample ID 

(120 °C) 

Polymer 

weight (g) 

Sample ID 

(130 °C) 

Polymer 

weight (g) 

Sample ID 

(140 °C) 

Polymer 

weight (g) 

A1 4.81 B1 2.95 C1 1.63 

A2 3.87 B2 2.99 C2 1.74 

A3 3.69 B3 3.02 C3 1.24 

J1 2.05 J2 0.98   

 

From Table 8.5, it is clear that at the lowest temperature (120 °C) the highest 

amounts of polymer are produced, while at the highest temperature (140 °C) one can 

observe the lowest amounts of polymer. It is important to comment that the gravimetric 

analyses carry out high uncertainties, since it cannot be guaranteed that all polymer 

material is recovered from the reactor (for instance, some polymer can be sticked to the 

reactor). Thus, considering that the results in Table 8.5 can contain uncertainties that are 



 

145 
 

hard to quantify, one can conclude that smaller amounts of polymer are produced at 

high temperatures, because the catalyst deactivates much faster when the reaction is 

conducted at higher temperatures. This conclusion agrees with results presented by 

SOARES and MCKENNA (2012), as these authors also observed for a similar catalyst 

that the increase in the polymerization temperature would lead to the decrease of 

polymer yield. This can also be confirmed in Figure 8.10, where it is possible to see that 

at 120 °C it takes longer for the ethylene feed flow rate to reach its lowest value, when 

compared to results obtained at 130 °C and 140 °C. 

 

 
Figure 8.10 – Ethylene feed flow rate versus polymerization time at different temperatures: 120 °C, 

130°C and 140 °C 

 

8.3 Copolymerization of Ethylene with 1,9-Decadiene 
As commented in Chapter 5, 14 copolymerization reactions were carried out, 

varying catalyst and diene concentration and also the total time of polymerization. 

Figure 8.11 summarizes these experimental conditions.  All reactions were performed at 

120 °C, temperature that catalyst activities were higher, and reactor pressure of 120 

psig.  
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Figure 8.11 – Experimental conditions for copolymerization reactions. 

 

 Table 8.6 presents the polymer yields obtained in the copolymerization 

reactions at different experimental conditions.  

 
Table 8.6. Polymer yield for the copolymerization runs. 

Sample ID 
Polymer 

weight (g) 
Sample ID  

Polymer 

weight (g) 
Sample ID  

Polymer 

weight (g) 

D1 1.94 G4 1.91 I1 2.01 

E1 1.71 G5 1.95 I2 0.76 

F1 1.95 H1 1.39   

G1 1.15 H2 1.46   

G2 1.41 H3 1.50   

G3 1.62 H4 1.87   

 

As expected, it is possible to observe in Table 8.6 that the addition of more 

catalyst resulted in more polymer at the end of the reaction. This can be confirmed by 

comparing the polymer yields obtained for runs D1 and F1 with the polymer yields 

obtained for runs G5 and H4. However, the higher amounts of polymer produced in D1 

and F1 can also be associated with the longer polymerization time (15 min). Sample E1 

produced the lowest polymer amounts among samples produced with the same catalyst 

concentration. Later in this chapter, it will be shown that sample E1 may be an outlier 

and maybe this is the reason why it produces less polymer.  Sample I1 produced more 

polymer than sample H2 and sample H2 led to more polymer than sample I2. All these 

three samples (I1, H2 and I2) were generated after 6 min of reaction and using 0.4 g of 
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1,9-decadiene. The only difference among them was the used catalyst concentration, as 

expected.  

Comparing the polymer yields of sample J1 and samples G5 and H4, one can say 

that the increase of the diene concentration can cause the production of less polymer. 

This scenario can be explained by: 

. the presence of contaminants in the diene solution, even after purification, as 

described in Chapter 5; 

. the presence of the diene, which may act as a transfer agent or present lower 

reactivity, slowing down the rates of polymerization;   

. experimental uncertainties, as it was not possible to quantity the experimental 

error of the gravimetrical analysis.  

The copolymerization reaction mechanism differs from the homopolymerization 

mechanism by the addition of two additional reaction steps: the diene propagation, 

Equation (8.4), and the macromonomer reincorporation, Equation (8.7). The last 

reaction forms LCBs and, consequently, can substantially increase the molecular weight 

averages, due to incorporation of macromonomers of larger molecular weights into the 

growing chains. This increase can be confirmed when one plots the intrinsic viscosity of 

the samples as functions of the average molecular weight, as shown in Figure 8.12 and 

Figure 8.13. 

 

 
Figure 8.12 – Intrinsic viscosity for copolymers of ethylene and 1,9-decadiene when 0.3 g of diene is 

used (G1 to G5 and J1 in Figure 8.11). 
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(b) 

Figure 8.13 – Intrinsic viscosity for copolymers of ethylene and 1,9-decadiene when 0.4 g of diene is 
used (H1 to H4 and J1 in Figure 8.11). 

 

Examining Figure 8.12 and Figure 8.13, it becomes evident that the intrinsic 

viscosity of ethylene/diene copolymers decreases for similar molecular weights. 

Besides, the intrinsic viscosity deviates from the linear relation with log(MW), as 

expected for linear polymers, in the high molecular weight region (MEHDIABADI and 

SOARES, 2011). As the polymerization evolves, more macromonomers are 

reincorporated, forming more LCBs, magnifying this effect. When one compares Figure 

8.12 with Figure 8.13, one can note that the intrinsic viscosity decreases slightly (for the 

same molecular weight) with the increasing diene concentration, since more LCB are 

formed in the latter case. Therefore, formation of LCBs is very likely in the analyzed 

system and increase with time and diene content. For similar molecular weights, 

intrinsic viscosities are usually smaller for branched polymer chains because of the 

smaller hydrodynamic volumes and entanglement frequency.  

Similar deviations could be observed for copolymers prepared with similar 

amounts of diene, but with increasing catalyst concentrations. Figure 8.14 shows that 

the intrinsic viscosity of polymers produced with higher CGC concentrations deviates 

more from the PE curve, because higher catalyst concentration leads to higher 

concentrations of living polymer chains and macromonomers, increasing the probability 

of LCB formation.  
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Figure 8.14 – Intrinsic viscosity for copolymers of ethylene and 1,9-decadiene when 0.4 g of diene is 

used (H1, I1 and I2 in Figure 8.11) and for pure PE (J1). 
 

As one can see, in Figures 8.13 to 8.15, there is an upward deviation of the 

intrinsic viscosity in the region of high molecular weights and this deviation becomes 

less pronounced as the copolymerization time increases, this deviation is maximum 

when there is no diene present. This deviation, in fact, occurs due to the low 

concentration of chains with weight in this range of high molar masses and, therefore, 

the GPC cannot detect these chains, either because they are in very low concentrations 

or because they do not exist. What is really important in Figures 8.13 to 8.15 is to 

observe that the higher the amount of diene, the reaction time and the catalyst 

concentration, the more distant the intrinsic viscosity of the copolymer stays in relation 

to the intrinsic viscosity of PE without diene. 

8.3.1 Parameter Estimation 
The experimental data used to estimate the model parameters were the number 

and weight average molecular weights of the polymer samples. These experimental data 

and the fit of the model after the estimation procedure are shown in Section 8.3.2. 

Table 8.7 lists the parameters estimated for the copolymerization model. The 

calculated      was equal to 31.2, with lower and upper    of 16.8 and 47.0, 

respectively. Thus, according to the    statistical test, the proposed model fitted 

adequately the available experimental data, being suitable to predict average molecular 

weights of the copolymers made of ethylene/ 1,9-decadiene. 
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Table 8.7. Estimated parameter values for ethylene and 1,9-decadiene copolymerization with a 
CGC at 120 °C. 

 
Parameter  

    3.31 ± 0.34   

    2.96 ± 0.33  

 
 

The copolymerization parameters      and    can be calculated from the 

estimated values of     and     as shown in Table 8.8. 

 

Table 8.8. Model parameters for ethylene and 1,9-decadiene copolymerization with a CGC at 120 
°C. 

 
Parameter  Unit 

            2039.8               

         908.7               

 

Comparing Table 8.4 and Table 8.8, one can observe that          ; that is, 

the propagation rate constant for ethylene is higher than for propagation with diene, 

which is expected since ethylene is a more reactive monomer (CHUNG, 2002). It must 

be emphasized that the real propagation rate constant for diene incorporation is     
 

, 

because a diene molecule has two vinyl groups, so that incorporation can take place 

through either one of the two available vinyl groups. The confidence region, obtained 

with particle swarm optimization, is illustrated in Figure 8.15. The final pair 

(       ) from Table 8.8 is highlighted in the figure as a white circle. 

Figure 8.15 shows that the confidence region is not elliptical, indicating the 

importance of using a method like PSO for determining parameter uncertainties in cases 

where elliptical approximations fail. Similar behavior has also been observed elsewhere 

for other nonlinear models (SCHWAAB et al., 2008).  
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Figure 8.15 – Confidence regions for parameters      and    obtained with Particle Swarm 

Optimization. 
 

Again, it must be emphasized that this procedure does not consider the full 

uncertainty, since other parameters were kept constant during the estimation procedure. 

As a consequence, Figure 8.15 just presents the uncertainty of this subset of parameters 

in the scenario where the others do not change. 

8.3.2 Model Predictions and Statistical Evaluation 
Figures 8.17 to 8.20 compare experimental data and model predictions for 

copolymer average molecular weights. Observing these figures, it is possible to notice, 

with the exception of two experimental points (Figure 8.16.b and Figure 8.17.b), that all 

measured    and    values were well represented by the model, given the 

experimental and prediction uncertainties.  

As one can see in Figure 8.16, increasing the amount of diene, Mn and Mw also 

increased. The higher the amount of diene, the higher is the probability of the diene 

being incorporated into the growing chains and, consequently, the higher is the 

probability of forming more macromonomer with pendant unsaturations which 

increases the probability of those chains being reincorporating; generating LCBs. 

Branched polymers have higher average molecular weights than non-branched polymers 

of the same type.   
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                                                 (a)                                                                                         (b) 

Figure 8.16 – Experimental data and model predictions for (a) number average molecular weights 
and (b) weight average molecular weights. Conditions D1, E1 and F1 from Figure 8.11.  

 

Observing Figures 8.18 and 8.19, one can conclude that the average molecular 

weights increased with increasing reaction time. This occurred because at short 

reactions the propagation and LCB reincorporation reactions occurred less than longer 

reactions, having less time for the polymer to grow when the reaction was shorter.  

 

 
                                                 (a)                                                                                         (b) 

Figure 8.17 – Experimental data and model predictions for (a) number average molecular weights 
and (b) weight average molecular weights. Conditions G1, G2, G3, G4 and G5 from Figure 8.11.  
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                                                 (a)                                                                                         (b) 

Figure 8.18 – Experimental data and model predictions for (a) number average molecular weights 
and (b) weight average molecular weights. Conditions H1, H2, H3 and H4 from Figure 8.11. 

 

Analyzing Figure 8.19, increasing the amount of catalyst led to an increase in the 

catalytic activity which affected directly in the increase of average molecular weights of 

the copolymer. More catalyst in the system consumes more monomer and comonomer 

and, consequently, more reactions are processed during the same time. 
 
 

 
                                                 (a)                                                                                         (b) 

Figure 8.19 – Experimental data and model predictions for (a) number average molecular weights 
and (b) weight average molecular weights.  Conditions H2, I2 and I2 from Figure 8.11.  

 

As mentioned previously, it was assumed that the ethylene feed flow rate was 

approximately equal to ethylene polymerization rate, since ethylene was supplied to 

maintain the reactor pressure constant throughout the polymerization. For estimation of 

the copolymerization parameters, ethylene feed flow rate data were not taken into 
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account, but such data could be used to confirm the accuracy of the model predictions. 

Figure 8.20 compares, for different diene and catalyst concentrations, measured and 

predicted ethylene feed flow rates.  

 
(a)                                                                                   (b) 

 
        (c)                                                                                  (d) 

Figure 8.20 – Ethylene feed flow rates measured experimentally and simulated using the method of 
moments. Conditions: a) D1, E1, F1; b) G5; c) H4; d) I1 (upper curve) and I2 (lower curve). 

