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A perda de desempenho de um sistema de controle pode ser causada por diversos
fatores. Em controladores preditivos, um dos aspectos relevantes para o sucesso da
estratégia é a utilizacdo de um modelo que possa efetuar as predi¢oes de maneira
coerente com a planta. Entretanto, durante a campanha da planta, é usual a perda
de performance do sistema de controle, muitas vezes causada por mudancas de
pontos de operagado em processos intrinsecamente nao lineares ou por caracteristica
natural de processos quimicos, que sdo variantes no tempo, como reag¢des com
desativacao de catalisadores e trocadores de calor, que sofrem com mudancas em
seus coeficientes de troca térmica. Nessa tese, analisaram-se diversos algoritmos para
a atualizacao de modelos em controladores preditivos. Primeiro, foram avaliados
os algoritmos classicos, mostrando a possibilidade de melhoria de desempenho
utilizando a estratégia de atualizacao. A seguir, um algortimo de controle baseado
em estimacao de parametos por intervalos e realimentacao de estados foi utlizado
para propor um esquema de controle preditivo robusto. Por fim, um algoritmo de
estimacgao simultanea de parametros e estados foi elaborado para sistemas discretos
e aplicado em um esquema de controle preditivo com atualizacao de parametros,

apresentando desempenho satisfatério.
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The performance degradation of a control system may be related to several
factors. In predictive controllers, one relevant aspect for its success is to use a
model that can perform consistent plant predictions. However, after the control
system commissioning, a performance degradation may occur. This degradation
can be caused, for example, by a new operating point in a nonlinear system or by
a time varying chemical process, such as, a reactor with a catalyst deactivation or
a heat exchanger with a heat transfer coefficient that changes along the operation.
The updating of those models is a critical task and may lead to instability if it
is not properly conducted. In this thesis, several algorithms for model update in
predictive controllers were analyzed. In this sense, an in-depth study on the use
of classical parameter and state estimators was performed, evaluating the gains
of these strategies in predictive controllers. Moreover, an algorithm was proposed
to update the model when the state vector can be measured completely based on
interval observers, resulting in a robust MPC. We then proceeded to an algorithm to
update the models dispensing the complete state vector measurement requirement.
Therefore, an algorithm was developed for joint estimation of states, parameters and
deterministic uncertainty region. Finally, this algorithm was applied and tested for

multivariable predictive control.
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Chapter 1
Introduction

The idea of using closed-loop process data to modify the controller parameters
is not new. The adaptive control techniques, such as self-tuning, apply recursive
estimation principles for control law updating. According to KANO and OGAWA
(2010), such systems have some acceptance and industrial use.  Moreover,
OGUNNAIKE and RAY| (1994) enumerate two essential aspects for successfully
apply this strategy: the parameter estimation algorithm and the use of procedures
to obtain an adequate experimental planning. This approach, using linear controllers
in SISO (single-input, single-output) systems, was shown by ASTROM and
WITTENMARK]| (1973)) in the 70’s.

Although it is not a new strategy, a practical approach for adaptive control in
chemical process industry is scarce. A survey conducted in the Japanese industry,
which results are shown in KANO and OGAWA| (2010), shows that in nineteen
industries consulted, only two facilities use an adaptive control algorithm and none
of them has a standardized implementation procedure. However, model predictive
control (MPC) algorithm has wide application, being present in sixteen out of
nineteen industries. This algorithm has been widely accepted because of its inherent
ability to handle processes with long transients, strict quality requirements, easy
implementation of constraints, among other advantages (DONES et al., 2010). The
predictive control algorithm based on linear models is a widespread industrial process
control strategy, mostly used in distillation columns (KANO and OGAWA| 2010)).

The successful predictive control application is directly related to the model
predictive ability. For example, to obtain an empirical model for a distillation
column and its effective implementation are required around fifteen days (KANO
and OGAWA| 2010). Assuming the process operation may be subject to inherent
changes due to campaign time, maybe this procedure to obtain the model will be
repeated during this period, or the MPC layer will be turned off by the operation
due to poor performance.

In the survey carried out by KANO and OGAWA! (2010), industries were asked



which were the main desired improvements in MPC technology, the results are shown
in Table [L.1]

Table 1.1: Requirements reported by the chemical industries to improve MPC
theory KANO and OGAWA| (2010).

Requirement Percentage
To cope with changes in process characteristics 26%
To develop relationships between model accuracy and control performance 24%
To cope with unsteady operation 16%
Use of know-how in control system 16%
To cope with nonlinearity 13%
Others 5%

It is noticeable, among the main industrial demands, the requirement to make
the MPC technology capable of operating in systems where changes occur and,
consequently, controller performance is reduced. In the same work, it was asked
which alternatives would be more suitable for industrial use. The results are
available in Table [[.2

Table 1.2: Need for improvement in response to changes and nonlinearity KANO
and OGAWA| (2010)).

Requirement Percentage
Switch multiple linear models 28%
To improve linear MPC robustness 25%
To use time-varying or nonlinear models 18%
Adaptive function for linear MPC 18%
Others 11%

Data such as those presented by KANO and OGAWA| (2010) are difficult to
find for the remaining worldwide industrial facilities. However, these data show
that there are gaps in the present technology and theory, which can be seen as
an opportunity for improvement, in terms of performance loss and control system
maintenance.

This work proposes some strategies to cope with online model updating in MPC.
We have employed well-known strategies, such as the extended Kalman Filter, in
order to update the models and apply an output-feedback strategy, the results
showed that this scheme may lead to a solid performance improvement. However,
the online uncertainty estimation using Kalman Filters is still a gap in the literature.
In order to comply with the parameter uncertainty and then use a robust MPC, we
presented an alternative, based on interval observers approach, for the state feedback

robust nonlinear MPC under uncertain parameters. Finally, since in many industrial



problems full state measurement is not available, we have formulated the extension
of the set-based approach for joint estimation in a discrete-time framework, which
results in an output-feedback robust MPC strategy for a class of nonlinear systems.
Furthermore, this robust MPC can be solved online by explicitly using Lipschitz
constants, avoiding the unsolvable nonlinear min-max optimization and resulting in
the same computational burden as the nominal MPC.

The remainder of this thesis is organized as follows: in Chapter 2] the state-
of-art of adaptive MPC and state estimation is explored, the current approaches
for MPC and parameter estimation stability are carefully discussed. Then, the
current technologies for model updating are analyzed, most of them using Kalman
Filters or recursive least squares (RLS) for parameter and state-estimation. In
Chapter [3] it is showed that this approach may result in robustness improvement,
despite the difficulties to estimate and control the error prediction. In Chapter [4],
a strategy for nonlinear discrete-time state-feedback MPC and parameter update
that guarantees robust stability is presented. Since, in many chemical processes,
full state measurement is not available, a way for state and parameter estimation
based on interval observers approach is proposed in[5.2] Additionally, in Chapter [3],
the proposed interval observer is applied in an output-feedback MPC framework.
Finally, in Chapter [6] the final comments and future research suggestions are

presented.



Chapter 2
Theory and literature review

In this chapter we present a broad review about the thesis topics and the state of
art of model predictive control, focusing on model updating and state and parameter
estimation. In the remainder chapters, a more specific literature review is given in

the introduction section of each chapter.

2.1 MPC coupled with parameter estimation

Since the early years of MPC, there have been attempts to develop linear
controller extensions for application in nonlinear or time variants plants. In the
first works, some effort was made to obtain a controller that could preserve the
mathematical complexity of linear MPC and handle nonlinear systems. Among these
works, it is the controller proposed by MORNINGRED et al.| (1992)), which makes
use of empirical NARMAX models. These models, when using a linear parameter
structure, are represented by the Equation (using the same nomenclature
adopted by MORNINGRED et al.| (1992)):

y(t) =0T (t —1)p(t — 1) + €(t) (2.1)

where 0(t— 1) is the parameter vector estimated at t —1, ¢p(t—1) is a past values
function vector (regressor), y(¢) the model output and €(t) an output disturbance.
In this paper, an estimator of the least squares recursive (RLS) type was used to fit
the vector 8(t — 1) to the process conditions subject to a PRBS (Pseudo Random
Binary Sequence) signal. In this algorithm, the parameter vector was updated as

follows:

>

D

() =0(t - 1) + K(t)[y(t) — " (1)0(t — 1)] (2.2)



The estimation Gain K(¢) is updated as:
K(t) =P(t = o)A+ ¢" (t)P(t — 1)8(1)] " (2:3)

The covariance matrix (P(t)) is given by:

_P(t-1)

T I-K@®)e' (1) (2:4)

in which X is the forgetting factor.

In this work, a CSTR was used to show that this algorithm can result in a
unstable system if the controller does not handle plant/model mismatch. It should
be noted that in the 90’s few papers on the study of MPC controller stability had
been proposed and many of the robust predictive control strategies were developed in
the subsequent years. Despite the theoretical limitations, in the following year, the
authors presented an application to an experimental distillation column, showing
that the performance is superior to the linear MPC and the PI controllers using
decoupling (MORNINGRED et all 1993).

Before the MORNINGRED et al.|(1992)) publication, other authors had used the
adaptive predictive strategy, for example, the controller proposed by SOUZA JR.
(1989), which uses the GPC (Generalized Predictive Control) in combination with
a RLS estimator was applied to a distillation column control.

Other authors have employed variations of this strategy for a broad range of
chemical processes. DEFAYE et al.| (1993) applied the RLS-MPC for batch reactors
control using linear models, and showed that some problems may arise when this
approach is used. Omne of the main issues is related to the estimator ability to
perceive small process variations and, at the same time, to be insensitive to noise,
this property may have a large influence in the controller performance.

CLARKE (1996) proposed a method similar to the DEFAYE et al| (1993),
however, elements for guarantee stability were used, such as terminal constraints.
Moreover, an algorithm was used for choosing the model order, given a specified
maximum order.

RHO et al| (1988) proposed a strategy for a polymerization reactor control by
using online identified ARMAX models. After model identification, it was used in
a MPC for the jacket temperature setpoint calculation, which was used in cascade
with a PI controller. Additionally, by a normalization procedure to ensure that the
disturbances were finite, the recursive least squares technique become less susceptible

to failure. Furthermore, a dead zone for gain estimation was chosen as follows:
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0, otherwise

where p e () are the tuning parameters. In that work, an experimental validation
was done, showing a superior perfomance in comparison with a PID controller.

SECCHI et al| (2001) have compared the predictive controller with RLS
parameter updating with other strategies such as the nonlinear predictive controller
(NMPC) and a local models network. It was observed that approximate methods
can find a solution to the control problem close to the result obtained by the NMPC.
KARER et al.|(2008)) extended the methods for predictive controller using RLS and
dead zone for hybrid systemdl] control, using a batch reactor as a case study.

Through the literature analysis until the 90’s, it is noticed that a few works
attempted to combine the robust control techniques and parameters estimation in
a single algorithm. In subsequent years, the first publications using strategies to
explicitly take into account the uncertainty measurements and parameter estimates
began to emerge along with the evolution of robust control theory. In the work
of FUKUSHIMA et al.| (2007), a parameter estimation routine combined with a
robust predictive controller was used. The authors emphasized some issues, such as
the constraints attendance under the adaptive algorithm, the necessity to predict
the future parameters behavior in order to satisfy the constraints and, finally, the
challenge of theoretical feasibility and stability. FUKUSHIMA et al. (2007) proposed
the following problem:

The parameter error is given by:
0=0—06" (2.6)

where 6* denotes the uncertain parameter vector and € the true values. Once the
future value of ||A(¢)|| is unknown, a bound v(t|t;) can be estimated. In this work it

was proposed an algorithm for linear systems that satisfies an exponential decay:

v(tlt;) = v(t;)e K=t (2.7)

where K is the feedback gain and v a parameter used in the estimation algorithm.
Using this approach, a less conservative update for the parametric uncertainty can
be obtained.

Other works have tried to improve the estimation provided by the RLS algorithm,

Thybrid systems are systems that involve interaction between discrete and continuous dynamics



which can generate poor parameters estimates if a degree of excitation is not reached.
In the work of KANSHA and CHIU| (2009), the Just-in-Time Learning (JITL)
technique was employed, using a GPC controller. In the JILT strategy, a data
set is initially built in an open loop and, as the process progresses, it is updated.
In this approach only the most relevant data are selected. In general, the criterion

used is given by (given two sets z, and z;):

s; = kVe llza=aill + (1 — K)cos(6;) (2.8)

where 0 < k < 1 and 0 is the angle between the sets Az, and Ax;. The parameter
s; is a similarity measurement, which is close to 1 when the two sets are similar. In
general, the data set is used for a linear low order model estimation. In KANSHA
and CHIU) (2009)), a second order ARX model was identified. This strategy showed
a superior performance in comparison with the MPC-RLS. It improves the model
only when it is necessary, ceasing as soon as the steady state is achieved.

Theoretical studies about the adaptive MPC stability were shown in the work of
ADETOLA et al. (2009)). The conditions for guaranteeing stability under parameter
adaptation and close-loop MPC were outlined. The first step was a parameter
estimation algorithm development, in which the uncertainty bounds were estimated.
Moreover, the routine guarantees the uncertainty set updating only when this set
contracts. This parameter estimation was used along with a robust MPC under
the min-max formulation. Since the uncertainty set is updated along time, the
control actions are less conservative than the usual robust MPC. In this approach an
excitation constraint must be satisfied by the optimization routine. The estimation

algorithm is given by:

0 =T(C—Qb), B(t;)=86" (2.9)

where I' is the filter gain, 0 the parameter estimates and Q, C are given by the

differential equation:

Q=wlw, Q(ty) =0 (2.10)
C=w'(w8’ +x—%—-mn), C(ty) =0 (2.11)
n=—kon, n(to) = e(to) (2.12)

w is a first order filter and 1 an auxiliary variable, in which &, is a gain that must
be tuned. ADETOLA et al.| (2009) show that by using this algorithm, the error



upper bound is given by:
16()]] < eap™t=)|B(t)||, vt > t. (2.13)

where (]|0]] = || — 8]||) and € = \pnin(TQ(t)) is the lowest eigenvalue. Tt is
possible to show that this algorithm has a finite time convergence. The robust
stability details can be found in ADETOLA and GUAY]| (2011)).

In recent years many algorithms have been revisited with improvements. |[AUMI
and MHASKAR] (2013) revisited the RLS algorithm for model update. In this
proposal, called probabilistic RLS, the probability of the process model being
representative is taken into account for the estimation, thus unnecessary updates
are avoided. Moreover, the rate of model updating can be tuned.

There are other ways for model updating, among these, the most common is
the use of neural networks with closed loop estimation to perform the predictive
control with adaptation. In the work of AKPAN and HASSAPIS| (2011) a RLS
algorithm was used for neural networks online estimation, which were applied in
two strategies, the first using linear control based on linearization and application
of the GPC control. The second based on direct use of the neural networks in a
NMPC strategy. SALAHSHOOR et al.| (2013) employed the neural network for a
gas-lift process control, the network were updated using the Unscented (UKF) and
the Extended (EKF) Kalman Filters.

Recently, (CHAN et al.| (2014) proposed a strategy for discontinuous model
updating in a model predictive controller. This approach is able to detect the
obsolete transfer functions when the predictions of the control model deviate from
disturbance estimate by more than a pre-determined amount. Moreover, the

algorithm detects the necessary excitation level for the parameter estimation.

2.2 State estimators

The state of a dynamic system is defined as the smallest set of variables such
that the knowledge of these at the initial time (¢y) and the system inputs at later
times completely determines the system behavior at any time-step (OGATA| [2010).
Thus, the state is uniquely determined by the state at initial time and the input for
t> 1.

If it is not possible to measure the full system state, or even if the system output
consists of linear or non-linear state combinations, it is necessary the use of state
estimators (MACIEJOWSKY], [2000). For non-linear systems, some techniques are
used, such as: the extended Kalman filter (EKF), the constrained Kalman filter
(CEKF), the moving horizon estimators (MHE), and the Unscented Kalman Filter.



Each one of these strategies is shown below.

2.2.1 Extended Kalman Filter

Consider a nonlinear discrete-time system:

Tk = f(xk—l,uk—hwk—ﬂ

yr = h(zr, Vi)

w~ (0,Qy)

v~ (0, Ry) (2.14)

In Equation (2.14), h and f are nonlinear functions. A first-order Taylor series
expansion of these functions around Z; ; are given in Equation (2.15) (SIMON|
2006):

. af A of
ap = (&5, up-1,0) + O . (Th1 — B_) + Em .
k—

k—1

Wk—1

1
= f(&f 1 up—1,0) + Frq (21 — 25 1) + Li—1wi—1
= Fp1xp_1 + [f(@ll, ug—1,0) — kalizll] + Ly qwi—1

= Fyp1Tp—1 + Up—1 + @p—1 (2.15)

where the superscript + denotes the a posteriori estimates. The matrices Fy_; and

Ly_1 and the vectors i, and &y, are given by:

of
Foy= 2
1= o .
k—1
of
L= 2L
1= N
k—1
i = f(2F, uk, 0) — Fiy
@ ~ (0, LQxLY) (2.16)

The same procedure is applied to the measurement equation h:

yr = Hywg + 2 + U (2.17)

The matrices and vectors are analogously defined:



Oh
Hy= —
T o .
k
Oh
My, = —
" ov .
k
2 = h(&,0) — Hidy
D ~ (0, MR, M) (2.18)

The — superscript denotes the a priori estimates. The final model is a linear
state space model and the classical Kalman Filter (KALMAN]| 1960) can be applied.
The Extended Kalman algorithm (EKF) is showed below (SIMON] [2006)):

« Filter initialization (at time-step k = 0)

&g = E(wo)
Py = El(zo — &5)(z0 — 25)"] (2.19)
o At time-steps k = 1,2, ...n, the following algorithm is used for state update:

— Partial derivatives matrices computation Fy_1 e Lj_1

— Covariance matrix and state update (a priori estimation)

Piji—1) = Fyo1 Po1p—1y Fr—y + LieaQr1 Ly
Ze—1) = [(ZB-1]k=1)> U(r-1),0) (2.20)

— Hj, and M, computation

— Convariance matrix and state update (a posteriori estimation):

Ky = Pk Hi, (Hy Page—1) Hy + MRy M)~

Lkiky = T(kr—1) + Kilyr — M(Egp-1),0)]
Pury = (I — Ky Hy) Pagi—1) (2.21)

10



2.2.2 Moving Horizon Estimation (MHE) and the
Constrained Kalman Filter (CEKF)

The state estimation using the Kalman filter is a fast and low computational cost
strategy. It can be noted, through the filter analysis, that the estimated state uses
only the data at that time-step, it is known as a null horizon estimator. However,
some strategies aim to use the previous data to estimate the states. For example,
when a new state is obtained, it is added to a set and the estimation is carried out
by using a vector of previous estimations. As one can see the size of this problem
increases rapidly, making this strategy, known as batch estimation, inefficient. An
alternative proposal, which considers only a fixed amount of data, is the moving
horizon estimation, which slides a window of fixed data size along a horizon. When
a new measurement is obtained, it is added to the set and the oldest measurement
is removed (RAO,| 2000). In SALAU (2009), it is presented the MHE algorithm
showed below.

Consider the nonlinear discrete-time model (Equation [2.14)):

The MHE optimization problem is given by:

: N AT -1 ~
min U =00 _nvoymP W(k—N-1lk
W(k—N—1|k) - W(k—1|k)V(k—N|k)---Y(k|k) k (k=N=1]k) " (k=N—1]k—1)*( k)
k—1
~T 1 A
+ Z w(j\k)Qk—lw(ﬂk)
j=k—N
k
AT —1A
+ > W R0
j=k—N

Subject to:

L(k—Nlk) = T(k-Nk—1) T Ok—N—1]k)
Bawy = F(EGm,uy) + Qg for j=k =N, k=1
y; = h(Zw) +0Gwy for j=k—N,...k
Tmin < Z(jjk) < Tmae
Omin < Q(j—1k) < Wmaz for j=k—N,..,k
Omin < O(jik) < Omaz for j=k—N,. . k (2.22)

Once the NLP (Nonlinear Programming) problem is solved (Equation (2.22])),

the vectors w* and v* are obtained and the system state can be evaluated as:

11



Lk—nNk) = Lh—nNlk-1) + DN 1]k)
:i‘(j+1|k) = f(.f](j‘k), Uj) + @Ekj\k) for: 7=k—N,... k-1
Yj = h(@(ﬂk)) + @(j|k) for: j=k—N,.. k (2.23)

If we consider a null horizon (N = 0) and a linear (or linearized) measurement
equation h, the MHE can be solved as a Constrained Kalman Filter using
Quadratic Programming (QP), the computational cost is strongly reduced using

this formulation. The CEKF equations can be summarized as follows:

AT a1 A
Loin O (k1) S k1) O (k1) (2.24)
where:
Oy = |
U(k|k)
Pr—1k-1y 0
S = 2.25
(kIK) 0 R, (2.25)
The equality constraints in Equation (2.22)) are rewritten as:
[Hk I]@(k\k) = Y — h(f(;ﬂk,l)) (2.26)
The inequality constraints are summarized in the form A© < b:
—1I
A ]
I
T — Tnin
b — Ymaz — yjﬂ (227)
Tmax — T

Despite the lower accuracy of the CEKF formulation, the computational
burden is significantly reduced by avoiding the NLP problem and solving the QP

formulation.

