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Abstract  
 

Global warming stands as one of the most critical issues in modern science, profoundly 

impacting society and prompting legislative actions, regulations, and scientific studies. 

The primary cause is the anthropogenic emission of greenhouse gases (GHGs), which 

have increased significantly in recent years. Effective capture and separation techniques 

for GHGs reduction, such as solvent-based absorption, are pivotal for sustainability 

efforts. In this sense, Deep Eutectic Solvents (DESs) have emerged as a promising eco-

friendly solution for gas capture due to their high absorption capacity, cost-effectiveness, 

non-toxicity nature, and biodegradability, presenting a sustainable alternative to 

conventional solvents. Understanding the thermophysical properties of DESs is crucial 

for their industrial application. Given the diversity of DESs combinations and varying 

industrial conditions, relying solely on experimental measurements is impractical. 

Therefore, developing computational models to predict these properties and guide 

experiments is crucial. When constructing predictive models, it is important to consider 

the influence of cosolvents like water on DESs properties, particularly viscosity. Thus, 

this thesis aims to incorporate diverse theoretical frameworks to elucidate the 

thermophysical characteristics of DESs and their mixtures with cosolvents. Moreover, it 

seeks to explore their application in GHGs capture, including within commercial high 

global warming potential refrigerant gas blends, as well as their role in capturing carbon 

dioxide (CO2) and separating it from ammonia (NH3). The proposed framework employs 

the soft-SAFT equation of state for developing an accurate and transferable model, 

alongside machine learning techniques artificial neural networks trained with molecular 

descriptors derived from atomic-level analyzes using COSMO-SAC. This comprehensive 

approach facilitates the screening of DESs thermophysical properties, providing insights 

into their potential as alternative absorbents for GHGs separation and capture. 
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Resumo 
 

O aquecimento global é uma das questões mais críticas na ciência moderna, impactando 

profundamente a sociedade e levando a ações legislativas, regulamentações e estudos 

científicos. A sua principal causa é a emissão antropogênica de gases de efeito estufa, o 

qual aumentou significativamente nos últimos anos. Técnicas eficazes de captura e 

separação para a redução desses gases, como a absorção baseada em solventes, são 

fundamentais para os esforços de sustentabilidade. Nesse sentido, os Solventes Eutéticos 

Profundos (SEPs) surgiram como uma solução ecologicamente promissora para a captura 

de gases devido à sua alta capacidade de absorção, custo-benefício, natureza não tóxica e 

biodegradabilidade, apresentando uma alternativa sustentável aos solventes 

convencionais. Compreender as propriedades termo físicas dos SEPs é crucial para sua 

aplicação industrial. Desse modo, dado o vasto número de possíveis combinações de 

SEPs e as variadas condições industriais, confiar apenas em medições experimentais é 

impraticável. Portanto, o desenvolvimento de modelos computacionais para prever essas 

propriedades e orientar os experimentos é essencial. No desenvolvimento de modelos 

computacionais preditivos, é importante considerar a influência de cosolventes, como a 

água, nas propriedades dos SEPs, especialmente na viscosidade. Assim, esta tese visa 

incorporar diversos métodos teóricos para elucidar as características termofísicas dos 

SEPs e suas misturas com cosolventes. Além disso, esse trabalho busca explorar sua 

aplicação na captura de gases do efeito estufa, incluindo misturas de gases refrigerantes 

comerciais de alto potencial de aquecimento global, bem como misturas de de dióxido de 

carbono (CO2) com amônia (NH3). A abordagem proposta emprega a equação de estado 

soft-SAFT para desenvolver um modelo preciso e transferível, juntamente com técnicas 

de aprendizado de máquina, como redes neurais artificiais treinadas com descritores 

moleculares derivados de análises em nível atômico utilizando COSMO-SAC. Esta 

abordagem abrangente facilita a triagem das propriedades termofísicas dos SEPs, 

fornecendo informações valiosas sobre seu potencial como absorventes alternativos para 

a separação e captura de gases do efeito estufa.    
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Resum 
 

L’escalfament global ha esdevingut un dels problemes més crítics de la ciència moderna, 

afectant profundament la societat i provocant accions legislatives, regulacions i estudis 

científics. La causa principal és l’emissió antropogènica de gasos d’efecte hivernacle 

(GEH), els quals han augmentat significativament en els darrers anys. Les tècniques 

efectives de captura i separació per a la reducció de GEH, com l’absorció basada en 

solvents, són essencials per a contribuir en els esforços de sostenibilitat. En aquest sentit, 

els Solvents Eutèctics Profunds (SEPs) han sorgit com una solució prometedora i 

ecològica per a la captura de gasos a causa de la seva alta capacitat d’absorció, la seva 

rendibilitat, la seva naturalesa no tòxica i la seva biodegradabilitat, presentant-se com una 

alternativa sostenible als solvents convencionals. Comprendre les propietats 

termofísiques dels SEPs és crucial per a la seva aplicació industrial. Donada la diversitat 

de combinacions de compostos que formen SEPs i les condicions industrials variables, el 

nombre de mesures experimentals necessàries per a la seva caracterització resulta enorme. 

Per tant, desenvolupar models computacionals per predir aquestes propietats és crucial. 

Quan es construeixen models predictius, és important considerar la influència dels 

cosolvents com l’aigua sobre les propietats dels SEPs, especialment la viscositat. Així 

doncs, aquesta tesi pretén incorporar diversos marcs teòrics per dilucidar les 

característiques termofísiques dels SEPs i les seves mescles amb cosolvents. A més, busca 

explorar la seva aplicació en la captura de GEH, incloent-hi la separación de mescles de 

gasos refrigerants comercials d’alt potencial d’escalfament global, així com el seu paper 

en la captura de diòxid de carboni (CO2) i separación de l’amoníac (NH3). El marc 

proposat empra l’equació d’estat soft-SAFT per desenvolupar un model precís i 

transferible, juntament amb tècniques d’aprenentatge automàtic com les xarxes neuronals 

artificials entrenades amb descriptors moleculars derivats d’anàlisis a nivell atòmic 

utilitzant COSMO-SAC. Aquest enfocament integral facilita la selecció de les propietats 

termofísiques dels SEPs, proporcionant informació sobre el seu potencial com a 

absorbents alternatius per a la separació i captura de GEH.    
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1 
Introduction 

 

 

In this chapter, a general introduction to the subject of this doctoral thesis is provided. 

The motivation behind this research is discussed, along with the main objectives and 

structure of the document.
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1.1 Motivation 

 

The phenomenon of global warming represents a significant challenge in 

contemporary science, exerting profound societal impacts and driving the implementation 

of new legislation, regulatory frameworks, and extensive scientific research. Its far-

reaching consequences extend beyond environmental degradation, influencing economic 

stability, public health, and global ecosystems. Global surface temperatures have reached 

1.1°C above 1850-1900 levels during the period of 2011-2023 (See Figure 1.1) (Climate 

Change 2023 Synthesis Report: Summary for Policymakers, 2024). 

 

 

Figure 1.1 Global Surface Temperature Change (1880-2023) Relative to 1951-1980 Average (NASA, 
2024). 

 

Research indicates that the primary reason for this increase is the emission of 

greenhouse gases (GHGs). Historically, the most common GHGs have been carbon 

dioxide (CO2), nitrous oxide, methane, and fluorinated gases (F-gases). Human activities 

have raised the atmosphere's CO2 content by 50% in less than 200 years, meaning the 
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amount of CO2 is now 150% of its value in 1750 since the onset of industrial times in the 

18th century, rising from 365 parts per million (ppm) in 2002 to over 420 ppm currently 

(NASA, 2024). Regarding F-gases, predominantly used in refrigeration, despite their 

relatively low emission rates, they have extremely high global warming potentials 

(GWPs), often exceeding thousands of times that of CO2 (Velders et al., 2022). 

As temperatures rise and weather patterns become increasingly erratic, the 

urgency to address this phenomenon intensifies, driving innovations and collaborations 

across scientific disciplines. The multifaceted nature of global warming demands 

comprehensive strategies to mitigate its effects and ensure a sustainable future. 

Among the various strategies to mitigate GHG emissions, solvent-based 

absorption techniques have gained significant attention due to their effectiveness in 

capturing and separating these harmful gases. However, traditional volatile organic 

solvents, particularly amine-based ones, commonly used in CO2 capture, present inherent 

issues including toxicity, thermal instability, and degradation (Aissaoui et al., 2017; 

Harifi-Mood & Sarafrazi, 2023). Therefore, it seems necessary to explore and develop 

cost-effective, efficient, and environmentally sustainable solvents based on green 

chemistry principles for GHG capture. 

Deep Eutectic Solvents (DESs) have emerged as a novel class of solvents mixtures 

that offer several advantages over traditional solvents in gas capture applications. DESs 

are known for their high absorption capacities, cost-effectiveness, ease of preparation and 

potential for non-toxicity and biodegradability. Choline chloride stands out as the most 

commonly used hydrogen bond acceptor in DESs, owing to its alignment with green 

chemistry principles, favorable properties, and affordability. The unique characteristics 

of DESs arise from a robust network of hydrogen bonds between their components, in a 

way that the strength of these bonds directly affects the transition temperature, stability 
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and physicochemical properties of the eutectic mixture (Hansen et al., 2021; Smith et al., 

2014). Their attributes make them a sustainable alternative to conventional solvents, 

aligning with the global drive towards greener and more eco-friendly technologies. 

For large-scale industrial application of DESs, reliable and accurate knowledge of 

their thermophysical properties and behavior under diverse industrial conditions is 

crucial. In addition, an important challenge to address is the impact of cosolvents on DESs 

properties. This is crucial because most DESs exhibit high viscosity at room temperature, 

limiting their industrial usability, and the addition of controlled amounts of cosolvents, 

particularly water, offers a practical solution to reduce viscosity, improving their 

applicability in industrial processes (Gabriele et al., 2019; Vilková et al., 2020).   

Given the numerous combinations of DESs and operational environments, 

depending solely on experimental measurements for such analyses becomes time-

consuming. Therefore, developing computational models for reliably predicting the 

properties of these systems and analyzing their potential applicability in capturing and 

separating GHGs plays a key role to quickly screen diverse options, guiding the 

experimental work towards the most promising systems. 

Among the computational tools available, statistical mechanics-based equations 

of state (EoSs) offer a balanced approach, combining a simplified physical model with 

fast computation, making them highly attractive. The soft-SAFT EoS (as any other SAFT-

based equation) is particularly favored for modelling DESs due to its explicit treatment 

of hydrogen bonding and short-range physical interactions, which are essential for DESs 

formation. Similarly, machine learning methods like Artificial Neural Networks (ANN), 

in conjunction with molecular-level approaches, present promising solutions for 

predicting the complex dynamics within DES systems, particularly when they are 

combined with cosolvents (Alkhatib, I. et al., 2020; Velez & Acevedo, 2022). 
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This thesis addresses the thermophysical modelling of different DESs systems, 

including  their mixtures with cosolvents, and explores their application in GHGs capture 

and separation. By integrating advanced techniques such as the soft-SAFT EoS and 

molecular-based ANNs, this study introduces novel modelling approaches and 

parameterization methodologies aimed at enhancing the predictive and extrapolative 

capabilities of current models, while maintaining or improving overall accuracy. 

 

1.2 General and Specific Objectives 

 
 

This Ph.D. thesis’ overall purpose is to comprehensively investigate the 

physicochemical behavior of Deep Eutectic Solvents (DESs), mostly focused on 

Choline Chloride-based systems, using different computational tools, with a particular 

interest on analyzing their potential applications in greenhouse gases (GHGs) capture 

and separation processes. This includes addressing its main thermophysical properties 

of pure and aqueous DESs, and studying particular industrial challenges, related to the 

recovery of commercial refrigerant high global warming potential (GWP) 

hydrofluorocarbon (HFC) mixtures, as well as the carbon dioxide (CO2) capture and 

separation from ammonia (NH3), originated during the melamine production. This 

research framework encompasses atomic-level analysis using COSMO-SAC combined 

with machine learning techniques, and mesoscale investigation utilizing the soft-SAFT 

Equation of State (EoS). Specific objectives include: 
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Ø Developing two types of soft-SAFT models for Choline-Chloride based DESs: 

one treating the DESs as a single compound, and another one modeling each entity 

independently. 

Ø Modelling the density of pure and aqueous DESs as a function of temperature and 

pressure, considering both previous approaches. 

Ø Modelling the derivative properties for pure DESs, including speed of sound and 

the isentropic compressibility coefficient, using the individual component 

approach. 

Ø Describing the vapor-liquid equilibria and water activity coefficients of aqueous 

DES, treating them as ternary mixtures. 

Ø Modeling the viscosity of pure DES and their mixtures with cosolvents using the 

Free Volume Theory coupled in soft-SAFT. 

Ø Developing an Artificial Neural Network (ANN) using the charge distribution 

profiles of DESs compounds, generated with COSMO-SAC, as molecular 

descriptors to predict the viscosity of DESs and their mixtures with cosolvents. 

Ø Investigating the impact of molecular descriptors as ANN inputs on the viscosity 

of DESs  

Ø Validating the reliability of the developed ANN model by analyzing statistical 

parameters, assessing its applicability domain, and evaluating its predictive 

capability. 

Ø Developing a transferable soft-SAFT model to calculate the solubility of HFCs, 

CO2 and NH3 in DESs, encompassing the determination of enthalpy and entropy 

of dissolution, Henry’s constants, and the ideal selectivity of the DES in specific 

GHG blends. 
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Ø Predicting the competitive selectivity between gases in multi-component mixtures 

based on GHG blends and DESs, proposing a list of best candidates for practical 

operation. 

 

1.3 Thesis Outline 

 

Following this general introduction chapter, which presents the motivation behind 

this work and establishes the basis of this Ph.D. thesis, Chapter 2 guides the reader 

through recent advancements and research in deep eutectic solvents (DESs) and their 

applications, particularly in separation and gas capture processes. This chapter begins 

with the fundamentals of DESs, highlighting their unique properties, with a focus on 

choline chloride ([Ch]Cl)-based DESs and the impact of cosolvents on their performance. 

Since this doctoral thesis is centered on the application of DESs in gas capture, this 

chapter also presents various applications of DESs in this field, emphasizing their use in 

absorbing gases such as CO2, fluorinated gases (F-gases), and ammonia (NH3). 

Additionally, the chapter discusses the modeling tools used to study DESs, with particular 

attention on the soft-SAFT equation of state and artificial neural networks. 

Chapter 3 is devoted to describe the details of the different computations tools 

used along the thesis, ordered by the degree of scale approximation (quantum-molecular, 

coarse-grained or macroscale). First, a general overview of the COSMO-SAC theoretical 

background is provided, along with its practical implementation used in this thesis. Next, 

the physical background for the SAFT Equation of State (EoS) is explained, including the 

specific variant used in this thesis, the soft-SAFT EoS, which is derived from the original 

SAFT. Additionally, the chapter explores the theoretical background of the Free Volume 
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Theory, providing insights into its conceptual framework and applications. The final 

section includes a comprehensive overview of artificial neural networks, detailing their 

structure and the processes involved in their learning algorithms. 

Chapter 4 is the first chapter of the results, where the impact of cosolvents in the 

key thermophysical properties of the [Ch]Cl-based DESs is analyzed. Using the soft-

SAFT Equation of State, a robust coarse-grained molecular model is developed through 

accurate and transferable parametrization. The Free-Volume Theory (FVT), coupled into 

soft-SAFT, is employed to address the viscosity of these systems through the Spider-Web 

optimization approach.  Furthermore, to enhance the study of DESs and overcome some 

of the limitations of FVT, an Artificial Neural Network framework is introduced to 

predict the viscosity in DESs and their mixtures, leveraging molecular parameters derived 

from COSMO-SAC. 

The second chapter of the results, Chapter 5, investigates the selective recovery 

of Greenhouse Gases (GHGs) using DESs. The investigation encompasses two primary 

areas: the separation of commercial refrigerant blends and the recovery of ammonia from 

a mixture containing carbon dioxide from melamine streams. Here, using the soft-SAFT 

EoS, the solubility of a range of GHGs in DESs is examined, which includes determining 

enthalpy and entropy of dissolution, Henry’s constants, as well as ideal selectivity of the 

DES in GHG blends. Additionally, the chapter explores the prediction of the competitive 

selectivity among gases in multi-component mixtures involving GHG blends and DESs, 

providing a selection of the most suitable DESs to carry out the recovery/separation 

process. 

The concluding chapter summarizes the most significant conclusions discussed in 

the preceding chapters and explores potential future directions for this research. 
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             2 
State of the Art 

 

 

The purpose of this chapter is to guide the reader through recent advancements and 

research in DESs and their applications, particularly in separation and gas capture 

processes. It begins with the fundamentals of DESs, highlighting their unique properties, 

with a focus on [Ch]Cl-based DESs and the impact of cosolvents. The chapter then 

explores the applications of DESs in gas separation and capture, particularly CO2, F-

gases, and NH3 absorption. Finally, it discusses modelling tools used to study DESs, 

emphasizing the use of SAFT-based equations of state and Machine Learning approach.
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2.1 Deep Eutectic Solvents (DESs) 

 

2.1.1 Fundamentals of DESs 

 

First reported in 2003 by Abbott et al. (2003), Deep Eutectic Solvents (DESs) are 

considered an emerging class of promising solvents (Chen & Mu, 2021; Hansen et al., 

2021; Paiva et al., 2014; Santana-Mayor et al., 2021). They are eutectic mixtures 

composed of two or more components, which have significant depressions in melting 

points compared to those of the neat constituent components (Smith et al., 2014; Zhang 

et al., 2012). In the solid/liquid equilibria (SLE) diagram of those systems, the eutectic 

point represents the minimum melting temperature along the two intersecting melting 

curves (Gamsjäger et al., 2008). A schematic representation of the resulting SLE diagram 

for a eutectic mixture is shown in Figure 2.1. 