 

The modification of the diene content apparently do not affect the ethylene feed 

flow rate, since the simulated and measured profiles for  ̇  were similar for copolymer 

samples containing 0.1, 0.2 and 0.3 g of 1,9-decadiene (Figure 8.20.a). Figure 8.20.d 

clearly shows the influence of catalyst concentration on the ethylene flow rate: the 

increase of the CGC concentration leads to higher polymerization rates, as expected. 

Figure 8.20 shows that the model can predict ethylene flow rates (and polymerization 

rates) well for the analyzed conditions.   
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Figure 8.21 shows the 1,9-decadiene and ethylene ratios throughout the reaction 

for distinct experimental conditions. It can be noticed that for all experimental 

conditions shown, the 1,9-decadiene and ethylene ratio does not vary significantly from 

the beginning to the end of the reaction as it was expected. All the changes in the ratio 

values were lower than 0.007 and, considering the model uncertainties, these changes 

can be despised.  

 

 

 
Figure 8.21 – Simulated diene (mol)/ ethylene (mol) over reaction time for different experimental 

conditions.  

 

 

 

Although the Monte Carlo method was not used to estimate the model 

parameters, it was used to simulate the ethylene/diene copolymerizations using the 

experimental conditions presented in Figure 8.11. The used parameter values were the 

ones presented in Table 8.8. The results of these simulations are summarized in Table 

8.9.  
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Table 8.9. Average molecular weights predicted by Monte-Carlo simulation for different 

polymerization conditions and experimental lower and upper bounds.  
Exp. 

Cond. 
1,9-C10H18  

(g) 
Time 
(min) 

  
a  

(g.mol-1) 
L. & U.   

b 
Lim. (g.mol-1) 

  
a   

(g.mol-1) 
L. & U.   

b 
Lim. (g.mol-1) 

D1 0.1 10 115579 101649; 124106 263370 243943; 284876 
E1 0.2 10 120420 101593; 124037 319030 363392; 424369 
F1 0.3 10 118000 107773; 131582 402214 373650; 436349 
G1 0.3 2 116454 105914; 129313 266474 301733; 352364 
G2 0.3 4 120036 108333; 132266 307103 292100; 341115 
G3 0.3 6 121774 109587; 133797 331214 297101; 346954 
G4 0.3 8 122697 113574; 138665 345055 299884; 350205 
G5 0.3 10 123632 115559; 141088 360850 321748; 375737 
H1 0.4 4 122968 110659; 135106 351062 277125; 323626 
H2 0.4 6 125329 112758; 137669 382047 328971; 384172 
H3 0.4 8 126958 117385; 143318 428900 351546; 410535 
H4 0.4 10 127497 119310; 145668 441776 396356; 462865 
I1 0.4 6 130489 127562; 155743 455605 391044; 456661 
I2 0.4 6 120325 105669; 129014 292932 255057; 297856 

a Simulated values. b Experimental confidence interval 

As shown in Table 8.9, the Monte Carlo model provided molecular weight 

averages within modeling and experimental uncertainty limits, with exception of 

samples E1 and G1.  

Figure 8.22 compares measured and predicted molecular weight averages. 

Experimental and model errors were also included in the figure. The Monte Carlo 

confidence intervals for    were obtained considering 95% as confidence interval and 

5 replicates, according to the t-Student distribution, 

 

   
           

√  
 (8.9) 

 

where    is the number of replicates and     is the    standard deviation. 

The method of moments and the Monte Carlo simulations were used to quantify 

the LCB frequency in the copolymer. The method of moments calculates the average 

frequencies of LCB per 1000 carbon atoms and average LCB per chain as a function of 

polymerization time. The Monte Carlo simulations provide the average frequency of 

LCB/1000 C and LCB/chain as functions of the polymer molecular weight (MW).  
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Figure 8.23 to Figure 8.26 illustrate the results of these simulations. 

 

 
Figure 8.22 – Comparison between experimental and simulated    data for the copolymerization 

using MC simulations. 
 
 

 
 

Figure 8.23 – LCB per chain as a function of polymerization time simulated by the method of 
moments and MC (Simulation conditions: D1, E1 and F1 from Figure 8.11). 
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Figure 8.24 – LCB frequency simulated with the MC model for different diene concentrations after 
10 minutes of polymerization as function of the molecular weight (Simulation conditions: D1, E1 

and F1 from Figure 8.11). 

 

 

 

Figure 8.23 to Figure 8.26 show that the increase of the diene concentration 

cause the increase of the number of LCBs in the copolymer, in agreement with the 

experimental results shown in Figure 8.12 and Figure 8.13. An interesting result from 

the Monte Carlo simulations is that LCBs were formed significantly only in chains with 

high molecular weights; for low and medium molecular weights, the LCB frequency is 

practically nil. This is in accordance with previously published material (GUZMÁN et 

al., 2010), which indicates that copolymerizations performed with 1,9-decadiene can 

eventually lead to production of polymer chains of very high molecular weights and gel, 

if the chain branching frequency is sufficiently high. This also explains why deviations 

from linearity are more important at high molecular weights, when the intrinsic 

viscosity plots are analyzed as functions of the molecular weight. 
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Figure 8.25 – LCB per chain as a function of polymerization time simulated by the method of 
moments and MC (Simulation conditions: G5 and H4 from Figure 8.11). 

 
 

 
Figure 8.26 – LCB per chain as a function of polymer molecular weight simulated by MC model for 

different diene concentrations (Simulation conditions: G5 and H4 from Figure 8.11). 
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Figures 8.27 and 8.28 show the influence of catalyst concentration on the 

formation of LCBs. Both methods agree that when the CGC concentration is increased, 

more LCBs are generated, which agrees with experimental observations. Table 8.10 

compares the average frequencies of long branches per 1000 carbon atoms and per 

chain, as simulated by both analyzed methods.   

 

 
 

Figure 8.27 – Frequency of LCB per chain versus polymerization time simulated by the method of 
moments and MC (Simulation conditions: G3, I1 and I2 from Figure 8.11). 

 
 

 
 

Figure 8.28 – Frequency of LCB per chain as a function of polymer molecular weight simulated by 
the MC model after 6 minutes of polymerization (Simulation conditions: G3, I1 and I2 from Figure 

8.11). 
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Table 8.10. Frequencies of LCB/chain and LCB/1000 C atoms predicted by MC method and the 
method of moments for different polymerization conditions.  

Exp. 
Cond. 

1,9-
Decadiene 

(g) 

Time 
(min) 

LCB/1000 
C atoms 

(MC) 

LCB/1000 
C atoms 

(Moments) 

LCB/chain 
(MC) 

LCB/chain 
(Moments) 

D1 0.1 10 0.009 0.009 0.070 0.071 
E1 0.2 10 0.018 0.017 0.152 0.147 
F1 0.3 10 0.026 0.026 0.232 0.229 
G1 0.3 2 0.007 0.007 0.061 0.060 
G2 0.3 4 0.014 0.014 0.114 0.116 
G3 0.3 6 0.019 0.018 0.159 0.154 
G4 0.3 8 0.022 0.021 0.189 0.184 
G5 0.3 10 0.025 0.024 0.213 0.208 
H1 0.4 4 0.019 0.018 0.159 0.157 
H2 0.4 6 0.024 0.024 0.213 0.211 
H3 0.4 8 0.029 0.028 0.259 0.253 
H4 0.4 10 0.033 0.032 0.293 0.287 
I1 0.4 6 0.029 0.029 0.258 0.256 
I2 0.4 6 0.019 0.018 0.162 0.157 

 

8.4 Concluding Remarks 
A mathematical framework, including the method of moments and Monte Carlo 

simulation, was proposed to describe polymerization reactions between ethylene and 

1,9-decadiene using a CGC catalyst, including an ethylene/diene macromonomer 

reincorporation steps through pendant vinyl groups. The model was validated using 

experimental data for the copolymerization of ethylene and 1,9-decadiene with a 

constrained geometry catalyst in a solution polymerization reactor operated in semi-

batch mode. Experimental data included ethylene rates of consumption and average 

molecular weights of polymer samples. 

The method of Moments and the Monte Carlo method predicted very well 

available average molecular weights and ethylene feed flow rates for the experimental 

conditions discussed. Furthermore, both methods predicted the average frequencies of 

LCB per chain and per 1000 carbon atoms as a function of polymerization time for all 

experimental conditions. In addition, the Monte Carlo method provided additional 

information on long chain branching frequencies, such as the average number of LCB as 

a function of the polymer chain size, showing that LCBs are formed mainly at high tail 

of the molecular weight distribution.  
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It is important to highlight that the kinetic mechanism proposed herein 

successfully describes all the collected experimental data and that alternative models 

have not been found in the literature for similar olefin/ diene polymerization systems. 

Despite the encouraging results, it must be recognized though that the 

experimental evidences for LCB formation, as predicted by the model, are weak. 

However, given the significant effect of LCB formation on the MWDs, and particularly 

on the high molecular weight tail of the distribution, there are incentives for more 

involving modeling of the MWD, as performed in the next chapter. 
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9 Prediction of Molecular Weight 
Distributions  

 

9.1 Summary 
In the present chapter, the experimental molecular weight distributions of pure 

PE are compared with the predicted MWDs with the help of the method of polynomial 

approximation, based on the moments of distributions. Then, the experimental MWDs 

of the copolymers are compared with the simulated MWDs, as obtained by complete 

adaptive orthogonal collocation (CAOC) and Monte Carlo (MC) simulations. The 

advantages and drawbacks of each method are commented. Finally, it is proposed that 

the rate of macromonomer reincorporation is dependent on the number of pendant 

double bonds in the macromonomer, as an attempt to approximate the experimental and 

predicted MWDs. 

9.2 Ethylene Homopolymerization  
As commented in Chapter 5, the molecular weight distributions for the PE 

homopolymer were simulated using polynomial approximation based on the moments 

of the distributions. The Monte Carlo method was also used to simulate the MWDs for 

the PE produced at 120, 130 and 140 °C with the experimental conditions shown in 

Figure 8.1. Figure 9.1 shows the MWDs obtained using both techniques.  

Observing Figure 9.1, it is possible to conclude that when 4 moments are used 

the polynomial approximation method converges suitably since the MC method 

provides results exactly similar to the distribution curves provided by the deterministic 

approach. When 5 moments are used, the deterministic method presents oscillatory 

modes, as one can see in Figure 9.2. As discussed by PINTO and BISCAIA (1996), 

oscillatory behavior of polynomial approximations can be obtained when the number of 

collocation points is excessively large and can be different for odd and even polynomial 

degrees. For this reason, in order to compare the simulated MWDs with the 

experimental ones, 4 moments were considered for all experimental conditions (with 

verification to assure that no distorted MWD had been generated).  
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Figure 9.1 – Molecular weight distributions obtained with polynomial approximation with 4 
moments and with Monte Carlo method using a control volume of 5·10-15 L for different 

homopolymerization conditions. 
 
 

 
 

Figure 9.2 – Molecular weight distributions obtained with polynomial approximation with 5 
moments and with Monte Carlo method using a control volume of 5·10-15 L and experimental 

MWD (polymerization conducted at 120 °C). 
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(a) 120 °C                                                               (b) 130 °C 

 

  (c) 140 ° C                                                              (d) 

Figure 9.3 – Molecular weight distributions obtained with polynomial approximation with 4 
moments and with Monte Carlo method using a control volume of 5·10-15 L for different 

homopolymerization conditions: (a) 120 °C, (b) 130 °C, (c) 140 °C and (d) all experimental MWDs. 