12



2.2.3 The Unscented Kalman Filter

Using the idea that it is easier to approximate a probability density function than
a nonlinear function, JULIER et al|(2000) proposed a state estimation strategy for
nonlinear systems called Unscented Kalman Filter (UKF). This method is based on
the Monte Carlo methodology.

Assuming a model y = f(z), it is possible to obtain the mean of y and z, even if
the function f is unknown. To do so, it would be necessary to have a large number
of measurements of these two variables and use the usual statistical functions in
order to obtain, for example, the mean and covariance matrix.

In online estimation, it would not be possible to perform a large number of x
measurements, to calculate the values of y through the function f, and, then, to
determine the covariance matrix of y and its mean (due to the short time available
to solve the problem). The technique proposed by |[JULIER et al| (2000) consists
in obtain a few realizations of the vector x, these realizations being representative,
so that the calculated statistics do not distance themselves from those that use
a large number of realizations (AGUIRRE, 2007). It is important to note that
the proposed transformation is designed to obtain the zero-order and first-order
statistical moments, which is sufficient to characterize a normal distribution.

The Unscented transformation reduces the large number of realizations required
to characterize the moments of y to a small number of values, called sigma points,

which are chosen such that:

1 2Nq
2nq 55 o=
cov(x) =P (2.28)

The first step of the algorithm is to obtain the sigma points and, then, use f to

evaluate ); and, finally, obtain the mean and the covariance matrix:

1 2ng

Zyz’%}_’

i=0
cov(Y;) = Py, (2.29)

2n,

Three algorithms are usually used for the sigma points selection and application
of the Q and R matrices. In the approach proposed by SIMON]| (2006)), 2n points
are chosen and Q e R are added to the system (additive noise). This algorithm is

summarized by the following set of equations:

13



o The algorithm first-step is to obtain the sigma points and use the nonlinear

model for time-step propagation

X1 =[Xo1 + TPy, X1 — TPy, ] (2.30)
X5 = Y ) 2.31)

e a priori state and covariance matrix estimation is obtained

2ng

Xi =) WX (2.32)
=0
2Ngq

Pl =Y WA —x) (XY —xi)" + Qi (2.33)
=0

WX and W¢ are weights that can be adjusted according to the distribution.

They are calculated as follows:

A= a*(ng + k) —ng

A
0 (ng + A)
c __ /\ 2
Wg = (na+/\)+<1 a” + f)
1
WX=Wf= —" (2.34)

! Y 2(ng + N

If the system is gaussian, MERWE] (2004)) proposed:

[ B Kl=1[1 2 0 (2.35)

e Then, the measurement equation is updated by sigma points propagation:

Vi = M) (2.36)

o It is obtained the predicted measurements at time-step k, the predicted state

covariance matrix (Py,y,) and the cross covariance matrix (Px,y, ):

14



2Ngq

Ve => WXy, (2.37)
i=0

2ng

Pyy, = Z Wi (Vhi — S’k)(’Ykz - S’k)T + Ry (2.38)
i=0
2Nq

ka}’k = Z VVZC(‘Xk)fz_ - Xl:)(’ﬁm - yk)T (239)
i=0

 Finally, it is obtained the unscented Kalman gain (Kj) and the a posteriori

state and covariance matrix:

Ky = PXkYkP;’kl}’k
Xr = X + Ki(yr — Ir)
P,, =P, —K.Py, K; (2.40)

As one can notice, the matrices Q e R are added to the system.

In the algorithm proposed by [JULIER et al| (2000) and MERWE (2004), the
state estimated at the previous time-step x,_; is added to the sigma points set, thus
Equation is modified such that:

X1 = X1 X1 T 0Py, X1 — T'y/Py, ] (2.41)

This approach will lead to 2n, 4+ 1 sigma points.

MERWE (2004) proposed the augmented state UKF. In this algorithm, the
matrices Q and R are not added to the system. However, a matrix, which contains
P, Q and R, is used for the sigma points computation. This augmented matrix is

showed in Equation (12.42]).

Py, . 0 0
P'=1] 0 Qi1 0 (2.42)
0 0 Ry 1

Note that this method increases the number of sigma points depending on the
number of states and measurements. For example, consider a three state and three
measurements, in this case the dimension of P* is going to be 9 x 9, the sum and
subtraction of the augmented state X _, with F\/Wk_1 will lead to 18 sigma points.

15



Additionally, if x;_, is included, the set will contain 19 sigma points. In the previous
algorithm (Equation (2.30])) the set will have 6 points. The augmented state vector
is given by Xj_; = [Xs—1 0 0]".

2.2.4 Constrained Unscented Kalman Filter (CUKF)

The use of constraints in state estimation problems may be a determinant factor
for the strategy success. Since these estimators generally depend on dynamic models
simulation, unrealistic estimates can lead to problems in model simulation. Another
problem, reported in KOLAS et al.|(2009), is the existence of multimodal probability
density functions with no physical sense, which may cause filter divergence. In the
work of VACHHANT et al. (2006), a nonlinear optimization problem was proposed
to recalculate the filter weights in cases where A},_; violate some constraint. A more
reasonable alternative, where weights do not need to be recalculated, was proposed
by KOLAS et al| (2009). In this algorithm, after obtaining the a priori estimates

(¥x), the a posteriori estimates are obtained by minimizing the objective function:

T = (v = ML) R (ye — (L)) + (X — X5) T (Py) ™ (AL — A7)
(2.43)

This is a nonlinear programming problem (NLP), whose computational cost can
be high. One way to overcome this problem, it is by using a linear measurement
equation, such that:

By substitution in we have:

J = (ye = DXL) Ry (v — DA + (X — A07) (P )7 (X — A7) (2.45)

Assuming Ry e P, positive definite and symmetric:

J=yiR.yi — 2y, R, ‘DXL, + AUDTRIDAY + XL (P )AL

7

— 2X,3:f‘(P;(k)‘1X,§i + X,z:f‘(P;k)‘lx,i; (2.46)

The final problem has the structure:
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min J (2.47)

T
Xk,i

However, the previous objective function [2.46|is equivalent to the problem:

J* =2y R'DXL, + XDTRDXY 4+ XL (P ) T A - 220 (Pr )T A
(2.48)

This problem can be solved by using quadratic programming;:

T =X 7 (DR, D+ (Py ) )AL, — 2(y, Ry'D + X7 (Py ) 7H)AY,  (249)

Besides the low computational cost, the quadratic programming allows the use

of linear constraints:

Xmin S kaﬂ S Xmaa: (250)

2.3 Stability and robusteness of nonlinear

predictive controllers

The stability of predictive controllers is one of the fundamental problems and one
of the most studied by the process control community. The issues for the stability
proof arise due to the impossibility of applying infinite control and prediction
horizons, which leads to a mismatch between the predicted open loop behavior
and the resulting closed loop, even in the nominal case.

The guaranteed stability implies a stable controller, regardless of the tuning
parameters used. This type of stability, called nominal in absence of plant-model
mismatch, is lost when there are uncertainties in the model, disturbances, or
imperfect states measurements. Therefore, it is a theoretical formulation that will
be used in the robust formulation, in which modeling uncertainties are taken into
account, as well as the other factors mentioned above.

Thorough literature reviews about this topic can be found in MAGNI and
SCATTOLINT (2007) and MAYNE et al.| (2000). In this section, we tried to show
the main results for the nonlinear MPC problem.

In the work of MAYNE et al.| (2000), in a survey paper, the literature until 2000s
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were unified using a uniform notation. The following definitions are using the similar
notation proposed later by the same authors in the book RAWLINGS and MAYNE
(2013).

A generic formulation for the predictive control problem is given by the

minimization of the following optimization problem:

Vockw = 3 Ux(i).u(o) + Fx(k+ V) (2.51)
subject to:
x(k +1) = £(x(k), u(k)) (2.52)
y(k) = h(x(k)) (2.53)
u(k) € U (2.54)
x(k) € X (2.55)
x(k+N)e Xy X (2.56)

The moving horizon strategy apply the first control action from the optimal
sequence that includes N — 1 actions. Thus, given an optimal sequence in k = 0
denoted by u’(z):

u’(z) = {u’(0;x),u’(1;%),....,u"(N — 1;x)} (2.57)

The implicit control law & is given by:

kn(z) = u’(0;x) (2.58)

In order to achieve stability, the choice of terminal cost F(x(k + N)) and the
terminal set x(k + N) € X; C X are fundamental. The proof that terminal
constraints guarantee stability was shown by KEERTHI and GILBERT| (1988).
Subsequently, RAWLINGS and MUSKE| (1993) showed an approximation for the
infinite horizon problem that leads to stability for the linear problem. Generally, the
stability for the nonlinear controller consists in obtain a Lyapunov function V, an
invariant set X, and two class Kof| functions o (-) and as(-) and a positive definite
function as(+), such that Vo € X (RAWLINGS and MAYNE] 2013)):

2A function o : R>¢ — R>¢ is called class K if it is continuous, it is zero for zero input, and

strictly increasing. Furthermore, if it is unbounded: o(t) — co if ¢ — oo, then it is called class
Ko
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V(x) > aq([x]) (2.59)
V(x) < as(fx]) (2.60)
V(x(k+1)) < V(x) — as(|x]) (2.61)

Consider also the following assumptions:

Assumption 1 (System and cost continuity) The functions f : X x U — R,
[: XxU — R+ and F : X — R+ are continuous, moreover f(0,0) = 0, £(0,0) =0
e F(0) =0.

Assumption 2 (Set properties) The sets X and Xy are closed, Xy C X and U

is compact. The sets include the origin.

Assumption 3 (Basic stability) For every x € Xy, there is a u € U such that
f(X, u) € Xf.

If these assumptions are satisfied, it is possible to show the following lemma

(proof in RAWLINGS and MAYNE (2013), pag. 115):
Lemma 1 (Optimal cost decrease)
Vo€ Xy Vo(f(x,mn(7)) < Va(x) — £(x, ky(x)) (2.62)

Thus, the propertie [2.61] is satisfied. In order to define the set Xy, we have to
define some auxiliary sets. The set Z contains the pairs of (x,u) that are inside
the problem constraints, (z,u) € Z. The subscript N denotes a sequence of inputs,
therefore Zy(x,u) is the set where the constraints are satisfied for the sequence of
inputs. Additionally, the set Uy is composed by the control actions sequences that

satisfies state and input constraints:

Un(x) :={ul|(z,u) € Zy} (2.63)
Finally, the set Xy is composed by the states into the set X and, moreover, the

optimization problem has a solution:

Xy ={xeX | Uy(z) # o} (2.64)
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The optimal solution (V) is given by:
Vy(x) = min{Vy(x, u)lu € Un(x)} (2.65)

Some remarks about the previous results are necessary. First, the translation to
the origin for the equation z(k + 1) = f(x(k),u(k)) can always be done, as showed
by (MACIEJOWSKY] 2000):

Second, for each x € Xy, there is a u € U such that f(x,u) € X, which implies
that X is control invariant for x(k + 1) = f(x(k), u(k).
Consider also that the norm used in the cost and terminal cost satisfies the

conditions:

Assumption 4 (Bounded cost and terminal cost)

l(x,u) > oq(x]), Vxe€ Xy,VueU (2.71)
F(x) < ap(|x]), Vxe Xy (2.72)

a;(|x]) e as(]x]) belongs to class Ku.

By those assumptions, the theorem for MPC nominal stability is shown below:

Theorem 1 (Nominal stability of the MPC) Suppose, the  assumptions
hold. Then, the origin is asymptotically stable with region of attraction
Xy for the system x(k + 1) = f(x(k),kn(x)). If, additionally, the cost (¢) and
the terminal cost (F') satisfies to ((x,u) > c1|z|* for Vx € X,, Yu € U and
F(x) < co|z|*, Vx € Xy for some ¢; > 0, ¢ >0, a >0 and Xy is bounded,
then the origin is exponentially stable with region of attraction Xy for the system
x(k+ 1) = f(x(k),kn(x)); If Xy is unbounded, then the origin is exponentially
stable with region of attraction given by any sublevel of V) {x| V(x) <a }.

Despite the general results for the NMPC stability, for an effective application, it
is necessary to find xy (stabilizing control law), X (terminal set), and F' (terminal
cost), that results in a stable optimization problem. Many works in the literature

discusses ways for choosing those ingredients.
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The simplest way to obtain a stable MPC is the approach proposed by KEERTHI
and GILBERT] (1988)):

X;=0 (2.73)
F(0)=0 (2.74)
This choice allows to show, assuming that at the instant & = 0 the

optimization problem is feasible, that the cost function is Lyapunov and the origin is
asymptotically stable, with region of attraction Xy. The use of equality constraint,
as pointed out by some authors (ALLGOWER et al.,|2004), has many disadvantages.
First, this constraint requires the states to reach the origin in finite time, making the
problem impracticable if short prediction horizons are used (the region of attraction
becomes very small). Finally, the computational application of terminal constraints
can increase the optimization problem burden and may not be solved during the
available time .

Another option, which can be used for nonlinear models, is to use a linear local
controller around the origin. Therefore, the terminal cost and the terminal set are

given by:

F(z) = ool (2.75)

X;=A{z|F(z) <a} (2.76)

In other words, this strategy requires the state trajectory to enter into a origin
neighborhood then the control law is modified for a local controller, which can drive

the system to the origin. The terminal cost must satisfy the following:
F(f(x(k),u(k))) + €(x(k),u(k)) < F(x(k)) (2.77)

The Equation implies that terminal cost is a control Lyapunov function
(CLF).

For linear controllers, it is possible to use an infinite horizon approximation for
the terminal cost, leading to stability, as shown by RAWLINGS and MUSKE, (1993).
The key idea is to parameterize the infinite horizon problem in finite terms. The

infinite horizon problem, theoretically, has the following objective function (for the
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regulation problem and Euclidean norm)E]:

=D Ix(k +jlk)llq + [u(k + j[k)[Ir

Jj=1

for the linear system:
x(k+1) = Ax(k) + Bu(k)

Only the first “m “control actions are non zero:

u(k + jlk) =0,i >m

(2.78)

(2.79)

(2.80)

By using the constraint (Equation [2.80)), the objective function is rewritten as:

m—1
ZHX k+jlR)IG+ D [lulk+j1k)|&
j=0 7=0

T

The first infinite term must be rewritten:

ZHX k+ jlk)IG + Z 1x(k + j1k)|1G

j=m+1

T2

T2 can be written as:

o0

T2=">"|[x(k+j+mlk)|g =D x(k+m+ jlk)"Qx(k + m + j|k)
j=0 =0
By using the model for prediction:

T2 = x(k + m|k)" {Z (ATYQAI| x(k + m|k)
7=0

Q

The term Q can be recalculated as:

(2.81)

(2.82)

(2.83)

(2.84)

3The notation was slightly modified to comply with the infinite horizon literature. x(k + j|k)

is the prediction of x up to k + j at time-step k.
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ATQA = Y (ATYQA' = Q-Q (2.85)
=0

This equation (known as Lyapunov Equation) can be solved for Q, given Q and

A. Using Q the cost is given by:

V() = io||x<k LRI + mz lu(k + jIR)|E + |x(E+mlB)E  (2:80)

terminal cost

The nominal stability is assured for any m, Q > 0 and R > 0. Many authors
have used the infinite horizon approach for predictive controllers formulation,
for example we have the works of PEREZ et al| (2014), MARTINS et al.
(2013),ODLOAK] (2004) and, more recently, for unstable systems, MARTINS and
ODLOAK] (2016).

Robust Predictive Control

Despite the effort for a guaranteed stability controller, in a real plant, which
contains model uncertainties, disturbances, non-measured states and corrupted
measurements, this theory must be complemented to cope with a large range of
situations and preserve stability.

The first step for a robust controller design is the uncertainty description for the
controller and state estimation. In general, the system under uncertainty is described

by using a set of models or, as previously, using a variable for the uncertainty vector

(w):

x(k+1) = f(x(k),u(k),w(k)) (2.87)

The uncertainty vector is always bounded, and belongs to the set W
(RAWLINGS and MAYNE] [2013). The uncertainty description is fundamental,
since an incorrect assumption may result in instability such as in the nominal case.
Despite the boundness in w, usually, it is assumed unknown. Thus, given the
control action and the system state, the predictions can not be described by single
trajectory. The trajectories inclusion set is denoted by IF, which some authors use
the denomination “tubes”. As one can see, once the uncertainty is added to the
system an operator maps a set of trajectories from one time-step to the next one.
The definition for robust global asymptotic stability is given by (TEELL 2004)):
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Definition 2.3.1 (Robust Global Asymptotic Stability (GAS)) Given A
compact, the distance between this set and a point in the state space X is given
by d(x,A) := min.{|a — z||a € A} and denoted by |x|a. The set A is GAS for
the system x(k + 1) = f(x(k)) if there is a function B belonging to the class ICLEL
such that, for each € > 0 and each set C compact, there is a 6 > 0 such as, for
each x € C and every solution of the difference equation ® € S(;(X)EL the following

statement is valid:
|D(k;x)|a < B(|x|a, k) +€ Yk el

The rigorous solution of a nonlinear robust control problem would require a
computational burden that will make the problem unfeasible for a real time solution.
Some proposals, by sacrificing optimality, have tried to simplify the problem in order
to make the problem feasible for a real time solution. Among the approaches used
for nonlinear systems, we can cite the “worst case” or min-max approach, the tubes
strategy, the multi-stage, and the Lipschitz approachﬂ

For the min-max approach, MORARI and CAMPOQO| (1987) proposed that the
system must operate in a way that the worst-case scenario is the most likely to
occur. For example, the control actions are such that the constraints are satisfied

even if the disturbances are the worst possible. Given the objective function showed
in the uncertain problem is formulated in the following way:

min max V(x,k,u,w) (2.88)
ALLCOWER et al| (2004) mention some problems that may occur in this
formulation. First, the solution for the optimization problem may not existﬂ.
Second, the control action is optimal for the worst-case scenario, which may not
have a high occurrence probability. Furthermore, the application of the control
action in most likely scenarios may result in poor performance. Finally, the stability
is guaranteed when the uncertainties are well defined, which may be difficult in some
cases.
An alternative proposal is the tube approach. MAYNE et al| (2011)) propose

a strategy for linear systems by using two MPC controllers, the first one uses

“the function 3 : R>g x Isg — Rx>g belongs to KL if it is continuous and if 8(s, t) is class K in
respect to time and decreasing in respect to s and, furthermore, goes to zero if t — oo

585(x) is the set of the disturbed system solutions x(k + 1) = f(x(k) + e(k)) + w(k) such that
maz{|[x[|,[lul[} <&

6This method is described and used in Chapter

"The existence of an optimal solution is given by the Weierstrass’ Theorem, which requires
compactness of both optimization sets and continuity of the objective function, see (BERTSEKAS
et al., |2003])
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tight constraints for the nominal trajectory, the second, called ancillary controller,
drives the uncertain system for the nominal trajectory. MAYNE et al.| (2011) have

considered the following additive disturbance:

x(k+1) = f(x(k),u(k)) + w(k) (2.89)
subject to:
weW (2.90)
x € X (2.91)
uecU (2.92)

The nominal system is given by:
z(k +1) = f(z(k), v(k)) (2.93)
The deviation between the actual trajectory and the nominal system is:
e(k+1) =x(k+1) —z(k+1) = f(x(k),u(k)) — f(z(k),v(k)) + w(k) (2.94)

The nominal controller is the same as the one in previous section, the nominal

system under its control satisfies the equation:

z(k+1) = f(z(k),k(2)) (2.95)

In this case, the terminal cost and the terminal set (Zy) are chosen by using the
previous stability criteria. Moreover, the ancillary controller objective is to drive
the uncertain system to the nominal trajectory, therefore, the following objective

function is used:

N-1
VN(X, Z, 'Ll) = Z E(X(k) - Z*(ka Z)7 U.(k?) - V*<k7 Z)) (296>

k=0
Where z*(k; z) e v*(k;z) are the optimal trajectory and the optimal control
actions from the nominal MPC. The ancillary controller is subject to the terminal

constraint:

25



x(N) =2z"(N;z) (2.97)

It is possible to prove that this strategy satisfies the robust stability conditions
using some assumptions, details are found in MAYNE et al.| (2011]) and RAWLINGS
and MAYNE] (2013)).

In the last years, some new ideas are found in the literature seeking a less
conservative robust controller. One prominent approach is the multi-stage method
(LUCIA et al, 2013). This controller uses discrete scenarios for the disturbances
in every time-step, which can be updated in the future time-steps, improving the

controller performance.

2.4 MPC feedback and state estimation

The control of a dynamic system can be viewed as a problem of obtaining a

function u(-) that depends on the state or system outputs. Given a dynamic system:

x = f(t,x,0,u) (2.98)

since, in industrial process systems, the state vector x is usually not fully
measured, a mathematical relationship between the output y and the system states

is used:

y = h(t,x) (2.99)

The most used predictive control formulation is the state feedback for model
prediction. In this approach, an observer is used for estimate the system state by
using the available measurements. In this case, the control law can be represented

by the following function:

u = K(X) (2.100)

Usually in MPC, as soon as a new measurement is available, the state estimation
problem is solved and used as a initial condition for the dynamic model prediction.
Therefore, the problems are coupled. It is possible to show that even if both
problems are stable the coupled problem may be unstable. (FINDEISEN et al.|
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2003) mentioned two mechanisms for solving this problem:

e The first approach is to separate the observer error and the state feedback
error. The most used way is by using fast convergence observers, in which the

error convergence rate results in a very small absolute error.

o The second strategy employs observers that provide uncertainties estimates

that can be explicitly used in a robust formulation.