 

 

Figure 2.1. Schematic phase diagram of the melting temperatures for a eutectic mixture formed by two 
components (A and B). Notation: T for temperature and x for mole fraction; sub-index E means equilibrium 
and F means freezing. 
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However, the existence of a eutectic point on a mixture is not enough to define a 

DES, since all mixtures of compounds that are completely or partly immiscible in the 

solid phase present a eutectic point (Martins et al., 2019). Thus, to be characterized as a 

DES, the mixture of pure compounds must have a eutectic point temperature below of an 

ideal liquid mixture (Florindo et al., 2019; Martins et al., 2019). This can be observed by 

analyzing Eq. 1.1, which was proposed by Rowlinson (1970), to describe melting curves 

(assuming pure solid phase and neglecting the temperature influence on the heat 

capacities): 

 

																					ln(𝑥#𝛾#) =
∆*𝐻
𝑅 U

1
𝑇*

−
1
𝑇W +

∆*𝐶+
𝑅 U

𝑇*
𝑇 − 𝑙𝑛

𝑇*
𝑇 − 1W			,  (1.1) 

 

 

 

where 𝑥# is a liquid mole fraction composition and 𝛾# is the activity coefficient of 

compound i, ∆*𝐻 is the melting enthalpy of the pure compound,	∆*𝐶+ is the difference 

between the molar heat capacity of compound i in the liquid and solid phases,	𝑇* is the 

melting temperature, T is the absolute temperature and R is the universal gas constant. 

Particularly, when the equilibrium temperature is not far from the melting temperature of 

the pure compound, the last term of the Eq. 1.1 has an insignificant value when compared 

to melting enthalpy term and so, can be neglected (Alhadid et al., 2019; Coutinho et al., 

1995; Martins et al., 2019): 

 

																					ln(𝑥#𝛾#) =
∆*𝐻
𝑅 U

1
𝑇*

−
1
𝑇W			  (1.2) 
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  In this case, when considering an ideal mixture (𝛾# = 1), the SLE is dominated by 

the melting enthalpy and melting temperature of each compound, as can be seen in Eq. 1.2. 

Thus, the freezing point depression for an ideal eutectic mixture is the result of the 

intersection of two melting curves that are governed by the fusion properties of the pure 

components (Martins et al., 2019). In the case of a real mixture, the DESs present 

significant negative deviations from ideality (∆𝑇 > 0), whose freezing point depression is 

mainly ruled by the forces of interactions between the components of the mixture (Florindo 

et al., 2019; Martins et al., 2019). Consequently, strong interactions between DESs 

components lead to a lower freezing point (Harris, 2009). This phenomenon is illustrated 

in the SLE diagram of a deep eutectic mixture shown in Figure 2.2, where the composition 

range considered a DES lies between 𝑥1 and 𝑥2. 

 
 

 

Figure 2.2. Schematic representation of the comparison of the SLE of an ideal eutectic mixture (blue line) 
and a deep eutectic mixture (green line) by two components (A and B). Notation: T for temperature and x 
for mole fraction; sub-index E means equilibrium, f means freezing and ∆𝑇 is the difference between the 
TE, real and the TE, ideal of the eutectic point. 
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The driving force behind the formation of DESs is the origin of a strong and 

complex network of hydrogen bonds between the compounds, where one acts as a 

hydrogen bond donor (HBD) and the other as a hydrogen bond acceptor (HBA) at certain 

defined stoichiometric proportions, as illustrated in Figure 2.2 (Smith et al., 2014; Yu et 

al., 2022; Zhang et al., 2012). In addition, van der Waals interactions or even occasional 

electrostatic forces are also present in these mixtures (Mbous et al., 2017; Santana-Mayor 

et al., 2021). The molar ratios where the system is considered a DES are those where the 

mixture is in the liquid state at the operating temperature of the system or process (Martins 

et al., 2019).  

 

 

Figure 2.3. Illustration of deep eutectic system preparation, adapted from Sarmento et al. (2024). 

 

DESs can be generally described by the general formula (Smith et al., 2014): 

 

                             Cat+X-zY.      ,  (1.3) 

 

where Cat+ is any cation, and X is a Lewis base, generally a halide anion. The complex 

anionic species are formed between X− and either a Lewis or Brønsted acid Y (z refers to 
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the number of Y molecules that interact with the anion). DESs are classified based on the 

nature of the complexing agent used, as shown in Table 2.1. 

 

Table 2.1.Classification and general formula for DESs, from Smith et al. (2014). 
Type General Formula Terms 
Type I Cat+X-zMClx M = Zn, Sn, Fe, Al, Ga, In 
Type II Cat+X-zMClx.yH2O M = Cr, Co, Cu, Ni, Fe 
Type III Cat+X-zRZ Z = CONH2, COOH, OH 
Type IV MClx + RZ = MClx-1+.RZ + MClx+1- M = Al, Zn and Z = CONH2, OH 

 

 

From these four groups, the most studied correspond to Type III DESs due to their 

ability to solvate a wide range of components. In general, various components can acts 

HBD or HBA in the formation of DESs. Typically,  HBAs include quaternary ammonium 

salts and metal salts; and HBDs include polyalcohols, polyacids, and polyamines (de 

Andrade et al., 2022; Smith et al., 2014; Wang, Jiake et al., 2021). Figure 2.4 summarizes 

typical combinations of HBAs and HBDs used in the formation of DESs commonly 

reported in the literature (Florindo et al., 2019; Hansen et al., 2021; Smith et al., 2014). 

The physical and chemical properties of DESs depend on their individual 

constituents and HBD:HBA ratio, since the vast hydrogen bond network directly affects 

the characteristics of these mixtures (Mbous et al., 2017; Rodríguez et al., 2015; Santana-

Mayor et al., 2021). However, in general, these eutectic mixtures are characterized by 

simple preparation, low volatilization at high temperature, low flammability, selectivity, 

strong and dissolving ability (Mbous et al., 2017; Santana-Mayor et al., 2021; Tomé et 

al., 2018; Zhao et al., 2020). Additionally, DESs offer chemical tunability, enabling 

tailored designs for specific applications through adjustments in the molar ratio and types 

of HBAs and HBDs. This versatility makes them an attractive alternative for a wide range 

of applications, including material synthesis (Carriazo et al., 2012; Hu et al., 2018; Pavlić 
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et al., 2022; Pereira & Andrade, 2017; Valente et al., 2023; Vladić et al., 2023b; Vladić 

et al., 2023c), separation processes (Marcus, 2018; Sarmad et al., 2017; Zhang et al., 

2020; Zhang et al., 2018), nanotechnology (Abo-Hamad et al., 2015; Xu et al., 2016), 

biotechnology  (Gotor-Fernández & Paul, 2019; Li et al., 2016), and pharmaceutical 

processing (Emami & Shayanfar, 2020; Sarmento et al., 2024; Vladić et al., 2023a; Vladić 

et al., 2024), food industry (Gavarić et al., 2023), among others. 

 

 

 

    Figure 2.4. Chemical structures of HBDs and HBAs often used in DES preparation. 
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2.1.2 Choline Chloride-Based DESs 

 

The quaternary ammonium salt choline chloride ([Ch]Cl) is the most widely used 

HBA to prepare DESs, due to its low cost, non-toxicity, biodegradability, 

biocompatibility and economic synthesis (Martins et al., 2019; Smith et al., 2014; Yadav 

et al., 2014). Originating as an essential nutrient, choline chloride can be derived from 

biomass sources and is recognized within the B-complex vitamin group (Yates et al., 

1998), or alternatively synthesized from fossil reserves (Ferreira & Sarraguça, 2024). 

The [Ch]Cl-urea mixture was one of the first studied DES and has become one of 

the prototypical examples of this class of solvents. While both components have high 

melting points ([Ch]Cl = 302 ºC and Urea = 133 ºC), the eutectic mixture of [Ch]Cl:urea 

at a 1:2 molar ratio has reported 12 ºC of melting point and has unusual solvent properties 

(Abbott et al., 2003). Since then,  DESs based on [Ch]Cl have been proposed as green 

solvents for a wide range of applications, such as metal extraction (Abbott et al., 2004), 

phenolic compound extraction from bio-based sources (Alam et al., 2021; Pavlić et al., 

2022), polymer synthesis (Carriazo et al., 2012) and the formation of metal-organic 

frameworks (MOFs) (Hu et al., 2018). Additionally, these DESs hold promise for 

greenhouse gas capture, as discussed further in subsequent sections. 

One of the reasons [Ch]Cl is a preferred component in DESs is due to its well-

known non-toxic properties. Research has shown that DESs containing [Ch]Cl are 

significantly less toxic than many conventional solvents. For example, studies have 

demonstrated that microorganisms such as Escherichia coli can grow in [Ch]Cl-based 

DESs, while they do not survive n more aggressive chemical environments (Alam et al., 

2023). Moreover, [Ch]Cl-based DESs have been tested on aquatic invertebrates like 

Hydra sinensis and found to be non-toxic (Juneidi et al., 2016). These DESs also exhibit 
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high biodegradability, with various formulations, including those with urea, showing 

efficient breakdown in environmental conditions (Juneidi et al., 2015; Radošević et al., 

2015; Wen et al., 2015; Xu et al., 2017). Additionally, [Ch]Cl-based DESs exhibit high 

long-term thermal stability and lower toxicity to bacteria (Marchel et al., 2022). This 

combination of low toxicity and high biodegradability positions [Ch]Cl-based DESs as 

environmentally friendly alternatives for a wide range of applications. 

Another reason behind [Ch]Cl being such a useful quaternary ammonium salt is 

related to the fact it is an asymmetric quaternary ammonium salt with a polar functional 

group, where the asymmetric nature of this molecule reduces the freezing point of the 

ionic molecular liquid, as does the polar functional group (Harris, 2009). 

 Thus, when mixing [Ch]Cl with most hydrogen bond donors (see Figure 2.5), the 

self-association between the HBD and HBA significantly modifies the physical properties 

of the formed DES (by respect of the independent single compounds) becoming more 

attractive for industrial applications. In particular, DESs based in [Ch]Cl have been of 

interest due to their ability to solvate a wide range of transition metal species, including 

chlorides and oxides (Smith et al., 2014). Furthermore, compared to other quaternary 

ammonium salts, DES formed by [Ch]Cl and hydrogen bond donors showed lower 

viscosities and higher conductivities (Harris, 2009). 

 

 
Figure 2.5. Mechanism of interaction of a HBD with the quaternary ammonium salt choline chloride. 
Image taken from Francisco et al. (2013a). 
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2.1.3 Effect of Cosolvents on DESs 

 

Cosolvents play a crucial role in modifying the properties of DESs, offering a 

versatile approach to tailor their characteristics for specific applications. By incorporating 

cosolvents like water and alcohols into DES formulations, their physicochemical 

attributes can be adjusted, enhancing their utility across various industries (El Achkar et 

al., 2019; Gabriele et al., 2019; Li et al., 2022; Ma, C. et al., 2018; Shah & Mjalli, 2014).  

Water, in particular, manifests robust interactions with the hygroscopic 

constituents of DESs, as it can act both as HBA and HBD due to its high polarity (El 

Achkar et al., 2019; Hammond et al., 2017; Ma, C. et al., 2018; Vilková et al., 2020). 

When a small amount of water is added to a DES, the molecules of water mix with DES 

with evidence of a strong interaction without forming water clusters. Further addition of 

water provides the ion dissociation of the DES components, which are gradually hydrated. 

When the water content becomes very high, the DES structures are completely dissociated 

in ions. In this case, depending on the size of the ions of the DES, some of them are fully 

hydrated, while some are partially hydrated. Moreover, a high excess of water can lead to 

the complete disruption of the DES supramolecular structure (Gabriele et al., 2019; Ma, 

C. et al., 2018; Shah & Mjalli, 2014). Despite the common belief that high dilution 

disrupts the hydrogen bond network completely, some studies indicate that DES systems 

can retain certain properties even with significant water dilution (>50% water). 

Furthermore, in some systems, solvated DESs clusters may exist instead of discrete water 

molecules. Thus, water can either strengthen hydrogen bonds or facilitate the formation 

of solvated DESs clusters (Altamash et al., 2017; Aroso et al., 2017; Sarmento et al., 

2024). The general schematic mechanism of the effect of increasing water content for a 

typical DES/water mixture is shown in Figure 2.6.  
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Figure 2.6. The general schematic mechanism for a typical DES/water system with increasing water 
content. Note: the yellow (C+), blue (A-), purple (Y), and red ones represent cation, anion, HBD, and water, 
respectively. Image adapted from Ma, C. et al. (2018). 

  

The physicochemical properties of a DES/cosolvent system are a macroscopic 

manifestation of the microscopic interactions between them (Ma, C. et al., 2018). 

Thereby, the gradual changes of the DES supramolecular structure during dilution 

probably affect the thermodynamic properties of these eutectic mixtures, which can then 

be tailored by controlling the amount of added cosolvent (Gabriele et al., 2019; Ma, C. et 

al., 2018; Shah & Mjalli, 2014; Vilková et al., 2020; Yadav et al., 2014). For example, 

the addition of water (or any other cosolvent) to the DES can tailor its polarity to favor 

the extraction of polar over weakly polar compounds in specific applications (Dai et al., 

2014; Dai et al., 2015; Farooq et al., 2020; Vilková et al., 2020) or modify the polarity of 

reaction media (Harifi‐Mood & Sadrzadeh, 2018) 

The effect of cosolvents on the thermodynamic properties such as density and 

viscosity of DESs has been reported in the literature, including DESs based in [Ch]Cl 

(Florindo et al., 2014; Wang et al., 2020; Yadav et al., 2015; Yadav & Pandey, 2014; 

Yadav et al., 2014). The presence of  cosolvents weakens the hydrogen bonding network 

between DESs molecules, resulting in the decrease of the density and viscosity of these 

eutectic mixtures (Gabriele et al., 2019; Ma, C. et al., 2018; Shah & Mjalli, 2014; Vilková 

et al., 2020).  
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 In general, the impact of the addition of a cosolvent in density is not very severe, 

as most DESs exhibit densities only slightly higher than water (El Achkar et al., 2019; Li 

et al., 2022). However, in terms of viscosity, most pure DESs have high viscosities at 

room temperature, mainly due to the hydrogen bond network between their molecules (El 

Achkar et al., 2019). These high viscosities may hinder their practical applications for 

different industrial processes (Gabriele et al., 2019; Li et al., 2022). Consequently, the 

use of water or alcohols, for example, with DESs as a cosolvent, may lead to a good 

alternative to overcome this obstacle, since the viscosity decreases significantly when a 

cosolvent is added to the system (El Achkar et al., 2019; Gabriele et al., 2019; Li et al., 

2022; Ma, C. et al., 2018; Shah & Mjalli, 2014).  

To mention some examples of interest, Yadav and Pandey (2014) showed that a 

mere 2.25% weight of water added to [Ch]Cl: Urea (1:2) DES induced a significant 

33.27% viscosity reduction (from 1003.94 to 669.90 mPa·s at 293.15K and 0.1MPa). 

Additionally, Aravena et al. (2022) showed that the addition of 20% weight of water on 

the [Ch]Cl + Urea DES produces a significant increase of the surface tension and decrease 

of density and viscosity, resulting in a CO2 absorption improvement and converting this 

DES in a potential alternative to conventional alkanolamine absorbents for use in carbon 

capture. Similarly, Xie et al. (2014) demonstrated that the addition of water to [Ch]Cl + 

Urea diminishes its viscosity, once again facilitating its application in CO2 separation 

processes  (Ma, Chunyan et al., 2018).  

Moreover, Zhang et al. (2022) observed that adding 70 wt% water to 

[Ch]Cl:Monoethanolamine(MEA) DES (1:6) decreased viscosity to 6% of pure DES, 

significantly improving CO2 absorption. Zhang et al. (2023) improved CO2 solubility in 

[Ch]Cl: Diethylenetriamine (1:5) DES with 25 wt% water, which also reduced the 
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viscosity of the DES. Dai et al. (2015) and Vilková et al. (2020) also noted viscosity 

reductions with water addition in DESs, enhancing extraction efficiency. 

Beyond water, methanol and ethanol have been effective cosolvents in reducing 

DES viscosity. Wang et al. (2020) explored the impact of methanol addition to [Ch]Cl-

based DESs containing glycerol and ethylene glycol, while Haghbakhsh et al. (2021a) 

investigated the effects of ethanol on viscosity in [Ch]Cl : Ethylene glycol (1:2) DES. 

Both studies demonstrate that increasing alcohol concentrations can dramatically change 

the viscosities of the DESs mixture. For instance, adding just 3.18% weight of methanol 

in  [Ch]Cl: Glycerol (1:2) DES can induce a significant 41.42% viscosity reduction (from 

516.05 to 302.30 mPa·s at 292.15K and 0.1MPa) (Wang et al., 2020). 