 

As one can see in Figure 9.3, the simulated MWDs could represent well the 

experimental MWDs obtained at 120 °C and 130 °C. However, at 140 °C, the predicted 

distributions were less closer to the experimental ones. Although the temperature varied 

less than 1 °C during the reaction time, this scenario probably occurred because at 140 

°C it was harder to maintain the experimental conditions constant throughout the 

reaction, which caused the enlargement of the molecular weight distribution. At 120 °C, 

it is easier to keep experimental conditions almost unchangeable during all executed 

reactions. In spite of that, fair agreement can be observed in all cases, especially if one 

considers the intrinsic limitation of the GPC technique. 
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9.3 Copolymerization of Ethylene and 1,9-decadiene 

9.3.1 Applying Monte Carlo to Predict Average Branching Frequency and MWD 
Using the Monte Carlo model presented in Section 7.5.4, with the experimental 

conditions G5 and H4 from Figure 8.11, the MWDs of the final copolymers and the 

average LCB/chain as function of the molecular weight could be simulated as shown in 

Figure 9.4 and Figure 9.5. 

Evaluating Figure 9.4 and Figure 9.5, it is possible to conclude that the MWD 

simulated using higher diene concentration is wider than the distribution predicted using 

lower diene concentration. This is in agreement with the results shown in Table 8.9, as 

the PI provided by the MC at these conditions are 2.9 and 3.4, respectively. A more 

detailed discussion about the MWDs is presented in the following sections.    

 
Figure 9.4 – MWD and average LCB/chain as simulated by the MC model for 0.3 g of diene 

(Simulation condition: G5 from Figure 8.11, control volume 2·10-14 L).  
 

 
Figure 9.5 – MWD and average LCB/chain as simulated by the MC model for 0.4 g of diene 

(Simulation condition: H4 from Figure 8.11, control volume 2·10-14 L). 
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The experimental average branching frequency of polyolefins can be estimated 

through GPC/VISC (with viscosity detector) analysis. This is a relatively simple 

approach and consists of the following steps (SOARES and MCKENNA, 2012): 

1. From the intrinsic viscosity versus molecular weight plot, it is possible to 

calculate the viscosity branching index   at each molecular weight as: 

 

   
, - 
, - 

 (9.1) 

 

where , -  and , -  are the intrinsic viscosities of linear and branched 

polymers with the same molecular weight, respectively. 

2. Then, it is possible to calculate the branching index   at each molecular 

weight as: 

 

      (9.2) 

 

where   depends on the LCB topology, solvent and polymer type. It has been 

reported that the value of   is within the interval 0.5 – 1.5 (SOARES and 

MCKENNA, 2012).  The exponent   also depends on the molecular weight, 

which makes the use of Equation (9.2) more complex, since it is assumed 

here that the exponent is the same for all molecular weights. 

3. Then, it is possible to estimate the number of LCBs per chain ( ) at each 

molecular weight using one of the following equations: 
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where    is the weight average number of LCBs per chain (      ⁄ ) 

(MM is the molecular weight of the monomeric unit).  
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ZIMM and STOCKMAYER (1949) proposed Equations (9.3) and (9.4) for 

branching index   and the number of LCBs per chain  . Equation (9.3) assumes that 

chains are trifunctional, randomly branched, monodisperse, while Equation (9.4) 

assumes that chains are trifunctional, randomly branched and polydisperse. 

A drawback of the GPC/VISC method described above is the value of the 

exponent  , which must be known accurately. However, this is not feasible, due to the 

dependency of   in respect to the LCB topology and molecular weight. The use of the 

GPC-MALLS (GPC triple-detector system) constitutes an alternative technique, since 

the addition of a MALLS detector allows the direct use of the Zimm-Stockmayer 

expression (Equation (9.3) and Equation (9.4)), as the radius of gyration of the chains 

eluting from the columns can be determined during the analysis (SOARES and 

MACKENNA, 2012). Thus, instead of using Equation (9.2), the following expression 

can be used to calculate the branching index: 

 

  
〈   〉 
〈   〉 

 (9.5) 

 

where 〈   〉  and 〈   〉  are the squared radius of linear and branched chains of the same 

molecular weight, respectively. 

Figures 9.6 and 9.7 illustrate the average branching frequencies for the 

copolymer produced using experimental condition G5 from Figure 8.11 and also the 

simulated LCB/chain and MWD using the MC method.  These branching frequencies 

were calculated using the two relations derived by Zimm and Stockmayer (ZIMM and 

STOCKMAYER, 1949).  

Unexpectedly, the relation derived for monodisperse polymers (Equation (9.3)) 

seems to fit better the simulated data predicted by the MC method (Figure 9.6) than the 

relation derived for polydisperse polymers (Figure 9.7). These results also depend on 

the value selected for the exponent ε, which in the present case was chosen by simple 

observation of the final graphic. On the other hand, these figures indicate that the Monte 

Carlo method was able to predict branching frequencies and simultaneously provide 

better fits for the experimental MWDs.  
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(a) ε = 1.0  (∆ : experimental data, -+- : model prediction for log(LCB/chain), o : model prediction 

for MWD) 
                                                        

 
(b) ε = 0.90   (∆ : experimental data, -+- : model prediction for log(LCB/chain), o : model prediction 

for MWD) 
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(c) ε = 0.8  (∆ : experimental data, -+- : model prediction for log(LCB/chain), o : model prediction 

for MWD) 

 

 
(d) ε = 0.7 (∆ : experimental data, -+- : model prediction for log(LCB/chain), o : model prediction 

for MWD) 
 

Figure 9.6 – MWD and experimental and simulated average LCB/chain for 0.4 of diene (condition 
G5 from Figure 8.11) using Equation (9.3) and different values for ε. 
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(a) ε = 1.0 (∆ : experimental data, -+- : model prediction for log(LCB/chain), o : model prediction 

for MWD) 
                                                                

 
(b) ε = 0.80 (∆ : experimental data, -+- : model prediction for log(LCB/chain), o : model prediction 

for MWD) 
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(c) ε = 0.6 (∆ : experimental data, -+- : model prediction for log(LCB/chain), o : model prediction 

for MWD) 
                                                                  

 
(d) ε = 0.50  (∆ : experimental data, -+- : model prediction for log(LCB/chain), o : model prediction 

for MWD) 
 

 Figure 9.7 – MWD and experimental and simulated average LCB/chain for 0.4 of diene (condition 
G5 from Figure 8.11) using Equation (9.4) and different values for ε. 
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The results shown in Figures 9.6 and 9.7 are really important since they show 

very good agreement between experimental and simulated average LCB/chain even 

considering all uncertainties around the values for ε as commented previously. 

Moreover, the developed MC model can be used to simulate other copolymerization 

systems and, after the model validation, it can be used to predict the average LCB/chain 

when there is no available GPC/VISC.  

In the next sections, it will be presented all discussion related to the MWDs of 

the copolymers. It will be shown that the presence of LCBs directly affects the widening 

of the molecular weight distributions. However, as a first step, it will be shown the 

numerical aspects of both techniques employed in the present thesis to build the MWDs 

(CAOC and MC).   

9.3.2 Numerical Aspects of the Adaptive Orthogonal Collocation Method 
(CAOC)  
In order to investigate some numerical aspects of the orthogonal collocation 

method, the experimental condition H4 (0.4 g of 1,9-decadiene and 10 minutes of 

reaction) was selected for additional studies. Some simulations were performed, 

following the procedure shown in Figure 3.1 and applying different numbers of 

collocation points and integral step sizes.  

In Figure 9.8, the MWD calculated with the CAOC is presented for different 

time steps, with 4 collocation points. Figure 9.9 presents the evolution of collocation 

points as functions of the simulation time.  
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Figure 9.8 – MWD from the complete adaptive orthogonal collocation method using 4 collocation 

points. 

 

As one can see in Figure 9.8, the profile obtained was unimodal, as expected. 

The evolution of time points was slightly noisy, especially for the last point in the first 

instants of reaction. All points stabilized after some time. Analyzing the evolution of the 

calculated orthogonal collocation points, the reader cannot see much difference in the 

orthogonal collocation points obtained when 0.30 s is used as the integral step size and 

compared to those calculated with a step size of 10.0 s. This indicates that for 4 

collocation points, it is advantageous to use a larger integration step size which can lead 

to faster simulations. 

Figure 9.10 presents the MWD distributions calculated with the CAOC for 

different time steps, with 5 collocation points. Figure 9.11 presents the evolution of the 

collocation points during the time of the simulation.  
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                                             (a)                                                                                     (b) 
 

 
                                            (c)                                                                                       (d)  

 
Figure 9.9 – Evolution of the collocation points during time for the living polymers considering (a) 
0.30 s and (b) 10.0 s as integration step sizes and for the dead polymers considering (c) 0.30 s and 

(d) 10.0 s as integration step sizes, using 4 collocation points. 
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Figure 9.10 – MWD from the complete adaptive orthogonal collocation method using 5 collocation 

points. 
 

 
                              (a)                                                            (b)                                                              (c) 
 

 
 
                              (d)                                                            (e)                                                              (f) 

 
Figure 9.11 – Evolution of the collocation points during time for the living polymers considering (a) 

0.40 s, (b) 0.60 s and (c) 10.0 s as integration step sizes and for the dead polymers considering (d) 
0.40 s, (e) 0.60 s and (f) 10.0 s as the integration step sizes, using five collocation points. 

 

Surprisingly, Figure 9.10 shows that the MWD obtained with 5 collocation 

points diverge significantly, depending on the applied integration step size. The best 

choice for time interval seemed to be 0.6 s. Generally, the lower the step size, the more 
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precise the method is; however, for step size of 0.4 s, an unexpected behavior was 

observed. Figure 9.11 indicates that all curves presented a clear tendency and low noise 

in the behavior of the nodal points; with exception of Figure 9.11d, associated with the 

dead polymer chains for step size of 0.4 s of time integration. For 0.40 s, at the first 25 s 

of simulation, the collocation points for the dead chains exploded, reaching 120000; 

then, in last than 10 s, they returned to values around 80000. Figure 9.12 shows how the 

MWD changed during simulation using 5 collocation points and 0.4 as the step size of 

integration. The distribution starts to become bimodal at reaction time corresponding 

215 s. When the integral step size of 0.60 s was used, all the collocation points 

calculated for living and dead points were smaller than those calculated with step sizes 

of 0.4 s and 10.0 s. Thus, these results suggest that convergence tests are highly 

recommended to achieve trustable results with this numerical technique. From the 

distributions shown in Figure 9.10, convergence could be obtained using 0.6 s as the 

integration step size, but when the step size of integration was diminished to 0.4 s, an 

oscillatory behavior appeared at the high molecular weight region. 

 
Figure 9.12 – MWDs from the complete adaptive orthogonal collocation method using 5 collocation 

points and 0.4 s as integral step at polymerization times of 100, 190, 215 and 600 s. 

 
 

As a matter of fact, as observed through many simulations, the numerical 

computation of the collocation points is very sensitive to numerical tolerances. This 

suggests that detailed numerical tuning of tolerances must be carried out prior to use of 

the discretized model, when collocation procedures are used. 
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Finally, Figure 9.13 shows the MWD as calculated with 6 collocation points (the 

curves of 4 and 5 collocation points are also presented for comparison). Figure 9.14 

shows the evolution of the collocation points for 6 collocation points. As one can see in 

Figure 9.13, simulations are in good agreement and no unexpected behavior can be 

observed for these conditions. Figure 9.14 shows that the evolution of collocation points 

presented a clear trend, without unexpected growth. 

 

 
 

Figure 9.13 – MWD as calculated with the complete adaptive orthogonal collocation method using 
4, 5 and 6 collocation points. 

 
 

 
                                             (a)                                                                                     (b) 

Figure 9.14 – Evolution of the collocation points during time for the (a) living and (b) dead 
polymers considering 2.50 s as the integration step size, applying six collocation points. 
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It is important to mention that during all the simulations, when 3 s was reached, 

the procedure initiated the complete adaptive orthogonal collocation procedure, using 

Flory distribution as reference before this point. Obviously, when the integration step 

sizes were larger than 3 s, the procedure started the complete adaptation procedure after 

the analyzed step size.  

For condition H4, the method requires only 4 collocation points to converge, 

which is an advantage when compared to other techniques, given the fast simulation 

times. On the other hand, it is necessary to confirm the convergence by varying step 

sizes and number of collocation points. Appendix E presents more details regarding the 

selection of the number of collocation points and the size of the integration steps, as 

required for all experimental conditions considered in the present work.  