The last approach is used for robust formulation in Chapter |4 for the adaptive
problem and Chapter [f] for the output feedback problem. In Section [5.2] a specific

literature review regarding this estimators is presented.

2.5 Adaptive Control

ASTROM and WITTENMARK| (2008) defined an adaptive controller as any
controller that has adjustable parameters and a strategy or algorithm for its tuning.

Many aspects of this thesis are related to adaptive control, in which the control
law or the MPC plant model are modified. Adaptive control techniques can be
divided in three classes (OGUNNAIKE and RAY/, [1994): scheduled control, model
reference adaptive control (MRAC) and self-tuning control. In the end of this
section, we also present the dual control theory that generalizes these strategies

in adaptive control.

2.5.1 Scheduled control

In this approach, the process variables can be related with the plant parameters
and, finally, with the controller parameters. In this case, the function that relates the
plant variables and the control parameters is obtained a priori, therefore, the plant
model must be accurate. The most widespread application of this strategy is the gain
scheduling, which uses a process variable to indirectly estimate the process gain and
adjust the controller gain (ASTROM and WITTENMARK, 2008) (OGUNNAIKE
and RAY| |[1994)). Figure shows the scheduled control scheme.
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Figure 2.1: Scheduled control scheme.

2.5.2 Model reference adaptive control

In this adaptive strategy, a reference model is used for performance monitoring
and predicts how the plant should response ideally. In Figure 2.2] it is showed the
MRAC scheme, the internal loop is a feedback loop, the external loop adjust the

controller parameters using the error between the reference model and the plant.

> Reference Model
+
N ,l)
¥ \
N
Controller -
adjustment
N
u
ysp + L4
—_— Controller > Process >
- u v

Figure 2.2: Model reference adaptive control scheme.

In the MRAC strategy, the control law is a sensitive issue. For a long time, the

rule known as “MIT rule” have been used for adaptation:

df Oe

7= 5 (2.101)

In Equation [2.101] the error is given by e = y — y,,, the difference between
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the plant output and the model. This rule is a gradient method for minimizing
the quadratic error (ASTROM and WITTENMARK, 2008)). Despite its popularity,
PARKS| (1966]) showed, in a work that would become one of the most important
in adaptive control theory, that “MIT rule” could make unstable several systems,
including simple systems such as a second order system disturbed by a sinusoidal
signal. In addition, Parks proposed another method to determine the adjustment
law based on the second Lyapunov method, showing that, for positive and real

functions, the choice of a candidate Lyapunov function of the type:

V = e’ Pe + Ax? (2.102)

and using the Kalman Lemma (see KHALIL| (2002)) it was possible to achieve
stability.

2.5.3 Self-tuning adaptive control

In the self-tuning control, the input and output process data are used in a
parameter estimation routine and, thereafter, for tuning the controller. In Figure
is showed the self-tuning scheme.

[y

Controller design

Parameter
estimation

) >| Controller Process
T- | v

Figure 2.3: Self-tuning control scheme

ysp +

4

v

v

It is noted that in the two previous methods shown above the process data
was obtained a priori. Differently, in the self-tuning method, plant information
can be obtained after the controller start-up. Despite the low prior knowledge of
the plant needed for adaptive controller design, this type of system needs some

details for proper operation, such as a reliable parameter estimation method in
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which lack of excitation in the system does not result in instability (ASTROM and
WITTENMARK] 2008).

2.5.4 Dual Control

The aforementioned schemes do not use parametric uncertainties at any stage of
the controller design. However, it is possible to notice that the parameter estimates
will not always be of the same quality, since they depend, for example, on the
measurements accuracy and the system excitation level. In the dual control problem,

system parameters are added to the states, creating an augmented vector:

z(t) = [x(t) 0(t)]" (2.103)

The dual strategy aims to obtain, through the estimator, the probability density
function of the increased vector, which is called a hyperstate. It can be obtained in
simplified cases or through the solution of a nonlinear state estimation optimization
problem. Because the hyperestate needs to be updated frequently, the exact real-
time solution in general is unfeasible (ASTROM and WITTENMARK, [2008). The

dual control minimizes the function:

V=FE (G(Z(T), w(T)) + /0 ' 9(z, u)dt) (2.104)

G and g are scalar functions, and F is the expectation operator that must be
calculated with respect to the distribution of all initial values and all disturbances
that appear in the system model. The V function is minimized in relation to the
control variables u.

This problem can be seen as the combination of a non-linear estimator and a
feedback controller. The estimator generates the states probability distribution from
the available measurements and the controller can be seen as a nonlinear function
that maps these estimates onto the manipulated variables space.

This problem solution is a combination between reducing the parameters
uncertainty and maintaining or directing the controlled variable to the desired value.
The dual problem can be simplified by obtaining only the mean and covariance
matrix of the system, for more details about this approach see ASTROM and
WITTENMARK] (2008)).
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2.6 Offset in model predictive control

One of the fundamental aspects for MPC practical application is the steady-state
error elimination, known as oﬁseﬂ Many proposals are based on a disturbance
model, which must be estimated since unmeasured disturbances are present, in
addition to the modeling uncertainties. In constrained control problems, such as

MPC, adding an integrator does not necessarily result in offset-free, as shown in
PANNOCCHIA and RAWLINGS| (2003).

Consider the nonlinear-discrete-time model for the plant:
x(k+1) = f(x(k),u(k))
y(k) = h(x(k)) (2.105)

this model can be augmented for a disturbance incorporation (d(k)):

x(k+1) = fa(x(k),d(k), u(k))
y(k) = ha(x(k),d(k))
d(k + 1) = d(k) (2.106)

This additive disturbance may not represent the true disturbances acting in the
plant, its purpose is to represent the non modeled system dynamics, the unknown
disturbances, the parametric uncertainties, the structural uncertainties and the
modeling errors (MORARI and MAEDER, 2012). However, this structure is also

solved as a state and disturbance estimation using an observer:

b
—
N
SN—
Q>
—
N
S—
S—

Fa(%(K), d(k), u(k)) + o (y(k) = ha

x(k+1) (
d(k) + La(y(k) — ha(k(k),d(k)) (2.107)

d(k+1)

where /, is an output to state map (¢, : Y — X') and {4 an output to disturbance
map, in both cases ¢,(0) = £4(0) = 0.

The conditions for an offset free MPC were outlined by MORARI and MAEDER
(2012) based on the linear case proposed by PANNOCCHIA and RAWLINGS
(2003). The conditions are:

e The length of the disturbances must be of the same dimension of the input

8Tn a few applications, such as level control for oscillation attenuation, an offset free controller
may not be suitable
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variables and the same of the output variables (n, = n, = ng)
« Local observability for the augmented system in the steady-state
o Local controlability for the augmented system in the steady-state
o The observer, in the nominal case, must be designed for steady-state offset-free

o It is possible to design an offset-free controller that is nominally steady-state

offset-free

o The plant converges to a single point steady-state in closed-loop

The disturbance model choice is essential to ensure that any output from the
real system can be generated through the augmented model, therefore the chosen
model should be rich enough to do so. The model must ensure that the nonlinear
system is observable, which is not a trivial task (See for an example GONCALVES
et al.| (2014b))).

The two most commonly used approaches for the disturbance model are the pure
output and pure input models. In the pure output model, an artificial state is added

for each system output, resulting in the nonlinear model:

x(k+1) = f(x(k), u(k))
d(k + 1) = d(k)
y(k) = h(x(k)) + d(k) (2.108)

This type of model has the advantage of being able to generate any system output
through the disturbance model. The industrially used model, known as bias-type
correction or DMC-type correction (in reference to the Dynamic Matriz Controller),

calculates the disturbance using the equation:

d(k) = y(k) — yp(klk — 1) (2.109)

where y, is the predicted output.

According to MUSKE and BADGWELL (2002)), the pure output modeling
strategy can result in poor models for the real disturbances into the plant, leading to
oscillatory behaviors. In the pure input method, the disturbance is combined with

the inputs, being evaluated through the model, resulting in a more realistic model:
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x(k+1) = f(x(k),u(k) + d(k))
d(k+1)=d(k)
y(k) = h(x(k)) (2.110)

The pure input model generally results in a better performance in comparison
with the pure output. In addition, if the plant contains integrating modes, the pure
output model has no guaranteed observability (MORARI and MAEDER) 2012).

In the present work, one of the proposed approaches is to augment the state
vector with the parameter vector and to use an observer to estimate both (Chapter
B). Therefore, it is a strategy for modifying the function f(x(k),u(k)). The control
law should, in theory, contemplate a parametric set that is capable of generating
any steady-state output of the real plant. One difficulty of applying this strategy
is that the parametric set can generate several steady-states for the same set of
inputs, which can result in offset. Another difficulty is to satisfy the observability
criterion for the augmented state, since, at least, it must have a disturbance for
each controlled variable, which may result in large observers. The problem can be

formulated as follows, given the real plant (subscript r):

X (k + 1) = fr(xr(k)aur(k)a 07‘)

v (k) = h.(x.(k)) (2.111)

a model for this plant is:

Xm(k + 1) = fm(Xm(k)a um(k)a em)
Vi (k) = hp (% (k)) (2.112)

Given that the 6, vector and the f, function are unknown, one can ask: is
there enough flexibility that for a partial selection of vector elements 6, € W, it is
possible to generate all real plant steady-states (u,(00),y,(c0))? Additionally, the
model must preserve observability and avoid steady-state multiplicity, so that the
conditions exposed in MORARI and MAEDER] (2012) are satisfied. In Chapter [3] it
is shown, using simulations, that the correct choice of the parametric set can result
in an offset-free controller even though it is not known which parameter is uncertain
or if the plant is subject to unmeasured disturbances. Moreover, it is showed, for

a nonlinear case study, that the pure-input model using a parameter approach is
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superior to the bias-type pure-output correction. Finally, it is showed that the latter

may also result in an unstable system in NMPC.
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Chapter 3

Adaptive MPC using Kalman

Filters: current algorithms

analysis]|

3.1 Introduction

Despite the large development of Kalman Filters observers, a comprehensive
analysis of these methods for joint estimation (parameter and states) and its
application in MPC is still lacking. In this chapter, the most used algorithms and its
variations are used for state and parameter estimation. Furthermore, the Kalman
filter application for adaptive MPC is addressed in a benchmark control problem.

After the seminal work of [KALMAN| (1960), many algorithms have been
developed for improvements, such as nonlinear estimation application and use of
constraints. The first, and most used, algorithm for nonlinear systems applications
is the Extended Kalman Filter (EKF) (see Section[2.2.1]). In this algorithm, a model
linearization is carried out every time-step, then the classical algorithm for linear
systems can be used. This algorithm performance is dependent of linearization
quality, since it can be obtained analytically or numerically. For complex or large
systems that depends on thermodynamics relationships, such as distillation columns,
the analytical linearization is a difficult task (GONCALVES et al., [2014b)).

An alternative, for direct nonlinear system application and to avoid a nonlinear
programming optimization, is the use of Unscented Kalman Filters (JULIER et al.|
2000). In this algorithm, the estimation is done by sequential nonlinear system
simulations. However, analysis for joint estimation are difficult to find in the

literature. Furthermore, we analyze a recent algorithm by KOLAS et al| (2009)

!Some simulations in this chapter were presented in COBEQ 2014 GONCALVES et al.| (2014al)
in a comparison with other NMPC strategies
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for constrained UKF estimation and its aplication for joint estimation. Finally, a
method for numerically reducing the failures in the UKF algorithm under excitation
absence is proposed.

We then proceed to the use of Kalman Filters for adaptive MPC. In the work of
KLATT and ENGELL (1998), some adaptive strategies, such as exact linearization
and gain-scheduling, were used for a reactor control. The same model was used as a
benchmark for control systems in an adaptive MPC using a sequential optimization
approach.

The remainder of this chapter is organized as follows: in Section [3.2] the most
used estimators are evaluated aiming joint estimation; in Section the numerical
aspects for solving the MPC problem are detailed; in Sections and [3.6] the
Kalman Filter is used for tests in nonlinear predictive control; in Section [3.7], the

final remarks are presented.

3.2 Estimators analysis
Initially, for state estimation, five (most used) algorithms were compared:
o The extended Kalman Filter (EKF)
o The constrained Kalman Filter (CEKF')
o The Unscented Kalman Filter (UKF)
o The Unscented Kalman Filter with constraints (CUKF)

The augmented state Unscented Kalman filter (CUKF-FA)

These algorithms were described in Section

The tests were conducted on a CSTR with the Van Vusse reaction. This system
is widely used as benchmark for controller testing due to inverse response, overshoot
and nonlinear behaviors such as gain sign inversion (TRIERWEILER and SECCHI,
2000). The reaction system represents the synthesis of cyclopentanol (B) using
cyclopentadiene (A) as the reagent. Undesirable by-products are cyclopentenediol
(C) and dicyclopentadiene (D). The system is described by a two series reactions

and one in parallel as shown in Equation (3.1)):

24 2 D (3.1)

The energy and mass balance are given by:
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ACy ¥

i V(CAQ —Cy) — kiCy — k3C3 (3.2)
dC —-F
7dtB = 703 + k1Cy — koCp (3'3)
dT 1
E = p? [kloA(_AHAB) + kQCB(—Ach) —+ ]CgOi(-AHAD)} +
p
F K, AR
—(To =T Ty —T 4
(T = 1)+ =20 T = ) (3.4)

The desired product, as mentioned above, is component B. The control objective
is to keep component B at its maximum value by manipulating the reactor inlet
flow rate (dilution rate). However, the maximum concentration of B is exactly at
one of the points where the gain is reversed. Figure ﬂ shows the steady-state
concentration of component B as a function of the dilution rate. The parameters

used in this work can be found in KLATT and ENGELL| (1998).
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Figure 3.1: Cp as a function of the dilution rate

The first step was a comparison between the estimators, using the constrained
and unconstrained versions. On one hand, the unconstrained algorithms have the
advantage of dismiss a routine to solve the optimization problem. On the other hand,
the constrained estimation algorithms result in a quadratic optimization problem
for a linear measurement equation. These algorithms were implemented using the
software Matlab (MATLAB, 2008) and its quadprog routine. The only available
measurement for simulation was the reactor temperature, which was corrupted using

a Gaussian noise of 1% of the nominal value. In Figure the filtering results for

2The first point of gain sign inversion, at low dilution rates, depends on the value used for the
cooling jacket temperature. In Section [3:4] the cooling jacket energy balance is inserted for control
purposes, see Equation [3.16] Figure[3.I] was generated using the most generic model, including the
jacket energy balance
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the temperature measurements are shown, revealing that the filters have similar

performance.
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Figure 3.2: Temperature estimation

The results for the unmeasured variables estimation (concentrations of
components A and B) are shown in Figures and [3.4] These figures reveal that
unconstrained filters can cause oscilations even in low noise situations. The UKF
filter violated physical constraints for the concentration of component A, leading
to results where the estimated composition was higher than the feed composition
(Figure . The constrained filters results were superior in comparison with the
same formulations without constraints. The convergence was always faster in the
constrained algorithms, in agreement with the results presented by KOLAS et al.
(2009). In Figure , the constrained filters higher performance is quite pronounced
during the transient period, while the UKF lead to A and B composition levels above
the constraints. For temperature filtering (Figure , the results were similar

among the estimators, also presenting a similar convergence velocity.
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Figure 3.3: Component A concentration estimation
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Figure 3.4: Component B concentration estimation

Due to the higher performance of the constrained filters, for the joint estimation
(state and parameters) only the constrained versions were used.

The state vector was augmented for the parameter inclusion. In this case, the
feed temperature was chosen as the parameter to be estimated. The extended,
discrete-time model, under the assumption that the parameter dynamic is slower

than the states can be represented by the equation:

ot ot
x, = || = | Fe O % (3.5)
Ort1 0 I |6
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where:

X, =[Ca Cp T]"
01 =Tp (3.6)

The problem was subject to the following constraints:

X,(min) =0 0 0 250)" (3.7)
X,(max) =[6 6 500 500]" (3.8)

The initial conditions for the estimator and the plant were distinct and given by:

xPlant(0) = [2 2 275 3837 (3.9)

x/er(0) = [5.1 0 298 390]" (3.10)

The joint estimation results are quite different, the UKF convergence is slower in
comparison with the constrained Kalman estimator. Figure|3.5/shows the estimation
results for component A composition. As one can see, the UKF and UKF-FA filters
do not converge to the true parameter value, leading to an offset, the same occurs for
the component B (Figure . For the temperature, the offset is reduced. Finally,
the parameter estimate (feed temperature) has its time evolution presented in Figure
3.8l In this case, it is noticed that the UKF filters have performed worse than the
CEKEF filter, presenting a high overshoot and offset, while the CEKF filter showed

an initial oscillation with subsequent convergence to the true value.
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Figure 3.5: C4 composition under joint estimation using the constrained filters.
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Figure 3.6: Temperature under joint estimation using the constrained filters.
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Figure 3.7: Cp composition under joint estimation using the constrained filters.
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Figure 3.8: Parameter estimation (feed temperature 7j)
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The UKF filters performed worse than the CEKF, most likely due to lack of
system excitation. This type of filter requires that the system covariance matrix be
positive definite along estimation, so that the Cholesky decomposition is possible.
The sigma points must be chosen in such a way that if the decomposition is of
the type ATA, the matrix lines must be used, if it is of type AAT its columns
form the set of sigma points. As the system excitation is reduced, it is possible
that the covariance matrix eigenvalues approach zero and this causes a numerical
error in Cholesky decomposition algorithm, which requires the decomposed matrix
to be positive definite. In Figure |3.9| a typical dynamic eigenvalue behavior for the

covariance matrix is shown.
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Figure 3.9: Eigenvalues dynamic behavior for the CUKF

For the algorithm robustness improvement, it is proposed the use of LDLT

decomposition, such that:
A =LDL" (3.11)
The sigma points can be taken as the square root of D multiplied by L:
x=L-vVD (3.12)

It is observed that in this method the elements of D can be zero, unlike the
Cholesky decomposition. If a element of this matrix is zeroed a sigma point is
automatically lost due to the lack of excitation. However, since the unscented mean
must be unchanged, this value is assigned as the mean of the remaining points,
converging the algorithm to a steady value. Finally, the results obtained using

this decomposition are the same as those generated using Cholesky decomposition.
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However, the number of algorithm failures is reduced in the absence of excitation,
leading to a more reliable estimation. The simulations in this chapter were made

using both approaches, revealing a lower number of failures for the proposed method.

3.3 Predictive control routine implementations

By using a generic nonlinear model in a predictive controller, the resulting
optimization problem has a computational complexity far superior to the constrained
linear problem, which can be solved through quadratic programming (QP), or has
analytical solution in absence of constraints. In Figure [3.10, a summary of the

methods for solving the optimization problem resulting from MPC is showed.

Predictive control

Obtimizati + Objective function +
ptimization and constraints Process Model

cunStrained
Quadratic . .
programming (QP) Analytical solution

Figure 3.10: Numerical approaches for the MPC problem solution

Simultaneous
approach

Sequential
approach

Nonlinear Programming (NLP)

For the non-linear problem, two approaches are used: the sequential and the
simultaneous method (BIEGLER and HUGHES] [1985)). MANENTT (2011)) points

out that both procedures have advantages and disadvantages. In the sequential

method the dynamic model is treated separately from the optimization routine, in
this way the optimization and the integration of the dynamic system are performed
sequentially. This approach can be considered as partially parametrized, since only

the control actions (optimization variables) are discretized. In addition:
o the optimal control problem size is decreased;
e an easier implementation is obtained;
o the algorithm optimal solution is always feasible (feasible path optimization).

In the simultaneous method, in addition to the control actions, the dynamic

model is discretized and the resulting equations are imposed as equality constraints
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to the optimization problem. In this method, the optimization and integration

converge simultaneously. The main simultaneous method characteristics are:

o It results in a sparse system, which can be solved efficiently:

« a feasible solution for the integration is not necessary for each optimization

iteration, only in the final iteration it is mandatory.

Moreover, the simultaneous method increases the problem dimension. The
computational cost of using each approach can vary in several aspects, such as system
size and stiffness for system integration. [ TONEL| (2008)) has done a comparison
between the simultaneous and sequential methods. In this study, three strategies
were evaluated, two sequential approaches, using the integrators ode45 (MATLAB,
2008) and DASSLC (SECCHI, |1992-2007), and a simultaneous strategy using a
discretized model through orthogonal collocation. The results showed that the
sequential method using the DASSLC integrator was more efficient. Therefore, this
approach was also used in this work; the optimizer uses the interior point algorithm
that is implemented in the MATLAB software fmincon routine (MATLAB, [2008)).

3.3.1 Code verification

In order to validate the implemented code for the non-linear controller, the
control problem of a linear system was solved. The solution was compared to the
commercial implementation of MATLAB| (2008)) predictive control toolbox. The

linear system used is:

x = Ax + Bu (3.13)
The matrices were:

—0,5 0,05

A = ’ ’ (3.14)
0,1 —1

—0,05 0,05
— (3.15)

0,01 —-0.1

The control objective was to track z; and xy in the desired setpoint: x4, = [3 1]7.

The same tuning was applied to both controllers.
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Figure 3.11: Controlled variable (z;) for the MATLAB| (2008) control toolbox and
the implemented NMPC routine.
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Figure 3.12: Controlled variable () for the MATLAB] (2008) control toolbox and
the implemented NMPC routine.
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Figure 3.13: Manipulated variable (u;) for the MATLAB| (2008) control toolbox and
the implemented NMPC routine.
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Figure 3.14: Manipulated variable (u;) for the MATLAB| (2008]) control toolbox and
the implemented NMPC routine.