Thus, it is evident that cosolvents like water or alcohols can significantly influence 

the properties of DESs, primarily by reducing their viscosity. This reduction is highly 

beneficial for enhancing its suitability, while preserving the structure of DESs. Therefore, 

incorporating an environmentally friendly and adequate cosolvent in controlled amounts 

can be a simple and practical way to modify and improve the properties of DESs for 

specific applications (El Achkar et al., 2019; Gabriele et al., 2019; Li et al., 2022; Ma, C. 

et al., 2018; Shah & Mjalli, 2014).  

 

2.2 Applications of DESs in Separation and Gas Capture 

 

The exploration and application of DESs in various fields have garnered 

significant attention due to their unique properties. Among the most promising areas of 

DESs utilization are separation processes and gas capture technologies. These solvents 

enable the selective extraction and separation of diverse compounds, offering a 

sustainable and efficient alternative to traditional solvents. Moreover, the ability of DESs 
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to facilitate gas capture, particularly CO2 and other greenhouse gases, highlights their 

potential in addressing environmental challenges and contributing to cleaner industrial 

processes. This section investigates the innovative applications of DESs, including 

[Ch]Cl-based DESs and other variants, in capture of CO2, F-gases and NH3, showing their 

effectiveness and versatility in this important field. The DESs discussed in  the subsequent 

subsections are summarized in Table 2.2, detailing the gases they have been applied to 

capture and the references of the work, with further details provided in the sections below. 

 

 
 Table 2.2. Summary of the DESs applied as gas absorbents detailed in this section. 

 DES Gas absorbed References 

[Ch]Cl : UR (1:2) CO2 (García et al., 2015; Li et al., 2008) 

[Ch]Cl : LA (1:2) CO2 (Francisco et al., 2013b) 

[Ch]Cl: MEA (1:8) CO2 (Adeyemi et al., 2017b) 

[Ch]Cl : GC (1:3, 1:4, 1:5) CO2 (Liu et al., 2017)  

[Ch]Cl : MEA (1:6, 1:8, 1:10) CO2 (Adeyemi et al., 2017a) 

[Ch]Cl : MEA (1:5) CO2 (Li et al., 2019) 

[Ch]Cl : LevA (1:2, 1:3) CO2 (Aboshatta & Magueijo, 2021) 

[Ch]Cl : DETA:H20 (1:5:2) CO2 (Zhang et al., 2023) 

TMAC : MEA (1:5) CO2 (Li et al., 2019) 

DH : GC (1:3, 1:4, 1:5) CO2 (Liu et al., 2017) 

TBD : EG (1:1, 1:4) CO2 (García-Argüelles et al., 2017) 

DBU : EG (1:1, 1:4) CO2 (García-Argüelles et al., 2017) 

DBN : EU (1:2) CO2 (Jiang, B. et al., 2019) 

[Ch]Cl : EG (1:3) F-gases (R-32, R-125, R-143a, R-134a) (Codera et al., 2023) 

[Ch]Cl : GL (1:3) + 10wt% H2O F-gases (R-32, R-125, R-143a, R-134a) (Codera et al., 2023) 

[N4444][C4F9SO3] : C4F9CO2H  F-gases (R-32, R-125, R-134a) (Castro et al., 2020) 

[Ch]Cl : Xylose (1:1, 1.5:1, 2:1) NH3 (Li et al., 2020) 

[Ch]Cl : Ribose (1.5:1) NH3 (Li et al., 2020) 

[Ch]Cl : Frutose (1.5:1) NH3 (Li et al., 2020) 

EaCl : GL (1:2) NH3 (Jiang, W.-J. et al., 2019) 

[ImH]Cl : GL (1:2) NH3 (Ma et al., 2021) 

LiCl : EG (1:3) NH3 (Li et al., 2021) 

 



                                                                                             CHAPTER 2. State of the Art 

 

 26 

2.2.1 CO2 Capture using DESs 

 

Managing CO2 emissions is crucial for environmental sustainability. Chemical 

absorption, primarily using amine-based methods, has been a leading technology for CO2 

capture for over 70 years (García et al., 2015). Despite its widespread use, this technology 

faces significant challenges, including solvent degradation, high costs, and substantial 

corrosion rates. Addressing these limitations, DESs have been seen as a promising 

alternative for CO2 capture, with extensive focus on their CO2 solubility in the literature 

(García et al., 2015; Oke, 2024; Warrag et al., 2017; Zhang et al., 2018; Zhang, Y. et al., 

2024). 

Beginning with [Ch]Cl-based DESs, Li et al. (2008) investigated the solubility of 

CO2 in these DESs, formed with urea at various proportions, pressures, and temperatures, 

revealing a significant influence of the [Ch]Cl : urea (UR) molar ratio on CO2 solubility. 

Notably, the DES composed of [Ch]Cl : UR (1:2) displayed outstanding performance, 

with a measured CO2 uptake of 3.559 mol kg−1 at 303.15 K and 60 bar (García et al., 

2015). Francisco et al. (2013b) also employed [Ch]Cl-based DESs, coupled with lactic 

acid (LA) in a 1:2 ratio, which revealed similar trends in phase behavior compared with 

other choline-based solvents. Adeyemi et al. (2017b) demonstrated that [Ch]Cl :  

Monoethanolamine (MEA) DES (1:8) has 265% higher CO2 solubility than 30 wt% MEA 

solution.  

Investigations by Liu et al. (2017) and Adeyemi et al. (2017a) highlighted the 

impact of molar ratios on CO2 solubility in various amine-based DESs, showing that 

higher ratios, such as 1:3 to 1:5 for [Ch]Cl : Guaiacol (GC) DES and diethylamine 

hydrochloride (DH) : GC DES, or 1:6 to 1:10 for [Ch]Cl : MEA DES, enhanced CO2 

absorption. Li et al. (2019) also explored different amine-based DESs for CO2 absorption, 
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using ammonium-based salts as HBAs and a variety of amines as HBDs. They observed 

that the molar ratio of [Ch]Cl-based DESs significantly affected CO2 solubility, with 

[Ch]Cl and tetramethylammonium chloride (TMAC) showing similar performance due 

to their similar chemical structures. Further investigations noticed that the addition of 

inorganic salts altered CO2 absorption capacity of the DESs, with NiCl2, FeCl3, CoCl2 

showing minimal impact and ZnCl2, LiCl, or NH4Cl enhancing absorption.  

Aboshatta and Magueijo (2021)  explored [Ch]Cl : levulinic acid (LevA) DESs 

for CO2 absorption, highlighting their temperature and pressure-dependent absorption 

capacities. They demonstrated excellent recyclability, maintaining stable performance 

over five consecutive cycles of CO2 absorption at 298 K and desorption at 353 K, with a 

moderate selectivity favoring CO2 over N2.  Zhang et al. (2023) employed a novel DES 

based on [Ch]Cl : diethylenetriamine (DETA) : H20 (1:5:2) with high CO2 absorption 

capacity, up to 0.250 gCO2/gDES, employing a rotor-stator reactor for enhanced CO2 

absorption efficiency and mass transfer. 

Using other variants of DESs, additional contributions by García-Argüelles et al. 

(2017) and Jiang, B. et al. (2019) explored DESs based on superbases (compounds with 

a high protonic affinity) for CO2 absorption. García-Argüelles et al. (2017) found that 

DESs composed of 1,5,7-triazabicyclo[4.4.0]-dec-5-ene (TBD) and ethylene glycol (EG) 

exhibited superior performance compared to those based on 1,8-

diazabicyclo[5.4.0]undec-7-ene (DBU). Jiang, B. et al. (2019) discovered that 1,5-

diazabicyclo[4.3.0]-non-5-ene (DBN) : 2-imidazolidone (EU) (1:2) DES showed 

improved CO2 absorption with decreased DBN ratios, highlighting the significance of 

choosing a right proportion.  

Fu et al. (2021) proposed a novel CO2  absorption mechanism, emphasizing the 

role of superbases based-DES ionicity and viscosity, where system was further refined to 
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enhance CO2 absorption by increasing the HBA to HBD ratio, improving ionicity and 

reducing DESs viscosity. For instance, a recent finding by Qin et al. (2024) revealed a 

strong correlation between DESs basicity/acidity and CO2 capture efficiency, suggesting 

that as the basicity/acidity of DESs increases, so does its efficiency in CO2 solubility, 

providing valuable insights into enhancing CO2 capture processes. 

 

2.2.2 Fluorinated Refrigerants Gas Absorption in DESs 

 

Fluorinated gases (F-gases), predominantly used in refrigeration, have extremely 

high global warming potentials (GWPs), often exceeding thousands of times that of CO2, 

despite their relatively low emission rates (Velders et al., 2022). These gases are present 

in mixtures within refrigeration equipment, and they need to be recovered separately to 

enable the reuse of those with lower GWP (Castro et al., 2021; Sheldon & Crimmin, 2022)

. Among techniques involved in the recovery of F-gases, absorption into ionic liquids 

(ILs) and deep eutectic solvents (DESs) has raised as a promising alternative. The 

application of ILs to the absorption process is widely spread on literature (Asensio-

Delgado et al., 2021; Han & Row, 2010; Lei et al., 2014; Vega et al., 2010), while DESs 

have been studied in a more limited way, with an important increase over the past years 

(Castro et al., 2020; Codera et al., 2023; Demirbek et al., 2024; Jovell et al., 2020). 

For the case of F-gases, the addition of fluorine atoms to either the HBA or HBD 

is believed to significantly enhance the solubility capacity of DESs. This inference is 

based on previous research on fluorinated ionic liquids (FILs), which have shown to 

present three nano-segregated domains (fluorinated, nonpolar, and polar), providing 

unique properties and increasing solubility power, with promising results for F-gas 

solubility (Lepre et al., 2019a; Lepre et al., 2019b; Shiflett & Yokozeki, 2008). In that 
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direction, Castro et al. (2020) employed DESs derived from FILs and combined with 

perfluorinated acids, such as [N4444][C4F9SO3] : C4F9CO2H. These fluorinated DESs were 

used to study the absorption of three common F-gases used in refrigeration (R-32, R-125, 

and R-134a) at temperatures between 303.15 and 323.15 K and pressures up to 1 MPa. 

The results indicated that R-134a exhibited the highest solubility across all tested DES 

combinations, with R-134a and R-125 in fluorinated DESs showing similar solubility to 

that observed in FILs. The results showed that it was possible to achieve elevated 

solubility at low-pressure conditions. However, the choice of cation-anion pairing in the 

salt and fluorinated acid, as well as their relative proportions, exerted a considerable 

influence on the final capacity of each solvent. This factor played a pivotal role in 

determining the most appropriate DESs for specific separation scenarios. Additionally, 

Demirbek et al. (2024) employed a soft-SAFT Equation of State to model these 

compounds and estimate selectivity. Their predictions affirmed that while these DESs 

show high solubility for F-gases, they do not effectively differentiate between gases. 

Concerning the use of [Ch]Cl non-fluorinated DESs, Codera et al. (2023) studied 

the solubility of refrigerants 1,1,1,2-tetrafluoroethane (R-134a), difluoromethane (R-32), 

pentafluoroethane (R-125), and 1,1,1-trifluoroethane (R-143a) in various [Ch]Cl-based 

DESs, with ethylene glycol (EG) and glycerol (GL) as HBDs. The results found that R-

32 exhibited the highest solubility among all tested DES combinations. However, overall 

solubility in these DES was low. However, remarkable differences between the F-gases 

were found, providing a promising ideal selectivity for the separation of binary mixtures 

containing the studied gases.  
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2.2.3 NH3 Absorption in DESs 

 

Ammonia (NH3) is an alkaline gas with pungent odor, primarily emitted from 

ammonia and urea synthesis processes. Its emission has led to serious environmental 

problems. However, this gas is also an important chemical material in the fields of 

fertilizers and refrigeration (Shao et al., 2024; Zhong et al., 2019). Therefore, efficient 

capture and recycling of NH3 from industrial exhaust gas are crucial for environmental 

and economic benefits. 

Over the past few years, DESs have been recognized as a promising NH3 

absorbent (Chen et al., 2020; Shao et al., 2024; Zhang, J. et al., 2024; Zhong et al., 2019). 

Regarding [Ch]Cl-based DESs, Li et al. (2020) prepared sugar-based DESs by combining 

[Ch]Cl with natural sugars like fructose, ribose, and xylose. Their NH3 absorption 

experiments at 333.2 K and 18.0 kPa showed that [Ch]Cl + fructose DESs had the highest 

NH3 capacity (1.86 mol/kg) due to the numerous hydroxyl sites in fructose, despite their 

high viscosities limit mass and heat transfer. 

 Jiang, W.-J. et al. (2019) tested NH3 absorption in DESs based on weakly acidic 

ethylamine hydrochloride (EaCl) with glycerol (GL). These DESs showed NH3 capacities 

of 9.63 mol/kg at 298.2 K and 106.7 kPa, indicating strong interactions between the DES 

and NH3. Ma et al. (2021) prepared DESs using imidazolium hydrochloride ([ImH]Cl) 

with GL, achieving NH3 capacities of 12.934 mol/kg at 298.2 K and 101.3 kPa, and 

exhibiting good recycling performance. Li et al. (2021) combined lithium chloride (LiCl) 

with ethylene glycol (EG), which demonstrated NH3 capacities of 12.82 mol/kg at 303.2 

K and 101.3 kPa. The high NH3 capacities in this DES are due to Lewis acid-base (Li+ 

and NH3) and hydrogen-bond donor-acceptor (OH and NH3) interactions.  
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In general, the hydroxyl and amide groups exhibit significant NH3 trapping 

capabilities (Duan et al., 2019). At present, quaternary ammonium salts, amines, azoles, 

and halides are commonly employed as HBAs to synthesize DESs for NH3 absorption 

(Wang et al., 2024). 

 

2.3 Modelling Tools for DESs 

 

For the large-scale industrial application of DESs, it is crucial to have reliable 

knowledge of their thermophysical properties. This information is necessary for 

accurately simulating and designing new processes, optimizing existing ones, and 

conducting reliable economic evaluations under various working conditions and 

configurations (Alkhatib, I. et al., 2020; Crespo et al., 2019). However, the vast number 

of possible DESs, created from numerous combinations of HBAs and HBDs, along with 

the diverse conditions like temperature, pressure, and potential cosolvent addition, makes 

the experimental determination of these properties a cumbersome task  (Dietz et al., 2019; 

Haghbakhsh et al., 2021c; Zuo et al., 2021).  

This challenge can be addressed through the development of modelling 

approaches capable of capturing properties of DESs at the molecular level and their 

formation, in addition to predicting their properties, even under industrially relevant 

conditions (Alkhatib, I. et al., 2020; Haghbakhsh et al., 2021c). This would facilitate a 

pre-screen of properties for many DESs combinations, reducing the amount of 

experimental work, which will be always necessary to get accurate values.  

Nonetheless, modelling DESs is quite difficult owing to their highly non-ideal 

behavior due to the asymmetry of their components and the complexity of the formed 

hydrogen bond networks (Florindo et al., 2019; Zuo et al., 2021). Towards the 
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development of such a modelling approach, several techniques have emerged as valuable 

tools for modelling DESs over the past few years (see Figure 2.7). These modelling 

techniques can be classified into four broad categories namely, empirical models, 

classical thermodynamics, statistical thermodynamics, and quantum chemistry-based 

models. 

 

 

Figure 2.7. Schematic breakdown of categories and types of theoretical models towards modelling DESs, 
according to SCOPUS (May 29th, 2024). These values represent a total of 484 contributions since 2011. 

 

 

These computational techniques vary in their complexity, robustness, prediction 

capabilities, accuracy, and transferability of parameters for modelling DESs, depending 

on the degree of rigor in their theoretical formulation (Alkhatib, I. et al., 2020). The 

advantages and disadvantages of each computational technique for modelling DESs are 

listed in Table 2.3. 
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Table 2.3. Advantages and disadvantages of some modelling techniques usually used for the 
thermodynamic characterization of pure DESs and their multicomponent mixtures, adapted from Alkhatib, 
I. et al. (2020). 

 

 

Regarding correlations, various empirical linear and non-linear regression models 

have been used to correlate a wide range of physicochemical properties of pure DESs and 

their mixtures. For instance, Lapeña et al. (2019) found a linear dependence on 

temperature for thermophysical properties of [Ch]Cl : EG and its mixtures with water, 

including density, speed of sound, refractive index, heat capacity, and surface tension. 

Moghimi and Roosta (2019) developed non-linear regression models to capture the 

Thermodynamic models 
Advantages Disadvantages 

Class Type 

Empirical 
models 

Correlations 
Ø Easy and simplicity of 

implementation 

Ø Large experimental database for 
fitting 

Ø No physical meaning of 
parameters 

Machine 
Learning 

Ø High prediction 
accuracy and efficient 
as an ad-hoc model 

Ø Large experimental database for 
fitting needed for high accuracy 

Ø Remains a sophisticated 
correlation  

Classical 
thermodynamic 

Group 
contribution Ø Purely predictive 

Ø Large experimental database for 
fitting the group parameters  

Ø Used in conjunction with other 
models 

Classical 
equation of state 

Ø Simple and available 
in all engineering 
simulators 

Ø Need of critical points 
information 

Ø Only applicable to phase 
equilibria calculations 

Activity 
coefficient 

Ø Accurate for phase 
equilibria calculations 

Ø Large number of fitted 
parameters 

Ø Only applicable to phase 
equilibria calculations 

Statistical 
thermodynamics 

Molecular 
equation of state 

Ø Explicit 
representation of 
complex molecular 
interactions 

Ø Transferability of 
molecular parameters 

Ø Moderate number of fitted 
parameters 

Ø Moderate transferability of binary 
parameters using individual-
component approach 

Molecular 
simulations 

Ø Predictive and 
molecular insight 

Ø High computational time 
Ø Need accurate force fields 

Quantum 
chemistry 

COSMO  
models 

Ø Purely predictive and 
molecular insight 

Ø Qualitative agreement 
Ø High computational time 
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temperature and mixture composition effects on density, refractive index, and viscosity 

of an aqueous DESs ([Ch]Cl + glucose). However, despite their simplicity, these models 

face limitations in terms of accuracy, robustness, and parameter transferability for process 

design and simulation applications. 