 

9.3.3 Numerical Aspects of the Monte Carlo Method 
In the Monte Carlo method, MWD approximations are not required and all 

mechanistic polymerization steps can be simulated as assumed. The MC convergence 

depends only on the control volume, as one can see in Figure 9.15.    

The MWD predicted with volume of 1.0·10-16 L is very noisy and is not 

adequate for an accurate representation of the MWD. On the other hand, the MWDs 

predicted with volumes of 5.0·10-15, 1.0·10-14 and 4.5·10-14 L are similar to each other, 

although significant differences can be observed for the computational time. The bigger 

is the control volume, the longer is the CPU time required to run the simulation. The 

MWD obtained with volume of 5.0·10-15 L is sufficient to provide accurate results for 

the experimental condition in analysis.  
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(a)          (b) 

 

 

(b)          (d) 

Figure 9.15 – MWD obtained after 10 min of polymerization using condition H4 from Figure 8.11 
for different control volumes.  

 

9.3.4 Comparison of Predicted and Experimental MWD 
The MWDs were obtained with four collocation points for experimental 

conditions F1, G2-G5, H1-H4 and I1 from Figure 8.11 using the complete adaptive 

orthogonal collocation method. From the first iteration until 3.0 s of polymerization, the 

reference function was considered equivalent to the Flory distribution. After this time, 

the complete adaptation was adopted. The same experimental conditions were simulated 

using the Monte Carlo technique. Figures 9.16 to 9.18 illustrate the simulated and 

predicted MWDs using both numeric methods. 
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(a)        (b) 

 

 

 

                                    (c)                                                                            (d) 

Figure 9.16 – Experimental and simulated MWD of copolymer samples produced after (a) 4, (b) 6, 
(c) 8 and (d) 10 minutes (Experiment condition: G2 to G5 from Figure 8.11).  
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(a) (b) 

 

 

                                     (c)                                                                            (d) 

 
Figure 9.17 – Experimental and simulated MWD of copolymer samples produced after (a) 4, (b) 6, 

(c) 8 and (d) 10 minutes (Experiment condition: H1 to H4 from Figure 8.11).  
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(a) (b) 

 

 

(c)                                                                           (d) 

 
Figure 9.18 – Experimental and simulated MWD of copolymer samples produced after (a) 6 min 

(Experiment condition: I1), (b) 6 min (Experiment condition: I2), (c) 10 min (Experiment 
condition: D1) and (d) 10 min (Experiment condition: F1).   

 

In all cases, the Monte Carlo simulations are in very good agreement with the 

MWD predicted by the complete adaptive orthogonal collocation technique, which 

seems to validate both implementations. In all analyzed experimental conditions, both 

methods converged to the same final distribution; minor differences could be observed 

in conditions I2 and I1, but these differences can be regarded as acceptable, since they 

are within the numerical accuracy. Thus, the MC method can be used to validate if the 

MWD obtained with the orthogonal collocation method, instead of repeating the 
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simulation with additional collocation points, considering the fact that wrong MWDs 

can be obtained because of numerical instabilities. 

The CPU time required to run the simulations using Monte Carlo, applying 

different control volumes, and using Complete Adaptive Orthogonal Collocation 

method with different collocation points and integration step sizes were compared and 

these results are shown in Figure 9.19 and Table 9.1. As can be seen in Table 9.1, the 

CPU time depends on the number of collocation points used and also on the integration 

step chosen. In the case for experimental condition D1, it was possible to obtain a 

fastest simulation with 6 collocation points and 10 s as integration step than when it was 

used 5 collocation points and 0.59 s as integration step. Thus, besides the convergence 

analysis, the consumption time required to run the model has also to be evaluated in 

order to select the most appropriate combination of the number of collocation points and 

integration step size. Comparing Figure 9.19 and Table 9.1, it is possible to conclude 

that for the experimental conditions investigated, the CAOC method required almost the 

same CPU time than the MC method, since to obtain good representation of the MWDs 

using MC method, a control volume of 5·10-15 L was used and for this volume the CPU 

times were around 0.8 to 1.2 hours, while the CAOC method required computation 

times around 0.64 to 1.19 hours.  

 

Figure 9.19 – CPU time required to run the Monte Carlo models for different control volumes. 
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Table 9.1. CPU time required to run the Adaptive Orthogonal Collocation Models for different 
number of collocation points and integration steps. 

Experimental Condition Collocation Points Integration Step (s) CPU Time (h) 

H4 

4 0.30 6.34 
4 10 0.64 
5 0.60 7.29 
6 2.5 6.18 

G5 

4 0.59 3.97 
4 0.98 3.11 
4 10.00 0.64 
5 0.59 8.64 

F1 4 60.00 0.64 
5 0.59 8.19 

E1 4 10 0.65 
6 10 2.17 

D1 
5 0.59 6.40 
5 10.00 1.19 
6 10.00 1.58 

 

By evaluating Figures 9.16 to 9.18, it becomes possible to conclude that the 

simulated MWDs reach bigger molecular weights than the experimental distributions, 

with the only exception of condition D1 (0.1 g of decadiene, the lowest amount of diene 

used experimentally). According to the adopted mechanism, the reaction channel 

responsible to form LCB (Equation (7.7)) depends on the average frequency of pendant 

double bonds in the macromonomer. So, the macromonomer with larger size has higher 

probability of being incorporated than the macromonomer with smaller size, due to the 

higher number of pendant double bonds in the chain length. Although this hypothesis 

seems reasonable, it does not seem to be entirely true since the experimental MWD does 

not reach so higher molecular weights. Apparently, what defines the probability of a 

macromonomer being incorporated is the amount of pendant unsaturations that it 

contains and also its size. Bigger macromonomers may suffer from steric hindrance 

around the catalyst site, so that they cannot be incorporated into the growing chains so 

efficiently as a smaller chain. If the macromonomer chain length is also taken into 

account to calculate the probability of macromonomer incorporation, then the 

appearance of high molecular weights in the simulated distributions will not be so 

frequent. For this reason, in the present thesis it is proposed that the reincorporation rate 

constant can depend on the chain size.     
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Based on the new hypothesis, the reaction rates for macromonomer 

reincorporation must be redefined as 

 

  ( )             ∑ .              ( )/
  

   

 (9.6) 

 

where   is a counter and  ( ) is a function that depends on the chain length. Figure 

9.20 shows how the summation of Equation (9.6) must be performed when the rate 

constant depends on the chain size. 

 

 
Figure 9.20 – Procedure used to solve the summation of Equation (9.6). 

 

 

Because function  ( ) has to indicate how the macromonomer chain length 

affects its incorporation into the growing chain, three different expressions were 

proposed and considered for  ( ) (the parameter values were obtained through 

estimation, considering the available experimental MWD data): 
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Â Sigmoid function:  

 

 ( )    
 

       (   )
 (9.7) 

 

where         and         .7 

 

Â Exponential function:  

 

 ( )       (    );       ( ) (9.8) 

 

where            . 8 

 

Â Radius of gyration expression:  

 

 ( )  
    

      
 

 
  

 
 

  (    )   
(9.9) 

 

where    is the molecular weight of the monomeric unit. Equation (9.9) was 

presented previously by SUN et al. (2001) to represent other reacting systems, including 

1-octene and ethene copolymer samples  (          and         ).  

New simulations for experimental conditions F1, G5, H4 and I1 from Figure 

8.11 were performed with the MC method, applying Equation (9.6) and using a control 

volume of 1.0∙10-14 L. Figure 9.21 shows the experimental and simulated MWD 

considering   ( ) as an exponential function. Figures 9.21 and 9.22 compare the 

experimental and simulated MWD taken into account  ( ) as a sigmoid function and a 

radius of gyration expression respectively.   

 

 

                                                 
7 Parameter estimated by induction. 
8 Parameter estimated by induction. 
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                                    (a)                                                                           (b) 

 

                                    (c)                                                                             (d) 

Figure 9.21 – Experimental and simulated MWD of copolymer samples produced with experiment 
conditions (a) H4, (b) G5, (c) I1 and (d) F1 from Figure 8.11 considering F(i) an exponential 

function. 
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(a) (b) 

 

 

                                   (c)                                                                            (d) 

 
Figure 9.22 – Experimental and simulated MWD of copolymer samples produced with experiment 
conditions (a) H4, (b) G5, (c) I1 and (d) F1 from Figure 8.11 considering F(i) a sigmoid function. 
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                                   (a)                                                                            (b) 

 

                                  (c)                                                                            (d) 

Figure 9.23 – Experimental and simulated MWD of copolymer samples produced with experiment 
conditions (a) H4, (b) G5, (c) I1 and (d) F1 from Figure 8.11 considering F(i) an expression of the 

radius of gyration. 

 

According to Figures 9.20 to 9.22, all proposed functions succeeded in 

representing the molecular weight distributions of the analyzed copolymers, 

strengthening the hypothesis that the macromonomer reincorporation does not depend 

only on the amount of pendant unsaturations in the chain, but also on the chain length. 

All proposed functions consider that small macromonomer chains present higher 

chances to be incorporated than bigger chains. Apparently through the observation and 

comparison of Figures 9.20 to 9.22, the exponential function provided MWDs that were 

closer to the experimental MWDs. For a better view of how these three functions 

behave during all simulation for experimental conditions H4, G5, I1 and F1, Figures 
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9.23 and 9.24 were built. In these figures, the        were plotted against time, where 

  ∑ .              ( )/
  
    (Figure 9.20). Then,        indicates the propensity 

function for reincorporation of macromonomers, already considering the correcting 

function  ( ). 

 

 

(a) (b) 

 

 

                                  (c)                                                                     (d) 

 

Figure 9.24 – Evolution of        for experimental conditions (a) H4, (b) G5, (c) I1 and (d) F1 from 
Figure 8.11. 
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(a)                                                                    (b) 

 

 

                                  (c)                                                                     (d) 

Figure 9.25 – Evolution of   for experimental conditions (a) H4, (b) G5, (c) I1 and (d) F1 from 
Figure 8.11. 

 

Observing Figures 9.23 and 9.24, it becomes clear that   approaches a limiting 

value after some time and that this time depends on the function  ( ) that is being used. 

The fact that    tends assintopticaly to a constant value suggests that longer dead chains 

are being formed but their contribution to the reaction rates are reduced by the function 

 ( ). All three proposed functions (exponential, sigmoid and radius of gyration 

expressions) get closer to zero for longer chains.  

In order to compare the three proposed functions (exponential, sigmoid and 

radius of gyration), the mean square error Ð, were computed as: 
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  √∑ (     )  
   
   

 (9.10) 

 

where    is a experimental point that belongs to the experimental MWD data set and    

is the simulated point that belongs to the MWD data set produced using exponential, 

sigmoid or radius of gyration expressions for function F(i). So, small   values mean 

that the simulated MWDs are closer to the experimental distributions. Figure 9.26 

shows the comparison of the calculated Ð for different F functions. As one can see in 

this figure, the exponential function achieves the lowest Ð for all the experimental 

conditions analyzed. 

 
Figure 9.26 – Ð calculated values for experimental conditions H4, G5, I1 and F1 from Figure 8.11. 

 

Although the exponential function presented the lowest Ð for all experimental 

conditions analyzed, it is unfair to not consider that the radius of gyration expression 

presented very good performances in building the MWDs. The only exception was for 

experimental condition F1. However, the parameters of exponential and sigmoid 

functions (Equations (9.7) and (9.8)) were estimated by induction, while both 

parameters of the radius of gyration function (   and   ) were taken from the work of 

SUN et al. (2001) for other copolymer type (1-octene and ethane copolymer). Thus, if 

   and    would be estimated by induction, probably the radius of gyration expression 

would present the lowest Ð. 
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9.4 Concluding Remarks 
Both MC and CAOC methods provided similar MWDs for the analyzed 

experimental conditions tested.  It was shown that the MC method was more efficient to 

test the consistency of the CAOC than searching if the last model converged by 

comparing MWDs obtained with different number of collocation points.  However, it is 

important to observe that the kinetic model considered in the current study is simple and 

that the computation time required to run one simulation of 10 or 15 min with the MC is 

low, which highlights the advantages of this stochastic method. On the other hand, if the 

polymerization problem involves longer reaction times, the MC method starts to collide 

into some numerical barriers, the computational time and CPU memory. In this last 

case, probably the use of CAOC methods becomes more advantageous. 