Through the Figures and analysis, it can be noted that the optimal
values are similar, resulting in a very similar state tracking (Figures and
3.12)). The small differences are explained by the intrinsic differences between the
algorithms, such as the predictions that in nonlinear case are done by the DASSLC
routine and in linear MPC the analytical solution is used. Moreover, the MATLAB
toolbox does not allow the user to modify the estimator preferences in the same
way that is provided by open routines. Finally, the nonlinear optimization routine
(interior point) may find slightly different optimal values in comparison with the
quadratic programming. Therefore, as the differences were small, the NMPC routine

was considered validated and used in all simulations in this thesis.

3.4 Nonlinear control simulations

For the nonlinear test, the jacket balance was inserted in the van de Vusse reactor

model, as suggested by KLATT and ENGELL (1998)):

dTy, 1
G = e 0t KA1 =T (3.16)

In this control scheme, it is considered the heat added to the reactor jacket @y
as a manipulated variable. It was established as a control objective the composition
of component B tracking and a zone control for reactor temperature. The setpoints

for the composition controller have been modified over simulation time:
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Cy=0,9 if 0<k<50
Cy=1 if 50>k < 140
Cy=1,15 if k> 140 (3.17)

It is pointed out that the third setpoint is unreachable, as shown in Figure (3.1},
leading to instability if a linear controller was used due to gain sign inversion. The

reactor temperature along the simulation was kept into the zone:

406,15 < T < 412,15 (3.18)

The second manipulated variable is the reactor volumetric feed, which modifies
the dilution rate and, consequently, the residence time. Therefore, the system has
the configuration showed in Table [3.1}

Table 3.1: Controled and manipulated variables for the NMPC problem

Variable Description Function
F Feed flow rate (L/h) manipulated
Qx Heat exchanged by the jacket (kJ/h)  manipulated
Cy Desired product concentration Setpoint control
T Reactor temperature (K) Zone control

3.4.1 Nominal case

For the first simulations, the nominal case was used for further comparison with
the upcoming cases and for controller tuning. In this case, the simulated system has

the following characteristics:

o the plant and the controller employ the same model;

o the states are perfectly measured.

The controlled variable results Cy (Figure show the first two reachable
setpoints and the final unreachable setpoint. As noticed, the first two setpoints are
offset free, while the third one is stabilized in its maximum, below the setpoint. In
Figure the temperature dynamics is shown, it remains constrained in the zone.
The manipulated variables (Figures and do not reach their maximum and

stabilize at the unreachable setpoint.
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It is observed that, for the two initial setpoint changes, the cooling / heating
jacket is almost not used. In the third change, once the predictive controller realizes
that only the flow modification is not enough, the jacket heat is used to decrease
the steady state error. It is observed that this system does not satisfy the offset
elimination conditions, since there is no set of manipulated variables that could

generate the setpoint value for the nominal case (MORARI and MAEDER], 2012)).
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Figure 3.15: C}, for nominal control
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Figure 3.17: Feed flow rate (F') for nominal control
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Figure 3.18: Jacket heat (@) for nominal control

3.5 Control under noisy partial measurements

The estimator test is fundamental for the proper controller performance. In
this simulation it was considered that the state vector was partially measured;
only the reactor temperature was considered monitored by a physical sensor. The
measurements were corrupted by a Gaussian noise with standard deviation of 1%
of the nominal value. The other variables were estimated using the constrained
Kalman filter (CEKF), which has obtained the best performance in the analysis of
the estimators (Section [2.2). In Figure it is possible to observe the effect that
the state observer exerts on the noisy measurements, being able to reconcile the data.
Although there are measured values outside the constraints, the reconciled values
remain within the constraints. The EKF filter estimation, without constraints, was
placed on the figure to show that this is not due to the constraints imposed on the

state estimation.
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Figure 3.19: Temperature control for noisy measurements

The control of component B composition, as displayed in Figure [3.20, reveal a
offset due to noise in the second setpoint change. It is important to highlight that,

for this setpoint value, a tuning that produces an offset free controller is possible,
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however, the nominal tuning was used for comparison purposes.
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Figure 3.20: Cj, for noisy measurements and partially measured state vector

The results for the manipulated variables exhibit significant differences between
the nominal and the noisy case, as shown in Figures e In the noisy

case, the feed flow rate is more oscillatory, moreover, the jacket heat is overly used,

resulting in energy waste. Despite this problems, the NMPC controller is able to

stabilize the system, including the unreachable setpoint.
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Figure 3.21: F' for noisy measurements and partially measured state vector
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3.6 Predictive control with online parameter

estimation using observers

Usually, the predictive control algorithm feedback is based on a disturbance
model, such as in the classic DMC approach. In this section, a comparison between
this standard approach and the adaptive MPC strategy was carried out. The
disturbance model is given by (MACIEJOWSKY/ [2000):

d(k) = y(k) — yp(klk — 1) (3.19)

The disturbance vector is of dimension two, equivalent to the controlled variables.
For the ANMPC controller, the feed temperature is considered an unknown
parameter to be estimated. This parameter is inserted into the state vector, which is
estimated by a Kalman observer. Since there is no dynamic model for this parameter,
the standard assumption of slow variation was made. The disturbance inserted in
this variable, for tests purposes, does not satisfy this assumption, as showed in
Figure |3.23]
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Figure 3.23: Disturbance in the feed temperature

In Figure[3.24] the dynamic temperature evolution is shown. The controllers were
tuned using the same parameters. As expected, both controllers are slower than
the nominal case. The controller using the additive disturbance model, however,
presented oscillations that are not noticed in the adaptive controller. Therefore, the
disturbance model has inserted instability in the system, being not able to reject
properly the feed temperature disturbance.

By analyzing the reactor temperature (Figure , the results reveal that the
constraints are violated when the model for the disturbance is used. At the same
time, the ANMPC controller was able to maintain the temperature within the

constraints. The model used in the ANMPC provides a better disturbance rejection,
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Figure 3.24: () tracking for the ANMPC and NMPC controllers

being able to correct the future trajectory avoiding constraint violation. On the other
hand, the disturbance model is not able to stabilize the system, inserting periodic
oscillations. We emphasize that both systems have used the tuning obtained for a

nominal situation.
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Figure 3.25: Temperature (7') zone control for the NMPC and ANMPC controllers

The manipulated variables also present quite different behaviors. The feed
flowrate is manipulated in the same way for the two controllers at the initial time-
steps, however, as the simulation evolves, the ANMPC controller is able to stabilize
the system, while the NMPC continues to oscillate, as seen in Figure In Figure
the power supplied to the cooling jacket over time is shown. It can be seen
that the controller with the disturbance model acts in the opposite direction when
the temperature of the inlet jacket is modified, progressing without stabilizing until
the end of the simulation. The updated model, on the other hand, stabilizes the
manipulated variable.

In Figure the closed-loop estimation result of the input temperature using
the constrained Kalman filter is shown. Note that the convergence to the true value
is fast, taking approximately 50 time-steps to recover the true inlet temperature

value.
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Figure 3.26: Feed flow rate (F') for the ANMPC and NMPC controllers
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Figure 3.27: Jacket power (@) for the ANMPC and NMPC controllers
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Figure 3.28: Parameter estimation (7p) using the constrained Kalman filter (CEKF)

3.7 Conclusions

In this chapter we presented an analysis of the current algorithms for state
estimation aiming joint estimation and use in model predictive control. Results
show that the constrained Kalman filter, using an analytical jacobian is a great
option for joint estimation. Additionally, a framework for numerical solving the
MPC problem under parameter estimation was developed. Moreover, the feedback
based on model parameter updating may have a better performance in comparison
with the standard additive disturbance approach. We highlight that both methods
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are using assumptions that are not valid, however, the additive disturbance (a pure
output method) appears to not be able to generate properly predictions. In addition,
only one parameter was estimated and two disturbances were inserted in order to
track the feed temperature disturbance. This results show the great impact that
the use of parameter estimation as a pure-input non additive disturbance rejection
method may have in the control performance.

Despite the large application of Kalman filters, for the nonlinear problem, the
use of parameter estimation using this approach in a robust MPC is difficult. This
algorithm presents some challenges for future error estimation and then guarantee
a robust region for the estimates. An alternative for this class of estimators is
the interval observers. In the following chapter, we present a strategy using this

approach in order to obtain a robust MPC under state feedback.
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Chapter 4

Robust Discrete-time Set-Based
Adaptive Predictive Control for
Nonlinear System/!

4.1 Introduction

Model Predictive Control (MPC) has experienced considerable attention in
the academic literature in the last two decades. Moreover, it has also been
largely applied by industries, due to its ability to enforce constraints and handle
multivariable process effectively and efficiently. However, the presence of uncertainty
in the MPC problem formulation remains a challenging topic. The presence of
uncertainty requires feedback and optimization over a sequence of control laws rather
than optimization over sequences of control actions, as in nominal MPC MAYNE
(2014)). Despite academic effort in the design of robust nonlinear model predictive
control (NMPC) systems, the problems associated with parametric uncertainties
remains a considerable challenge in applications. The presence of parametric
uncertainties can have severe implications in the implementation of reliable NMPC
systems. In classical control, this task can be handled using a vast array of adaptive
control and adaptive estimation techniques. The situation in MPC poses some
additional challenges. The main problem with the application of an adaptive control
approach in NMPC systems is that the uncertain parameters may impact the quality
of the model predictions drastically and, hence, the performance of the control
system. It is therefore imperative that the NMPC approach preserves robustness
to parametric uncertainties while taking full advantage of the potential NMPC

performance gains.

LA version of this chapter was published in the Journal of Process Control (GONCALVES and
GUAY/ 2016])
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The problem of using measurements for online update of model parameters
in MPC (so called adaptive MPC) has received some attention in the literature.
In general, the model and the uncertainty descriptions of a robust MPC are
configured for a nominal set of operating conditions that are typically not updated.
The nominal parameter uncertainties are thus lumped with other structured or
unstructured uncertainty descriptions which yields conservative robust control
systems. Parametric uncertainty is usually handled by imposing bounds on the
unknown parameters. Various robust MPC mechanism can then be employed
to mitigate their impact on the model predictions and the MPC system. Min-
max robust MPC approaches can be used to handle such parametric uncertainties
(see RAIMONDO et al. (2009) and the references therein). The conservatism
associated with such approaches can be overcome if one is able to anticipate the
effect of future changes in the uncertainties. In the case of adaptive MPC, the
objective is to use online learning algorithms that use plant measurements to
update the uncertain parameters. Such algorithms are usually equipped with some
guarantees of convergence of the parameters in a way that can be used to forecast
their impact on future model predictions. For linear systems some results are
available. In FUKUSHIMA et al. (2007), an adaptive approach is considered where
an exponential decay for parametric uncertainty is used in the model prediction. An
interesting result was proposed in MARAFIOTT et al. (2014) where a persistency of
excitation condition is used to prove that robust feasibility is preserved if no states
constraints are used.

In a recent study TANASKOVIC et al.|(2013)), a set-membership adaptive MPC
approach was proposed. In this technique, a class of linear systems represented
by impulse response coefficients convolution models is considered. Under the
assumption that the model of the uncertain plant belongs to a class of linear systems
with bounded impulse response coefficients, a set-membership update strategy is
used to identify models that are consistent with past input-output responses of
the uncertain linear system. The technique is shown to provide accurate set
membership assignment and guarantees robust performance of the unknown linear
systems. In the context of the current study, the approach proposes to update
the parameters following a model set-membership approach following an empirical
model approach. Furthermore, it is limited to open-loop stable systems, with the
possibility of integrating behaviour. A similar approach is proposed in [CANALE
et al.| (2013) where a set membership identification technique due to MILANESE
and NOVARA| (2004)) is used to identify nonlinear systems from a class of Lipschitz
nonlinear operators based on the closeness of the process data. Again, the approach
is limited to open-loop stable systems. The current study provides a robust adaptive

stabilization result for a class of uncertain nonlinear systems. The parameterization
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is assumed to be known but the uncertainty in the parameters can be effectively
updated in real-time to minimize the impact of the uncertain parameters.

For the adaptive MPC control of nonlinear systems, some authors have proposed
the use of adaptive neural network models (for example see ALEXANDRIDIS and
SARIMVEIS (2005), (AKPAN and HASSAPIS| 2011) and SALAHSHOOR et al.
(2013)). For nonlinear constrained systems, ADETOLA et al| (2009) proposed
a robust framework for continuous time systems, in which the transient effect of
parameter estimation error was explicitly used in the robust control problem. In
ADETOLA and GUAY]| (2011)), the previous work was extended for continuous
systems with disturbances. Finally, an adaptive robust economic MPC, based on
the results found in ADETOLA et al| (2009) and ADETOLA and GUAY/ (2011)),
was proposed in (GUAY and ADETOLA| (2013).

Another framework to design an adaptive predictive controller considers the use
of Kalman Filters and Moving Horizon Estimation (MHE) to obtain estimates of
the parameters. In this approach, the state vector is augmented with the unknown
parameter values under the assumption of a constant parameter vector [SIMON
(2006). In the context of nonlinear adaptive MPC, this technique was used by
FINKLER et al.|(2014) for joint estimation using an Extended Kalman Filter (EKF)
for a polymerization reactor. A combination of MHE and MPC in the adaptive
framework is shown in [CHEN et al| (2012), where the optimal dosing of cancer
chemotherapy problem is addressed. This approach can be applied to a large class
of nonlinear systems. However, the dynamic uncertainty estimation for application
in a robust MPC problem is not a trivial problem. Moreover, the computation of the
parameter estimates using an MHE approach increases the computational cost, since
two nonlinear optimization problems should be solved sequentially. The presented
solution proposes the use of an algorithm that allows the dynamic uncertainty set
update and preserves the computational cost of usual nonlinear MPC, leading to an
implementable robust algorithm.

In this work, we establish a theoretical basis for the analysis of robust adaptive
MPC control system subject to exogenous disturbances for a class of discrete-time
nonlinear control systems. The result generalizes the continuous-time approach
first proposed in ADETOLA et al| (2009). No claims are made concerning the
computational requirements of the proposed min-max approach to the adaptive
MPC technique. However, it is argued that a Lipschitz-based approach provides a
conservative approximation of the min-max approach that retains all of the stability
and robustness properties. The uncertainties associated with the parameters are
handled using a new set-based estimation approach for a class of nonlinear discrete-
time systems that guarantees contraction of the uncertainty set in the presence

of a persistency of excitation condition. Moreover, it is shown how this set-based
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approach can be formulated in the context of nonlinear adaptive MPC approach
for discrete-time systems in the presence of parameter uncertainties and exogenous
disturbances.

The remainder of the chapter is structured as follows. The problem description
is given in Section[4.2] The parameter estimation routine is presented in Section 4.3
Two approaches to robust adaptive model predictive control are detailed in Section
[4.4] This is followed by a simulation example in Section and brief conclusions in
Section [4.7]

4.2 Problem Description

Consider the uncertain discrete-time nonlinear systemf}

Tpy1 = T + F(xk,uk) + G(xku Uk)9 + U £ ‘F(‘rlﬁuka 0, ﬁk) (4-1)

where the disturbance 9, € D C R™ is assumed to satisfy a known upper bound
|9kl < My < co. The objective of the study is to (robustly) stabilize the plant to
some target set = C R"™ while satisfying the point-wise constraints x;, € X € R"
and up € U € R™, Vk € 7Z. The target set is a compact set, contains the origin and
is robustly invariant under no control. It is assumed that € is uniquely identifiable
and lies within an initially known compact set ©° = B(fy, z¢) where 6, is a nominal

parameter value, zy is the radius of the parameter uncertainty set.

Remark 1 In this study, the exogenous variable ¥y represents an unstructured
bounded time-varying uncertainty. We do not provide any additional structure, such

as a state dependent disturbance matriz, since this is assumed to be expressed by the

term G(zg, ug)d in (4.1)).

4.3 Parameter and Uncertainty Set Estimation

In this section, we present and analyze the proposed set-based parameter

estimation technique.

4.3.1 Parameter Adaptation

The preferred parameter estimation technique is first presented. The main idea

behind the proposed technique is the definition of an implicit regression model. The

2We use the notation zj, for the variables of the state-feedback problem and (k) for the output-
feedback and estimation problem in the next chapter
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implicit model is based on the definition of a vector of auxiliary variables, denoted
by nx. The dynamics of 1, forms the basis for the proposed estimation approach.
The first element required is filtered form of the regressor vector G(zy,uy)

denoted by wy. The vector wy, is obtained using the following recursion:
wk+1 = Wk + G(l’k, Uk) — kak, Wy = 0 (42)

where K}, is a correction factor at time step k. Note that wy has the same
dimension as G(xy, u)

We let 5 be the vector of parameter estimates at time step k. Using the process
model and the filter , we propose the following state predictor:

Tpy1 = Tp + Flag,ug) + G(xg, uk)ék-i—l + Kie, — Wk(ék — ék—H)
+ kak(ék - ék—‘rl) (43)

where e, = x, — 2} is the state estimation error at time step k. The state
predictor is used to generate information about the parameter estimates.

We then let 6, = 6 — ), denote that parameter estimation error. Using the state

predictor (4.3) and the filter (4.2)), the prediction error dynamics are given by:

err1 = e+ Glag,u)lpn — Kyep +wi (O — O11)
— kak(ék — ékJrl) + Uy
€ — Tog— L%Q. (44)

We can now define the auxiliary variable 7 as
e = er, — wil. (4.5)

The insight behind the use of the variable 7, is twofold. First, the vanishing of
this variable implies e, = wkék. Thus, the vanishing of n, and ék implies that the
parameter estimation has been solved. The second, and most important, aspect is
that the choice of parameter update law is clearly independent of the error dynamics.

Upon substitution of and , the auxiliary variable dynamics are given
by:

M1 = M — Kpne + Uy
Mo = €o (4.6)

Since ¥y is unknown, it is necessary to use an estimate, 7, of n. This is done to

filter its impact on the parameter estimation scheme. The estimate, 7, is generated
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by the recursion:

M1 = Mk — Kyl (4.7)

The resulting dynamics of the n estimation error, 7, = np — 7 are:
M1 = T — Kyils + Oy (4.8)

We are now ready to present the proposed parameter estimation scheme. We first
propose the n, by n, identifier matrix ¥, with dynamics governed by the following
matrix recursion:

Yes1 =Sk wiwg, Yo=al =0 (4.9)

where « is a positive constant to be assigned.

Using standard argument, its inverse is generated by the following recursion:
Srh =S - Sy wf (T+ wkz,;lwg)_l weSpt, Bpt = i] - 0. (4.10)
From , , and , the parameter update law is defined as follows:
Opi1 = Op + S5 tw? (I + wngle_l (ex — k) (4.11)

To ensure that the parameter estimates remain within the constraint set O, we

propose to use a projection operator of the form:

~ N -1
Orir = Proj{fi + S5 wf (I+wiS'wl)  (ex — i), O} (4.12)

The operator Proj represents an orthogonal projection onto the surface of the
uncertainty set applied to the parameter estimate. The parameter uncertainty set is
defined by the ball function B(éc, %.), where 0, and 2. are the parameter estimate
vector and set radius obtained at the latest set update.

Following (GOODWIN and SIN| (1984), the projection operator is designed such
that:

. ékJrl € Oy
° 9£+1Zk+19k+1 < 91?+1Ek+19k+1

In the remainder of this section, it is shown that the parameter update law
(4.11)) guarantees convergence of parameter estimates to the true values. The result

is stated as a series of two lemmas, Lemma [2] and [3]
Lemma 2 [HADDAD and VIJAYSEKHAR, (2008) Consider the system
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where A is a stable matriz with eigenvalues inside the unit circle and B is a matriz

of appropriate dimension. Then, it can be shown that

K—1 K—1
> Tpaten <07 ) upu (4.14)
k=0 k=0

for some d >0 and K —1 > 0.

Let I, denote the space of square finitely summable signals and consider the following

lemma.

Lemma 3 The identifier and parameter update law are such that 0, =

0, — 05 is bounded. Furthermore, if

Ik €la or YOI = llex — Dell’] < oo (4.15)
k=0
and
I}LIEO Y = 00 (4.16)

are satisfied, then 0), converges to 0 asymptotically.