Concerning modelling techniques using concepts drawn from classical 

thermodynamics, group contribution methods have been used for predicting 

physicochemical properties of DESs based on their chemical composition, estimating, for 

example, critical properties and acentric factors by evaluating components and mixtures 

using appropriate mixing rules (Mirza et al., 2015). The obtained properties can be used 

in other modelling techniques, for example, Roosta et al. (2023) combined a group 

contribution method with machine learning (ML) techniques to predict the viscosities of 

305 DESs using 2533 data points. Despite their utility, verifying predictive accuracy is 

challenging due to limited experimental data like critical properties and acentric factors. 

Classical Equations of State (EoS), such as cubic equations like the Peng-

Robinson (PR) EoS (1976), offer a straightforward and comprehensive approach to 

characterize the thermodynamic properties of pure DESs and their mixtures, including 

phase equilibria. For instance, Ainai et al. (2024) utilized the PR EoS to model CO2 

solubility in various DESs based on phosphonium and ammonium with EG, adjusting 

binary interaction parameters for each DES + CO2 mixture at different temperatures to 

match experimental data accurately. However, EoS modelling techniques are limited 

because of the absence of any explicit consideration of the formation of hydrogen bond 

networks found in DESs. 

Among other classical thermodynamic models, activity coefficient models such 

as excess Gibbs energy models are highly representative of complex mixtures like those 

found in DESs (Kontogeorgis & Folas, 2010). The nonrandom two-liquid model (NRTL) 
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(1968), a popular formulation of excess Gibbs energy models, is commonly used to 

predict phase equilibria and solubility in DESs. For example, Crespo et al. (2017) used 

NRTL to model the SLE phase behaviour governing the formation of various [Ch]Cl-

based DESs with fatty acids and alcohols, accurately obtaining the composition and 

temperature at the eutectic point. However, these models have limited predictive 

capabilities, relying on numerous adjustable parameters and extensive thermodynamic 

data for accurate correlations. They are primarily used for phase equilibria calculations 

and lack demonstrated applications in predicting physicochemical properties essential for 

process simulation and design. 

Regarding molecular simulations, these techniques based on statistical mechanics 

consider molecular structure and interactions, enabling the prediction of phase equilibria 

and physicochemical, dynamic, and structural properties of pure DESs and their mixtures 

(Frenkel & Smit, 2002; Wagle et al., 2017). For example, Doherty and Acevedo (2018) 

developed a comprehensive, transferable set of parameters for [Ch]Cl-based DESs using 

a nonpolarizable force-field (OPLS-DES), accurately predicting various physical 

properties. Salehi et al. (2019) also used OPLS-DES to predict vapor phase composition, 

enthalpy of vaporization, and solubility parameters of several [Ch]Cl-based DESs. 

Although computationally intensive, simulation methods provide valuable molecular-

level insights into structural, energetic, and dynamic properties, aiding in the rational 

design of novel materials and the enhancement of thermodynamic models. 

In addition to these methods, The Conductor like Screening Model (COSMO), 

introduced by Klamt and Schüürmann (1993), integrate quantum chemistry and 

electrostatics with statistical thermodynamics, linking molecular-level quantum 

chemistry to chemical engineering thermodynamics. This approach has been applied as a 

predictive tool to design and characterize DESs. For instance, the SLE behaviour and 
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eutectic point governing the formation of several [Ch]Cl-based DESs have been predicted 

to determine the adequacy of several HBAs for the formation of potential DESs 

(Abranches et al., 2019; Fernandez et al., 2017). Despite its advantages, the approach 

COSMO only provides qualitative agreement with experimental data and is 

computationally expensive. However, it remains valuable for understanding system 

behavior and developing screening tools for characterizing un-synthesized DESs and 

evaluating their industrial potential. 

After evaluating various computational techniques for modelling DESs, this thesis 

now centers on two specific methods employed in this study. The following sections delve 

into the application of a Molecular EoS (soft-SAFT) and a Machine Learning Technique 

(Artificial Neural Network) for modelling DESs, each offering unique advantages and 

challenges that contribute to an enhanced understanding and prediction of DES behavior 

across diverse conditions. 

 

2.3.1 Soft-SAFT Equation of State 

 

 

Molecular-based EoSs are highly suitable for robust and efficient process 

simulation and design of DESs, due to their accurate prediction of complex fluid behavior 

under extreme conditions using a set of transferable molecular parameters (Alkhatib, I. et 

al., 2020; Pedrosa et al., 2005). In this regard, the soft-SAFT EoS (Blas & Vega, 1997) is 

an attractive framework for reliable estimates of the physicochemical behavior of 

complex mixtures, like DESs, due the hydrogen bonding and other association effects that 

can be explicitly considered in the model. Indeed, this equation has been successfully 

employed to describe the thermophysical properties of IL  (Alkhatib, I. I. I. et al., 2020a; 
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Andreu & Vega, 2007; Llovell et al., 2015; Oliveira et al., 2016; Vega & Llovell, 2016) 

and DESs (Alkhatib, I. I. I. et al., 2020a; Crespo et al., 2019; Lloret et al., 2017; Ojeda & 

Llovell, 2018), among many other systems. 

 Lloret et al. (2017) were the first to apply the soft-SAFT EoS for modelling DESs, 

describing the density, surface tension, viscosity and CO2 solubility of several 

tetraalkylammonium chloride based DESs. In their work, DESs were modeled using two 

approaches: one treated the DESs as a pseudo-pure compound and the other described 

them as a mixture of two independent constituents. In general, a very good description of 

the investigated properties were found using both approaches, although the individual-

component modelling approach provided a more realistic and physically consistent 

methodology towards modelling DESs.  

Ojeda and Llovell (2018) used the individual-component approach via soft-SAFT 

to model various eutectic ammonium chloride and bromide salt-based DESs, accurately 

describing their densities and CO2 and SO2 solubility. COSMO-RS (COSMO - for 

Realistic Solvents) software was used to estimate the number of association sites for each 

molecule by determining the charge density of the DESs components. 

Similarly, DESs based in [Ch]Cl  and tetra-alkyl ammonium chlorides/bromides 

were modeled by Alkhatib, I. I. I. et al. (2020a), as a mixture of two independent 

constituents.  They examined the potentiality of DESs for CO2 capture using soft-SAFT 

as a modelling tool for the screening of these solvents based on key process indicators, 

such as cyclic working capacity, enthalpy of desorption, and CO2 diffusion coefficients. 

Once the models were assessed versus experimental data, the soft-SAFT EoS was used 

as an accurate predictive tool to calculate the thermophysical properties needed for 

evaluating their performance. 
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 Crespo et al. (2019) employed soft-SAFT, relying on molecular simulations and 

ab initio calculations to develop a more accurate and robust coarse-grain model for [Ch]Cl 

with five association sites, being representative of the tendencies of this salt to form 

highly-complex hydrogen bonds. The developed model was robust and accurate in 

modelling SLE behaviour of mixtures of [Ch]Cl and other substances such as water, 

glycols, phenols and glycerol, and their densities, with the use of binary energy interaction 

parameters fitted to the available SLE data.  

Jovell et al. (2020) used soft-SAFT for a thermodynamic characterization of 

R134a solubility in various FILs and DESs. Similarly, as mentioned before,  Demirbek et 

al. (2024) applied soft-SAFT to model the solubility of three F-gases (R-134a, R-32, and 

R-125) in five DESs derived from fluorinated salts and perfluorinated acids at different 

temperatures. Both studies developed accurate molecular models using the individual-

component approach, showing good agreement with experimental data. 

Overall, these works demonstrate that applying soft-SAFT EoSs for modelling 

DESs provides extensive chemical information in an accurate and transferable manner, 

especially using the individual-component modelling approach. This method offers high 

predictive capabilities, making it suitable for process design and simulation. The 

theoretical fundamentals of the soft-SAFT EoS are explained in Chapter 3. 

 

2.3.2 Artificial Neural Network Approach 

 

 

 Machine learning (ML) techniques are increasingly suitable for the robust and 

efficient prediction of thermophysical properties of complex mixtures, as they can model 

non-linear relationships and handle large datasets with high accuracy. Among these 
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techniques, Artificial Neural Networks (ANNs) emerge as a powerful tool for modelling 

complex procedures, because they can capture intricate patterns in a provided database, 

utilizing experimental information during the learning process to accurately predict 

system outcomes (Khandelwal & Singh, 2009).  

 The accuracy of ANNs hinges not only on optimizing the network architecture but 

also on selecting precise input descriptors that effectively represent the molecular 

characteristics involved. In this context, several contributions in the literature have 

demonstrated the elevated accuracy achieved by molecular-based ANNs models in 

predicting the physicochemical properties of DESs (Adeyemi et al., 2018; Bagh et al., 

2013; Benguerba et al., 2019; Boublia et al., 2022; Lemaoui et al., 2022). For instance, 

Bagh et al. (2013) and Adeyemi et al. (2018) utilized of DES components as input 

variables, while Benguerba et al. (2019), Boublia et al. (2022) and Lemaoui et al. (2022)   

employed information from the charge density distributions (σ-profile) obtained from 

COSMO-RS as input parameters to ANN. The σ-profile descriptors are derived from the 

integral area under their curve, which quantifies the total charge of the molecule, serving 

as a robust molecular descriptor. This approach have been used as input parameters in 

machine learning models to obtain highly accurate predictions of various properties of 

DESs, such as density (Lemaoui et al., 2020b), thermal conductivity (Lemaoui et al., 

2023), pH (Lemaoui et al., 2021), surface tension (Lemaoui et al., 2022), CO2 solubility 

(Wang, Jingwen et al., 2021), electrical conductivity (Boublia et al., 2022; Lemaoui et 

al., 2020a) viscosity (Benguerba et al., 2019) and extraction efficiency of contaminants 

from aqueous media (Awaja et al., 2023). 

  For example, Benguerba et al. (2019) developed an ANN model using COSMO-

RS-based σ-profiles as molecular parameter inputs to predict the viscosity of five amine-

based DESs. They employed a dataset containing 108 experimental data, achieving R2 
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values of 0.9975 and 0.9863 for the training and validation steps, respectively. Similarly,    

Lemaoui et al. (2022) applied this methodology to predict the surface tension of 133 

different DESs mixtures, utilizing a dataset comprising 1571 data points. The resulting 

ANN model demonstrated excellent performance, achieving R² values of 0.986 and 0.977 

for training and testing, respectively, with an overall average absolute relative deviation 

of 2.20%. 

  In summary, ANNs can effectively model intricate patterns and correlations that 

may be challenging for traditional techniques to capture, even though they may lack a 

formal theoretical connection. Therefore, utilizing molecular-based descriptors as inputs 

in ANN development is crucial, as these descriptors provide essential molecular 

characteristics, ensuring accurate predictions of specific physicochemical properties. 

Further elaboration on the theoretical basis of ANNs is provided in the next Chapter. 
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              3 
Theoretical Background 

 

 

This chapter outlines the various approaches employed throughout this thesis. The 

different scalar approaches presented in this work include quantum-based scales (such 

as COSMO-SAC) and mesoscale methods (such as soft-SAFT EoS). Furthermore, an 

empirical model based on Machine Learning techniques, specifically Artificial Neural 

Networks, is introduced. Together, this information can describe the main thermophysical 

properties of the DES and guide the application and design of industrial processes under 

a wide range of operating conditions.
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3.1 Chemical and Structural Modelling Methods 

 

The analysis of the different chemical and structural characteristics of a fluid can 

be studied at different scales (see Figure 3.1), depending on the degree of detail required. 

These approaches have varying levels of resolution and complexity to study a system. 

They can be used together in multiscale simulations, where one might be able to strike a 

balance between accuracy (which favors using more detailed and microscopic models) 

and feasibility (which favors using less detailed, more macroscopic models). The 

combination of these perspectives aims to find a good balance between precision and 

efficiency. In this section, we will outline the approaches used in this thesis at two 

different scales: quantum and mesoscopic. 

 

 

Figure 3.1. Schematic diagram of multiscale simulation. 
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3.1.1 Quantum-Based Methods: COSMO-SAC 

 

The Conductor like Screening Model (COSMO), introduced by Klamt and 

Schüürmann (1993), is a dielectric solvation model that can predict the activity 

coefficients (𝛾#) and other thermophysical properties of chemical species in a 

multicomponent mixture, by using reults from computational chemistry. The essential 

requirement for determining 𝛾# involves understanding the shielding effect experienced 

by a molecule within a conductor. When a molecule is situated inside a cavity within a 

perfect conductor, the electric field must equate to zero. To achieve this, an induced 

charge appears on the surface of the cavity, canceling out the charge induced by the 

molecule in that region. The COSMO-SAC (COSMO - Segment Activity Coefficient) 

model, developed by Lin and Sandler (2002), discretizes molecules into charge segments 

and computes interactions between these segments using statistical thermodynamics and 

quantum mechanics theories, which gives the model its strong predictive capability. A 

three-dimensional visualization of the shielding phenomenon can be generated following 

COSMO technique calculations, as depicted in Figure 3.2 for the ethylene glycol 

molecule, where the reddish regions represent induced positive charges (because the 

highly electronegative oxygen attracts positive charges on the surface of its cavity). The 

bluish regions represent induced negative charges, and the greenish regions represent 

neutral charges. 

 
Figure 3.2. Generation of a three-dimensional surface charge densities around ethylene glycol obtained 
after COSMO-SAC calculations. 
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 In COSMO-based models, the activity coefficient (𝛾#) is viewed as the sum of 

combinatorial (𝛾#,-./) and residual (𝛾#01$) contributions: 

 

																																							ln 𝛾# =	 ln 𝛾#,-./ +			 ln 𝛾#01$																	  (3.1) 

 

In the COSMO-SAC model, the 𝛾#,-./ term, which takes into account the 

molecular size and shape effects, is given by the Staverman-Guggenheim formula, as 

described  by Lin and Sandler (2002).  The second term, 𝛾#01$,  accounting for electrostatic 

interactions between molecules in solute/solvent mixtures, is calculated as the difference 

between the free energy required to restore the charge around the solute molecule in the 

solution (denoted as 𝑠) and the free energy required to restore the charge in a pure liquid 

(denoted as 𝑖): 

																																				ln 𝛾#01$ =	[
	3#$

4%&&
.∈#

	\ln 𝛤.$ − ln𝛤.# ^						,								  (3.2) 

 

where 𝑄.#  is the area of the segment m in a molecule i; 𝑎166 is the standard segment 

surface area, which is the same for all molecules and is one of the universal parameters 

in this model; and ln 𝛤.$  and ln 𝛤.#  are the logarithms of the activity coefficient of a 

segment m of the molecule's surface in solution and in pure liquid, respectively, as given 

by the self-consistency equations: 
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where the probability of finding a segment m in a mixture s (𝑝.$ ) and in a pure liquid i 

(𝑝.# ) are given by Eq. 3.5 and 3.6, respectively. 

 

																																																														𝑝.$ =			
𝑥#𝑄.#

∑ 𝑥%𝑄%%
																																			  (3.5) 

																																																𝑝.# =	
𝑄.#

𝑄# 						,															 
 (3.6) 

 

where 𝑄# = ∑ 𝑄.#.∈# 	is the total cavity surface area of molecule i. Finally, the interaction 

energy 𝛥𝑊𝑚,𝑛 for each contact between segments 𝑚 and 𝑛 can be computed under 

different assumptions. Using the formulation of Lin and Sandler (2002), it is computed 

as a function of the segment charge densities 𝜎𝑚 and 𝜎𝑛: 

 

			𝛥𝑊𝑚, 𝑛	 = f
α′
2 	h

(σ. + σ@)A +	𝑐BCmax[0, σDEE − σBC] × min[0, σFGH + σBC] (3.7) 

 

where 𝛼′ is the constant for the misfit energy; 𝑐hb is a constant for hydrogen bonding; 𝜎hb 

is the sigma-value cutoff for hydrogen bonding; and 𝜎acc and 𝜎don are the larger and 

smaller values of 𝜎𝑚 and 𝜎𝑛. 

The probability 𝑝.#  can be represented through graphs called 𝜎-profiles. The 𝜎-

profile of a molecule is a two-dimensional representation of the distribution of induced 

charges on its surface and is unique for every molecule. Figure 3.3 shows the 𝜎-profile of 

the ethanol molecule, where the horizontal axis shows the charge densities of the 
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molecules, typically ranging from -0.03 to 0.03 (e/Å), while the vertical axis shows the 

area of the molecule corresponding to each charge density.  

 

 
Figure 3.3. Three-dimensional apparent surface charge density of ethanol and its σ-profile. 