The presence of LCB was responsible for widening the molecular weight 

distributions. It was shown that this widening accentuated when the amount of diene 

and catalyst concentration were increased. Additionally, the formation of LCB did not 

occur indiscriminately, the obtained results suggest that the incorporation of 

macromonomers does not only depend on the amount of pendant unsaturations in the 

chain, but also on the chain length. This dependency was shown to be non linear, but 

could be described well by an exponential function. A sigmoidal function and a 

correlation with the radius of gyration and the macromonomer length were also tested, 

and they also resulted in acceptable distributions, sufficient close to the experimental 

MWDs. In addition, the radius of gyration expression is probably the best function to be 

considered if its parameters were estimated by induction.  
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10 Comparison of Different Dynamic 
Monte Carlo Methods for the 
Simulation of Olefin Polymerization 

10.1 Summary 
In this chapter, different Monte Carlo methods are used to simulate olefin 

polymerization reactions promoted by coordination catalysts: the Direct method (DM), 

the First Reaction method (FRM), the Next Reaction method (NRM) and the W-Leaping 

method. The first three methods are exact stochastic simulation algorithms (SSA), while 

the W-leaping is an approximate method that leads to faster computation times. The four 

analyzed methods predict similar polymer microstructures, but require significantly 

different computation times. The efficiency of the methods vary according with the 

polymerization system under investigation.   

10.2 Monte Carlo Simulation Procedures 
Methods for dynamic MC simulations include stochastic simulation algorithms 

(SSA), extensions of SSA, hybrid methods, τ-leaping methods, among others. The 

performances of some of these MC methods are evaluated in the following sections 

based on case studies that involve catalyzed polymerization mechanisms.   

Five different coordination polymerization systems were selected for 

comparison of the performances of four different MC methods: DM, FRM, NRM and 

the τ-Leaping method. All routines were implemented in Fortran. Simulations were 

performed in a computer Intel(R) Core(TM) i7-4850HQ CPU 2.30GHz, running under 

Windows. 

10.2.1 Case Study I 
Case study I is the model represented in Table 4.4. In order to facilitate reading, 

the mechanism is rewritten in Table 10.1. It is considered that activation of active sites 

takes place instantaneously (     ) and that molar concentrations of monomer and 

chain transfer agent are constant.  
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Table 10.1. Polymerization mechanism for Case Study I. 
Elementary Step Chemical Equations a) Reaction number 

Initiation       
      Reaction 1 (R1) 

Propagation       
  
→      Reaction 2 (R2) 

Transfer         
         Reaction 3 (R3) 

a)  : catalyst,   : living chain with length r,   : dead chain with length r, M: monomer, CTA: chain 

transfer agent.  

The chain length distribution (CLD) of living polymer chains produced with a 

single-site catalyst was simulated with the DM, FRM, NRM and the τ-Leaping method. 

Figure 10.1 shows that the CLD predicted by all methods were very similar to the 

original analytical CLD reported by SOARES and HAMIELEC (2007), as shown in 

Figure 4.12. According to SOARES and HAMIELEC (2007), the concentrations of 

living chains of different lengths change from the beginning of the polymerization until 

achieving the steady-state Flory distribution. In this case study, it takes around 2.5 s to 

reach the steady-state response, as can be seen in Figure 10.1. The CLDs simulated with 

the W-Leaping method for very short polymerization times (0.5 and 1.0 s) were slightly 

different from the others, but this difference became negligible after 1.5 s. Figure 10.2 

shows the evolution of average molecular weights and polydispersity with the 

polymerization reaction time. As one can see, all models predict similar trajectories for 

Mw, Mn and PI.  

 

 
Figure 10.1 – Chain length distribution for living polymer made at 0.5, 1.0, 1.5, 2.0 and 2.5 s (from 

left to right) using Direct Method (DM), First Reaction Method (FRM), Next Reaction Method 
(NRM) and  -leaping (number of molecules of growing chain (P) = 1·104, kp = 3800 L·mol-1·s-1, 

kt[CTA] = 2.3 s-1, [M] = 0.25 mol·L-1) 
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                              (a)                                                                                          (b) 

 
(c) 

Figure 10.2 – a) Mn, b) Mw, and c) PI for polymer chains produced at different polymerization 
times using Direct Method (DM), First Reaction Method (FRM), Next Reaction Method (NRM) and 

 -leaping (Model parameters: see Figure 10.1). 
 

The required computational times, average molecular weights and polydispersity 

indexes predicted by each method are compared in Table 10.3. In order to calculate the 

statistical uncertainties, 10 simulations were performed for each polymerization time. 

The confidence intervals for the means of Mn, Mw, PI and CPU time were obtained 

considering the confidence level of 95 %, according to the t-Student distribution. Thus, 

the confidence intervals were calculated as (SCHWAAB and PINTO, 2007): 

 

 ̅   
          
√    

 (10.1) 
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where  ̅ is the sample mean,    is the sample standard deviation,          is obtained 

from the t-Student distribution and      is the number of replicates  (in this case, 10).  

It can be noticed in Table 10.3 that the W-Leaping method is the fastest one, 

followed by the NRM. The NRM is faster than the DM because it generates only one 

random number of each step (see step 13 from Figure 4.22), whereas the DM generates 

two random numbers (r1 and r2 in Equations (4.7) and (4.8)). Additionally, the NMR 

only updates the indexed priority queue, while the DM updates all propensity functions 

(MC reaction rates), even those that do not change, spending time unnecessarily, 

calculates the time interval with    
  ( )

  . 
  
/, and searches for reaction Rj using 

∑    ( )
 
         ( ). The FRM demands longer computational times than the DM 

because the FRM eliminates (M-1) time reactions at each step. The time required to 

generate a random number and to select a propensity function in the DM is shorter than 

the time needed for the FRM to generate M time steps, choose the lowest time step 

(whose index corresponds to the next reaction) and discard the other time steps which is 

in accordance with CAO et al. (2006).  

 

10.2.2 Case Study II 
Case study II investigates the copolymerization of ethylene and diene with a 

single-site catalyst. The mechanism for this polymerization is listed in Table 10.2.  

 
Table 10.2. Copolymerization mechanism for Case Study II.a) 

Propagation 

         
    
→         

         
    
→           

         
    
→         

         
    
→           

Spontaneous Transfer 
     

   
→             

     
   
→             

a)  : ethylene,   : diene,     : growing chain with length r and j double bonds terminated in an ethylene 

molecule,     : growing chain with length r and j double bonds terminated in a diene molecule,     : dead 

chain with length r and j double bonds,     : propagation rate constants;    : spontaneous transfer rate 

constants. 
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Table 10.3. Comparison of the average molecular weights and polydispersity indexes predicted by 
the analyzed MC models and the CPU time required by each model. 

Reac. 
Time 

(s) 

DM NRM 
Mn 

(g.mol-1) 

Mw 

(g.mol-1) 
PI 

CPU time 

(s) 

Mn 

(g.mol-1) 

Mw 

(g.mol-1) 
PI 

CPU time 

(s) 
0.5 6228 ± 8 9446 ± 12 1.517 ± 0.002 0.441 ± 0.007 6191 ± 26 9409 ± 26 1.520 ± 0.004 0.360 ± 0.010 

1.0 8099 ± 24 14157 ± 43 1.748 ± 0.002 0.874 ± 0.007 8119 ± 30 14175 ± 67 1.746 ± 0.002 0.715 ± 0.007 

1.5 9011 ± 21 16707 ± 37 1.854 ± 0.004 1.300 ± 0.014 8994 ± 22 16673 ± 48 1.854 ± 0.004 1.066 ± 0.007 

2.0 9557 ±14 18218 ± 44 1.906 ± 0.003 1.744 ± 0.011 9551 ± 25 18248 ± 55 1.911 ± 0.004 1.428 ± 0.08 

2.5 9893 ± 27 19162 ± 71 1.937 ± 0.006 2.161 ± 0.006 9883 ± 24 19178 ± 53 1.941 ± 0.002 1.785 ± 0.010 

5.0 10696 ± 14 21158 ± 55 1.978 ± 0.004 4.332 ± 0.015 10695 ± 21 21171 ± 51 1.980 ± 0.002 3.546 ± 0.006 

10.0 11133 ± 10 22169 ± 41 1.991 ± 0.003 8.675 ± 0.013 11129 ± 16 22202 ± 57 1.995 ± 0.003 7.142 ± 0.029 

20.0 11368 ± 7 22648 ± 29 1.992 ± 0.002 17.427 ± 0.044 11380 ± 10 22719 ± 27 1.996 ± 0.002 14.268 ± 0.025 

30.0 11448 ± 6 22825 ± 19 1.994 ± 0.001 26.073 ± 0.020 11444 ± 8 22861 ± 21 1.998 ± 0.001 21.474 ± 0.012 

40.0 11491 ± 7 22911 ± 14 1.994 ± 0.001 34.815 ± 0.027 11489 ± 6 22949 ± 32 1.997 ± 0.002 28.493 ± 0.060 

50.0 11511 ± 5 22957 ± 12 1.994 ± 0.001 43.446 ± 0.022 11523 ± 8 23008 ± 20 1.997 ± 0.001 35.712 ± 0.032 

100.0 11562 ± 3 23055 ± 12 1.994 ± 0.001 86.902 ± 0.034 11564 ± 4 23092 ± 17 1.997 ± 0.001 71.271 ± 0.045 

Reac.

Time 

(s) 

FRM 𝞃-Leaping 

Mn 

(g.mol-1) 

Mw 

(g.mol-1) 
PI 

CPU time 

(s) 

Mn 

(g.mol-1) 

Mw 

(g.mol-1) 
PI 

CPU time 

(s) 
0.5 6240 ± 17 9461 ± 12 1.516 ± 0.003 0.532 ± 0.006 6366 ± 22 9754 ± 27 1.532 ± 0.004 0.205 ± 0.003 

1.0 8107 ± 20 14140 ± 28 1.744 ± 0.004 1.067 ± 0.011 8150 ± 22 14287 ± 27 1.753 ± 0.004 0.406 ± 0.003 

1.5 9033 ± 22 16710 ± 57 1.850 ± 0.005 1.590 ± 0.010 9041 ± 24 16749 ± 47 1.853 ± 0.004 0.593 ± 0.005 

2.0 9543 ± 26 18198 ± 61 1.907 ± 0.005 2.111 ± 0.009 9557 ± 22 18235 ± 57 1.908 ± 0.006 0.785 ± 0.006 

2.5 9909 ± 19 19137 ± 52 1.931 ± 0.003 2.636 ± 0.009 9910 ± 16 19206 ± 64 1.938 ± 0.005 0.985 ± 0.003 

5.0 10685 ± 28 21146 ± 92 1.979 ± 0.005 5.262 ± 0.008 10695 ± 16 21153 ± 65 1.978 ± 0.005 1.950 ± 0.001 

10.0 11141 ± 10 22172 ± 39 1.990 ± 0.002 10.547 ± 0.011 11140 ± 25 22182 ± 65 1.991 ± 0.003 4.017 ± 0.006 

20.0 11368 ± 10 22645 ± 26 1.992 ± 0.002 21.041 ± 0.026 11373 ± 16 22650 ± 51 1.991 ± 0.002 8.034 ± 0.012 

30.0 11451 ± 9 22827 ± 13 1.993 ± 0.001 31.590 ± 0.038 11448 ± 8 22841 ± 18 1.995 ± 0.001 12.056 ± 0.020 

40.0 11493 ± 8 22915 ± 11 1.994 ± 0.001 42.098 ± 0.034 11492 ± 6 22927 ± 23 1.995 ± 0.002 16.023 ± 0.019 

50.0 11513 ± 8 22962 ± 15 1.994 ± 0.001 52.610 ± 0.029 11519 ± 8 22983 ± 20 1.995 ± 0.002 20.065 ± 0.034 

100.0 11623 ± 5 23065 ± 5 1.984 ± 0.001 103.948 ± 0.071 11565 ± 5 23072 ± 12 1.995 ± 0.001 40.050 ± 0.023 

 
 

Figure  10.3 illustrates how the CLD of living copolymer chains calculated with 

the DM and FRM changes with the polymerization reaction time, showing that they are 

equally suited to represent this copolymerization system. Figure 10.4 shows that the 

DM is more efficient than the FRM. The generation of one random number per reaction 

and the search for the minimum step time consumes more computational time than the 

generation of one random number that satisfies  ∑    ( )
 
         ( ). Until about 50 
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s of polymerization, the computation times required by both methods were similar, but 

the DM was evidently more efficient than the FRM for longer polymerization times.  