Proof: Let V. = éngék It follows from the properties of the projection operator
that:

Vieer = Vae = 05151001 — 07500k < 00150110541 — 07 501

Using the parameter update law, one can write ékﬂ as:

_ -1
Orir = On—Sg'wf (T+wl wl)  (en — i)

~ —1 ~
= O — 3wl (] + wkEgle) (wpbk + Tx)

or,

~ ~ —1
Ors1 = St Sk — S5 'wf (1+weS ' wl) - i (4.17)

Upon substitution of the parameter update law, the identifier matrix dynamics, the
filter dynamics and the auxiliary variable dynamics, the rate change of the Vj, is

given by:

-1
Vi — Ve < —(ex = )" (1 + w3 wl) (ex — i)

—1
+ i (1 +weSg ' wy) i (4.18)
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From the 7, dynamics given in ([4.8), it follows from Lemma [2]if 9, € l5 then 7 € I.
Taking the limit as k — oo, the inequality becomes

klgrolo Vie = Vot Z Vi1 — Vi (4.19)
k=0
s -1
<Vi— X[ =" (T+wstel) " @-a)] (420
k=0
s -1
+> [ﬁ,{ (1 + wkz,;lwf) ﬁk} (4.21)
k=0

By the boundedness of the trajectories of the system, it follows that there exists

a number v > 0 such that

~1
1> H (I+wSitwf) | =7
as a result, one obtains the following inequality
[e.e] o
lim Vi < Vao =7 3 [(er = )" (e = )] + X |7k (4.22)
k=0 k=0

Therefore if the conditions (4.15)) are met then the right hand side of (4.22) is

finite. As a result, one concludes that

lim 6, =0 (4.23)

k—o00

as required. ]

4.3.2 Set Update

An update law that measures the worst-case progress of the parameter update
law is adapted from the one proposed in ADETOLA and GUAY] (2009):

Vék

e = AT e 4.24
Z@k 4/\mzn(zk) ( a)
Viokr1 = Vi
A N\T 1, 7\t . My,
—(ex — M) (I + w2y wk) (ex — k) + (?) (4.24D)
k
Vio = 4Mnae(Zo)(20)” (4.24c)

The parameter uncertainty set, defined by the ball function B (éc, z.) is updated
using the parameter update law (4.11]) and the error bound (4.24]) according to the

following algorithm:
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Algorithm 1 beginning at time step k = 0, the set is adapted according to the

following iterative process
1. Initialize z;, = z,, 0. = éo

2. at time step k, using equations and perform the update

(4.25)

3. Return to step two and iterate, incrementing to time step k + 1

Lemma 4 The algorithm ensures that

1. the set is only updated when updating will yield a contraction,

2. the dynamics of the set error bound described in are such that they

ensure the non-exclusion of the true value 0 € Oy, Yk if 0y € Oy.
Proof:

1. If @k—i-l SZ @k then
> Zgp (4.26)

sup Hs — 60
S€®k+1

However, it is guaranteed by the set update algorithm presented, that ©, at

update times, obeys the following

sup HS — ék
S€O 41
S sup HS — ék—HH + é[ﬁ.l — ék (427)
56041
S ’Zék+1 + Hék_H - ékH S 20k (428)

This contradicts (4.26). Therefore, Ory1 C Oy at time steps where © is
updated.

2. It is known, by definition, that

Vo < Voo, Vk >0 (4.29)
Since, Vj, = 07 %0y,
g < Veik 42 Vk >0 (4.30)
Hl = )\mm(zk) Ok? a ‘
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Therefore, if # € Oy, then # ¢ ©, V k£ > 0.

4.4 Robust adaptive MPC

4.4.1 A Min-max Approach

The formulation of the min-max MPC consists of maximizing a cost function
with respect to € ©,19 € D and minimizing over feedback control policies k.
This formulation is a simple application of the min-max approach proposed in the
continuous-time setting.

The proposed robust receding horizon control law is given by:

U = Kmpe(, g, z9) = K*(0, 2, g, 2p) (4.31a)
K* 2 arg {nin) J(x,0, 29, k) (4.31b)
where
) A P
J(x,0, 29, k) = gl ﬁkeD Z L(xy, uh)dr + W (ah, 0%) (4.32a)
st. Yk e [0, T]
Ty = T+ flap,ul) + g(ah, up)0 + Oy, ag =2 (4.32Db)
T = Ty + P, up) + Gz, ui)éi-rl (4.32¢)
FEef, — R (0] — O) + Kl (0] — 0) (4.32d)
wi = wy, + Gz}, u)) — kywy, wy=w (4.32e)
-1

(Ceb )l = (C P = COPD)” (T+uf (S @h)’) (S (4.321)
(Z )P =x"" (4.32g)

A N _ _ —1 R
071 = Proj {6} + (S )P (w)” (T +wp(S )P (wiP)  (ef — i), ) (4.32h)
o =0—6", =40 (4.32i)
uP(r) £ k(r,a?(7),0% (1)) € U (4.32j)
wP(1) € X, 2P(T) € X;(°(T)) (4.32k)

As before, the effect of future parameter adaptation is also accounted for in
this formulation but the proposed discrete-time parameter estimation and set-based
approach is considered.

The conservativeness of the algorithm is reduced by parameterizing both W and
X as functions of §(T). While it is possible for the set © to contract upon 6 over

time, the robustness feature due to ¥ € D will still remain.
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Algorithm 2 The MPC algorithm performs as follows: At sampling instant k

1. Measure the current state of the plant xp and obtain the current value of
matrices w and £ from equations [4.9 and respectively

2. Obtain the current value of parameter estimates 6 and uncertainty bound zy

from (4.11)) and (4.24) respectively

If Zek S 29k71 - 9’6 - ek—lH

FElse

End

3. Solve the optimization problem (4.31)) and apply the resulting feedback control

law to the plant until the next sampling instant

4. Increment k = k+ 1. Repeat the procedure from step 1] for the next sampling

instant.

The min-max approach guarantees robust stability, but it remains impractical
in practice due to the high computational burden. The next approach adopts
a Lipschitz-based constraint, which retains robust stability at the cost of some

conservatism.

4.4.2 Lipschitz-based Approach

In this section, we present a Lipschitz-based method whereby the nominal model
rather than the unknown bounded system state is controlled subject to conditions
that ensure that given constraints are satisfied for all possible uncertainties. State
prediction error bound is determined based on the Lipschitz continuity of the model.
A knowledge of appropriate Lipschitz bounds for the z-dependence of the dynamics

F(zg,ur) and G(xg,uy) are assumed as follows:

Assumption 5 A set of functions L; : X x U — R*, j € {F,G} are known which
satisfy

L;(X,u) > min{ﬁj

sup_ ((j@n,0)=j (@2l ~L; ln-ws] ) < 0},

r1,22€ X

where for j = g is interpreted as an induced norm since g(x,u) is a matriz.
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Assuming a knowledge of the Lipschitz bounds for the z-dependence of the dynamics
F(zy,uy) and G(zk, ux) as given in Assumption |5|and let I = zp + Hé

deviation 27, > maxgce || — 27| can be generated from

, & worst-case

Zogrr = (Ly + Lol zg ) + |G, w)|l 20 + My, 230 = 0. (4.34)

Using this error bound, the robust Lipschitz-based MPC is given by

U= Kpe(, 0, 29) = u*(0) (4.35a)
u*(.) £ arg min J(x, 0, zp, u?) (4.35b)
“fo.1
where

. T—1
J(2,0,z9,u") = > L}, ub)dr + W(al, zf) (4.36a)

k=0

st. Vk €0, T

ah = a4+ F(ab, ub) + G(ah,ub)f, o= (4.36Db)
Zopnr = (Lp + L2y + [|GP (g, up) | 20 + My, 279 =0 (4.36¢)
XP(r) £ B(a},20,) CX, up €U (4.36d)
Xp(T) - Xf(Zg) (4366)

The effect of the disturbance is built into the uncertainty cone B(zy, 2% ) via
. Since the uncertainty bound is not monotonically decreasing in this case,
the uncertainty radius zy which appears in and in the terminal expressions of
and are held constant over the prediction horizon. However, the fact
that they are updated at sampling instants when zy shrinks reduces the conservatism
of the robust MPC and enlarges the terminal domain that would otherwise have been

designed based on a large initial uncertainty zy,.

Algorithm 3 The Lipschitz-based MPC algorithm performs as follows: At sampling

instant k
1. Measure the current state of the plant x = xy,

2. Obtain the current value of the parameter estimates 6 and uncertainty bound

zp from equations (4.11)) and (4.24) respectively,

If 20y, S 201

Qzek, ZQZZQk

FElse



End

3. Solve the optimization problem (4.35)) and apply the resulting feedback control

law to the plant until the next sampling instant

4. Increment k := k+ 1; repeat the procedure from step 1] for the next sampling

instant.

4.5 Close-loop Robust Stability

Robust stabilization to the target set Z is guaranteed by appropriate selection
of the design parameters W and X;. The robust stability conditions require the

satisfaction of the following criteria.

Criterion 1 The terminal penalty function W : X; x @° — [0, +oc] and the
terminal constraint function Xy : 0% — X are such that for each (0, g, 5) €
(0% x @° x @V), there exists a feedback kf(.,0) : X; — U satisfying

1. 0€ 2CX;(0) CX, X4() closed
2. ke(x,0) € U, Yz € X;(0)

3. W(x,0) is continuous with respect to x € R™

4.V € Xp0)\Z, Xp(0) is strongly positively invariant under ks(z,) with
respect to x, € & + F(x, k;(x,0)) + G(x, k(x,0))© + D

5. L(x, k(x,0)) + W(z,,0) — W(z,0) <0, Vo e Xp(A)\E.

The condition [5| from criteria [1| require W to be a local robust CLF for the
uncertain system [4.1] with respect to § € © and ¢ € D.

)

Criterion 2 For any 91, 52 €00 s.t. HégH < Hél

1. W(l’,ég) S W(C(],éﬁ, Vr € Xf(él)

2. X;(6) 2 X;(6y)

4.5.1 Main Results

Theorem 2 Let X492 X40(0°) C X denote the set of initial states with uncertainty
©° for which ([4.31) has a solution. Assuming criteria [3| and 4| are satisfied,

then the closed-loop system state x, given by A4 10, [4-11[4-244-31),

originating from any xo € Xgo feasibly approaches the target set = as t — +00.
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Proof: Feasibility: The closed-loop stability is based upon the feasibility of the
control action at each sample time. Assuming, at time ¢, that an optimal solution
ufO’T] to the optimization problem exist and is found. Let ©F denote the
estimated uncertainty set at time ¢t and ©V denote the set at time ¢ + 1 that
would result with the feedback implementation of u; = uf. Also, let 2P represents
the worst case state trajectory originating from x = x; and z' represents the
trajectory originating from zf, = z +v for v € {F(x“, uP) + Gz, uP)OP + D} under
the same feasible control input uf; 7y = uf} 7y Moreover, let Xg, £ {2%]2¢ €
2% + F (2% uP) + G(x% uP)O + D} which represents the set of all trajectories of the
uncertain dynamics.

Since the uZ[DO,T] is optimal with respect to the worst case uncertainty scenario, it
suffice to say that ul[’O’T] drives any trajectory z¥ € X§, into the terminal region X¥.
Since © is non-expanding over time, we have ©” C ©F implying 2 € Xg, C Xg,.
The terminal region X? is strongly positively invariant for the nonlinear system
(.1)) under the feedback ky(.,.), the input constraint is satisfied in X and X% 2 X%
by criteria (2.), (4) and (2) respectively. Hence, the input u = [uf} 79, ksrr11]]
is a feasible solution of (4.31) at time ¢ + 1 and by induction, the optimization
problem is feasible for all ¢ > 0.

Stability: The stability of the closed-loop system is established by proving
strict decrease of the optimal cost J*(x,0, z9) £ J(x,0, z9, k*). Let the trajectories
(P, o v, z) and control u? correspond to any worst case minimizing solution of
J*(x,0, z). If {y.r) were extended to k € [0,7 + 1] by implementing the feedback

wp oy = kp(ah 6r) then criterion (5) guarantees the inequality
Ll by, 00) ) + W (@, 0) — W, 07) < 0. (4.37)

The optimal cost

T-1 T—1
J (@, 04, 20,) = > L2}, uf) + W(ah, 05) > > L(a?, uP) + W(ah, 07)
k=0 k=0
+ Lk, k(25,00) ) + W (hy, 67) — W (%, 67,) (4.38)

T
> L(x,ug) + > Llay, uy)
k=1

+ L@l k(2 00)) + W (2, 05,,) (4.39)
> L(xg, up) + J* (2441, ét+1, 20,411) (4.40)
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Then, it follows from (4.40) that
J* ('Tt-l-la ét+17 29t+1) - ‘]*(xb éta Z¢9t) S _L(‘rh ut) S _ML<|"I||) (441)
where pp is a class K, function. Hence z(t) enters = asymptotically.

Remark 2 In the above proof,

e (4.38)) is obtained using inequality (4.37)

. follows from criterion .1 and the fact that HéH is mon-increasing

e (4.40) follows by noting that the last 3 terms in (4.39)) is a (potentially)
suboptimal cost on the interval [0, T + 6| starting from the point (xP(9), ép(é))

with associated uncertainty set B(0P(8), z2(6)).

The closed-loop stability is established by the feasibility of the control action
at each sample time and the strict decrease of the optimal cost J*. The proof
follows from the fact that the control law is optimal with respect to the worst
case uncertainty (6, ) € (©, D) scenario and the terminal region X% is strongly
positively invariant for under the (local) feedback k(. .). |

Theorem 3 Let X}, = X/, (0°) C X denote the set of initial states for which (4.35)
has a solution. Assuming Assumption (14| and Criteria 3| and W] are satisfied, then

the origin of the closed-loop system given by 4410, [4-11[4.24[4.35)

is feasibly asymptotically stabilized from any xy € X, to the target set =.

The proof of the Lipschitz-based control law follows from that of theorem

Remark 3 Note that the min-max approach can be prohibitively difficult to
implement in practice due to the computational complexity associated with min-
max optimization algorithms. In contrast, the Lipschitz-based approach can be
implemented using any standard real-time optimization algorithm currently used for
the solution of standard MPC problems. This latter technique will be employed in

the simulation example presented in the next section.

Remark 4 Since the additional Lipschitz constraints can be implemented using the
standard NLP solvers, the computational burden of the Lipschitz-based approach
is the same of usual constrained nonlinear MPC. Details about the scale-up and
computational aspects of this problem can be found in| GRUNE and PANNEK (2011)).
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4.6 Simulation Results

4.6.1 CSTR with the van de Vusse kinetics

The van de Vusse reaction is a well known chemical system used to test nonlinear
controllers because of the presence of undesirable dynamic behaviour, which includes
gain inversion and non-minimum phase response. The reaction mechanism is

described by:

24 2 D (4.42)

In discrete-time, the nonisothermal CSTR dynamics can be represented by the
equations The system states are the concentrations of the components A (1)
e B (z2) and the reactor temperature (x3). In addition, two manipulated variables

were considered, the dilution rate (u;) and the jacket temperature (us).

z1(k+1) = 21 (k) + Atuy (k) [Coe — 21(k)] — Athre /= E g (k)
— Atfze=3/m ) g2 ()

To(k 4+ 1) = 2a(k) — Atuy (k) zo(k) + At e~ /= ® g (k)
— Atfye /" ®) gy (k)

Ig(]f + 1) = $3(l{?) + ﬁ (ele_al/zg(k)xl(k)AHl
pCy
+ 926—a2/z3(k)xz(k)AH2 + 63€_a3/x3(k)$%(/{3>AH3>
K, A
+ Atuy (k) [Ty — z5(k)] + At p By (k) — x3(k)] (4.43)
P
This system can be represented by:
x(k+1) =x(k) + F(x(k),u(k)) + G(x(k),u(k))@ + v (4.44)

For @ = [0, 0, 03], these matrices are defined as:

1 (k)[Coe — x1(k)]
F(x(k), u(k)) = () (k) At (4.45)
uy (k) [Ty — ws(k)] 4 L2428 [ug (k) — z3(k)]

pcpV
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—e~/ms®) gy (k) 0 —eas/ma(k) 2 ()

G(x(k),u(k)) = | ema/=®y (k) —emo2/m®)py(k) 0 At
e=1/e3(M g (K)AH,  e=2/23(R) gy (K)AH, e~ 23/73(F) 22 (k)AH3
pCyp pCp pCp
(4.46)

The fixed parameters were obtained from |[KLATT and ENGELL (1998) and
are showed in Table {.]] The (unknown) true value of the parameter vector
is 6, = [1.287 1.287 9.043]". The control objective is to regulate the

Table 4.1: Model parameters

Parameter Value
a 9758.3 K
v 9758.3 K
Qs 8560.0 K

AH, 4.2 kL
AH, 11 K
AHy  -41.85 =
p 0.9342 kg/I
C, 3.01 2%
Ag 0.215 m?
Ko 4032
T 403.15 K

desired product concentration (x3) and the reactor temperature (x3) to a setpoint
and, simultaneously, estimate the frequency (or pre-exponential) factors of the
Arrhenius equation, assumed to lie inside a ball of known radius. This is a real
industrial problem found in reactors where catalyst deactivation is substantial and,
consequently, the kinetics parameters may change after the system start-up. An
example of this chemical system is the deactivation of hydro-treating catalysts by
coke deposition PACHECO et al.| (2011]).

The MPC quadratic cost function can be written in deviation variables as:
((%,0) =%x7Qx + 0’ R (4.47)

In which x = x — x., and u = u — u,,. The subscript eq denotes the equilibrium

point. The terminal penalty was a quadratic parameter dependent function:

W(x,0) =x"P(6)x (4.48)

It was obtained solving a finite set of linear matrix inequalities (LMI) as proposed

in|GAHINET et al.| (1996). For this purpose, the MATLAB LMI toolbox MATLAB
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(2008) was used to represent the system and to find the solution.

The terminal region was estimated by the algorithm presented in (CHEN and
ALLGOWER] (1998), which the main step is to find the value a that satisfies
x"P(0)x < a by solving an optimization problem decreasing the value of a until
the optimal value is nonpositive.

For the initial nominal estimate, the matrix P(0) is given by:

2.9776 0 0
P@O)=| 0 29760 0 (4.49)
0 0  3.5916

Using this matrix, the terminal region optimization problem was solved. The
maximum point was X,,.., = [2.9776 2.9760 3.5916]. This solutions leads to the

terminal region:
<"P(0)x < 177 (4.50)

Open-loop tests of the parameter estimation routine

The uncertainty based estimation routine for discrete-time systems was tested
for the estimation of the frequency factors in an open-loop test. Two scenarios were
evaluated. In the first one, the disturbance added to the system is a pulse in the
manipulated variables. In the second test, a persistent bounded periodical signal
was added to the reactor temperature. In both cases, it is showed that the true

parameters values were recovered. The initial parameter vector estimate was:
0= 6 7" (4.51)

In the first simulation, the disturbance inserted into the system is a 10% pulse in
the jacket temperature as showed in figure .1 In Figures [4.2] and [£.4] the

600 T T T T T T T T T

500

u, (K)

400 | | -

300 1 1 | | Il 1 Il | 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time Step (k) <10*

Figure 4.1: Disturbance inserted in the jacket temperature us
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time evolution of the parameters during the simulation is showed. The excitation
added by the pulse disturbance improves the convergence and accelerates the set
contraction as showed in figure [4.6, The true values of the parameters are recovered

and the prediction error converges to zero (Figure 4.5

5 T T T T T v T T T
— Estimates 5 L
AH e True 0 . ‘ : . ]
— Al 0 50 100 150 200 |
o 3

2 L -

1 1 1 1 | | 1 1 1 |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time Step (k) <10*

Figure 4.2: Time evolution of the parameter estimates and true values, using a pulse
as disturbance (0)
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Time Step (k) <10*

Figure 4.3: Time evolution of the parameter estimates and true values, using a pulse
as disturbance (0)
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Figure 4.4: Time evolution of the parameter estimates and true values, using a pulse
as disturbance (03)

73



001 T T T T T T

& 0.005 \JL 1

O 1 | l ] S
4000 5000 6000 7000 8000 9000 10000 11000

0.015 v . T . . .

0.01F T

0.005 .

O Il 1 I I 1
4000 5000 6000 7000 8000 9000 10000 11000

0.05 T . 1 . 1 ,

" OF .