 

The integral of the area under the sigma profile curve provides the total charge of 

the molecule, serving as a molecular descriptor. These descriptors capture essential 

characteristics of the molecule, enabling accurate determination of specific 

physicochemical properties. Various studies have used molecular descriptors from the 

area under the σ-profile as input parameters in machine learning models to achieve highly 

accurate predictions of different attributes across various systems (Alkhatib et al., 2022; 

Boublia et al., 2023; Li et al., 2024). This includes properties of DESs, as shown in 

Section 2.3.2. 

 

3.1.2 Mesoscopic Scale Modelling: SAFT EoS 

 

 Equations of state (EoS) are essential tools for describing the thermodynamic 

properties of complex fluids such as DESs. Traditional cubic EoS provide a 
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straightforward framework for a versatile thermodynamic properties description of pure 

DESs and their multicomponent mixtures, but they are limited by their inability to 

explicitly account for the intricate hydrogen bond networks that govern DES formation 

and their unique structural features. In contrast, the Statistical Association Fluid Theory 

(SAFT) EoS, built under Wertheim's first order thermodynamic perturbation theory 

(Wertheim, 1984a, b, 1986a, b), addresses this limitation. 

 Originally proposed by Chapman et al. (1989; 1990), the SAFT EoS explicitly 

consider strong directional interactions and the formation of molecular chains as 

perturbations within the system. In this EoS framework, molecules are generally 

represented as a number of monomers of the same size, which are covalently bonded to 

each other forming chains that interact with each other through a certain intermolecular 

potential, being able to associate at specific association sites, as depicted in Figure 3.4. 

 

 

Figure 3.4. Schematic representation of the physical foundation of SAFT. Yellow and gray colors are used 
to represent two different monomers; while green, blue and orange are used to distinguish three different 
association site types. 

 

The SAFT EoS is expressed in terms of residual Helmholtz energy (ɑ01$), defined 

as the difference between the molar Helmholtz energy of the fluid (ɑ)  and that of an ideal 

gas	(ɑ#"), at the same temperature and density. This residual energy (ɑ01$) can be 

assumed as the sum of different microscopic contributions to a given molecule, according 

to the Eq. 3.8: 
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																																							ɑ01$ = ɑ − ɑ#" =	ɑ016 + ɑ,I4#@ + ɑ4$$-, 													   (3.8) 

  

  In this equation, ɑ016 denotes to the residual Helmholtz free energy of 

nonassociated spherical segments.  The original SAFT of Chapman et al. (1989; 1990) 

uses a perturbation expansion using a hard-sphere as a reference term and a dispersion 

term as a perturbation. Moreover, ɑ,I4#@ refers to a chain term, accounting the 

contribution resulting from the formation of chains that connect individual monomers, 

while ɑ4$$-, represents the association term, that corresponds to the contribution of strong 

and short-range directional interactions, as resulting from the formation of hydrogen 

bonds. These last two terms come from Wertheim's first-order thermodynamic 

perturbation theory  (Wertheim, 1984a, b, 1986a, b).  

In the original SAFT equation, a total of five molecular parameters are required 

for fluid characterization, as illustrated in Figure 3.5. These parameters represent the main 

structural and energetic characteristics of the fluid. Among them, three parameters are 

required for non-associated species: the segment diameter (σ), chain length (𝑚), and 

dispersive energy between segments (ε), while for associated species, two additional 

parameters are included, related to volume (𝑘JK) and energy (𝜀JK). 

 

 
Figure 3.5. Schematic representation of molecular parameters used in the SAFT EoS; (a) segment diameter 
(σ) and chain length (m); (b) dispersive energy between segments (ε) and (c) volume association (kHB) and 
energy association (εHB). 
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In the last decade, this equation has become an accurate tool for describing the 

thermodynamic behavior of complex mixtures, especially in systems where strong short-

range directional forces such as hydrogen bonds play an important role (Lloret et al., 

2017). Due to its success, many versions of the original SAFT equation were developed, 

for example, soft-SAFT (Blas & Vega, 1997), SAFT-VR (Gil-Villegas et al., 1997), 

SAFT-BACK (Pfohl & Brunner, 1998) and PC-SAFT (Gross & Sadowski, 2001). 

Moreover, heteronuclear versions employing a group contribution approach have been 

developed, including SAFT-γ (Lymperiadis et al., 2007), GC-SAFT-VR (Peng et al., 

2009), and SAFT-γ-Mie (Papaioannou et al., 2014). In this thesis, the soft-SAFT version 

is used as a modelling tool. 

 

Soft-SAFT EoS 

 

The original SAFT model employs in the reference term (ɑ016) from Eq. 3.8 a 

perturbation approach in which a hard sphere fluid is taken as a reference for the repulsive 

interactions and the attractive interactions are added as a perturbation term. Instead, soft-

SAFT, developed by Blas and Vega (1997), considers the Lennard-Jones (LJ) potential 

for the reference fluid, accounting for both the repulsive and attractive interactions 

between the monomers in a single term, calculated from the equation of Johnson et al. 

EoS (1993), fitted to simulations of a LJ segment in a wide range of temperature and 

pressure.  

Regarding  ɑ,I4#@,  which pertains to the formation of chains from 𝑚# spherical 

monomers, the equation reads: 
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																																													ɑ𝑐ℎ𝑎𝑖𝑛 = 	𝑅𝑇[𝑥#(1 − 𝑚#) ln𝑔!(𝜎)
#

														,										  (3.9) 

 

where 𝑔! is the pair correlation function of the reference fluid for the interaction of two 

segments in a mixture of segments, evaluated at the segment contact σ. Again, the original 

SAFT uses the radial distribution function (or pair correlation function) of hard spheres, 

while soft-SAFT uses a radial distribution function of a LJ fluid. This term is computed 

through the equation of Johnson et al. for LJ chains (1994). 

 The association term (ɑ4$$-,)	for the different SAFT variants, including soft-SAFT 

is expressed by: 

 

																																		ɑ𝑎𝑠𝑠𝑜𝑐 = 	𝑅𝑇[𝑥#[U𝑙𝑛𝑋L$ −
𝑋L$
2 +

𝑀#

2 W
	L#

														,				  (3.10) 

 

where 𝑀# is the number of association sites of each component i, and 𝑋L is the fraction 

of molecules not bonded to the site α. To calculate 𝑋L$ , one needs to adjust two 

parameters for each hydrogen bonding: the site-site bonding volume of association	𝑘LM$$
JK , 

and the site-site association energy εLM11
JK , which are related to 𝑋L$ 	through a mass action 

balance (Eq. 3.11 and 3.12). 

 

																								𝑋L$ =	
1

1 + 𝑁L𝜌∑ 𝑥%% ∑ 𝑥%
M∆iL$M1M

									,		 (3.11) 

 

where ∆iL$M1 is the association strenght between site α on molecule i and site β on molecule 

j, and is defined as: 
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																												∆iL$M1 =			𝑘LM$1
JK [exp	(	εLM$1

JK /𝑘K𝑇) 	− 1]𝑔#% 							 (3.12) 

  

Soft-SAFT considers an additional ɑ7-N40 term to Eq. 3.8 for the explicit 

consideration and accurate modelling of polar forces such as dipolar forces. The polar 

contribution to the residual Helmholtz energy is based on the multipolar expression of 

Twu and Gubbin (1978; 1978) for spherical molecules written as the Padé approximation 

of  Stell et al. (1972): 

 

																								ɑ𝑝𝑜𝑙𝑎𝑟 ≈	
𝑎A

1 − 𝑎O𝑎A
									,		 (3.13) 

 

where 𝑎A and 𝑎O re the second and third-order terms in the perturbation expansion terms, 

respectively, and are related to two and three-body interactions. 

 

																								𝑎2
𝑝𝑜𝑙𝑎𝑟 = 𝑎2D + 2𝑎2cross + 𝑎2

Q	 (3.14) 

																								𝑎3
𝑝𝑜𝑙𝑎𝑟 = 𝑎3A

𝑝𝑜𝑙𝑎𝑟 + 𝑎3B
𝑝𝑜𝑙𝑎𝑟	 (3.15) 

																								𝑎3A
𝑝𝑜𝑙𝑎𝑟 = 3𝑎3A

cross1 + 6𝑎3A
cross2 + 6𝑎3A

cross3 + 3𝑎3A
Q 	 (3.16) 

																													𝑎3B
𝑝𝑜𝑙𝑎𝑟 = 3𝑎3BD + 3𝑎3B

cross2 + 3𝑎3B
cross3 + 𝑎3B

Q 										, (3.17) 

 

where 𝑎AP and 𝑎OQP  refer to the second and third-order perturbation terms for dipole-dipole 

interactions, 𝑎A
R, 𝑎OS

R  and 𝑎OQ
R  refer to the perturbation terms for quadrupolar–quadrupolar 

interactions, while the rest of the terms are those for all possible cross-polar interactions 

such as dipolar–quadrupolar interactions (Alkhatib, I. I. I. et al., 2020b). The reader is 

referred to the original contribution for further details about the expressions. In this work, 
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𝑎A and 𝑎O are taken from the interpolation equations over pair- and triplet-correlation 

functions of a LJ fluid proposed by Luckas et al. (1986). The application of the polar term 

to chain molecules is made using the segment approach of Jog et al. (2001), which 

assumes that polar moments are located on certain segments of the chain molecules and 

oriented perpendicular to the moment axis. In turn, each polar moment is associated with 

two additional molecular parameters: the fraction of polar segments 𝑥7 and dipole 

moment µ. 

In general, the soft-SAFT EoS provides a physically grounded theoretical 

approach to describe with accuracy the thermophysical properties and phase behavior of 

mixtures of complex compounds, like ionic liquids (IL) (Alkhatib, I. I. I. et al., 2020a; 

Andreu & Vega, 2007; Llovell et al., 2015; Oliveira et al., 2016; Vega & Llovell, 2016) 

and DESs (Alkhatib, I. I. I. et al., 2020a; Crespo et al., 2019; Lloret et al., 2017; Ojeda & 

Llovell, 2018). 

At this point, it is important to note that each term contribution to the total residual 

Helmholtz free energy in the Eq. 3.8 must be expressed in terms of composition for 

studies involving mixtures. Unlike the rest of the contributions, the reference term (ɑ016) 

is formulated for a pure compound. To handle multicomponent mixtures, where each 

compound may consist of varying numbers of segments with different sizes or dispersive 

energies, it is necessary to consider "averaged" values to construct a pseudo-binary 

system that mimics the thermodynamic properties of the mixture. This process involves 

applying mixing rules, with the van der Waals fluid theory being the most commonly 

used approach. The corresponding expressions for the size and energy parameters of the 

conformal fluid are as follows: 
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																																																									𝑚 = 	[𝑥#𝑚#

@

#TU

																																				 (3.18) 

																																		𝜎O =	
∑ ∑ 𝑥#𝑥%𝑚#𝑚%𝜎#%O%#

(∑ 𝑥#𝑚## )A 																					 (3.19) 

																													𝜀𝜎O =	
∑ ∑ 𝑥#𝑥%𝑚#𝑚%𝜀#%𝜎#%O%#

(∑ 𝑥#𝑚## )A 									,		 
(3.20) 

 

where 𝑥𝑖 is the mole fraction and 𝑚𝑖 is the chain length of each of the components of the 

mixture, denoted by the indexes i and j. 𝜎𝑖𝑗 and 𝜀𝑖𝑗 are the crossed interaction parameters 

and are calculated using the Lorentz-Berthelot combination rules: 

 

																																				σ#% =	𝜂#%
(σ## + σ%%)

2 																					 (3.21) 

																																ε#% = 𝜉#%|ε##ε%% 													,		 (3.22) 

 

where	𝜂#% and 𝜉#% are the size and energy binary adjustable parameters that modify the 

arithmetic and geometric averages, respectively. These parameters account for 

asymmetry and non-idealities between the different nature of the mixture compounds. 

They can be fitted to binary experimental data if predictions from the pure components 

(𝜂#% = 𝜉#% = 1) are not satisfactory. 

For mixtures of compounds with hydrogen-bonding interactions, cross-

association between different molecules or different functional groups within the same 

molecules are calculated using combination rules, analogously to Eq. 3.21 and 3.22. 

When energies and volumes between a site type α in component i and a site type β in 

component j are required, the following combining rules are applied, according to the Eq. 

3.23 and 3.24:  
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                                                        εLM$1
JK =	 }εLM$$

JK εLM11
JK 													 (3.23) 

																																				𝑘LM$1
JK =

⎝

⎜
⎛}𝑘LM$$

JK? + }𝑘LM11
JK?

2

⎠

⎟
⎞

O

													 (3.24) 

 

Free-Volume Theory Coupled into soft-SAFT 

 

The SAFT EoSs are powerful tools for predicting thermodynamic properties of 

complex fluids, such as density and phase behavior. However, these equations are not 

inherently designed to predict transport properties like viscosity. To address this 

limitation, specific methodologies can be employed to calculate transport properties and 

can be coupled with EoS for more comprehensive modelling. Among these 

methodologies are friction theory (Quiñones-Cisneros et al., 2000), entropy scaling 

(Dyre, 2018; Rosenfeld, 1977), and free volume theory, which will be explained in detail 

below. 

The Free Volume Theory (FVT) approach, developed by, Allal et al. (2001a) is a 

methodology that allows the calculation of this property from the use of thermodynamic 

variables. In this method, the viscosity (𝜂) of a system is expressed as the sum of dense 

state correction term (∆X), related to the density and microstructure of the fluid, and a 

dilute gas term (𝜂-), where intermolecular effects are neglected.  

 

                                                              𝜂 = 𝜂𝑜 + ∆X 																							 (3.25) 

 

The dilute gas term (𝜂-) can by described by (Chung et al., 1988): 
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                                           𝜂@ = 40.785× 10−2
A𝑀𝑤𝑇

𝑉𝑐
3/4Ω∗(𝑇∗)

𝐹𝑐    , (3.26) 

 

where 𝑀a is molecular weight (g/mol), 𝑀a is the critical volume (cm3/mol) and T∗ = 

1.2593×Tr, being Tr the reduced temperature with respect to the critical temperature of 

the compound (K). 𝐹, is the corrected factor introduced by Chung et al. (1988),  to 

encompass the effects of chain bonding, hydrogen bonding, and polarity to the original 

kinetic theory of Chapman-Eskong, as shown in Eq. 3.27, where ω is the acentric factor. 

	Ω∗ is he reduced collision integral, which depends on the intermolecular potential chosen 

and is a complex function of the temperature. Neufeld et al. (1972) determined the 

collision integral for the LJ potential, used in the soft-SAFT framework, and came up 

with an empirical correlated expression (Eq. 3.28). 

 

                                           𝐹, = 1 − 02756ω − 0.059035     (3.27) 

 

Ω(2; 2) =
1.16145
𝑇∗F.HIJKI +

0.52487
exp(0.77320 × 𝑇∗) +

2.16178
exp(2.43787 × 𝑇∗)

− 6.435 × 10LI × 𝑇∗F.HIJKI × sin	(18.0323 × 𝑇∗LF.KMJNF − 7.27371) 

(3.28) 

 

Nonetheless, it has been shown that the influence of  𝜂- on molecules is less than 

the uncertainty associated with its calculation (Lloret et al., 2017; Llovell & Vega, 2014) 

for medium and high molecular weight molecules. As a result, this term is omitted to 

evaluate the viscosity of DESs, reducing the Eq. 3.25 to 𝜂 = ∆X. The dense state term 

(∆X) comes from linking two concepts. The first one is based on a generalized Dumbbell 

model (Allal et al., 2001a; Allal et al., 2001b), which assumes that the dense fluid term 

connects viscosity with the microstructure of the fluid, according to Eq. 3.29. 
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                                                         ∆X=	10;Uc𝜌𝑁4ζ𝐿A																	,																			 (3.29) 

 

where ρ is the density (mol/L), 𝑁4	is the Avogadro’s number (mol-1), ζ is a friction 

coefficient related to the diffusion process and the mobility of the molecule (kg/s), and 𝐿A 

is an average quadratic length related to the size of the molecule (Å2). The second idea is 

based on Doolittle model (Doolittle, 1951), which is grounded in viscosity as dependent 

on the empty space between molecules. In this concept, the viscosity is related to the free-

volume fraction (𝑓d) through an exponential relation, according to the Eq. 3.30. 

 

																																∆X= 	𝐴	𝑒𝑥𝑝 U
𝐵
𝑓d
W												 (3.30) 

 

 By combining Eq. 3.29 and 3.30, the friction coefficient can be written as: 

 

																																																	ζ = ζe		𝑒𝑥𝑝 U
𝐵
𝑓d
W																									 (3.31) 

 

Then,  

 

																																																						∆X=	10;Uc𝜌𝑁4𝐿Aζe		𝑒𝑥𝑝 U
𝐵
𝑓d
W																								 (3.32) 

 
In Eqs. 3.30−3.32, B is characteristic of the free-volume overlap among the 

molecules. The free-volume fraction is defined as the ratio between the free molecular 

volume available (vf) and the total molecular volume (v). This ratio can also be related to 

the potential energy of interaction, E (J), according to the Eq. 3.33: 
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																																																										𝑓d = U
𝑅𝑇
𝐸 W

O/A

																															 (3.33) 

 

In Eq. 3.33, R is the universal constant for gases (J/mol·K). It is then considered 

that the potential energy of interaction E is a sum of two terms, according to Eq. 3.34.  