 
Figure  10.3 – CLD of living copolymer chains produced at times 0.5, 1.0, 1.5, 2.0 and 2.5 s from left 
to right (0.5% molar of diene, [CGC]0=1·10-6 mol·L-1, [ethylene]0 = 1 mol·L-1, kp11 = 1000 L·mol-1·s-

1, r1 = 7, r2 = 0.1, kp22 = 4 L·mol-1·s-1(NELE et al., 2003), kβ1 = 0.01 s-1 (BEIGHZADEH et al., 1999), 
kβ2 = kβ1, V = 7∙10-15 L). 

 

 
 

Figure 10.4 - Simulation times for distinct Monte Carlo methods for ethylene/diene 
copolymerization (Table 10.2, Model parameters: see Figure  10.3). 
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10.2.3 Case Study III 
Case study III describes the copolymerization of ethylene and a diene with long-

chain branching formation (Table 10.4). 

 
Table 10.4. Copolymerization mechanism with LCB formation for Case Study III. 

Propagation 

           
    
→           

           
    
→             

           
    
→           

           
    
→             

Spontaneous Transfer 
       

    
→                  

       
    
→                  

Reincorporation via 
terminal bond               

   →                  

              
   →                  

  : ethylene,   : diene,       : growing chain with length r, j double bonds and k LCBs terminated in an 

ethylene molecule,       : growing chain with length r, j double bonds and k LCBs terminated in a diene 

molecule,       : dead chain with length r, j double bonds and k LCBs,     : propagation rate constants; 

    : spontaneous transfer rate constants, kb: reincorporation rate constant. 

 

For Case Study III, the τ-Leaping method was selected as the most efficient one. 

The mechanism in Case Study III is considerably more complex than those of Case 

Studies I and II because it involves the formation of branched species, resulting from 

the polymerization of pendant double bonds formed by the diene copolymerization. 

Figure 10.5 compares the CPU time required for the DM and  -Leaping method to 

simulate the copolymerization presented in Table 10.4, using two different control 

volume values. Diferently from Case Study I, the time needed to simulate Case Study 

III by the  -Leaping method was not much lower than the time needed to simulate the 

same system using the DM, as one can observe in Figures 10.5a and 10.5b. Although 

the  -Leaping method was still faster than the DM, it is significantly more efficient 

when longer polymerization times are considered. With short polymerization times, 

between 10 to 60 s, the CPU time consumed by both methods differs no more than 20 s. 

But, as the polymerization evolves, this difference increases. When a bigger volume 

was used, the CPU time required by both methods was also bigger when compared with 

the CPU times consumed when the smaller control volume was chosen.  
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The relationship between the two methods was not much affected by the change 

in the control volume and the  -Leaping method remained more efficient than the DM. 

The only change observed was in the CPU time difference between the methods: with V 

= 7∙10-15 L, at 10 min of polymerization,  -Leaping method was 111 s faster than the 

DM, with V = 9∙10-15 L, this difference increased to 217 s approximately. 

 

 
(a) 

 
(b) 

Figure 10.5 – Comparison of the CPU time required for the DM and  -Leaping method to simulate 
10 min of reaction with V equals to 7∙10-15 (a) and 9∙10-15 L (b). (0.5% molar of diene, [CGC]0 = 1·10-

6 mol·L-1, [ethylene]0 = 1 mol·L-1 , kp11 = 1500 L·mol-1·s-1, r1 = 4, r2 = 0.1(NELE et al., 2003), kp22 = 
40 L·mol-1·s-1, kβ1 = 0.25 s-1, kβ2 = 0.75, kb1 = kp12/1.2, kb2 = kp21/1.2). 
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Figure 10.6 compares the computational time required to simulate a 

polymerization reaction that lasts 10 minutes with different control volumes using the  -

Leaping method. Differences in the MWDs produced with different control volumes are 

also shown. The MWD predicted with the smallest control volume was very noisy and, 

consequently, not adequate for the accurate representation of MWD. The MWDs 

predicted with the two largest control volumes differ slightly from each other, providing 

smooth and similar MWDs. This result is in accordance with the work of AL-HARTHI 

et al. (2006). Thus, it is intesting to select a control volume that compromises accurate 

results with reasonable computational times. In the present case study, an appropriate 

control volume is 7·10-15 L; higher volumes will not improve results significantly.  

These results are important to evaluate the accuracy and efficiency of the 

investigated methods when simulating LCBs/network formation in copolymers of 

ethylene and diene, showing that the τ-Leaping method seems to be more efficient to 

describe complex polymerization systems.  

 
Figure 10.6 - Comparison of the CPU time required for different control volumes and MWD for the 

dead polymer population and average number of LCB per chain produced at 10 min of 
polymerization. (10 min of polymerization, 0.5% molar of diene, [CGC]0 = 1·10-6 mol·L-1, 

[ethylene]0 = 1 mol·L-1, kp11 = 1500 L·mol-1·s-1, r1 = 4, r2 = 0.1 (NELE et al., 2003), kp22 = 40 L·mol-

1·s-1, kβ1 = 0.25 s-1, kβ2 = 0.75, kb1 = kp12/1.2, kb2 = kp21/1.2). 
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10.2.4 Case Study IV 
This case study simulates the homopolymerization of ethylene with a CGC and 

using a semi-batch reactor. The kinetic mechanism adopted to represent this 

polymerization system is the same mechanism proposed in this thesis (Section 7.3) and 

it is rewritten again in Table 10.5. 

 
Table 10.5. Ethylene polymerization mechanism of Case Study IV using a CGC catalyst. 

Catalyst activation  
            →       

Initiation     
              
→          

Propagation (Ethylene)      
              
→            

Transfer to monomer and E-hydride 

elimination 
   

            →           

Living chain deactivation        
             →               

 

The kinetic rate constants used in the simulations were the same determined in 

the present thesis with help of parameters estimation and parameter identifiability 

procedures, as already explained in Chapter 6.  

The four Monte Carlo methods, DM, FRM, NRM and τ-Leaping method were 

used to simulate this polymerization problem considering constant temperature (T = 120 

°C) and constant monomer concentration throughout the polymerization. For all 

simulations, a control volume of 1·10-14 L was adopted. The initial simulation 

conditions adopted are described in Table 10.6. 

 
Table 10.6. Simulation conditions employed in the Case Study IV. 

Catalyst (µmol L-1) 0.271 

Temperature (°C) 120 

Monomer concentration (mol L-1) 0.49472 

Polymerization times (min) 2, 4, 6, 8, 10 
 

 

Figure 10.7 illustrates the Mw and Mn profiles during polymerization time 

predicted by the four MC methods tested and also the CPU time required for each 

method to run all the simulations. 
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(a) 

 

 
(b) 

 
Figure 10.7 – a) Mn and Mw for polymer produced and b) CPU time required to run the 

simulations at different polymerization times using DM, FRM, NRM and τ-Leaping (Model 
parameters: ka = 0.02847 s-1, kp11 = 67736.5 L.(mol.s)-1, kt = 8.5 s-1 and kdP = 25456.3  L.(mol.s)-1). 

 

As one can see in Figure 10.7.a, all MC method predicted similar average 

molecular weights, as already expected.  Each polymerization time was simulated four 

times by each MC method. The average result from these simulations is the value 

plotted in Figure 10.7.a for each polymerization time (2, 4, 6, 8 and 10 min). 

Surprisingly, for this study case, the τ-Leaping method was the slowest among all 

methods and the NRM was the fastest one, although the DM reached almost the same 

CPU times consumed by the NRM. The main reason why the τ-Leaping method applied 
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for this reaction mechanism was less efficient than when the same method was used to 

simulate the mechanism proposed in Case Study III was the kinetic parameter values. 

For Case Study III, the largest parameter was kp11 = 1500 L·mol-1·s-1, whereas the 

lowest parameter was kβ1 = 0.25 s-1. Thus, kp11 was 6000 bigger than kβ1. In Case Study 

IV, the largest parameter was also kp11 = 67736.5 L·(mol·s)-1 and the lowest one was ka 

= 0.02847 s-1. So, kp11, this time, was 2,379,224 bigger than ka. The size of the time step 

τ was restricted by the timescale of the fastest reaction in the system; so if one reaction 

is much faster than the others, τ will assume very low values, which turns the τ-Leaping 

method not so efficient for these cases. Additionally, since the τ-Leaping method was 

being applied to a polymerization system, if the interval leap was not big enough to 

compensate the time required to run the direct method to update the chain lengths, this 

method would consume more time to run the simulation than the time consumed by the 

DM, for example. This is exactly what happened in the current case study. However, it 

is important to point out that the statistical uncertainties calculated with Equation (10.1) 

were very different for the different methods, indicating that parameter scaling maybe 

of fundamental importance for numerical performance of the analyzed Monte Carlo 

methods. Figure 10.8 shows these differences more clearly. According to Figure 10.8, 

the NRM presented the largest statistical uncertainties among the analyzed other 

methods. However, these uncertainties were not big enough to compromise the final 

average molecular weights predicted by the NRM. Thus, it can be said that all the MC 

methods tested here are reliable.   

 
Figure 10.8 – Statistical uncertainties calculated for each Monte Carlo method for CPU time and 

Mn and Mw considering confidence level of 95 %.  
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10.2.5 Case Study V 
The fifth case study simulates the copolymerization of ethylene with 1,9-

decadiene using CGC in a semi-batch reactor. The kinetic mechanism adopted to 

represent this polymerization is the same mechanism proposed in this thesis (Section 

7.5.4) and is rewritten in Table 10.7. 

 
Table 10.7. Ethylene and diene copolymerization mechanism using a CGC catalyst used in Case 

Study V.a) 

Catalyst activation  
            →       

Initiation     
              
→              

Propagation (Ethylene)          
              
→                

Propagation (Diene)          
              
→                  

Transfer to monomer and E-

hydride elimination 
                   →               

Living chain deactivation       
                      →                       

Macromonomer 
reincorporation 

      
         

            →                    
  

a)         can be a dead chain with terminal unsaturation (       ) or not (      ).   

 

It was considered that both the macromonomer chain length and the amount of 

unsaturations affect the probability of macromonomer reincorporation into a growing 

chain. Thus, the MC reaction rate for macromonomer reincorporation used in this case 

study was written as Equation (9.6), which assumes the following form: 

 

 ( )        ∑0              
  (   )1

   

   

 (10.2) 

 

where   = 5.61·10-5, n is the amount of double bonds in the macromonomer chain and j 

is the macromonomer chain length.  

The kinetic parameter rate constants used in these simulations were the same 

ones determined in the present thesis through parameter estimation and after application 

of parameter identifiability procedures, as presented in Chapter 6.  
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The two most efficient Monte Carlo methods in Case Study IV, DM and NRM, 

were selected to simulate this polymerization problem considering constant temperature 

(T = 120 °C) and constant monomer concentration throughout all polymerization. For 

all simulations, a control volume of 1·10-14 L was adopted. The initial simulation 

conditions adopted were the same conditions shown in Table 10.6, adding 0.4 g of 1,9-

decadiene (experimental conditions H2 to H4 in Figure 8.11). Each method simulated 

each polymerization reaction four times, so that the total number of simulation trials 

was equal to 20 for each MC method. Figure 10.9 illustrates the mean values predicted 

for each polymerization time by the analyzed MC methods for average molecular 

weights and long-chain branching frequencies.  