_0.05 I 1 | 1 1 1
4000 5000 6000 7000 8000 9000 10000 11000

Time Step (k)

Figure 4.5: State prediction error ey = xy — &) versus time step (k)
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Figure 4.6: Progression of the set radius

In the following simulation, a persistent periodical disturbance was added to the
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jacket temperature:

UQ(/{?)

k
= U2 pom + B - sin (C’) (4.52)

The parameters were B = 1 and C' = 50; the time course of the jacket temperature

is showed in Figure [4.7]
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Figure 4.7: Sine disturbance inserted in the jacket temperature us

The sine disturbance provides more excitation to the reactor system than the

pulse signal. Accordingly, it leads to a faster convergence to the true values. The
parameters convergence are showed in the Figures [£.8] and [£.10 Due to the

difference in the rates of parameters convergence, the beginning of the simulation

is showed in the subfigure. As one can see, the kinetic constant of the side product
reaction (2A LEN D), represented by the parameter 05 (Figure , has the slowest

rate of convergence. Finally, Figure [4.12] shows the estimation error converging to

the origin. Figure displays the decreasing of the uncertainty set radius versus

time-step.
— Estimates ° l
LY — True . s : ; |

| | 1 | 1 |

1 1 |
0 0.2 0.4

0.6

0.8 1 1.2 1.4 1.6 1.8 2
Time Step (k) <10*

Figure 4.8: Time evolution of the parameter estimates and true values, using a sine
function as disturbance (6)
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Figure 4.9: Time evolution of the parameter estimates and true values, using a sine
function as disturbance (65)
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Figure 4.10: Time evolution of the parameter estimates and true values, using a sine
function as disturbance (03)
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Figure 4.11: Progression of the set radius using a sine function as disturbance
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Figure 4.12: State prediction error ey = x, — &) versus time step (k) for a sine
disturbance

Closed-loop simulations

For the closed-loop simulations, the Lipschitz constraint was used to design a
robust control system. The initial values of the parameters are assumed to lie in a
ball of radius zp, = 25 centred at the initial estimate 8y = [5 6 7]7. The true value
of the parameter vector is 6, = [1.287 1.287 9.043]”. The matrices for the cost

function [4.47] were chosen to be:

35 0 0.1 0
a-[F 9 nofor 9 i
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The control objective is to regulate the system to the setpoint:

Xsp = [Tasp T3sp] = [1.079(mol/l) 394.7(K)] (4.54)

while satisfying the constraints:

0 <wu; <500
0 < wuy <600
0 < Au; <10
0 < Auy <30
0<zy <10

0 < a3 < 800
(4.55)

In Figures and the concentration and reactor temperature are showed.
The state variables achieve the desired setpoint without offset. The manipulated

variables are showed in Figures (reactor flowrate) and (jacket temperature).
Moreover, the parameter estimates converge to the true values, the parameter 65 has

the slowest convergence rate (Figures [4.18] and [4.20)). Figure shows the

uncertainty set radius reduction over time.
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Time Step (k)

Figure 4.13: Concentration trajectory for the closed-loop system () versus time
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Figure 4.14: Reactor temperature trajectory for the closed-loop system (x3) versus
time
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Figure 4.15: Manipulated flowrate (u;) versus time
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Figure 4.16: Manipulated jacket temperature (us) versus time
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Figure 4.17: Closed-loop set radius versus time
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Figure 4.18: Time evolution of the parameter estimates and true values for the
closed-loop system (6,)
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Figure 4.19: Time evolution of the parameter estimates and true values for the
closed-loop system (65)
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Figure 4.20: Time evolution of the parameter estimates and true values for the
closed-loop system (63)

Closed-loop simulations with disturbances

In order to simulate a disturbance in the closed-loop system, a fluctuation in the

inlet temperature was introduced as a periodic function:
To(k) = 403.15 + sin(k) (4.56)

The control objective is to regulate the system to the set-point presented in section

4.6.1] As depicted in Figures 4.26] 4.27] |4.28] and the parameter convergence

and the set radius reduction is more conservative in comparison with the disturbance

free case (Figures [4.18] |4.19} [4.20] and 4.17). The true values of the parameters,
however, are recovered. As expected, the reactor temperature and concentration

oscillate around the set-point (Figures and [4.21)). In Figures and [4.24) the

control actions are showed.
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Figure 4.21: Concentration trajectory for the closed-loop system (z3) with
disturbance versus time
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Figure 4.22: Reactor temperature trajectory for the closed-loop system (z3) with
disturbance versus time
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23: Manipulated flowrate (u;) with disturbance versus time
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Figure 4.24: Manipulated jacket temperature (uy) with disturbance versus time
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Figure 4.26: Time evolution of the parameter estimates and true values for the
closed-loop system (6)
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Figure 4.27: Time evolution of the parameter estimates and true values for the
closed-loop system (65)
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Figure 4.28: Time evolution of the parameter estimates and true values for the
closed-loop system (63)

4.6.2 Chemotherapy Control

The dynamics of a tumor model in a chemotherapy cancer treatment can be
described by the following set of differential equations ([UPRETT (2012)):

dyy

220 — ul(t) —

dt U( ) A

dyo . Ya2Ya —a )

—= =Yain + T — — — aola(l —e ¥t

dt Yo, 252 o V3Y2Ya — Valy2 292( )

dys _ 1 —Y1A3

1 r3ys(1 — Bsys) — YsYsya — asys(l —e )

dy4 _ —y1A1 4
T r1Ys(1 — B1ys) — V1Ysys — Y2Yoys — arya(l —e ) (4.57)

where y; is the drug concentration; 3, the number of immune cells; y3 the number
of normal cells and y4 the number of cancer cells. The variables in this model are in
rescaled units (details can be viewed in PILLIS and RADUNSKAYA| (2003))). The
model includes immune response, since the immune cells can grow in the presence
of tumour cells. It also includes competition terms for immune and cancer cells in
the form of a predator-prey approach. In this formulation, the drug is able to kill all
types of cells at different rates. A set of parameters and details about the interesting
dynamic behaviour of this model is presented in PILLIS and RADUNSKAYA (2003)).
Table reproduces a set of parameters for a normal case.

Following the same approach of the previous example, the continuous equations
were discretized to fit into the proposed class of discrete-time nonlinear models
(Equation , the sampling time was set to 0.1 days. In this problem, the control
objective is to minimize the tumour cells (y4) during a treatment period while
keeping the normal cells above a minimum value. A secondary goal is to drive
the drug amount (y;) to a minimum after the tumour is diminished (represented by

the use of a small weight in the matrix Q for y; in comparison with y;). For the
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Table 4.2:  Model parameters for the chemotherapy model from PILLIS and
RADUNSKAYA| (2003])

Parameter Value

(03] 0.3
(6%) 0.2
Q3 0.1
g 1
Y2 0.5
V3 1
Y4 0.2
V5 1
Ve 1
T1 1.5
T2 0.01
T3 1
P 1
B2 0.3
Bs 1
Yom 033

adaptive MPC framework, two parameters were chosen to be unknown: 73 and ~s.

The objective function can be stated as:
((y,0) =y ' Qy + Au"RAu+ W (y,0) (4.58)

with ¥ = [y1 y2 y3 w4 and the matrices:

0.01 0 0
0 00
= R =10 4.59
Q=1, 4 (4.59)
0 0 0 10

The minimum normal cells constraint was added to the problem formulation in
the Lipschitz framework (Equations [4.36]):

ys > 0.75 (4.60)

The terminal cost W (y,0) and the terminal region were obtained using the
approach proposed in the previous example, using the model linearization and
solving a set of LMI in a LPV framework GAHINET et al.| (1996)). Following PILLIS
and RADUNSKAYA|(2003), the initial condition is a patient with cancer and in the

basis of attraction of a large tumour burden. These condition imply the eventual
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death of the patient in the absence of drug treatment. Figure shows the model
simulation using the initial condition y(0) = [0 0.1 1.5 0.25] and no drug. The

same initial condition was used in the closed-loop simulations.
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Figure 4.29: Open-loop simulation of the chemotherapy model for a initial condition
in the basis of attraction of a tumor growth.

Two sets of simulations were performed, in the first one no disturbance was added
to the system. For the second case, a sinusoidal disturbance in the form of equation

4.61] (A = 0.01 and m = 1) was added to the tumour measurement.
U4(k) = Asin(mk) (4.61)
The initial estimate of the parameter vector was chosen as:

[15(0) 15(0)] =[0.75 1.1)" (4.62)

Figure shows the cancer cells behaviour using the drug dose obtained by the use
of the adaptive NMPC algorithm (Figure . As one can notice, the algorithm
provides a drug dose that is able to drive the tumour cells to a neighbourhood
around the origin. The drug dose is reduced automatically by the algorithm after
the tumour decreases. The disturbed case has a overshoot in the drug dose in
comparison with the disturbance free case. As pictured in Figure |4.32] in both cases
the minimum healthy cells constraint is satisfied. Finally, the parameter estimation
results are showed in Figures and [4.34] The true values of the parameters are
recovered in both cases, moreover, the uncertainty set decreases along time with a

final value slightly lower for the disturbance free scenario.
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Figure 4.30: Time plot of the rescaled number of cancer cells using the predictive
controller for drug dose calculation
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Figure 4.31: Drug doses along time using the predictive controller
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Figure 4.32: Healthy cells along time and the halthy cells constraint for the closed-
loop simulations
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Figure 4.33: Parameter estimates along time for the closed-loop system.
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Figure 4.34: Uncertainty radius along time for the closed-loop system
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4.7 Final Remarks

An adaptive NMPC design technique is proposed for the control of constrained
discrete-time nonlinear systems subject to both parametric and time varying
disturbances. The proposed robust controller updates the plant model online
when model improvement is guaranteed. The adaptation mechanism enables the
construction of terminal design parameters based upon subsets of the original
parametric uncertainty in a minimally conservative approach. The conservativeness
and the complexity due to the parametric uncertainty is effectively reduced over time
using a self-exciting mechanism arising from the adaptive NMPC formulation. The
portion due to the disturbance ¥ € D remains active for all time with guaranteed
robust stability. Finally, the simulation results for the uncertainty set estimation
and robust control show a good performance (with guaranteed stability) for two

challenging nonlinear control problems with initially unknown parameters.
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Chapter 5

A set-based estimation and robust
adaptive output feedback model

predictive control

5.1 Introduction

Despite the successful applications of model predictive control (MPC), especially
in the process control industry, the theoretical development of this strategy is
mainly based on full state measurement assumption. However, in many engineering
applications, the mathematical description of process dynamics leads to dynamical
system models that require a large number of state variables and unknown
parameters. In general, full state measurements are either physically impossible or
very costly. Furthermore, the models used in MPC approaches are not, in general,
updated on-line and any change in the model structure can render the controller
obsolete. One attractive solution for this problem is to use the available plant
measurements to estimate the parameters and unknown states of the system in an
adaptive output feedback strategy. Moreover, if an uncertainty bound is estimated
on-line, a robust control problem, uncertainty based, can be formulated and solved
in an MPC framework.

Once the values of the state variables are required for the reliable performance
of a control system, they must be estimated using process measurements. The
presence of unknown parameters further complicates the situation, especially if the
performance of the control system relies heavily on the knowledge of the unknown
parameters. Consequently, the parameters must also be estimated using available
process information. Once the parameters and states are obtained, in order to
use a robust control system, an uncertainty description is very useful. However,

the uncertainty propagation processes are (in general) computational intensive,
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precluding the real-time application in a control strategy. Moreover, constrained
control problems based on models (e.g. MPC) need state predictions in a time-
horizon that may not be easy to compute in a uncertain situation, leading to a
scenario that constraints can be violated.

A dynamical system whose state variables are estimates of the state variables
of another dynamical system is called an observer FRIEDLAND) (2005). State
estimation is a broad and well established field of study. The Kalman filter
KALMAN ] (1960)) and its many variants JULIER et al.| (2000) have been widely
applied for large classes of linear and nonlinear systems. In the presence of unknown
parameters, adaptive observers have been formulated to achieve joint estimation of
parameters and state variables KUDVA and NARENDRA! (1973). The main concept
exploited in such techniques is to use the action of the observer by extending the state
of the systems to treat constant (or slowly time-varying) parameters as additional
state variables. This strategy has been used in concert with the Luenberger observer
and Kalman filter. In recent work, an interval class of observers was proposed for
systems with uncertain parameters (MAZENC and BERNARD, (2011), MAZENC
and DINH|(2014))). The objective of this class of observers is to provide estimates of
dynamic bounds for the state estimates that reflect the uncertain in the process
parameters. This class was initially proposed in (GOUZE et al| (2000). This
technique has many applications, for instance, robust control and system biology.

The set estimation is suitable for the solution of robust control problems that rely
on a law based on uncertainty description for the control action computation such
as robust adaptive model predictive control design techniques. In this strategy,
the state uncertainty can be used to guarantee robust constraint satisfaction
SUBRAMANIAN et al. (2015]) or to solve a worst-case control problem. Although,
the estimation of uncertainty is a broad field of research, most existing techniques
are concerned with detailed descriptions of the uncertainty set, which leads to a high
computational burden for real-time applications DAHLIWAL and GUAY/ (2014).

Despite the fact that the state variables are not accessible for direct measurement
in most industrial problems, a large part of existing nonlinear MPC theory is
focused on the assumption of full state measurement and, in some cases, perfect
measurement. A more useful scenario is to consider the problem in which discrete-
time measurements are available for some of the state variables. In this case, a
state estimation technique can be used in a nominal strategy where the state is
replaced by the estimated state MAYNE (2014)). In the context of continuous-time
systems, IMSLAND et al.| (2003)) propose the use of high-gain observers to achieve
output feedback stabilization of a class of nonlinear systems. In ADETOLA and
GUAY]| (2003) a modified version of the high-gain observer was used to control

sampled data systems. The robust constraint satisfaction problem was addressed by
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SUBRAMANIAN et al| (2015)), in this work a scenario-based MPC is proposed to
solve the robust problem. Furthermore, a Taylor model technique is used to over-
approximate the reachable set of the differential equations used for state prediction
by the MPC controller.

A set-based state estimation algorithm for continuous-time systems and constant
parameters was recently proposed in [ DHALIWAL and GUAY] (2014)). This study
proposes an adaptive observer design that incorporates a set-based parameter
estimation routine first proposed by |[ADETOLA et al| (2009). In the present
work, an extension of the set-based adaptive observer approach is generalized to
deal with a class of discrete-time nonlinear systems with constant and time-varying
parameters. The proposed algorithm provides a simultaneous estimation of state
variables and parameters along with an estimation of their uncertain sets. Under
the assumption that the initial estimates of these uncertainty sets contain the
values of the unknown parameter and state variables, convergence of the state
and parameter estimates to the true values is guaranteed. The uncertainty set
algorithm guarantees that the forward invariance of the unknown true value of
the states and parameters is preserved through the contraction of the uncertainty
sets. Moreover, this deterministic worst-case uncertainty allows the algorithm to
be used in real-time applications. By combination of the developed estimation
technique and a Lipschitz-based method, an over-approximation for the reachable
sets of the difference equations can be computed. Finally, these sets are used in the
MPC framework to guarantee constraint satisfaction and, furthermore, dynamic
improvement for the conservatism, since the uncertainty sets are guaranteed to
contract with time. Stability is obtained by considering the state estimation error
as disturbance that can be computed directly using the set-based estimation. This
chapter is organized as follows. The set-based state and parameter estimation
are described in Section [5.2.1] In Section 5.3 the output feedback approach for
MPC using the set-based estimation is showed. The closed-loop robust stability is
proposed in Section [5.4] followed by a simulation study. Finally, the conclusions are
presented in Section [5.5

5.2 State and Parameter Estimation [

In the next two subsections the approaches for joint estimation of state and
parameters are presented. In Subsection [5.2.1] the case for constant parameters is
presented, subsequently, in Subsection the time-varying case is showed.

IThis section was partially presented at the American Control conference 2016 and was
published in its annals (GONCALVES et al., [2016)
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5.2.1 Constant Parameters
Problem Statement

In this section, we consider the following class of nonlinear discrete-time systems:

x(k+1) = x(k) + Ax(k) + B(y(k))0 + w(k)
y(k) = Hx(k) + v(k) (5.1)

where x € R", y € RY and 8 € RP. Additionally, the pair (A, H) is observable.
As one can notice, the main characteristic of this structure is the nonlinear term
depending only on the output. This discrete-time form is directly related with the
continuous-time form presented in |[ATASSI and KHALILJ| (1999). This structure can

arise from the transformation of the class:

y(k) = h(x(k)) (5:2)

Conditions for the existence of transformations of nonlinear systems of the form ({5.2))
to the simplified structure (5.1) have been established using differential geometric
techniques as presented in [SIDORI| (1995).

Assumption 6 The disturbances w(k) e v(k) are bounded. Moreover, the upper

bound is given by the known constant 0 < M, < oco.

Assumption 7 The parameters are uniquely identz’ﬁableﬂ At the initial time-step,
they are contained in the compact set ©(0) = B(0(0), z4(0)), where 8(0) is the initial

parameter estimate and zg(0) the ball radius.

Assumption 8 The true state value is within the set defined by the ball B(%(0), 3t),

where x(0) is the initial estimate and z,(0) the set radius.

Set-based estimation

Consider the following observer for the states of Equation [5.1}

%(k+1) = %(k) + A%(k) + B(y(k)0(k + 1) + K(y (k) — HX(k))
— CT(k)(O(k) —O0(k+1)) — (A —KH)CT(k)(O(k) —0(k+1)) (5.3)

The C(k) € RP*™ dynamics is given by the difference equation:

2(y(k,01) = y(k,02), Vk>ko— 01 =03)
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Cl(k+1)=C"(k)+ (A — KH)C" (k) + B(y(k)), (5.4)

with initial conditions C(0) = 0. Using the parametric error definition 8(k) =
0 — @(k:), where é(k’) € R? is the parameter estimate at time-step k, we can write

the state estimation error:

e(k+1) =e(k)+ (A —KH)e(k) + B(y(k))0(k + 1) + CT(k)(O(k) — O(k + 1))
+ (A — KH)C"(k)(B(k) — 0(k + 1)) =Kv(k) + w(k) (5.5)
w(k)

Consider the following auxiliary variable definition:
nk+1)=elk+1)—CT(k+1)0(k+1) (5.6)

Using and (5.5), the auxiliary variable dynamics is given by:
nk+1)=nk)+ (A —-KH)n(k) + w(k) (5.7)

Since the disturbance w is unknown, an estimate of the auxiliary variable is

computed using the following:

7(0) == x(0) — x(0) = e(0) (5.8)

worst case error

Using the initial estimate %(0), x(0) can be taken by any value distant 3*. The
auxiliary variable error dynamics, (k) = n(k) — (k) is given by:

Ak + 1) = (k) + (A — KE)(k) + W(k) (5.9)

For the initial time-step (k = 0):

= (x(0) = %(0)) = (%(0) = x(0)) (5.10)

Using the auxiliary variable definition and the assumption [§, it can be showed that

94



the auxiliary variable error is bounded:

17(0)]] < [[(x(0) —%(0)) — (x(0) —%(0))||
< [I(x(0) = %(0))[| + [|(x(0) — %(0))|l
<z (5.11)

Since in the initial time-step C(0) = 0, n(0) = €(0), the initial bound in the auxiliary

variables implies a bound for the state estimation error. A conservative worst-case

uncertainty can be chosen satisfying the inequality ||(x(0) — %(0))|| < z,/2.

Uncertainty set update

We can write the error in the auxiliary variable as a linear disturbed system:
nk+1)= 10+ A —-KH)nk) +wk). (5.12)
A compact form can be written as:
f(k +1) = An(k) + w(k) (5.13)

where A = (I+ A — KH). The gain matrix K is chosen such that A is Hurwitz.

Consider the following Lyapunov function candidate:

V (k) = n(k) " Pn(k) (5.14)
Using (b.12]), the rate of the change of the Lyapunov function candidate is as follows:

V(k+1)=V(k) =nk)" (ATPA - P) (k) + (k)" ATPw(k)

+wl (k) PAR(k) + W' (k)Pw (5.15)
As a result, one can write the following:
V(k+1) = V(k) = —n(k)"Qnk) + 2a(k)" ATPw(k) + W' (k)Pw

Each term on the right hand side of the previous inequality can be upper bounded

as follows. The first term can be written as:

(k) QA (k) > Amin(Q)7 (k)T S LY (k), (5.16)

S
—~
Ny
S~—
AV2
> >
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the second term as:

X 1 1 ~
(k) ATPw(k) < iﬁ(k)Tﬁ(k) + §V_V(/€)TPTAATPW(]€)
1 IPTAATP||
< —V(k)+ ——M,, 1
- 2Amm(P)V( )+ 2 (517
and, finally, the third term becomes:
W PW < Aoz (P)M,. (5.18)

Using the above last inequalities, the rate of change of the Lyapunov function is
bounded as follows:

V(k+1) - V(k) <— (AW(P) — 2Amm(P)> V (k) + (|[PTAATP|| + Moo (P)) M,

(5.19)

In the following, we consider an uncertainty set update for the auxiliary variables,

M. The update is based on the evaluation of the following quantity:

Van(K)
= -2
where V,, (k) is obtained from the recursion:
Vin(k +1) = Vo (k) — Auan(@) 1 Van(k) + (J|IPTAATP|| + Ao (P)) M.
zZn zZn )\max(P) 2>\mzn<P) zZn max v
(5.21)

with initial condition V.,(0) = Apax(P)2,(0)2.

Using ((5.20) and (5.21)), Algorithm [4|is proposed to estimate an uncertainty set
for ﬁk

Algorithm 4 Uncertainty set update X (k) £ B(0, z,(k))
1. Initialize 2,(0) = 2o

2. At time-step k, update:

B (0, z(k)) , if 2n(k) < 2y(k — 1)
B(0,zy(k—1)), otherwise

X(k+1) = { (5.22)

3. k=k+1, iterate back to step 2
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The following Lemma proposes that (5.20)), (5.21)) and Algorithm {4f can be used
to provide an uncertainty set update for 7 that guarantees containment of the

unknown quantity 7, and forward invariance.
Lemma 5 The uncertainty set evolution X (k) = B(0, z,(k)) satisfies:
1. 7(0) € X(0) — (k) € X(k)
2. X(k+1) C X(k)
Proof:
1. By definition: V(0) < V,,(0). We know that AV (k) < AV, (k), which yields:
V(k) < V.p(k) Yk >0. (5.23)
Using the definition of V(k), it follows that:

V(k) = q(k) Pir(k) = (k)" 7(k) Amin (P)

From the last inequality, we obtain:

o = ) (524
such that z,(k) yields:
zo(k) = % > n(k)'nk) Vk>0 (5.25)

It follows that if 7(0) € X(0), then f(k) € B(0,2,(k)) Vk >0, as required.

2. If X(k+1) € X(k) then:

sup |[[7(k)|| = 2y (k) (5.26)

neX (k+1)
To obtain AV, (k) <0, one must ensure that:

(||IPTAATP|| + \nae(P)) M,

Vin (k) = Amin (@) | (5.27)
()‘maZ(P) - 2/\min(P))
At time-step k + 1, one has:
PTAATP|| + \nax(P)) M,
Voo (k4 1) < max |V (k), U [+ Amar (P) (5.28)

(i:w((g; - 2)\m¢1n(P)>
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and, consequently, a bound of the form:

(||PTAATP|| + /\mam(P))MU
zy(k +1) < max {Z%’f)vi (M _ 1)

Amaaz (P) 2

(5.29)

Since the algorithm only updates the set if a contraction, z,(k+1) < z,(k), is

achieved, we have:

sup ||(k)[| < zy(k + 1) < 2y (K) (5.30)

PeX (k+1)

which is a contradiction of (5.26)). The result of the lemma follows.