 

																																																											𝐸 =
10O𝑃
𝜌 	+ 𝛼𝜌𝑀a 																															 (3.34) 

 

In Eq. 3.34, the first term is related to the energy necessary to form the vacant 

vacuums available for the diffusion of the molecules as an ideal gas, where P is the 

pressure of the system (MPa). Regarding the second term, it is directly related to the 

density, which is connected to the energy barrier that the molecule has to cross to diffuse, 

which depends on the density and on an activation energy parameter 𝛼 (J.m3/mol.kg). 

Then, from the expression of the friction coefficient (Eq. 3.31), ζe	(kg/s) can be related to 

the force of dissipation, F (N), according to Eq. 3.35. 

 

																																																												𝐹 = 	 ζe	�̅�																											,				 (3.35) 

 

where �̅� is the speed of dissipation (m/s). The force of dissipation is related to the energy 

of dissipation E given in a certain length of dissipation bf  (Ȧ). An additional assumption 

is made in the treatment by considering that all the thermal energy of activation is 

transformed into kinetic energy. By combining these considerations, ζe can be rewritten 

as: 
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																																																			ζe =	10Ue
𝐸

𝑁4𝑏)	
f
10;O𝑀a

3𝑅𝑇 h
U/A

																				 (3.36) 

 

When combining Eqs. 3.32 - 3.34 and 3.36, a final expression for the dense fluid 

term in (mPa·s) can be written as Eq. 3.37. 

 

							∆X=	𝐿d(0.1𝑃 + 10;c𝛼𝜌A𝑀a)�
10;O𝑀a

3𝑅𝑇 𝑒𝑥𝑝 �𝐵 f
10O𝑃 + 𝛼𝜌A𝑀a

𝜌R𝑇 h

O
A
�	  (3.37) 

 

The final equation includes three adjustable parameters related to the structural 

and energetic properties of the fluid: 𝐿d (Å) is a length parameter related to the structure 

of the molecules and the characteristic relaxation time, which is 𝐿A/	𝑏); 𝛼 (J.m3/mol.kg) 

describe the proportionality between the energy barrier and the density and B corresponds 

to the free-volume overlap. These parameters are fitted to available experimental 

viscosity data. 

The viscosity calculations to multicomponent mixtures is done using linear mixing 

rule of the on-fluid theory for each FVT adjustable parameter (Llovell et al., 2013c) , such 

as: 

																																																	𝛼.#gh =[𝛼#𝑥# 					
@

#TU

																				  (3.38) 

																							𝐵.#gh =[𝐵#𝑥#

@

#TU

  (3.39) 

																																			𝐿d,.#gh =[𝐿d,#𝑥# 										
@

#TU

  (3.40) 
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Hence, Eq. 3.37 is readily applicable to mixtures using the mixture viscosity 

parameters from Eqs. 3.38 – 3.40. The description of the viscosity requires the previous 

calculation of some thermodynamic properties, mainly the density and the pressure and 

temperature of the system. The accuracy of the calculated viscosity heavily relies on the 

accurate calculation of those properties. This approach has been coupled into soft-SAFT 

for the description of the viscosity of n-alkanes (Llovell et al., 2013a, b), ionic liquids 

(Pereiro et al., 2017) and DESs (Lloret et al., 2017) with excellent agreement between the 

calculated viscosity and the reported experimental data. 

The Spider-Web methodology, proposed by Vega et al. (2017) optimizes the 

parameters of the FVT for robust viscosity calculations. This methodology consists of 

connecting the parameters of the compounds of interest through mixtures between them. 

Thus, experimental viscosity data for mixtures is used in this procedure to obtain the 

parameters of the pure compounds. The use of the methodology requires the previous 

evaluation of the density, which is calculated from the soft-SAFT EoS before the FVT is 

used.  

In the Spider-Web methodology, the FVT parameters are fitted simultaneously to 

mixtures, assuming the parameters of one compound in a mixture influence the values of 

the parameters of the other compounds in the mixture. Ideally, having a considerable 

number of mixtures with common compounds allows the connection of the parameters of 

all the studied molecules, which can be imagined as a structure similar to a spider web. 

This minimizes the possible combinations of the three viscosity parameters that achieve 

good accuracy on the calculated viscosities, searching for the optimum set values. 

In order to be able to fit the parameters with this approach, the density (ρ) is 

calculated with soft-SAFT for all the experimental points where viscosity data are 

available. Then, the viscosity (η) of each point is calculated with the FVT and, changing 
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simultaneously the values for α, B, and Lv of the pure compounds, the summation of 

absolute averaged deviations (%AAD – Eq. 3.41) of the pure compounds and mixtures is 

minimized. 

																										AAD	(%) = 100 ×
1
𝑁[

|𝜂	,4N, − 𝜂	1g7|
𝜂	1g7 				

i

U

  (3.41) 

 

In Eq. 3.41, N is the number of data points and 𝜂1g7 is the experimental data of 

viscosity and 𝜂,4N, is the viscosity calculated using soft-SAFT. 

 

3.2 Empirical Methods 

 

Empirical models are widely used in various scientific and engineering fields, 

mainly due to their simplicity and ease of implementation, as they can provide accurate 

predictions based on observed data without requiring a deep understanding of the 

underlying physical processes. These models, built from experimental data, are 

particularly useful in situations where theoretical modelling is complex or 

computationally intensive. In this section, we will delve into a more sophisticated 

empirical modelling techniques based on Machine Learning (ML), specifically focusing 

on Artificial Neural Network (ANN). 

 

3.2.1 Machine Learning Technique: Artificial Neural Network 

 

Machine Learning (ML) is a rapidly evolving field that leverages data to create 

predictive models capable of making informed decisions. These models operate by 
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identifying patterns and relationships within the data, often without explicitly 

understanding the underlying causal mechanisms. Because of their lack of 

interpretability, these models are usually known as black boxes. Among the various ML 

techniques, methods such as linear regression, support vector machines, multivariate 

adaptive regression splines, and latent variable methods are widely used in many fields, 

including chemical engineering (Carranza-Abaid et al., 2020). However, this thesis will 

focus specifically on Artificial Neural Networks (ANNs), a powerful and versatile class 

of computational modelling tool that mimic the structure and function of the human brain 

to solve intricate problems. 

The human nervous system can be seen as a three-stage system, as shown in the 

block diagram in Figure 3.6. At the core of this system is the brain, represented by the 

neural net, which continuously receives, processes, and responds to information. The 

diagram shows two sets of arrows, left-to-right (black) that indicate the forward flow of 

information-bearing signals, while the blue arrows pointing right to the left represent 

feedback within the system. Receptors convert stimuli into electrical impulses sent to the 

brain, and effectors transform these impulses into responses as outputs of the system 

(Haykin, 2009). 

 

 

 
Figure 3.6. Block diagram representation of nervous system. Imagen taken from Haykin (2009). 

 

    Similar to the three-stage structure of the human nervous system involving 

receptors, the neural net, and effectors, an ANN comprises a basic structure consisting of 



                                                                               CHAPTER 3. Theoretical Background 

 

 63 

an input layer, one or multiple hidden layers, and an output layer, each composed of 

artificial neurons, as depicted in Figure 3.7. The input layer works similarly to receptors, 

receiving external stimuli and converting them into signals that propagate through the 

network. Within the hidden layers, complex neural processing occurs, extracting and 

refining patterns and feature. Finally, the output layer acts like effectors, transforming the 

processed information from the network into responses as outputs of the system. This 

structure allows ANNs to handle intricate tasks by learning from data, similar to how the 

human nervous system learns and adapts through experience and feedback mechanism. 

The number of hidden layers and the number of neurons in each of these layers depend 

on the complexity of the considered system (Basheer & Hajmeer, 2000; Haykin, 2009). 

 

 

Figure 3.7. General Structure of an Artificial Neural Network. 

 

 Artificial neurons form the basis for designing a wide variety of neural networks. 

These neurons, whether in the input, hidden, or output layers, are interconnected and work 

together to process information. Figure 3.8 illustrates the structure of this artificial neuron 
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model in the first hidden layer, which receives external input sources and can be 

understood through three primary stages. The first stage is composed of a set of synapses 

(connecting links), each of which is characterized by a weight. Specifically, a signal uj at 

the input of synapse j connected to neuron n is multiplied by the synaptic weight Wn,j. The 

second stage sums all the multiplications of the input signals (uj) and their respective 

synaptic weights (Wn,j) from all synapses connected to the neuron. Additionally, this stage 

includes an externally applied bias, denoted by bn, which is added to the summation result. 

The final stage involves an activation function f, which processes the summed input vn to 

produce the output of the neuron (yn). The activation function limits the amplitude of the 

output, often introducing non-linearity into the model. Typically, the normalized 

amplitude range of the output of a neuron is written as the closed unit interval [0,1], or, 

alternatively, [-1,1], enabling neural networks to effectively identify patterns and trends 

in data. 

 

 
 

Figure 3.8.Block of a single artificial neuron, with M input features. 
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 The same structural components and operations described (synaptic weights, bias, 

and activation function) are applicable to neurons throughout subsequent layers, 

including the output layer. The output of a neuron (yn) in one layer serves as input for 

neurons in the adjacent layer, allowing the flow of information through the neural 

network. In mathematical terms, the output of the neuron (yn) depicted in Figure 3.8 can 

be described by the following pair of equations: 

 

																															𝑥@ =[𝑊@,% . 𝑢%										,

j

%TU

  (3.42) 

 

where, u1, u2, …, uM are the input signals, Wn,1, Wn,2, …, Wn,M, are the respective synaptic 

weights of the neuron n. The linear combiner output, denoted as xn, results from the 

weighted sum of these input signals. Subsequently, xn is summed with the bias bn of the 

neuron n, effectively applying an affine transformation to the output xn, as shown by: 

 

																							𝑣@ = 𝑥@ +	𝑏@  (3.43) 

  

 Next, an activation function f processes the summed input vn, referred to as the 

activation potential, to produce the output of the neuron (yn): 

 

																										𝑦@ = 𝑓(𝑣@)  (3.44) 

 

 There are various activation functions used in neural networks, such as hard-limit, 

linear, logarithmic sigmoid, hyperbolic tangent sigmoid, and Gaussian, to mention the 

most common ones. Among these, the hyperbolic tangent sigmoid function (tanh), 
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defined by Eq. 3.45, is particularly prominent for hidden layers due to its ability to 

introduce non-linearity and normalize outputs to the range [-1, 1] (Hamidian et al., 2019; 

Kalman & Kwasny, 1992). This property enhances the network's capability to model 

complex patterns.  

																										𝑓(𝑣) = tanh(𝑣)  (3.45) 

 

 For the output layer, a linear transfer function (purelin), expressed by Eq. 3.46, is 

typically employed (Reyes-Téllez et al., 2020). This choice is due to its simplicity and 

effectiveness in producing a continuous output range, which is essential for tasks 

requiring regression or precise numerical outputs. 

  

																										𝑓(𝑣) = 𝑣  (3.46) 

  

 Figure 3.9 illustrates these activation functions: (a) Hyperbolic Tangent Sigmoid 

(tanh) and (b) linear transfer function (purelin). 

 

 

 

   Figure 3.9. Activation functions plots. 
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 The learning process of an ANN involves optimizing the weights and biases of the 

network to minimize the error between the predicted outputs and the actual target values. 

This optimization is achieved through an iterative process of forward propagation, error 

calculation, and backward propagation of the error to update the weights, as illustrated in 

Figure 3.10. 

 

 

Figure 3.10. Illustration of the directions of two basic signal flows in an ANN: the forward propagation of 
activation signals and the backward propagation of error signals.Image taken from Haykin (2009). 

 
 
 
 During the forward propagation, the input data (u) is passed through the network, 

where each layer performs a linear transformation followed by an activation function, as 

described by Equation 3.44. After calculating the output prediction (yPRED), the error is 

calculated by comparing this prediction with the actual target values (y). A common error 

function is calculated as follows: 

 

																																					𝐸k =
1
𝑁[(𝑦l!mk# − 𝑦#)A

i

#TU

									,  (3.47) 
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where 𝐸kis the mean sum of squares of the network error and N is the number of samples 

in the training set. This error function evaluates the performance of an ANN by computing 

the distance between real and predicted data. Based on this evaluation, a backpropagation 

signal adjusts weights and biases to minimize the error function. 

In this manner, neural networks can learn very complicated relationships between 

inputs and their outputs. However, when datasets contain a large number of attributes, the 

model may become overly specific to the training data. This can result in poor 

performance when applied to new, unseen data, a problem known as overfitting 

(Lawrence et al., 1997). To address this, regularization techniques modify the error 

function by introducing penalty terms on weights. One such technique is Bayesian 

regularization algorithm (Foresee & Hagan, 1997) , chosen for its superior generalization 

capabilities compared to other methods like Levenberg-Marquardt (Abaid, 2022). 

Bayesian regularization adds an additional term to the objective function to penalize large 

weights, promoting smoother mapping. The objective function used in Bayesian 

Regularization algorithm is (Foresee & Hagan, 1997): 

 

																										𝐹 = 𝛽𝐸k + 𝛼	𝐸=								,  (3.48) 

 

where, 𝐸kis the mean sum of squares of the network error (Eq. 3.47), and 𝐸= is the sum 

of squared weights  U
j
∑ 𝑊%Aj
%TU ¡, with M being the total number of weights, and 𝛼 and 𝛽 

are regularization parameters. The process during training adjusts 𝛼 and 𝛽 to balance the 

compromise between minimizing the error and the complexity of the model (measured 
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by the sum of squared weights). This approach helps in improving the ability of the ANN 

to generalize well to unseen data, thereby reducing the risk of overfitting. 
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4 
Characterizing the Thermophysical 

Properties of Choline Chloride-Based DESs 
and Their Mixtures with Cosolvents 

 

 

This first chapter of results aims to develop a consistent framework to describe the impact 

of cosolvents in the key thermophysical properties of the [Ch]Cl-based DESs. To do so, the 

soft-SAFT EoS is employed to establish a straightforward yet robust coarse-grained 

molecular model by developing an accurate and transferable parametrization. To 

complement the DESs modelling studies, an Artificial Neural Network framework is 

introduced to address the viscosity of the DESs and their mixtures, leveraging molecular 

parameters derived from COSMO-SAC. 
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    For large-scale industrial applications of DESs, reliable and accurate knowledge 

of their thermophysical properties and phase behavior is required. However, given the 

extensive range of potential DES combinations, including mixtures with cosolvents under 

various industrial conditions (e.g., different molar ratio, temperature, and pressure), 

relying solely on experimental measurements becomes time-consuming. Hence, the 

development of computational models for predicting thermophysical properties of these 

systems is crucial for expediting their industrial integration. In constructing predictive 

models, it is pivotal to account for the influence of cosolvents like water on DESs, given 

their significant impact on DES properties, particularly viscosity, as highlighted in 

Section 2.1.3. Nonetheless, the development of more general theoretical models remains 

limited, and the description of the thermodynamic properties over the entire 

compositional range from pure DESs to a solution of DESs infinitely diluted in a 

cosolvent is scarce. To overcome this gap, the molecular-based soft-SAFT equation of 

state and a machine learning technique have been employed to describe physicochemical 

properties of DESs and their cosolvents mixtures in a quick, efficient, and easy-to-extend 

manner. 

 

4.1 Thermophysical Behavior of DESs from Classical Molecular-Based EoS 

 

As extensively discussed in Section 2.3.1, the soft-SAFT EoS is an attractive 

framework for reliable estimates of the physicochemical behavior of DESs, as it provides 

a physically grounded theoretical approach to describing the thermophysical properties 

of complex molecules and their mixtures. However, one of the most challenging tasks of 

using this equation for modelling DESs is determining a unique set of parameters for each  
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compound in the mixture, which must be fully transferable when these compounds form 

a new DES (Florindo et al., 2019; Zuo et al., 2021). Additionally, the complexity of these 

solvent mixtures increases when another associating component, such as an alcohol or 

water, is added as a cosolvent, modifying the network of interactions. 

Thus, to address this challenge, the soft-SAFT EoS is used to provide an adequate 

description of the effect of water, methanol, and ethanol in the thermodynamic properties 

of several [Ch]Cl-based DESs with up to seven different HBDs. These donors include 

phenol (PH), ethylene glycol (EG), malonic acid (MA), glycerol (GL), oxalic acid (OA), 

urea (UR) and glycolic acid (GA) (see Figure 4.1), chosen based on its practical 

applications as sustainable solvents. The accuracy of the models is evaluated by 

comparing their performance with available experimental data on the density and 

viscosity of pure DESs and their mixtures with cosolvents. Additionally, other properties 

of interest are considered, such as the isentropic compressibility coefficient and speed of 

sound for pure DES, as well as saturated properties like vapor-liquid equilibrium and 

water activity coefficients for aqueous DES mixtures. 

 

 

Figure 4.1. Chemical structures and respective acronyms of the DESs studied in this section. 
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4.1.1 Molecular Modelling of DESs 

 

The molecular models used with soft-SAFT to describe DESs are a key aspect 

during the parameterization of molecular parameters and their future transferability. In 

this regard, it is interesting to present different strategies and compare its performance in 

addressing this challenge. Consequently, two different approaches are checked in this 

work to model DESs: the so-called pseudo-pure compound model treats the whole DESs 

as a single entity, while the individual compound approach considers them as a mixture 

of two (or more) independent constituents. Both models are schematically shown in 

Figure 4.2. 