 

                (a)                                                                                      (b) 

  

               (c)                                                                                   (d) 
 

Figure 10.9 – a) Mn, b) Mw, c) LCB/1000 C atoms and d) LCB/chain for copolymers produced at 2, 
4, 6, 8 and 10 min (from left to right) using DM and NRM (Model parameters: ka = 0.02847 s-1, kp11 

= 67736.5 L.(mol.s)-1, kt = 8.5 s-1, kdP = 25456.3  L.(mol.s)-1, kp12 = 2039.8 L.(mol.s)-1 and kb = 2138 
L.(mol.s)-1). 
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As one can see in Figure 10.9, both methods predicted the same average 

molecular weights and branching frequencies, as already expected. It can also be 

observed that the statistical uncertainties for both methods were small and not 

significant to affect the reliability of the predicted values.  Figure 10.10 shows the CPU 

time required by each method to perform the simulations.  

Observing Figure 10.10, one can conclude it took the same time for both 

methods to simulate this case study for all reaction times tested, indicating that their 

efficiencies were nearly the same.    

 

 
 

Figure 10.10 – Simulation times for DM and NRM for ethylene/diene copolymerization and their 
respective uncertainties (Model parameters: see Figure 10.9).  

 

10.3 Concluding Remarks 
As observed through many examples, the W-leaping method is the fastest MC 

method, being recommended when complex polymerization mechanisms are under 

investigation, except when the highest reaction rate constant significantly differs from 

the lowest reaction rate constant. For example, in Case Study III, when the largest 

kinetic parameter was 6000 times larger than the smallest parameter, the W-leaping 

method was the most efficient analyzed MC method. On the other hand, in Case Study 

IV, when this difference was larger than 2,000,000 times, the W-leaping method was the 

slowest analyzed MC method, whereas the NRM, because of its intelligent data storage 
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and handling approach, presented better performance when compared to the W-leaping 

method and the FRM. Nevertheless, the DM at Case Studies IV and V presented 

efficiencies that were similar to the efficiencies of the NRM.  
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11 Conclusions 

Based on GPC analyses, it was shown that the ethylene/1,9-decadiene 

copolymer synthesized with CGC in a semi-batch reactor presents long-chain branches. 

The presence of LCBs in the copolymer was confirmed through the comparison of the 

intrinsic viscosities of the copolymer samples with the one of the PE without diene. 

When the plot of the intrinsic viscosity as a function of the logarithm of molecular 

weight deviates, at the region of higher molecular weights, of the correspondent plot of 

the homopolymer, LCBs are present in the polymer chains. This deviation was observed 

for all analyzed copolymer samples and it was more accentuated as longer was the 

copolymerization reaction and as higher amounts of diene and catalyst were used.   

Using the Zimm-Stockmayer expression and the experimental intrinsic viscosity 

measured with GPC/VISC, it was possible to determine the average LCB/chain as a 

function of the logarithm of the molecular weight. The MC model simulated very 

similar values for average LCB/chain than the ones determined experimentally for the 

analyzed experimental condition. Moreover, the developed MC model can be used to 

simulate other copolymerization systems and, after the model validation, it can be used 

to predict the average LCB/chain when there is no available GPC/VISC.  

The developed model for ethylene and 1,9-decadiene copolymerization using a 

CGC catalyst in a semi-batch reactor fitted suitably to experimental data comprising 

feed-flow rates, average molecular weights, molecular weight distributions and 

LCB/chain distributions. Based on the experimental results, the reincorporation of 

macromonomer by its terminal unsaturation was shown not to occur at significant rates, 

so that this reaction step could be ignored in the developed model.  

The method of moments constituted an efficient tool to be used in the parameter 

estimation process to predict average properties, since it is simple and fast to solve. The 

parameters identifiability analysis was shown to constitute a proper tool for selection of 

estimable parameters during estimation procedure, since polymerization kinetics 

naturally leads to a great number of model parameters and probably ill-posed problems 

for determination of the parameter values and respective uncertainties. The method of 

particle swarm optimization was shown to constitute an important tool to build 
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confidence regions of the estimable parameters, since it naturally performs a high 

number of objective function evaluations. The confidence regions showed that the 

parameters values can contain high uncertainty when only a subset of parameters are 

estimated while others are kept on fixed values. However, characterizing the full 

uncertainty of all parameters can be inaccessible or make the problems intractable. 

Monte Carlo methods provided additional information on long chain branching 

frequencies, such as the average number of LCB as a function of the molecular weight 

distribution, showing that LCBs are formed mainly at higher molecular weights. 

Additionally, for the copolymerization system under study, it did not take long times to 

simulate the overall polymerizations by stochastic procedures, which were shown to 

constitute excellent tools to build the MWDs. 

The method of moments and the Monte Carlo method predicted average 

molecular weights and ethylene feed flow rates with good accuracy for the discussed 

experimental conditions. Furthermore, both methods provided good fits for the average 

frequencies of LCB per chain and per 1000 carbon atoms as functions of the 

polymerization time for all experimental conditions.  

Both MC and CAOC methods provided very similar MWDs for the analyzed 

experimental condition. Comparing the MWDs predicted by the MC method with the 

experimental MWDs, it was shown that the incorporation of the macromonomer does 

not only depend on the amount of pendant unsaturations in the chain, but also on the 

chain length. This dependency was shown to be not linear, but it could be well 

described by an exponential law. A sigmoidal function and a correlation with the radius 

of gyration and the macromonomer length were also tested, also resulting in acceptable 

calculated distributions, close to the experimental MWDs, although performances 

obtained with the exponential law were always better. However, the parameters of 

exponential and sigmoidal functions were estimated by induction, while both 

parameters of the radius of gyration function (   and   ) were taken from the literature 

and belong of other copolymer type (1-octene and ethane copolymer). Thus, if    and 

   would be estimated by induction, probably the radius of gyration expression would 

present the lowest Ð. 

For the polymerization problems investigated in the present thesis, Monte Carlo 

methods can be successfully applied to predict the MWDs calculated by the CAOC 
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method. Thus, the use of MC methods can be proposed to test the convergence of the 

CAOC, being more efficient than checking if CAOC convergence is attained through 

simulations performed with additional collocation points and with different time 

integration steps. However, it is expected that for more complex polymerization 

problems, containing additional reaction steps, the MC may not constitute a feasible 

simulation method, given the CPU time required to run the simulation. In this case, the 

CAOC may become a much more attractive method for modeling and simulation of 

olefin polymerizations.  

The CAOC simulation results of the present thesis showed that some aspects 

related to calculation of the collocation points (the roots of the orthogonal polynomial) 

must be improved. It is not clear if the source of numerical difficulties is related to the 

weighing function, the variable domain, numerical precision of the root finding 

procedure or a combination of these factors. This must be investigated in the near future 

in order to enhance the robustness of the CAOC technique. 

11.1 Suggestions for Future Work 
It would be interesting to conduct similar kinetic investigations with other 

dienes, such as nonadiene, hexadiene, octadiene, to check if the dependency on the 

macromonomer size will also affect the macromonomer reincorporation reaction rate, as 

observed with the decadiene.  

Another subject that needs to be investigated is the acceleration of Monte Carlo 

method, in order to use this technique in the parameter estimation process. Then, 

distribution data could also be used to estimate the parameters. To achieve this goal, 

parallel MC programming can be employed. Thus, instead simulating a unique reaction 

during one iteration, many reactions can be simulated simultaneously, saving CPU time.  

It is important to comprehend the source of the numerical difficulties that appear 

running the CAOC method. Simulations must be conduct to identify the source of these 

problems in order to improve the robustness of the CAOC technique. 

Perform parameter estimation by induction for the two parameters    and    of 

the radius of gyration function in order to enhance the prediction of the MWDs, 

approximating them to the experimental MWDs measured with GPC.  
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Appendix A 

Supplementary Material for Chapter 3 
A.1. Summary 

Herein, the supplementary material is presented for Chapter 3 that describes the 

deterministic methods employed in the present PhD thesis.  

A.2. Polymerization Example  

A simple polymerization mechanism was proposed to make the comprehension 

of the deterministic methods easier. The mechanism can be written as:  

 

 
            →       (          ) (A.1) 

    
              
→        

  (          ) (A.2) 

  
   

              
→          

    (           ) (A.3) 

 
A.2.1. Material Balances 

The material balances for all species present in the polymerization system are 

presented in the following equations. 
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Based on the moments definition, as described in Section 3.2, one can derive the 

moments equations for the living chains: 
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The last term on the right-hand size of Equation (A.9) must be changed in order 

for the summation to start at 1, instead of chain size 2. This can be done by expanding 

the summation term according with: 
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Thus, Equation (A.9) can be rewritten as: 
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From Equation (A.11) all moment expressions can be determined.  

A.3. Roots Calculation Procedure in the Orthogonal Collocation 
Method 

The N collocation points are calculated with help of the following iterative 

numerical procedure, as illustrated in Figure A.1. The quadrature weights were 

calculated as shown in Figure A.2. 
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Figure A.1 - Flowchart of the iterative procedure used to calculate the collocation points. 
 

 
Figure A.2 - Flowchart of the iterative procedure used to calculate the quadrature weights. 
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Appendix B 
Supplementary Material for Chapter 5 
B.1 Summary 

The present section describes the supplementary material of Chapter 5 dedicated 

to describe the experimental methodology employed in the present work.  

B.2 Detailed Experimental Apparatus 

All experimental apparatuses used to perform the experiments are listed below:  

o 20 mL glass sampling cylinders 

x Employed to store reagent solutions prepared in the glovebox. 

o Molecular sieves 

x Used to absorb moisture present in some reagents. 

o CuO/Al2O3 packed beds 

x Employed to collect dissolved oxygen and water in ethylene and nitrogen 

gases. 

o Metal Cannulas 

x Used to transfer the reagents into the reactor.  

o Rubber septum 

x Used to seal the cylinder which contained the clean toluene.  

o Rubber hoses 

o PVC tubings  

o 1 L Beakers 

x Used to collect the reactor content. 

o Aluminum foil  

x Used to cover the 1-L beaker where the reactor contents were dumped into 

after being blow out from the reactor. The aluminum foil avoided the 

solution contents to spill out of the beaker after hitting its base. 

o Magnetic stir plates and spinbar magnetic stir bars  

x Used to keep the reactor contents in ethanol overnight in a beaker under 

constant stirring. 

o Plastic funnels and filter papers  
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x Used to separate the polymer material from toluene and ethanol.  

o Weighing scale  

x Used to measure the obtained polymer weight. 

 

B.3 Control System 

As mentioned in Chapter 5, the temperature of the reactor was controlled by two 

independent proportional-integral derivative controllers as illustrated in Figure B.1. The 

reactor pressure was adjusted by an in-line pressure regulator installed in the ethylene 

feed line.  

 
Figure B.1 – Control system illustration. 
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Appendix C  

Derivation of the Objective Function 
After performing    experiments, each one with    output variables, one will 

obtain the vector of output variables   , containing       elements. Admitting that 

the errors    of variables     follow the normal distribution, then, the probability density 

distribution for    becomes: 

 

 (  )  
 

√        
    ( 

 
 
 
   

    
) 

(C.1) 

 

Admitting that experiments are independent9, the probability density of the 

whole set of measured errors   *        + can be written as: 

 

 ( )  ∏
 

√        
    ( 

 
 
 
   

    
)

     

   

 (C.2) 

 

where    
  is the variance of    . Admitting that the model is perfect, with the true value 

given by the model    (    ), where   is the set of model parameters and    are the 

inlet variables for the experimental point  , then the error can be written as: 

   

           (C.3) 

 

With all the previous assumptions, the probability density  ( ) can be 

rearranged as: 

                                                 
9 The probability density of independent events is the multiplication of the individual probabilities 
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Finally, if the experiment is well done, which means that the experimental data 

    were obtained with minimum unavoidable difference in respect to the true value    , 

 ( ) must be the point of maximum for that set of experiments. However, since one do 

not know the true value    , as the model parameters are unknown, one can estimate the 

parameters by maximizing  ( ): 
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This defines the objective function as the weighted least-squares function 

(BARD, 1974), which is: 
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One must note that the ∑ ( )     
    can be replaced by the sum in experiments and 

output variables of each experiment, i.e.,  ∑ ( )     
    ∑ ∑ ( )  

   
  
    (for example,      

represents the output j from experiment i).  
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Appendix D 

Derivation of the Moments Equation 
D.1 Summary 

In the present Appendix, the moments equations used to describe the 

copolymerization of ethylene and 1,9-decadiene with CGC in semi-batch reactor are 

derived. 