Parameter Estimation

The parameter estimation routine considered in this study is closely related to
the continuous-time technique initially developed by ADETOLA et al. (2009).

Parameter Update

Consider the following identification matrix (k) € RP*P:

Y(k+1)=3(k) +w (k)w(k), X(0)=al >0 (5.31)
w(k) € RY*? is given by:
w(k) = HCT (k). (5.32)

Consider also the following error and auxiliary variable associated with outputs:

7, (k) = Hf(k). (5.33)
Using the auxiliary variable definition, it is possible to write:

Hn(k+1)=He(k+1) —HCT(k + 1)0(k + 1)

—e,(k+1) — w(k + 1)8(k + 1). (5.34)
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The inverse of ¥ (k) can be computed recursively as follows:

-1

Sk 4+ 1) =571 k) = ST ()W (k) (T+w(k) S~ (k)w(k))
L(k)

5-1(0) = ;1 - 0. (5.35)

w(k)x ™ (k),

Consider the following parameter adaptation law based on a implicit regression

model GONCALVES and GUAY]| (2016)):

D

(k+1) = O(k) + 57" (k)" (K)L(k) (e, (k) — 7, (k)
(k+1) £ Proj{0(k +1),0(k)}. (5.36)

!

The projection algorithm is designed following GOODWIN and SIN| (1984) to ensure
that:

e O(k+1) €0k
e Ok +1)TS(k+ DOk +1) < 8k +1)TS(k + 1)8(k + 1)

The following lemma is required in the analysis of the convergence of the parameter

estimation scheme.

Lemma 6 HADDAD and VIJAYSEKHAR), (2008) Consider the system
x(k+1) = Ax(k)+ Bu(k) (5.37)

where A is a stable matriz with eigenvalues inside the unit circle and B is a matriz
of appropriate dimension. Then, it can be shown that
K—1 K—1

dox(k+ 1) x(k+1) <6 ulk) u(k) (5.38)

for some 6 >0 and K —1 > 0.

Let I denote the space of square finitely summable signals and consider the following

lemma.

Lemma 7 The identifier and parameter update law are such that
0(k) = 0(k) — (k) is bounded. Furthermore, if
I

weEly or g[Hﬁy(k) — Hey(k:) — ﬁy(k)HQ] < +00 (5.39)

for some v > 0 and
lim ¥(k) = o0 (5.40)

k—00
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are satisfied, then é(kz) converges to 0 asymptotically.

Proof: Let Vi(k) = 0(k)"S(k)O(k). Tt follows from the properties of the projection

operator that:

Vy(k+1) — Va(k) =07 (k+ 1)S(k + 1)0(k + 1) — 8" (k)S(k)0(k) (5.41)
<0 (k+1)X(k+1)0(k+1)— 8" (k)S(k)O(k).

Using the parameter update law and the Equation one can write é(k’ +1)

0(k +1) = 0(k) — X" (k)w" (k)L (k) (e, (k) — 7, (k)
Upon substitution of e, (k) = n(k) + w(k)@(k), one obtains:
= 0(k) — X7 (k)w" (k)L(k) (w(k)0(k) + 7, (K))
O(k+1) =S (k+ 1)S(k)0(k) — S (k)w” (k)L(k)7, (k). (5.42)

Using the parameter update law, the identifier matrix dynamics, the filter dynamics
and the auxiliary variable dynamics, the rate change of the V;(k) is bounded as

follows:

V(k + 1) = Va(k) < (e, (k) — 1, (k))"L(k) (e, (k) — 1, (k)) + AL ()L (k) (k)
(5.43)

From the 7(k) dynamics given in (5.9), it follows from Lemma |§|, if w € [y then
n(k) € ly. Taking the limit as k — oo, the inequality becomes

lim Vi(k) = Vy(0)+ i Vilk + 1) = Vy(k) (5.44)
< V(0) - f: [(ey(k) — i, () TL(R) ey (k) — 71, (k)]
¥ i 71, (k)L k)7, ()] (5.45)

By the boundedness of the trajectories of the system, it follows that there exists a
number v > 0 such that
1> LK) =~
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as a result, one obtains the following inequality

k—o00

lim Vj(k) < V5(0) = i [(ey (k) =i, ()" (e, (k) — 7, (k)] + i (71, (k) "7, (k)]

(5.46)

Therefore, if conditions (5.39) are met, then the right hand side of (5.46)) is finite.

As a result, one concludes that:

lim (k) =0 (5.47)

k—o00
as required. [ |
Set Update

The following set update law guarantees the non exclusion of the true values of the

estimates from the uncertainty set B(0., zg,):

25 (k) = Mﬁﬁ@) (5.48)

. T N My\?
Via(k+ 1) = Va(k) = (e, (k) = i, (0)) LK) e, (&) — 7, (0)) + (52 ) (5.49)
V.5(0) = 4Amax (£(0))(25(0))? (5.50)

The set update approach can be summarized as the following algorithm.
Algorithm 5 1. At time-step, k = 0, initialize 2y, = 24(0), 6. = 0(0)

2. At time-step k, update:

D>

(%%){f“%W%#%W<%HWm

e Zpe)s otherwise

3. Iterate back to step 2 and increment k =k + 1
The following lemma establishes the main properties of Algorithm [5]
Lemma 8 Algorithm [ ensures that

1. the set is only updated when updating will yield a contraction,

2. the dynamics of the set error bound described in are such that they
ensure the non-exclusion of the true value 8 € O(k), Yk if 6(0) € ©(0).

Proof:
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1. fO(k+1) € ©(k) then

sup s — B(k)|| > 25 (k) (5.51)
€O (k+1)

However, it is guaranteed by the set update algorithm presented that O, at
update times, obeys the following:

sup Hs — H sup Hs —0(k+1 H + HO (k+1)— @(k)H (5.52)
s€O(k+1) O(k+1)
gzé(/fﬂ + 00k +1) = 8(k) || < 2 (h) (5.53)

This contradicts (5.51)). Therefore, ©(k + 1) C O(k) at time steps where © is
updated.

2. It is known, by definition, that

Vs(0) < Vip(0), Yk >0 (5.54)

=422(k), Vk>0 (5.55)

Therefore, if 6(0) € ©(0), then 6(k) e ©(k) Vk > 0.

|
Simulation results
Test Problem
Consider the 3 state test problem with external disturbance:
x1(k+1) = 21(k) + 0.01 (2 (k) + 23(k)*0; — x3(k)03) + wi
(k‘ + 1) = l‘z(k‘) + 0.01(—:131(/6) + :Eg(]{?) + l‘3(k‘)92 + 33‘3(]6)93) + wao
(k + 1) = l’g(k) + 0.01(—(61(]{3) — 21’2(]{3) — :E3(k) + xg(k:)03) + w3
y = z3(k) (5.56)
The unknown disturbance in given by:
w(k) =sin(k)[0.1 0.1 0.1]" (5.57)

The following estimates were used as initial conditions for the plant and
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estimator:

=029 31 07"
= [2.74 3.18 0.86]"

In Figure [5.1] the state estimation error is showed. We notice that the error oscillate
around the origin, following the inserted disturbance pattern. Under disturbance,
the parameters true values are recovered, as displayed in Figure [5.3] The small
offset in 6; and Ay can be decreased if a larger disturbance is inserted or a longer
simulation is used. The parameter estimation error (Figure and the auxiliary
variable error (Figure are bounded, leading to a bounded state estimation error.

05 I I I I I I | I 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

-0.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0 2000 4000 6000 8000 10000
Time Step (k)

Figure 5.1: State estimation error e(k) = xz(k) — Z(k) along the simulation for the
test problem.
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Figure 5.2: Uncertainty set radius z, and the auxiliary variable norm along time.
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Figure 5.3: Parameter convergence for the test problem.
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Figure 5.4: Parameter uncertainty set radius z¢ and parameter estimation error
along time.
Example 2

Consider an isothermal continuous stirred tank reactor (CSTR) with multi-

component chemical reactions GHAFFARI et al.| (2013):

A=B —C

(5.58)

The continuous-time model is represented by the following set of differential

equations:

fl =1- [f’l - Dali"l + Dagf%
Ty = Da %y — Ty — DayZs — Das@a + i

ng = —i’g -+ Dagiig

where ; are dimensionless concentrations:

Car

T

Car is the feed concentration of component A. Using deviation variables:

_ Npr
FCap

U=1U—Ug

Where Ngp is the B molar feeding rate and F' the volumetric flow rate.

105

(5.59)

(5.60)

(5.61)

(5.62)



The differential equations can be rewritten as:

s —(1+ Day) 2Daswoq 0
i Da, —(1 4+ 2Daswoq + 2Dagxay) 0 | X
0 2Dazxaq —1
0 Dayx3
+ |1| u+ |—(Day + Dag)z3 (5.63)
0 Dagx?

where xT = [11, 29, x3]7 and u = u. A first formulation (focused on the estimation of
Dasy and Dag) provides a system belonging to the class treated in this manuscript
with a constant A and a matrix B(H(x(k))) given by (Case 1):

3 0
BH(x(k))) = |—25 —a3 (5.64)
0 T3

As one can notice, this formulation leads to an error in the observer, because the
matrix multiplying x in (5.63) depends on the parameter vector. However, it is
possible to avoid this error in the observer equations by transferring the linear terms

to the B matrix, which leads to the following system (Case 2):

—(14+Day;) 0 O 0 T3 + 2T9qTo 0
dx 9 9 Da2
’ = Day —1 0 |x+ |l|u+ |—25— 229972 —5 — 2T24%2 "
0 0 -1 0 0 2% + w41 ’
B(H(x(k)))
(5.65)

The true value of the parameter vector is given by:

0.5
0= [ . ] (5.66)

The initial estimates were:

6(0) = [0'4] (5.67)
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The initial conditions for the state estimation routine and the plant were:

%(0) = [-0.8,0.8,0.4]
x(0) = [~1,1,0.5] (5.68)

A set of step disturbances were included in the manipulated variable:

u(k) =1, for k<5000

u(k) =0, for 5000 < k < 10000

u(k) =1, for 10000 < k£ < 20000

u(k) =0, for 20000 < k < 30000

u(k) = —1, for 30000 < k < 40000

u(k) =0, for 40000 < & < 50000 (5.69)

The parameters used in the simulation were: Da; = 3.0, Day, = 0.5 and Daz =
1.0. The steady state values are given by x; = [0.3467,0.8796, 0.8796] and ug = 1.0.
The differential equations were discretized using the explicit Euler method with

sampling time 75 = 0.01. The measurement matrix is given by:

100
H = L) X 0] (5.70)

The results of both cases were compared.

Figure [5.6] shows the time evolution of the state estimation error. In both
cases, the state estimation error decreases as a function of time. However, the
state estimation error decreases faster when is used (Case 2). Since in the
first formulation the true parameters values were used in matrix A, the system
parameters converge to the true values in both cases as shown in Figure 5.9, In
Figure the parameter 0y has its convergence influenced by the system excitation
(as every parameter estimation routine), for the Case 1, since the model used for the
estimation has a structural uncertainty, the parameter displays a step in the initial
time-steps and then converges to the true value. The parameter error is bounded
by the parameter uncertainty radius in both cases (Figures and it decreases
along time. In Figure 5.7, the error and the uncertainty radius for the auxiliary
variable are shown. It can be seen that the final bound is smaller for the second
case. Finally, the estimates for the states are displayed in Figure 5.8, The estimates
of the unmeasured concentration (x3) display no steady state offset in the second

case, even as the parameter estimates are still updating.
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Figure 5.5: Progression of the parameter uncertainty set radius z¢ and parameter

error along time-step for the CSTR problem.
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Figure 5.6: State estimation error (e(k) = x(k)

for the CSTR problem.
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Figure 5.8: State estimates along time-step. Improvement in the estimates are
observed while the parameters converge to the true values.
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Figure 5.9: Parameter convergence along time-step.

5.2.2 Time-Varying Parameters
Problem description

Consider the previous nonlinear class with time-varying parameters:

x(k+1) =x(k) + Ax(k) + B(y(k))0(k)
y(k) = Hx(k) (5.71)

This system should satisfy the following assumptions:
Assumption 9 The states are within the compact set X € R™
Assumption 10 The system is observable

Assumption 11 The time-varying dynamics of the parameters must satisfy

limy o, @(k) = constant
Assumption 12 The parameters are initially within the known set ©° = B(0y, z9)

The proposed estimator aims to provide state and uncertainty estimates (X(k))
by using discrete-time measurements (y(k)). Moreover, the adaptive observer is
able to update the equations parameters during the estimation process improving

the state estimates.
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State and Uncertainty Estimation

The following structure is proposed for the estimator:

X(k + 1) = %(k) + Ax(k) + B(y(k))0(k + 1) + K(y(k) — Hx(k))
— CT(k)(O(k) —0(k+1)) — (A —KH)CT(k)(O(k) —0(k+1)) (5.72)

Additionally, consider the following dynamics for the time-varying parameters:

0(k) = 6, + u(k) (5.73)

Assumption 13 The time-varying component is unknown, however, it is bounded
by [lu(k)]| < ¢

CT (k) is given by the following filter:
CT(k+1)=C"(k)+ (A - KH)C" (k) + B(y(k)) C(0)=0 (5.74)
the state-estimation error (e(k) = x(k) — %(k)) is written as:

e(k+1) = e(k) + (A — KH)e(k) + B(y(k))0(k + 1) + B(y(k))u(k)
+CT(O(k) —0(k+1)) + (A —KH)CT(k)(O(k) — 0(k+1))  (5.75)

Additionally, consider an auxiliary variable defined as:
nk+1)=elk+1)—CT(k+1)0(k+1) (5.76)
Combining and (5.74)), the auxiliary variable dynamics is given by:
n(k+1) =nk) + (A - KH)n(k) + B(y (k) u(k) (5.77)

Since the time-varying part of the parameter dynamic is unknown, an estimate for

the auxiliary variable dynamics is given by:

nk+1)=nk)+ (A —-KH)pk) (5.78)
leading to the error:

nk+1) = I+ A —KH)n(k) + Bly(k))uk) (5.79)

A
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The computation of ([5.79)) is not possible. However, an upper bound can be obtained
by the Lyapunov function candidate:

V (k) = (k)" Pn(k) (5.80)

By substitution of (5.79) in (5.80)), and computing the time variation of the

candidate function, it follows that:

V(k+1) = V(k) = y(k) (k) P (A7) + B(y(k))u(k)) — (k)" P (k)

) 7(k) + 7 (k)" ATPB(y(k)) (k)

S
=
+
®

I
S T

=

N

e

N

]

o9 P
|

t o)

(5.81)
Since P is symmetric and positive definite:
V(k+1) — V(k) = —(k) Qi (k) + 20(k)" ATPB(y (k) (k) +
(k)" (k)B(y (k)" PB(y(k))u(k) (5.82)

The following inequalities can be used to bound each term of the Lyapunov

function variation. The first term can be bounded as follows:

n(k)" QA(k) > Anin(Q)0 (k) 7 (k) > f\‘::;((g;

V(k). (5.83)

The second term yields:

(k) n(k) + ;u(k)TB(y(k>)TPTAATPB(y(k))u<k)
1 IB(y(k))"PTAATPB(y(k))||
< m\/(k) + 5 c,
(5.84)

(k)" ATPB(y(k))u(k) <

and, the third term:

(k)" (k)B(y (k)" PB(y (k) (k) < Amaa(P)[IB(y (k). (5.85)
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As a result, one obtains:

V(k+1) = V(k) < - (i:n((gi B 2Amz‘1“(P)> o

L IBy(k)"PTAATPB(y(k))l|
2

¢+ Amaz (P)[[B(y (k)]
(5.86)

Consider the following equations for the recursive update of the uncertainty set:

[vaw
Zn(k)— )\mm(P)
Vi (0) =M (P) 2 (0)?
Vil + 1) =V () — (i::i%i - zxm;@)) v

" ("B(y<k>>TPT“;ATPB<y<’“>>“ " Ama;c(P)HB(y(k»H) ¢ (587)

Additionally, the update follows the algorithm [6}
Algorithm 6 Uncertainty Set Update X (k) = B(0, z,(k))
1. If k=0, 2,(0) = 2o

2. At k, update:

V) {B(O,an)), b <ot-1
B(0,z,(k—1)), otherwise

3. k=k+1, return to step 2

Lemma 9 If Equations [5.87 and Algorithm [0 are used, then the set evolution
X (k) £ B(0, 2, (k)) is such that:

1. 7(0) € X(0) — n(k) € X(k)
2. X(k+1)C X(k)
Proof:

1. By definition: V(0) < V,,(0). Furthermore AV (k) < AV,,(k), which leads to:

V(k) < Vp(k) VE=>0 (5.89)
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The Lyapunov function candidate V (k) is such that:
V (k) = (k)" Pi(k) > 7(k) (k) Amin (P)

As a result, one can write:

which ensures that:

o(k) = Lo > q(k) R(k) Yk >0
This last inequality implies that if n € X(0), then n € B(7)(k), z,(k)) Vk >0,
as required.

CIf X (k+1) € X(k) then:

sup |[[7(k)|| = 2y (k) (5.90)

neX (k+1)

In order to have AV,,(k) < 0:

V) > (||B(Y(k))TPT_,§ATPB(y(k))\\ +)\max(P)HB(y(k))||) c
n

N (i::;((g% o 2,\m¢1n(P))

(5.91)

At time-step k + 1:

IIB(y(k)"PTAATPB(y(k))l
+ Anaa(P)[[B(y (F))]] ) ¢
Vep(k + 1) < max |V, (k), ( : Amin(Q) 1 )
()\mw(P) o 2x\mm(P))
(5.92)
(||B(y(k))TPT1§ATPB(y(k))\\ + Mo P)||B(y(k:))||) c
Zy(k +1) < max | 2, (k), Ain( @A (P) _ 1
(TI(P) B 5)

(5.93)

Since the set is only updated if we have a set contraction (z,(k+1) < z,(k)),
it follows that:

sup [[(k)|] < zy(k + 1) < zy(k), (5.94)
REX (k+1)
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a contradiction of (5.90). This completes the proof.

Example 3

Consider the continuous stirred tank reactor (CSTR) used in Subsection [5.2.1]
However, in this simulation the true value of the parameter vector is given by the

following time varying functions:

(5.95)

—k-Ts

ok) = [1—0.1(1—e =

0.5—0.1(1—e 5" )]

The true value of the fixed parameter is Da; = 3.0; the steady state values are given
by x4 = [0.3467,0.8796,0.8796]; the time constant for the parameter function is
7 = 10. The differential equations were discretized using the explicit Euler method

with sampling time 75 = 0.01. The measurement matrix is given by:

100
H= [0 X 0]. (5.96)

Figure |5.10| shows the state estimation error. The convergence to an origin
neighbourhood occurs in the first time-steps. Furthermore, the state estimates
recover the real state values quickly, as shown in Figure [5.12 The time-varying
parameters decrease along time and the same pattern is recovered by the parameter
estimates (Figure . Moreover, the uncertainty set for the parameters decreases
along time, providing a worst-case bound for the parameter error (Figure .
Finally, the uncertainty set radius for the auxiliary variable, initially very large
(zy = 10), decreases with time, achieving a tight bound on the error on the variable

(f(k)) and, correspondingly, on the state estimation error.
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Figure 5.10: State estimation error (e(k) = x(k) — %(k)) as a function of time-step
for the CSTR problem using time-varying parameters.
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Figure 5.11: Progression of the parameter uncertainty set radius zg and parameter
error along time-step for the CSTR problem using time-varying parameters.
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Figure 5.12: State estimates along time-step (time-varying parameters case).
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Figure 5.13: Plot of the auxiliary variable uncertainty radius z, and auxiliary
variable error along time-step (time-varying parameters case).
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Figure 5.14: Parameter convergence along time-step using time-varying parameters.

5.3 Discrete-time adaptive MPC by Output
Feedback

In this section, an output feedback nonlinear model predictive control is proposed
which incorporates the set-based adaptive observers described in Section 2. In
output feedback nonlinear MPC, a dynamic optimization problem is solved in real-
time to compute the optimal input trajectories. The optimization problem relies
on the availability of the current values of the state variables as an estimate for
the future model predictions. In the absence of full state measurements, state
estimates must be used to provide this initial condition. Since the state estimates
will be not provide instantaneous agreement with the true state values, model
uncertainties associated with poor state estimates may lead to constraint violation.
If one considers the practical impossibility of a true model and the inevitable time-
varying component arising in many practical problems, the control action using a
fixed model is always suboptimal and, possibly, infeasible.

A way to improve the suboptimal solution is to consider explicitly the uncertainty

in a robust optimization problem.  Although this may lead to suboptimal
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performance, the question of feasibility can be treated adequately. Two practical
problems arise in robust MPC formulations. The first one is to obtain an uncertainty
description that can be computed in a real-time framework. Once the uncertainty
representation is obtained, the second problem is to solve the nonlinear robust
problem, which is not computable online, except for simple problems. In the present
approach, we use the set-based estimation to solve the uncertainty problem in a real-
time approach. Furthermore, the min-max problem is replaced by a Lipschitz-based
MPC guaranteeing an over-approximation for the reachable sets and allowing the
robust problem solution for a nonlinear model.