 

 

 

Figure 4.2. Sketch of the two molecular approaches proposed in this work to model DESs using soft-SAFT: 
a) Pseudo-pure compound molecular model, b) Individual compound molecular model. 
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Pseudo-Pure Compound Approach  

 

In this approach, the DESs are considered a pseudo-pure component, with an 

average molecular mass based on the proportion between their constituents. Implicitly, 

this means that the compounds forming the DES can never be separated and, 

consequently, are treated as a whole. Following the classical 3B scheme by Huang and 

Radosz (1990) three association sites (two type A and one type B associative sites) were 

included in all cases in order to consider the self-association between the HBA and HBD 

of the DESs to form a hydrogen bond. In this oversimplified approach, several 

assumptions and constraints are given: not only the number of sites is fixed, but 

association interactions are also assumed to be approximately constant, considering that 

the contribution of association of the hydrogen bonding is the same in all cases (i.e. same 

volume and energy of association). In addition, the dispersive energy term between the 

segments also remains fixed. These constraints were successfully applied in modelling 

DESs of similar nature using soft-SAFT, as reported by Lloret et al. (2017) and Ojeda 

and Llovell (2018). 

The parameters optimization procedure follows two steps, focusing on 

transferability and repeatability. The values of the three previously mentioned parameters 

(i.e., ε&Q/kQ, 𝑘JK, ε/kQ) are transferred from previous contributions (Crespo et al., 2019) 

for all the studied DESs. Then, the parameters referring to the segment diameter (σ) and 

chain length (m) are optimized in the DES constituted by [Ch]Cl:EG in the proportion 1:2 

(see the values in Table 4.1). The optimized σ value for this DES (i.e., [Ch]Cl:EG 1:2) is 

then transferred to other studied DESs, remaining fixed. Finally, the chain length (m) is  

optimized for the remaining investigated DESs, being the only changing parameter. In 

fact, these assumptions are based on the fact that all [Ch]Cl-based DES share the same  
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HBA and the size differences can be effectively accounted with the chain length (m), 

reducing the number of parameters to be fitted. Single-phase density data at atmospheric 

pressure is used for the fitting. The final list of soft-SAFT molecular parameters for each 

DES using the pseudo-pure component approach are included in Table 4.1. 

The highest degree of transferability was sought to obtain consistent sets of 

molecular parameters among the compounds. As a result of the procedure, four (i.e. σ, 

ε/kO, 𝜀PQ/kO,  𝑘PQ) out of five molecular parameters were kept constant in all DESs 

investigated in this work. Additionally, the remaining chain length parameter (m) follows 

clear linear tendency with the molecular weight (𝑀a) of the respective DES. This may 

indicate that the volume change of DES, related to different ratios of the involved species, 

is properly captured by the m parameter (Lloret et al., 2017; Zubeir et al., 2016).  

 

 
Table 4.1. soft-SAFT EoS molecular parameters optimized for [Ch]Cl-based DESs with the  pseudo-pure 
compound approach 

DES 
Mw  

(g/mol) 

								𝒎  𝛔     
 (Å) 

𝛆/𝐤𝐁  
(K) 

𝜺𝑯𝑩/𝐤𝐁  
(K) 

				𝒌𝑯𝑩 
 (Å3) 

[Ch]Cl:EG (1:2.5) 83.790 2.30897 3.71343 387.308 3450 2250 
[Ch]Cl: EG (1:2) 88.030 2.43006 3.71343* 387.308 3450 2250 
[Ch]Cl:EG (1:1.77) 89.990 2.47464 3.71343 387.308 3450 2250 
[Ch]Cl:UR (1:2) 88.690 2.22802 3.71343 387.308 3450 2250 
[Ch]Cl:PH (1:6) 100.61 2.85287 3.71343 387.308 3450 2250 
[Ch]Cl:PH (1:5) 101.70 2.87887 3.71343 387.308 3450 2250 
[Ch]Cl:PH (1:4) 103.21 2.91499 3.71343 387.308 3450 2250 
[Ch]Cl:PH (1:3) 105.49 2.97023 3.71343 387.308 3450 2250 
[Ch]Cl:PH (1:2) 109.28 3.06379 3.71343 387.308 3450 2250 
[Ch]Cl:GL (1:3) 103.97 2.64902 3.71343 387.308 3450 2250 
[Ch]Cl: GL (1:2) 107.95 2.78270 3.71343 387.308 3450 2250 
[Ch]Cl: GL (1:1) 115.86 3.06842 3.71343 387.308 3450 2250 
[Ch]Cl:MA (1:2) 115.80 3.00973 3.71343 387.308 3450 2250 
[Ch]Cl:GA (1:1) 107.84 2.77007 3.71343 387.308 3450 2250 
[Ch]Cl:OA (1:1) 114.83 2.80538 3.71343 387.308 3450 2250 
𝐤𝐁= 1.380649.10−23 J K-1, Boltzmann constant,  
* 𝛔  parameter adjusted for these mixture dataset and transferred to the other DESs in this table. 
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          This identified trend in the m parameter can be easily correlated with the linear 

expressions in Eqs. 4.1- 4.3, for [Ch]Cl:EG, [Ch]Cl:PH and [Ch]Cl:GL, respectively: 

 
 

																															𝑚 = 0.027𝑀( + 0.0469								(𝑅) = 0.9974)														(EG)	 

 

 (4.1) 

 

																			𝑚 = 0.0243𝑀( + 0.4042						(𝑅) = 0.9999)														(𝑃𝐻)			 

 

 (4.2) 

 

																																		𝑚 = 0.0368𝑀( − 1.1838						(𝑅) = 0.9991)														(GL)			 

 

 (4.3) 

 

 Thus, only one parameter (m) was adjusted in all cases, without resulting in any loss 

of precision. The behavior of parameter m, described through the Eqs. 4.1, 4.2 and 4.3, is 

shown in Figure 4.3. 

 

 
Figure 4.3. Trend for the chain length (m) molecular parameter of soft-SAFT EoS with the molecular 
weight (Mw) of DESs for [Ch]Cl: PH; [Ch]Cl:EG and [Ch]Cl:GL (pseudo-pure component approach). The 
symbols are the specific values for each compound and the lines are linear regressions. The remaining soft-
SAFT parameters considered are reported in Table 4.1. of this section. 
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As it is shown in Fig. 4.3, within the same family of compositions, the chain length 

parameter exhibits the same pattern, increasing with the molecular weight.  The fact that 

the parameters have a clear pattern facilitates the possibility of describing, in a 

transferable manner, the thermophysical properties of other DESs from the same family, 

but different proportions, for which no experimental data are available, seeking a 

compromise between simplicity and precision. 

 

Individual Component Approach  

 

Applying a more rigorous method, this second approach treats DESs as a mixture 

of independent species. In this case, individual molecular models for [Ch]Cl, phenol (PH), 

ethylene glycol (EG), malonic acid (MA), glycerol (GL), oxalic acid (OA), urea (UR), 

and glycolic acid (GA) are proposed. Crespo et al. (2019) identified five associative sites 

for [Ch]Cl; however, despite yielding promising results, this model complicates the 

number of cross-associations. To maintain the transferability of soft-SAFT parameters, 

we simplified these interactions to two association sites for [Ch]Cl, one positive and one 

negative, simulating the cation-anion interaction, similar to the approach used for 

tetraalkylammonium salts (Lloret et al., 2017).  The MA, OA, and GA are also modeled 

with two association sites, one positive and one negative, in order to mimic the hydroxyl 

groups that are present in these molecules, following the same hypothesis done for lactic 

acid (Lloret et al., 2017) and 1-alkanols (Llovell et al., 2013d). For consideration of 

hydrogen bonding in UR, two association sites were also used in a similar way when 

modeled in the literature using PC-SAFT (Held et al., 2010). Seeking the transferability 

of parameters, the association parameter values of [Ch]Cl, MA, OA, GA, and UR were  
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the same and were transferred from Lloret et al. (2017) work. The molecular models for 

the PH, GL, and EG are the same as those published by Crespo et al. (2019) for the first 

two and by Pedrosa et al. (2005) for the latest one and all their parameters are taken from 

those respective works. PH, GL, and EG molecules are modeled using 2-site association 

schemes. Water, which here is considered independently in both, pseudo-pure compound 

and individual component approaches, is modeled using the 4-site model as proposed by 

Vega et al. (2009), and their parameters are taken from that work. Finally, methanol and 

ethanol are modeled using a 2-site association scheme, as proposed by Pàmies (2003) and 

their parameters are taken from that work. 

While in the classical soft-SAFT approach, the molecular parameters of a species 

are fitted to their vapor pressure and liquid density data (i.e. water, phenol), the approach 

to compounds exhibiting negligible vapor pressures, such as is the case of Ionic Liquids 

or DESs, requires an alternative approach. Single-phase densities are commonly used. An 

additional constraint, particularly important in the case of DESs, is the fact that the 

individual components are solid when being alone (not forming the eutectic mixture), as 

is the case of [Ch]Cl at room temperature. In this regard, Lloret et al. (2017) circumvented 

this issue by estimating the molecular parameters of the salt using the DESs data that this 

salt forms with another compound, for which the pure component could be well 

characterized. Therefore, the same approach is followed here: the molecular parameters 

of [Ch]Cl are estimated using the density data of the DESs that this salt forms with PH 

(whose molecular parameters where previously obtained using saturated liquid density 

and vapor pressure data (Crespo et al., 2019). The choice of [Ch]Cl:PH DES is done given 

the considerable amount of data at many different proportions available in the open 

literature (Guo et al., 2013),  reducing  the  parameters  degeneracy  and ensuring a good   
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realistic parametrization of [Ch]Cl. Once the [Ch]Cl parameters are found, they are used 

to describe their mixtures with EG and GL in a predictive manner, given the fact that EG 

and GL can also be fitted using pure component information. Finally, the density data of 

the [Ch]Cl-based DESs with MA, OA, GA and UR are used to obtain the molecular 

parameters of these latter molecules, as pure density data for them are unavailable. A 

scheme depicting the soft-SAFT molecular parametrization procedure for DESs followed 

in this second approach is shown in Figure 4.4. 

 

 

Figure 4.4. Scheme of the procedure followed to optimize the soft-SAFT molecular parameters of the 
different DESs forming species considered in section. 

 
 

 
The soft-SAFT molecular parameters using the individual component approach of 

the compounds involved in the different DESs are summarized in Table 4.2. 
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Table 4.2. soft-SAFT molecular parameters optimized for the species that form Deep Eutectic Solvents 
using the individual component approach, and cosolvents. 

Compound    Mw 

 (g/mol) 
𝒎 

 	𝛔     
 (Å) 

𝛆/𝐤𝐁  
(K) 

𝜺𝑯𝑩/𝐤𝐁 
(K) 

𝒌𝑯𝑩 
 (Å3) 

Reference 

Choline chloride 139.63 5.096 3.401 428.40 3384* 2100* This work 
Malonic acid 104.06 4.674 3.052 403.40 3384* 2100* This work 
Oxalic acid 90.03 2.675 3.208 380.90 3384* 2100* This work 
Glycolic acid 107.84 2.526 3.241 425.20 3384* 2100* This work 
Urea 60.06 2.458 3.090 420.70 3384* 2100* This work 
Phenol 94.11 2.155 3.995 384.65 3099 2250 (Crespo et al., 2019) 
Ethylene glycol 62.07 1.751 3.668 326.05 4384 4195 (Pedrosa et al., 2005) 
Glycerol 92.09 2.397 3.638 392.95 4945 2250 (Crespo et al., 2019) 
Water 18.02 1.000 3.154 365.00 2388 2932 (Vega et al., 2009) 
Methanol 32.04 1.491 3.375 220.40 3213 4847 (Pàmies, 2003) 
Ethanol 46.07 1.740 3.635 234.80 3387 2641 (Pàmies, 2003) 

 

 

In order to maximize the degree of transferability of the parameters and assure 

consistency among the obtained values, several working hypotheses and constraints are 

applied. For instance, the energy and volume of association of the compounds calculated 

in this thesis (the carboxylic acids and urea) are kept constant, and transferred from the 

molecular parameters obtained for tetraalkylammonium chloride salts by Lloret et al. 

(2017). Consequently, the energetic differences between these compounds have then been 

effectively accounted for in the dispersive energy contribution (ε/kQ), finding a higher 

value for [Ch]Cl due to its stronger hydrogen bonding character compared to the other 

molecules (Crespo et al., 2019). In terms of size and volume, a comparison of the m values 

of these compounds reveals they follow the same trend with the order of their respective 

van der Waals volumes (Chemspider, 2022): [Ch]Cl > MA > OA > GA > UR (see Table 

4.2). Furthermore, the molecular parameters obtained for [Ch]Cl under this approach are 

found to be in good agreement with those reported by Lloret et al. (2017) for 

tetraalkylammonium chloride salts, as the chain length (m) is in between that obtained for  
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tetramethylammonium chloride and tetrabutylammonium chloride, as expected given the 

size of the different salts.  

 

4.1.2 Validation of Pure DESs 

 

Density 

 

The performance of soft-SAFT in predicting the density-temperature diagram for 

pure DESs utilizing the pseudo-pure components approach with optimized parameters for 

each DES listed in Table 4.1 is illustrated in Figure 4.5. 

 As it can be observed, soft-SAFT properly reproduces the values and tendencies 

of densities, since the model quantitatively describes the increase of density when 

decreasing temperature for a given DES. An excellent agreement between the densities 

of the experimental data  (Florindo et al., 2014; Guo et al., 2013; Shahbaz et al., 2012; 

Yadav et al., 2015; Yadav & Pandey, 2014; Yadav et al., 2014) and those calculated using 

soft-SAFT is achieved, with a maximum %AAD of 0.241% among all the studied cases. 

Moreover, within a DES family with different HBA:HBD ratios, soft-SAFT properly 

captures the density change with the HBD ratio modification in the mixture. The results 

corroborate the same conclusions achieved when this approach was successfully applied 

in modelling tetraalkylammonium-based DESs using soft-SAFT EoS, as reported by 

Lloret et al. (2017) and Ojeda and Llovell (2018). 
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Figure 4.5. Density (ρ) – temperature (T) diagram, at atmospheric pressure, using the pseudo-pure 
compound approach for [Ch]Cl:UR (1:2), [Ch]Cl:GA (1:1), [Ch]Cl:OA (1:1) and [Ch]Cl:MA (1:2); b) 
[Ch]Cl:PH at different ratio; c) [Ch]Cl:EG at different ratio; d) [Ch]Cl:GL at different ratio. In all 
Figures, symbols are experimental data (Florindo et al., 2014; Guo et al., 2013; Shahbaz et al., 2012; 
Yadav et al., 2015; Yadav & Pandey, 2014; Yadav et al., 2014), while the lines are the soft-SAFT 
predictions (with parameters from Table 4.1). 

 

 

Although the modelling of the DESs using the pseudo-pure component approach 

is a quite simple model, it nonetheless provides an excellent description of their densities 

across all systems investigated in this section. However, one drawback of this 

methodology is the fact that a different 𝑚 parameter is required at each different 

HBA:HBD proportion, even if the same compounds are utilized. In addition, the 

impossibility to separate both compounds may become unrealistic under the addition of 

water or other cosolvents. 
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Following the rigorous individual component approach previously explained, the 

performance of soft-SAFT in describing the density of the studied pure DESs using 

optimized parameters for each constituent compound of the DES (refer to Table 4.2) is 

depicted in Figure 4.6. The results demonstrate that the description of the densities of 

DESs remains very good, despite treating each system as a binary mixture without binary 

parameters. The average absolute deviation (%AAD) remains consistently below 0.901% 

across all cases, underscoring the accuracy of the model. Here, it is important to notice 

that, while the data of Figures 4.6 (a) and 4.6 (d) were used to fit the single-compound 

parameters, the description of the DES with EG - Figure 4.6 (b), and GL - Figure 3 (c) is 

fully predictive. The density changes with DESs compositions and temperatures are 

properly captured in all cases, with the highest deviations found for the DESs with EG, 

where the experimental information comes from two different sources: at (1:2) from 

Yadav et al. (2015), and at (1:1.7) and (1:2.5) from Shahbaz et al. (2012). Still, the 

description of the system is rather accurate, and the methodology presented here offers a 

higher degree of transferability compared to the pseudo-pure component approach.  

Consequently, from now on, the individual component approach is the model 

chosen and used in a systematic manner in the rest of the chapter for the characterization 

of DESs. 
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Figure 4.6. Density (ρ) – temperature (T) diagram, at atmospheric pressure, using the individual-
component approach for a) [Ch]Cl:PH at different ratios; b) [Ch]Cl:EG at different ratios; c) [Ch]Cl:GL 
at different ratios; d) [Ch]Cl:UR (1:2), [Ch]Cl:GA (1:1), [Ch]Cl:OA (1:1) and [Ch]Cl:MA (1:2);. In all 
figures, symbols correspond to experimental data (Florindo et al., 2014; Guo et al., 2013; Shahbaz et al., 
2012; Yadav et al., 2015; Yadav & Pandey, 2014; Yadav et al., 2014), while the lines to soft-SAFT 
calculations and predictions (with parameters from Table 4.2). 