D.2 Balance Equations 

As already presented in Chapter 7, the balance equations for the living and dead 

chains can be written as: 
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For living polymer chainswith size greater than one       (   ) 
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For dead polymer chains       (   ) 
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(D.3) 

 

Applying the moments definition, as: 

Living chain moments:    ∑       
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Dead chains moments:    ∑       
    

the balance equations for living chains (Equations (D.1) and (D.2)) can be represented 

in terms of the living moments, according with the following procedure: 
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Using the moments definition presented previously, Equation (D.4) can be 

simplified to: 
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The three last terms on the right-hand side of Equation (D.5) can be modified as: 
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Finally, the general living moments balance equation can be obtained: 
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From Equation (D.9), the zeroth, first and second living moments balance 

equations can be derived, as shown in Chapter 7 (Equations (7.21) to (7.23)). 

Now, if the same methodology is applied for the dead polymer chains, 
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one can derive the general dead moments balance equation: 
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From Equation (D.10), one can derive the zeroth, first and second dead moments 

balance equations, as shown in Chapter 7 (Equations (7.24) to (7.26)). 
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Appendix E 

Convergence Analyses of Adaptive 
Orthogonal Collocation Method  
E.1 Summary 

Convergence analyses of the complete adaptive orthogonal collocation method 

dis carried out for all experimental conditions discussed previously. For the majority of 

the cases, the method converged using only 4 orthogonal collocation points. The 

evolution of the collocation points for living and dead polymer chains are also 

presented.  

It is important to comment that many previous simulations were carried out, 

although only the results that can be used to explain more clearly the features of the 

procedure adopted in the present work are shown in this section. 

   

E.2 Experimental Condition G5 (0.3 g of 1,9-decadiene, 0.271 µmol L-1 
of CGC and 10 minutes of reaction) 

Figure E.1 illustrates the MWD obtained when the same integration step size 

was applied (δ = 0.6 s) and 3, 4 and 5 collocation points were used. It is possible to 

observe that the method converged for 4 and 5 collocation points, whereas with 3 

collocation points, the MWD simulated presents a very narrow PI that cannot 

characterize the analyzed copolymer. Figure E.2 shows the collocation points for living 

and dead polymer chains calculated during the polymerization reaction time.  

In Figures E.2.a and E.2.d, the last collocation point converged for relatively low 

values, when compared with values obtained when 4 and 5 collocation points were 

considered. Perhaps this explains why 3 collocation points lead to narrow MWD, since 

longer lengths cannot be described. 
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Figure E. 1 – MWD obtained with the complete adaptive orthogonal collocation method using 3, 4 

and 5 collocation points (experimental condition G5). 
 
 

 
                              (a)                                                            (b)                                                              (c) 
 
 

 
                              (d)                                                            (e)                                                              (f) 

 
Figure E. 2 – Evolution of the collocation points during time for the living polymers using (a) 3, (b) 
4 and (c) 5 collocation points and for the dead polymers considering (d) 3, (e) 4 and (f) 5 collocation 

points and 0.6 s as integration steps. 
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E.3 Experimental Condition I1 (0.4 g of 1,9-decadiene, 0.368 µmol L-1 
of CGC and 6 minutes of reaction) 

Figure E.3 illustrates the MWD obtained when the different integration step 

sizes were applied and four collocation points were used.  

 

 
 

Figure E. 3 – MWD obtained with the complete adaptive orthogonal collocation method using 4 
orthogonal collocation points and different integration step sizes (experimental condition I1). 

 

As one can see in Figure E.3, the method converged for 4 orthogonal collocation 

points and variation of the integration step size leads to equivalent numerical results. 

Figure E.4 shows the dynamic collocation point profiles for this case study. 

It is possible to analyze in Figure E.4 that the evolution of the orthogonal 

collocation points for the living polymer chains was similar for the three studied cases 

(Figure E.4.a to E.4.c). On the other hand, when an integration step size of 0.24 s was 

used, the method struggled to calculate the proper values for the collocation points 

during the first 50 s of reaction. Then, it succeeded in reaching final collocation points 

that allow the method to converge, producing MWDs that were equivalent to the ones 

predicted when step sizes of 0.9 and 3.6 s were applied. Applying five collocation 

points and an integration step of 0.24 s, the method did not converge, producing a 

bimodal distribution as one can see in Figure E.5. Figure E.6 illustrates the collocation 

points calculated during the simulation when 5 collocation points were employed. 
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                              (a)                                                            (b)                                                              (c) 
 

 

                              (d)                                                            (e)                                                              (f) 
 

Figure E. 4 – Evolution of the collocation points during time for the living polymers using (a) 3.6, 
(b) 0.9 and (c) 0.24 s of integration step sizes and for the dead polymers considering (d) 3.6, (e) 0.9 

and (f) 0.24 s of integration step sizes and 4 collocation points. 
 

 
 

Figure E. 5 – MWD obtained with the complete adaptive orthogonal collocation method using 5 
orthogonal collocation points and 0.24 s of integration step size (experimental condition I1). 
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                                             (a)                                                                                          (b) 

Figure E. 6 – Evolution of the collocation points during time for the (a) living and (b) dead 
polymers using 0.24 s as integration step sizes and 5 collocation points. 

 

The CAOC calculated collocation points for the dead chains, during the first 50 

s, that were very high and these values probably affected all the calculations performed 

afterwards, since the process is adaptive and the current data depends on the data 

calculated in the last iteration. Consequently, the MWD produced presented bimodality, 

which do not agree with the MWDs provided when 4 collocation points were applied 

and also with the experimental distribution of condition I1. This type of numerical 

instability can be the result of bad initialization of the weighing function or bad 

numerical performance of the routine used for calculation of the collocation points. 

E.4 Experimental Condition I2 (0.4 g of 1,9-decadiene, 0.174 µmol L-1 
of CGC and 6 minutes of reaction) 

Figure E.7 illustrates the MWD obtained when 4 and 5 collocation points were 

employed.  For 4 points, the method successfully converged even when the integration 

step size was modified. However, for 5 collocation points, the distribution diverged 

from the MWD obtained when 4 collocation points were used. Figure E.8 illustrates the 

calculated collocation points during the simulation for different integration step sizes 

and total of collocation points used. 

Observing Figure E.8.c and Figure E.8.f it seems that the last collocation point 

did not converge, but it continued to grow until the simulation was interrupted. Maybe 

this explains why when 5 collocation points and an integration step size of 0.24 s were 

applied the method did not converge to the right MWD. 
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Figure E.7 – MWD obtained with the complete adaptive orthogonal collocation method using 4 and 
5 orthogonal collocation points and different integration step sizes for experimental condition I2. 

 

 
                              (a)                                                            (b)                                                              (c) 

 

                              
(d)                                                            (e)                                                              (f) 

 
Figure E.8 – Evolution of the collocation points during time for the living polymers using (a) 1.0 

and (b) 0.5 s of integration step sizes and 4 collocation points and (c) 0.24 s of integration step sizes 
and 5 collocation points and for the dead polymers considering (d) 1.0 and (e) 0.5 s of integration 
step sizes and 4 collocation points and (f) 0.24 s of integration step sizes and 5 collocation points. 
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E.5 Experimental Condition D1 (0.1 g of 1,9-decadiene, 0.325 µmol L-1 
of CGC and 10 minutes of reaction) 

For this experimental condition, simulations were carried out using 4, 5 and 6 

collocation points. The method converged when 5 and 6 collocation points were 

applied. For 4 points, the calculated MWD presented larger PI than the PI of the MWDs 

predicted with additional orthogonal collocation points. Figure E.9 shows this result and 

Figure E.10 illustrates the evolution of the orthogonal collocation points during reaction 

time for the living and dead polymer chains. 

 

 
 

Figure E. 9 – MWD obtained with the complete adaptive orthogonal collocation method using 4, 5 
and 6 orthogonal collocation points and 0.6 s and 0.75 s as integration step sizes for experimental 

condition D1. 
 
 
 
 

 
 
 
 
 



 

255 
 

 
                       (a)                                                            (b)                                                     (c) 
 
 

 
                      (d)                                                            (e)                                                         (f ) 

 
Figure E. 10 – Evolution of the collocation points during time for the living polymers using (a) 4, (b) 

5 and (c) 6 collocation points and for dead polymers using (d) 4, (e) 5 and (f) 6 collocation points 
(experimental condition: D1). 

 

E.6 Experimental Condition E1 (0.2 g of 1,9-decadiene, 0.325 µmol L-1 
of CGC and 10 minutes of reaction) 

The MWDs obtained when four and five collocation points with integration step 

sizes of 0.3 and 0.6 s were used are shown in Figure E.11. The collocation point values 

for the living and dead polymer chains calculated during the simulations for these cases 

are presented in Figure E.12. 

The CAOC method converged for 4 collocation points using an integration step 

size of 0.3 s and for 5 collocation points using 0.6 s as the integration step. When 0.3 s 

was applied as the integration step, the obtained distribution presented bimodality, 

indicating the poor numerical performance during the integration. Figure E.12.c shows 

that the last collocation point ended the simulation with a value that was much bigger 

than the one obtained when the same number of collocation points was applied and 0.6 s 

was used as the integration step size, as one can see in Figure E.12.b. This clearly 

indicates that the collocation points must be bounded by some sort of maximum limit. 



 

256 
 

 
 

Figure E. 11 – MWD obtained with the complete adaptive orthogonal collocation method using 4 
and 5 orthogonal collocation points and different integration step sizes (experimental condition E1). 

 

 
                              (a)                                                  (b)                                                     (c) 
 

 
                              (d)                                                 (e)                                                        (f) 

 
Figure E. 12 – Evolution of the collocation points during time for the living polymers using (a) 0.3 s 
of integration step size and 4 collocation points and (b) 0.6 and (c) 0.3 s of integration step sizes and 

5 collocation points and for the dead polymers using (d) 0.3 s of integration step size and 4 
collocation points and (e) 0.6 and (f) 0.3 s of integration step sizes and 5 collocation points. 
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E.7 Experimental Condition F1 (0.3 g of 1,9-decadiene, 0.325 µmol L-1 
of CGC and 10 minutes of reaction) 

The MWDs predicted by the CAOC method applying 4 and 5 collocation points 

are illustrated in Figure E.13. The method converged for 4 collocation points, as the 

distribution obtained with 5 points matches with the distribution produced with four 

points using the same integration step size. Figure E.14 illustrates the evolution of the 

collocation point values during polymerization time for living and dead polymers. 

 

 

 
 
 

Figure E. 13 – MWD obtained with the complete adaptive orthogonal collocation method using 4 
and 5 orthogonal collocation points and 0.6 s as integration step sizes (experimental condition F1). 
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                                       (a)                                                                               (b) 

 
                                     (c)                                                                                 (d) 

Figure E. 14 – Evolution of the collocation points during time for the living chains using (a) 4 and 
(b) 5 collocation points and for the dead polymers using (c) 4 and (d) 5 points and 0.6 s as the 

integration step sizes (experimental condition: F1). 

 
As one can see in Figure E.14.c, the method almost exploded the values for the 

dead collocation points in the first 10 s of simulation, but it succeeded in decreasing 

those values afterwards, achieving convergence for the dead collocation points 

approximately after 80 s of polymerization time.  When five collocation points were 

applied, for the living and dead collocation points (Figures E.14.b and E.14.d), it took 

longer times to achieve convergence for these points than the time required to read 

convergence when four collocation points were used. 

These results show that some aspects related to calculation of the collocation 

points (the roots of the orthogonal polynomial) must be improved. It is not clear 

whether the source of numerical difficulties is related to the weighing function, the 

variable domain, numerical precision of the root finding procedure or a combination of 
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these factors. This must be investigated in the near future in order to enhance the 

robustness of the technique.  

 