Using the previous approach for state and parameter estimation, it is possible
to obtain a computable uncertanity bound that can be used explicitly in the MPC
formulation. By construction, using the equations of Section [5.2.1], it is possible to

obtain a set for the state estimates:
e(k) =n(k) + CT(k)0(k). (5.97)
The state estimation error is bounded as:
le(k)I| < [[n(k)I| + [ICT(®)[||@ )] (5.98)
Using: 1 =) +f and 8" (k)(k) = 422(k)

le(®)I] < [kl + [la(k)|| + ICT (k)|225(k)
le(k)]] < 2y + (k)| + [|CT (k)][225(k) (5.99)

From the results in Section 2, it follows that the bound (5.99) is computable. As

a result, one can guarantee that e(k) € B(0, z.(k)) for z.(k) = z,(k) + ||7(k)|| +
2/|C7 (k)| z(k) and

2 (k)
2

x(k) € B <§<(k), ) 2 X (k). (5.100)

Therefore, the use of the proposed set-based approach for joint estimation can
guarantee an uncertainty estimate for the states suitable for robust MPC design.

This approach is presented in the next section.

5.3.1 A Min-max Approach

Consider the variables and the sets: 8 € ©, 9 € D and x € X. The variables 0

are the system parameters, ¥ are bounded disturbances and, x, the state variables.
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Let the control law, k, be defined as follows:

U= Fompe(X, 0, 29, 22) 2 K*(0,%,0, 29, 2,) (5.101a)
K* £ arg {nm)J( 0, 29, 20, K) (5.101b)
where
T-1

J(%.0,29,20,8) & max 37 L(x(k) u(k)?) + W(x(T), 0(T)(5:4)2a)

0€0, VEDXEX | )
s.t. Yk €10, T|,where T is the prediction horizon

x(k+1)? = x(k) + Ax(k) + B(x(k)?, u(k)?)0 + 9(k), x5 =%(0) (5.102b)
%(k+1) =%(k) + A%(k) + B(y(k), u(k)0(k + 1) + K(y(k) — Hx(k))

—C"(k)(B(k) — 6(k +1)) — (A —KH)C"(k)(6(k) — 6(k + 1)) (5.102)
CT(k+1)=C"(k) + (A —KH)CT(k) + B(y(k), u(k)) (5.102d)
0"(k+1) =0 (k) + (7' (k))Pw” (k)L(k) (e, (k) — 7,(K)) (5.102¢)
07(k + 1) = Proj{§’ (k + 1), 0} (5.102f)
0'=0-0, 0,=06 (5.102g)
u’(7) £ k(1,x"(7),0"(1)) € U (5.102h)
xP(1) € X, xP(T) € X;(0°(T), z) (5.102i)

The particular feature of this MPC formulation is that the effect of future

parameter adaptation is incorporated as a constraint, (5.102c)-(5.102f), in the

dynamic optimization problem.

The conservativeness of the algorithm is reduced by parameterizing both W and
X; as functions of §(T) and the predicted state uncertainty z,(T). While it is
possible for the sets © and X to contract over time, the robustness feature due to
¥ € D is preserved. The resulting algorithm @ provides a robust output-feedback
nonlinear MPC design method.

Algorithm 7 The MPC algorithm performs as follows: At sampling instant k

1. Measure the current output of the plant yr and obtain the current value of
matrices C(k), w(k) and X~ from equations and [5.33 respectively

2. Obtain the current value of parameter estimates 9, state estimates X and

uncertainty bounds zp and z, from algorithms @ and @ respectively.

3. Solve the optimization problem (5.101)) and apply the resulting feedback control

law to the plant until the next sampling instant

4. Increment k = k+ 1. Repeat the procedure from step 1] for the next sampling

instant.
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Despite the robustness guaranteed by the min-max approach, its solution remains
impractical for real-time applications. A Lipschitz-based approach is proposed in the
next section to alleviate the computational challenges associated with the min-max

approach design formulation.

5.3.2 Lipschitz-based Approach

In this section, we present a Lipschitz-based method whereby the nominal model
rather than the unknown bounded system state is controlled, subject to conditions
that ensure constraint satisfaction for all possible uncertainties. State prediction
error bound is determined based on the Lipschitz continuity of the model. A
knowledge of appropriate Lipschitz bounds for the y-dependence of the B(y(k), u(k))

dynamics is required.

Assumption 14 A set of functions £; : XxU — R*, j € {B(y(k),u(k))} is known

which satisfies

L;(X,u) > min {Ej

sup (i, w)—j(az. w)l| L; llor—a] ) < 0},

z1,x2€ X
This is an induced norm since B(y(k),u(k)) is a matriz.

Assuming a knowledge of the Lipschitz bounds for the y-dependence of the dynamics
B(y(k),u(k)) as given in Assumption [14] the plant can be described by:

x(k + 1) = x(k) + Ax(k) + B(y(k), u(k))0
y(k) = Hx(k) (5.103)

The prediction model is thus given by:

A

x,(k 4+ 1) = x,(k) + Ax,(k) + B(y(k),u(k))0 + w(k)
y(k) = Hx, (k) + v(k) (5.104)

A worst-case deviation z2(k) > maxyee ||z(k) — x(k)?|| can be generated from:
x(k+1) —x,(k+1) = A(x(k) — x,(k))

+ B(Hx(k),u(k))0 — B(Hx,(k) + v(k),u(k))0
_l’_

B
B(Hx, (k) + v(k),u(k))(0 — ) + w (5.105)
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Using the Lipschitz constant for B(y(k), u(k)), we have:

[Ix(k +1) = x,(k + 1| < [[A]] [|x(k) = x, ()]

2P (k+1) 2z (k)

+ La|6][[[H]] [[x(k) = x,(k)[| +L5]60]]|[H][[]v]]

2z (k)

+ |IB(Hx, (k) +v(k), u(k))|| ||(6 = 8(K))|| +/Iwl| (5.106)

<zg(k)

Thus, a worst case prediction of the uncertainty, in time-step k, is given by:

zp(k+1) = ([[All + LpI1|[HI))z7(k) + |[B(y(k), u(k))||20 (k) + M,
where:

I1= (18] + =o(k)
M, = |[wl| + LpII|[HI[||v]]

The initial condition is the error bound in the current time-step:
22(0) = ze(k)
Using this error bound, the robust Lipschitz-based MPC is given by
U = Fmpe(X, 0, 29, 2,) = u*(0)

u*(.) £ arg min J(x, 0, 29, z,, u”)
ufo,7)

where
. T-1
J(Xa 0, 29, 2., up) = Z L(Xp(k)7 up(k>> + W(XP(T>7 ng Zﬂ?)
k=0
s.t. Yk € [0, T

x(k+ 1) =xP(k) + Ax(k) + B(y(k)?,u(k)?)0 + v¥(k), x(0)? =x%(0)
Z(k+1) = ([JAl] + LpI|[HI) (k) + ||B(y (), u(k))[|ze (k) + M,
22(0) = zz(0)

XP(r) 2 B(xP(k),22(k)) C X, uf(k)eU

XP(T) € Xy(20, 2)

(5.107)

(5.108)
(5.109)

(5.110)

(5.111a)
(5.111b)

(5.112)

(5.113)
(5.114)

(5.115)
(5.116)

The effect of the disturbance is built into the uncertainty cone B(x?(k), 22(k))
via ((5.114)). Since the uncertainty bound is not monotonically decreasing in this
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case, the uncertainty radii zy and z, which appears in ((5.114) and in the terminal

expressions of (5.112)) and (5.116)) are held constant over the prediction horizon.
However, the fact that they are updated at sampling instants when zy and z, shrinks

reduces the conservatism of the robust MPC and enlarges the terminal domain that

would otherwise have been designed based on a large initial uncertainty 24(0) and
2:(0).
The resulting MPC algorithm is as follows.

Algorithm 8 The Lipschitz-based MPC' algorithm performs as follows:
At sampling instant k:

1. Measure the current output of the plant y = y(k)

2. Obtain the current value of the parameter estimates 9(1{;) and the state
estimates X(k) (Equations (5.36) and (5.3))) and uncertainty bounds zy and

2y (Equations(5.48)) and (5.100)))

3. Solve the optimization problem (5.111)) and apply the resulting feedback control

law to the plant until the next sampling instant

4. Increment k := k+ 1; repeat the procedure from step[l] for the next sampling

instant.

5.4 Closed-Loop Robust Stability

By the correct design of the terminal cost W and terminal constraint set Xy,
under parameter and state uncertainty, robust stability to the target set = is

achieved.

Criterion 3 The terminal penalty function W : X; x 00 x X0 — [0, +oc] and the
terminal constraint function Xy : 0% x X — X are such that for each (0, 6, 9~) €
(0% x ©° x O and (x,%,e) € (X0 x X0 x B,) there exists a feedback k:f(é, X) :
Xy — U satisfying

1. 0€ 2CX;(0) CX, X4() closed

2. ki(%,0) € U, ¥x € X4(h)

3. W(%,0) is continuous with respect to X € R™

4. Yx € Xp(0)\E, X4(0) is strongly positively invariant under kp(%,0) with
respect to X, € X + A(X, k;(%,0)) + B(y, k;(%,0))0 + D

5. L(%, kp(%,0)) + W(xy,0) — W(%,0) <0, Vx € X5(0)\Z.
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Condition [5| from criteria |3| requires W to be a local robust Control Lyapunov
Function (CLF) for the uncertain system with respect to 0 € ©, ¥ € D and
xe kX,

Criterion 4 For any 0(1), 6(2) € ©° and %(1),%(2) € X s.t. H9~(2)H < Hé(l)H and
2(1) < 2(2)

1. W(x,0(2)) < W(x,0(1)), Vx € X;(0(1))

2. X;(0(2)) 2 X4(6(1))

5.4.1 Main Results

Theorem 4 Let X490 = X40(0° X) C X denote the set of initial states with
uncertainty ©° for which (5.101) has a solution. Assuming criteria |3| and 4| are

satisfied, then the closed-loop system, given by 15.35, |5.30, |5.48,

5.111), is feasibly asymptotically stabilized from any xy € X}, to the target set =.

Proof: The closed-loop stability is established by the feasibility of the control
action at each sample time and the strict decrease of the optimal cost J*. The
proof follows from the fact that the control law is optimal with respect to the worst
case uncertainty (6, ) € (©, D) scenario and the terminal region X% is strongly
positively invariant for [5.1) under the (local) feedback k(.,.).

Once the measurement or state estimation is obtained at time-step k, it is
possible to obtain the predictions by the model iteration. Using the notation
x(k + j|k) as the prediction at time k + j using the information up to time k.
Moreover, the notation a(k+ j|k) and y(k+ j|k) is used to denote the predictions of
the input and output variables. The prediction horizon is denoted by Hp =T — 1.

Considering the full state measurement:

x*(k + 1|k) = Axo + B(yo, uo)0
x*(k +2|k) = Ax(k + 1|k) + B(y(k + 1]k), a(k + 1]k))0
= A% + AB(yo,u)0 + B(y(k + 1|k), a(k + 1|k))0
x*(k + 3|k) = A + A’B(yo, )0 + AB(¥(k + 1|k), a(k + 1|k))0
+ B(y(k + 2|k), a(k + 2|k))6

Hp—1
x*(k + Hpl|k) = AMPxq + > AB(3(i + Hp — 1]k),a(i + Hp — 1]k))6.
i=k,5 (K)=yo,(k)=uo

(5.117)
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The same procedure can be repeated for the output feedback. However, the

nonlinear part depends on the output only. Thus, the predictions using the state

estimates are:

x°(k + Hplk) = AMPx + > A"B(y(i + Hp — 1]k),a(i + Hp — 1]k))8.
k=13 (k)=yo,a(k)=uo

(5.118)

The difference between the predictions using the measurement and the state

estimation are bounded and can be calculated by:

Sk Hplk)? = x*(k + Hplk) = x°(k + Hplk) = A™e(k) < A (A7),
(5.119)

In the following, the disturbance bound (M) is chosen, without loss of generality,
to take into account the computable error bound A,qq(AP)z,.

Feasibility: The closed-loop stability is based upon the feasibility of the control
action at each sample time. Assuming, at time ¢, that an optimal solution uﬁ)ﬂ to
the optimization problem exists and is found. Let ©F and X? denote the
estimated uncertainty sets at time ¢ and ©Y, XV denote the set at time ¢ 4+ 1 that
would result from the feedback implementation of u; = u}. Also, let x? represents
the worst case state trajectory originating from x) = x; and x" represents the
trajectory originating from xjj = x + v for v € {F(X“,up) + G(x*, u?)eP +D}
under the same feasible control input uf; ;y = uf, ;. Moreover, let Xg, 2 {x*[x% €
X + F(x%,uP) + G(x% uP)0" + D} which represents the set of all trajectories of the
uncertain dynamics.

Since the uﬁLT] is optimal with respect to the worst case uncertainty scenario,
it suffices to say that uﬁw] drives any trajectory x? € Xg, into the terminal region
X’;. Since the uncertainty for parameter and states are non-expanding over time, we
have ©Y C ©7 and XY C X” implying X" € X8, vo C Xy y»- The terminal region
X? is strongly positively invariant for the nonlinear system under the feedback
kg(.,.), the input constraint is satisfied in X’ and X% 2 X% by criteria (2.), (4)
and (2) respectively. Hence, the input u = [uf; 5, kpr,r41)] is a feasible solution
of at time ¢t + 1 and by induction, the optimization problem is feasible for
all £ > 0.

Stability: The stability of the closed-loop system is established by proving
strict decrease of the optimal cost J*(f{,é, 29, %) = J(f{,é, 29, 2z, K*). First, it is
showed that the problem of controlling the system with disturbances and full state

measurement is stable. In sequence, it is showed that the uncertainty inserted
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by the state estimation is a bounded additive disturbance. Let the trajectories
(%P, ép, ép,zg) and control u” correspond to any worst case minimizing solution
of J*(X,é, 29, 2z). If Xfo,T] were extended to k € [0,7 + 1] by implementing the
feedback uf.,, = ky(x%,, 67 ) then criterion (5) guarantees the inequality for state

feedback and parameter uncertainty only:
L(xp, kg (3, 07) ) + W (s, 07) — W (x5, 63) < 0. (5.120)

The optimal cost

T-1 T-1
J*(Xtv étv 25 th) = Z L(Xiv ui) + W(LL’%, ég“v ZZET) > Z L<X£7 uﬁ) + W<Xg7 ég‘)
k=0 k=0
+ L@ by (2, 07) ) + W (@, 0) — W (2, 07) (5.121)

T
> L(xf, ub) + > L@y, up) + L@, ky(ah, 07) ) + W@k, 071)
k=1

(5.122)
> L(ah,ub) + T (1. 01, 20, (5.123)
Then, it follows from that
T (@1, 001, 20,0) = T (20,00, 20,) < =L@, uy) < —pp([l2])- (5.124)
where pp is a class K, function. Hence z(t) enters = asymptotically.
|

Theorem 5 Let X}, = X}(0°) C X denote the set of initial states for which
(5.111)) has a solution. Assuming Assumptz’on and Criteria and are satisfied,

then the origin of the closed-loop system given by
5.111) is feasibly asymptotically stabilized from any xo € X}, to the target set

—
—

The proof of the Lipschitz-based control law follows from that of theorem [

5.4.2 Simulation example

Consider the three state reactor from Section £.2.1l As in [GHAFFARI ef al.
(2013), the control objective is to drive the concentrations to a setpoint by
manipulating of the product B molar flow rate. The estimated parameters are

the same as in Section [5.2.1] The following constraints were used for this simulation
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example:

—2<u <2

—0.1 < Au; <0.1
—3<2 <3 (5.125)
—3<29<3

The Lipschitz constraints were added to the problem formulation as described in
Subsection and solved simultaneously with the constraints ((5.125)).
Two measurements were considered x; and x5, and the third composition x5 was

estimated. The initial condition for the estimator and plant were respectively:

%(0) = [—0.8,0.8,0.4]
x(0) = [~1,1,0.5]

The true parameters and their estimates were:

6(0) = [0.6,1.1]
6(0) = [0.5,1]

The terminal constraint and the terminal cost were designed using the approach
for linear parameter varying (LPV) systems proposed in GAHINET et al.| (1996) and
applied for MPC in ADETOLA et al|(2009)). For simulation purposes a periodical

disturbance was added as a sine function in the measured outputs:
v(k) = 0.01[sin(k) sin(2k)]

Figures and show a comparison between the output feedback
controller and a state feedback controller, which uses full and perfect plant
measurement. The states are recovered by the estimator even in the presence
of the disturbance, the output feedback controller is able to drive the system to
the origin in the presence of disturbance and parameter uncertainty without any
constraint violation. A comparison between the state feedback controller and the
output feedback shows an acceptable performance for the output feedback approach.
Moreover, the state estimation is improved as the parameters are recovered by the
parameter estimation routine as viewed in Figure [5.19, revealing the potential of
the adaptive technique. Figure |5.20| shows the uncertainty bound for the auxiliary
variable and Figure the bound for the parameters uncertainty, in both cases
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the errors remain bounded during the simulation.
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----------------- Observer
------------- State Feedback
Setpoint
_1‘5 | | 1 | 1 l
0 100 200 300 400 500 600 700
Time Step (k)
Figure 5.15: x; along time for the different controllers.
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Figure 5.16: x5 along time for the different controllers.
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Figure 5.17: x5 along time for the different controllers.
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Figure 5.18: Control actions for the output feedback and state feedback controllers.
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Figure 5.19: Parameters convergence to the true values for the output feedback
MPC problem.
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Figure 5.20: Plot of the auxiliary variable uncertainty radius 2, and the norm of the
auxiliary variable uncertainty along time-step.
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Figure 5.21: Plot of the auxiliary variable uncertainty radius 2, and parameter error
along time-step.

5.5 Conclusions

A set-based state estimation algorithm for a class of nonlinear discrete-time
systems with constant and time-varying parameters was proposed. This estimation
routine is able to provide, dynamically, a worst-case uncertainty estimate for the
parameters and the state variables. Furthermore, the convergence of the approach
was established along with a set update algorithm that guarantees containment of
the unknown parameters and state variables. The developed algorithm can deal
effectively with systems that are subject to unknown time-varying disturbances.
The set-based approach for state and parameter estimation was combined with MPC
to provide a controller with robust properties under output feedback that can be
solved in real-time by using a Lipschitz-based framework for the uncertainty sets
predictions. Simulation results were provided to show the estimation and control

performance.
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Chapter 6

Final Remarks

6.1 Introduction

The implementation of advanced control techniques, as industrially are called
strategies that go beyond regulatory control, has gained prominence since the
emergence of the predictive control strategy based on linear models in the 70’s.
The benefits of using this type of controller range from the economic gain to the
process safety improvement. However, the maintenance after the commissioning
stage is fundamental, so that the profit obtained in its implementation is sustained.
Certainly the controller has its models identified for an operational condition which,
in general, can not be maintained throughout the campaign, which can often last for
years. The usual solution is to perform new open-loop tests to update the models.
Sometimes, the advanced control is turned off, while maintenance is not performed.
Following the advanced control trend, the industrial plants instrumentation has
gained lots of attention, generating data amounts that are often not used for any
purpose other than process monitoring. The main objective of this work was to
find a solution to update the models of this type of controller without operational

intervention and with guarantees that the stability of the operation is assured.

6.2 Thesis developments

The initial approach focused on the study of state and parameter estimators,
since they are used in the NMPC strategy to feedback states even when model
parameters are not estimated (Chapter . Techniques based on Kalman filtering
in their constrained and unconstrained versions were studied. These were selected
because of the large use, low computational burden and use of constraints. An
effort was made to use the filter in its version Unscented, which employs the model

simulations directly without the use of linearizations, since sometimes obtaining a
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linear model, at each sampling instant, in the case of non-linear high-dimensional
systems, can be costly. On the other hand, the performance of the classical Kalman
filter proved to be superior, especially when the state was augmented to include
the parameters to be estimated (Section [3.2). This chapter has shown that a
great improvement can be obtained if this widespread algorithms are used for
model updating in comparison with the standard additive disturbance approach.
Furthermore, a deep study for performance classification in predictive control was
showed for the most popular Kalman approaches. Finally, it was showed that the
constraint satisfaction can be improved using the adaptive algorithm.

In Chapter [l an alternative approcah using interval observers was presented
in order to update the models used in the predictive controllers and preserve
stability. This algorithm was developed for discrete-time systems and can be
applied in a large class of systems. Moreover, the computational burden of min-max
problem was avoided by using a Lipschitz based method. Finally, the algorithm was
successfully tested in the classical van de Vusse reactor and in a medical problem for
Chemotherapy dosage in cancer treatment. In this chapter the system states must
be measured for application.

In order to overcome the fully state measurement requirement, a state estimator
that is able to joint estimate parameters, states and their uncertainty bounds was
developed in Chapter [5] Section [5.2] This algorithm is able to estimate constant
and dynamic parameters. In this chapter, this interval observer was used for
output feedback MPC. A comparison between the state-feedback and the output
feedback was carried out for a chemical reactor, showing that, even for partial state
measurement, the algorithm was able to recover the true parameters and track the

desired setpoint.

6.3 Future research

The state estimation problem still has a lot of open problems. The first one
is to develop an algorithm for probabilistic uncertainty estimation in real time for
nonlinear systems. A second research topic is the robust constraint satisfaction in
presence of structural model uncertainty.

While the linear MPC is a well developed algorithm, the nonlinear algorithm still
has open questions. For example, an efficient way for solving the min-max problem
is still not available. Moreover, the output feedback problem has no separation
principle for a general class of nonlinear systems.

The algorithms in Chapters 4] and [5| can be extended for the economic MPC
approach, providing a more lucrative adaptive MPC. Finally, the algorithms must

be tested in a laboratory or industrial facility for a final performance validation.
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