 
  

Derivative properties 

 

The molecular nature of the soft-SAFT parameters allows the prediction of 

derivative thermodynamic properties for the studied DES. Apart from the necessity of 

this information in industrial applications, these properties constitute an excellent 

validation test for the model, as they are second-order properties of a primary 

thermodynamic  function  and,  consequently, are  more  prone  to  errors.  In  this  sense,  
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although the previous parametrization using the individual-component approach allowed 

an excellent description of the density, further validation of the reliability of these 

parameters for each constituent compound is performed by predicting some derivative 

properties of importance for process design. The expressions for the speed of sound and 

the compressibility, computed in this work, are: 

 

																										𝑢 = O
𝐶𝑝
𝐶𝑣

P
∂𝑃
∂𝜌 R𝑇

																																														  (4.4) 

																							𝐾p =	
𝐶d𝐾q
𝐶7

					,							  (4.5) 

 

where u is the speed of sound,	𝐶d	and 𝐶7	 are the isochoric and isobaric heat capacity, and 

𝐾p	and 𝐾q are the isentropic and isothermal compressibility, respectively.  Following 

Yokozeki and Shiflett (2010), the Harrison-Seaton method (Harrison & Seaton, 1988) has 

been utilized to calculate the ideal gas heat capacity of DESs, which is added to the 

residual term evaluated from soft-SAFT. The coefficients determined using the Harrison-

Seaton method, which are used to calculate the ideal gas heat capacity, are shown in Table 

4.3. 

 

Table 4.3. Coefficients for calculating the ideal gas heat capacity of DESs. 

DES 
Cp0   

(J	molLH) 
Cp1  

(J	molLHKLH) 
Cp2  

(10LIJ	molLHKLU) 
Cp3  

(10LJJ	molLHKLN) 
ChCl:UR (1:2) 17.8766 1.2224 -0.0007 2E-07 

ChCl:EG (1:2) -24.6896 1.3673 -0.0008 2E-07 
*	𝐶VF = Cp0 + Cp1* T + Cp2 *	𝑇U+ Cp3 *	𝑇N, estimated from Harrison-Seaton method (Harrison & 
Seaton, 1988). 
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In particular, the speed of sound and the isentropic compressibility coefficient for 

[Ch]Cl:UR (1:2) and [Ch]Cl:EG (1:2), were predicted and displayed in Figure 4.7. The 

results show that the proposed model captures well the influence of temperature on both 

derivative properties studied here. This is an important fact, given the strong sensitivity 

of these properties to slight deviations in the density description. The agreement with the 

available experimental data (Abdel Jabbar & Mjalli, 2019) for the speed of sound 

(AAD%) was 1.72% for [Ch]Cl:EG (1:2) and 3.01% for [Ch]Cl:UR (1:2), while for the 

isentropic compressibility coefficient it slightly increased up to 1.93% for  [Ch]Cl:EG 

(1:2) and 4.30% for [Ch]Cl:UR (1:2). 

 

 
Figure 4.7. a) Speed of sound (u) – temperature (T) diagram, of [Ch]Cl:UR (1:2) and [Ch]Cl:EG (1:2), 
and b) Isentropic compressibility coefficient (𝐾W) – temperature (T) diagram. These derivative properties 
were calculated at atmospheric pressure, using the individual-component approach. In both figures, 
symbols correspond to experimental data (Abdel Jabbar & Mjalli, 2019), while the lines to soft-SAFT 
predictions (with parameters from Table 4.2). 

 
 

Viscosity 

 

Another property that generally governs the use of DESs as a solvent in different 

fields  of  application  is  its  viscosity.  In  this  regard,  measurements of the viscosity of  
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[Ch]Cl:EG (1:2) (Wang et al., 2020), [Ch]Cl:GL (1:2) (Yadav et al., 2014), [Ch]Cl:UR 

(1:2) (Yadav & Pandey, 2014) and [Ch]Cl:OA (1:1) (Florindo et al., 2014), [Ch]Cl:MA 

(1:2) (Mjalli & Naser, 2015) and [Ch]Cl:PH (Guo et al., 2013) at different molar 

proportions are available. The viscosities of these DESs were obtained by means of the 

FVT treatment combined with soft-SAFT, applying the spider-web methodology (Cané 

et al., 2017) to fit the FVT parameters for the molecules forming the examined DESs 

using mixture data. The density values required for the use of FVT were calculated 

through the soft-SAFT EoS considering the proposed individual compounds model 

approach. The optimized parameters for both the DESs constituents and cosolvents are 

listed in Table 4.4, and the model's performance in describing pure DES viscosities is 

shown in Figure 4.8.  Overall, there is excellent agreement (ADD% of 4.01) between the 

experimental viscosities  (Florindo et al., 2014; Guo et al., 2013; Mjalli & Naser, 2015; 

Wang et al., 2020; Yadav & Pandey, 2014; Yadav et al., 2014) and those calculated using 

soft-SAFT + FVT, with the major deviations observed for [Ch]Cl:UR (1:2) DES at low 

temperatures. In general, a slight deterioration occurs at the highest viscosity values, 

where the data also has a higher degree of uncertainty. It should be noted that the 

calculations of the viscosity of DESs using the FVT parameters indicated in Table 4.4 do 

not require the use of any binary parameter to reproduce the data shown in Figure 4.8 
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Table 4.4. Free-Volume Theory viscosity parameters optimized for Deep Eutectic Solvents forming 
molecules and cosolvents. 

Compound Mw 

 (g/mol) 

 𝜶     
 (J	mN molLH kgLH) 

			𝐁 · 10²  
 

𝐋𝒗 · 10²   
(Å) 

Choline chloride 139.63 374.58 0.6867 0.0170 
Phenol 94.11 223.94 0.5742 3.1873 
Glycerol 92.09 335.74 0.2794 2.9452 
Ethylene glycol 62.07 356.55 0.0911 8.5466 
Malonic acid 104.06 835.54 0.0001 0.0648 
Urea 60.06 603.47 0.0001 1.7156 
Oxalic acid 90.03 698.09 0.0170 0.0292 
Water 18.02 485.21 0.1001 1.4239 
Methanol 32.04 408.65 0.1358 4.7032 
Ethanol 46.07 433.36 0.1373 9.2660 

 
 
 
 

 

Figure 4.8. Viscosity (η) – temperature (T) diagram, at atmospheric pressure, modeled using FVT 
parameters shown in Table 4.4 for a) [Ch]Cl-based DESs with different HBD b) [Ch]Cl: PH at different 
ratio. In all figures, symbols correspond to experimental data (Florindo et al., 2014; Guo et al., 2013; 
Mjalli & Naser, 2015; Wang et al., 2020; Yadav & Pandey, 2014; Yadav et al., 2014), while the lines to 
soft-SAFT + FVT predictions. 

 
 

4.1.3 Validation of Properties of Aqueous Mixtures of DESs 

 

Vapor-liquid equilibria and water activity coefficients 
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After the validation of the parametrization strategy proposed in previous section, 

the individual component approach of the DESs is used to calculate the vapor-liquid phase 

equilibria (VLE) and water activity coefficients (𝛾JAe) of their aqueous ternary mixtures. 

The 𝛾JAe of the aqueous mixtures were calculated using Eq. 4.6, as in Oliveira et al. 

(2016), which states the isofugacity condition considering the ideal vapor phase: 

 

										𝛾𝐻20 =
𝑃	𝑦𝐻20
𝑥𝐻20	𝑃𝐻20𝑠𝑎𝑡 					,																				  (4.6) 

 

where P the pressure of the system,	𝑃JAe$4h  is the saturation pressure of pure water at the 

working temperature, and 𝑥JAe	 and 	𝑦JAe represent the mole fraction of water in the 

liquid and vapor phases, respectively. 

 To achieve a good agreement of soft-SAFT predictions with the experimental 

data (Peng et al., 2017; Sharma et al., 2018; Sharma et al., 2020), the addition of one 

energy binary parameter is necessary for all mixtures. The cross-dispersive energy 

parameter for each mixture, 𝜉#% (see Eq. 3.22, in Section 3.1.2), is obtained by fitting VLE 

data at atmospheric pressure, minimizing the %AAD. A summary of the binary 

parameters used for each case is provided in Table 4.5.  

 

Table 4.5. Fitted soft-SAFT energy binary interaction parameter. 
Compound i Compound j 𝝃	𝒊𝒋 References* 

Choline chloride Water 1.045 (Peng et al., 2017) 
Urea Water 1.280 (Peng et al., 2017) 

Glycolic Acid Water 1.280 (Sharma et al., 2020) 
Malonic Acid Water 1.370 (Sharma et al., 2018) 

* Source of adjusted experimental data. 
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Note that 𝜉#% is adjusted to account for interactions between water-HBD and 

water-HBA. It is possible to observe that the cross-dispersive energy parameter 𝜉#%, is 

fitted in all cases to values greater than one, which is evidence that the model 

underestimates the van der Waals interactions between water and the DESs. On the other 

hand, it is important to notice that the water-Choline Chloride parameter is common in 

all mixtures and can be transferred to any system where these two compounds are present. 

An additional strength is the fact that all parameters are temperature-independent. The 

results of this modelling are displayed in Figure 4.9.  

 

 

Figure 4.9. a) Vapor-Liquid Equilibrium and b) Water activity coefficients at 298.15 K, at atmospheric 
pressure, considering ternary mixture for aqueous DESs: [Ch]Cl:UR (1:2), [Ch]Cl:GA (1:3) and 
[Ch]:Cl:MA (1:2). In both figures, symbols are experimental data (Peng et al., 2017; Sharma et al., 2018; 
Sharma et al., 2020) while the lines are the soft-SAFT predictions (with parameters from Tables 4.2 and 
4.5). 

 

In general terms, good agreement with the experimental data (Peng et al., 2017; 

Sharma et al., 2018; Sharma et al., 2020) is found in most of the cases for the VLE (with 

an AAD% of 6.05%, 8.11%, and 11.08% for [Ch]:Cl:GA (1:3), [Ch]Cl:MA (1:2) and 

[Ch]Cl:UR (1:2) respectively); and in all cases for 𝛾JAe (with an AAD% between 1.76% 

and 4.6%) 
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Density 

 
Once the energy interaction parameters between water and the compounds 

forming the eutectic mixture have been established, this information is used to predict the 

effect of water on other thermophysical properties, such as the density of DESs. Using the 

pure-component parameters from Table 4.2 and the binary parameters from Table 4.4, 

excellent predictions of the ternary mixture densities are obtained, as shown in Figure 4.10.  

 

 
Figure 4.10. Density (ρ) – temperature (T) diagram, at atmospheric pressure, considering ternary mixture 
for aqueous mixtures of DESs at different molar fraction of water for a) [Ch]Cl:EG (1:2); b) [Ch]Cl:GL 
(1:2); c) [Ch]Cl:UR (1:2); d) [Ch]Cl:MA (1:2) , e) [Ch]Cl:OA (1:1) and f) [Ch]Cl:GA (1:1). In all figures, 
symbols correspond to experimental data (Florindo et al., 2014; Yadav et al., 2015; Yadav & Pandey, 
2014; Yadav et al., 2014), while the lines to soft-SAFT predictions (with parameters from Tables 4.2 and 
4.5). 
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The %AAD values which stand for the deviations of the densities predicted with 

the soft-SAFT from the experimental data (Florindo et al., 2014; Yadav et al., 2015; Yadav 

& Pandey, 2014; Yadav et al., 2014) are 0.67%, 0.81%, 0.88%, 1.01%, 0.56%, and 0.79% 

for the aqueous mixtures of the studied DESs (i.e, [Ch]Cl:EG, [Ch]Cl:GL, [Ch]Cl:UR, 

[Ch]Cl:MA, [Ch]Cl:OA and [Ch]Cl:GA, respectively). Baz et al. (Baz et al., 2019) 

predicted the densities of the liquid phase for aqueous [Ch]Cl + GL (1:2) DESs mixtures 

through PC-SAFT EoS and a similar two-compounds approach. They observed that, while 

predictions were accurate for pure compounds and mixtures with high water content, the 

experimental densities were overestimated, up to 2.6% of deviation, for mixtures with low 

water content (less than 0.5 in molar basis). In this thesis, soft-SAFT predictions are fully 

accurate in the whole range of compositions, from pure DESs to infinitely dilute solutions, 

regardless of the DESs being studied.  

For the sake of comparison, an additional test with the pseudo-pure compound 

approach was performed by predicting the density in aqueous solutions of DESs when 

considering the system as a binary mixture (one compound is a DES as a pseudo-pure 

compound and the other is water). For this approach, the parameters of Table 4.1 in this 

section were used for the DESs and the parameters of Table 4.2 were employed for water. 

The results considering the binary mixtures of aqueous solutions of DESs, treated as 

pseudo-pure compounds, are displayed in Figure 4.11, and they look almost identical to 

Figure 4.10 (considering a ternary mixture). Again, excellent agreement between the soft-

SAFT predictions and the available experimental data (Florindo et al., 2014; Yadav et al., 

2015; Yadav & Pandey, 2014; Yadav et al., 2014) of the density of aqueous solutions of 

the DESs were obtained for all systems investigated using this approach, with a %AAD 

of 0.432% with respect to all the points shown in Figure 4.11. 
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Figure 4.11. Density (ρ) – temperature (T) diagram, at atmospheric pressure, considering binary mixture 
for aqueous mixtures of DESs at different molar fraction of water for a) [Ch]Cl:EG (1:2); b) [Ch]Cl:GL 
(1:2); c) [Ch]Cl:UR (1:2); d) [Ch]Cl:MA (1:2) , e) [Ch]Cl:OA (1:1) and f) [Ch]Cl:GA (1:1). In all figures, 
symbols correspond to experimental data (Florindo et al., 2014; Yadav et al., 2015; Yadav & Pandey, 
2014; Yadav et al., 2014), while the lines to soft-SAFT predictions (with parameters from Tables 4.1 for 
DES  and from Tables 4.2 for water). 

 
 

In general, it must be noted that, although the results obtained considering both 

compounds forming the DESs as a single constituent were also satisfactory for the 

density, the transferability of the model remains limited. Even so, this simplified 

hypothesis can still be very useful for describing the behavior of a wide range of DESs 

with  similar  sets  of  available  experimental  data. However, the individual-component  
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approach considering them as different entities, offers a more reliable model of the 

behavior of the DESs and will provide a better description of other properties (solubility, 

enthalpy, activity coefficients) dominated by energetic interactions.   

One final remark is related to the DESs structure, which is not studied in this work 

and may be affected by the amount of water, breaking the DES and converting the system 

in a “soup” of solvents. While this analysis is out of the scope of this thesis, the models 

presented here intend to accurately describe a physical property, such as the density, in a 

quantitative manner, regardless of the possible structural changes among the compounds.  

 

Viscosity 

 
 

As widely exposed in the Section 2.1.3, the addition of water in the DESs cause a 

very strong impact on the viscosity of the system. Hence, it is critical for the 

thermophysical framework presented in this work to know how accurate the description 

of this property is. Consequently, the performance of the viscosities using the soft-SAFT 

+ FVT of the aqueous mixtures of [Ch]Cl:EG (1:2), [Ch]Cl:GL (1:2), [Ch]Cl:UR (1:2), 

[Ch]Cl:OA (1:1), are displayed in Figure 4.12.  
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Figure 4.12. Viscosity (η) – temperature (T) diagram, at atmospheric pressure, modeled using FVT 
parameters shown in Table 4.3 for aqueous mixtures of [Ch]Cl based DESs in different molar fraction of 
water for a) [Ch]Cl:EG (1:2), b) [Ch]Cl:GL (1:2), c) [Ch]Cl:UR (1:2) and d) [Ch]Cl:OA (1:1). In all 
Figures, symbols correspond to experimental data (Florindo et al., 2014; Wang et al., 2020; Yadav & 
Pandey, 2014; Yadav et al., 2014), while the lines correspond to the soft-SAFT + FVT calculations. 

 

 

  In general, it must be noted that the soft-SAFT + FVT approach is capable of 

reproducing the highly non-ideal behavior at all water compositions with remarkable 

agreement (ADD% of 5.91 with respect to the experimental data displayed in Figure 

4.12). A slight deterioration can be observed at the lowest temperatures, which 

corresponds to the highest viscosity values, where the experimental measurements also 

have a higher degree of uncertainty. Still with this, it is striking to notice how the viscosity 

is well captured from pure DESs to infinite diluted solutions, covering a wide range of 

values. In particular, Figure 4.12 (d) compares the performance of the model to reproduce 

the  viscosity  of  [Ch]Cl:OA,  where  the  effect  of water  is decreasing the viscosity two 
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   orders of magnitude. The soft-SAFT + FVT model can perfectly reproduce the trend at 

very high (2.00% of water) and low (60.53% of water) viscosity values using the same 

molecular parameters, without further correction.   

 

4.1.4 Validation of Properties of DESs with Alcohols 

 

 

The addition of other cosolvents, such as methanol or ethanol, has also been 

evaluated to widen the capacity of the current thermophysical framework for different 

applications. Hence, following the same methodology previously described, the effect of 

methanol and ethanol on the density of DESs has been predicted and compared to the 

available experimental data for methanol (Haghbakhsh & Raeissi, 2018a; Wang et al., 

2020) and ethanol (Haghbakhsh & Raeissi, 2018b, 2020; Kim & Park, 2018) mixtures 

with the DESs: [Ch]Cl:EG (1:2), [Ch]Cl:GL (1:2), [Ch]Cl:UR (1:2). As done before, no 

binary parameters are used. As it occurred with water, excellent predictions of the ternary 

mixtures are obtained, as can be seen in Figure 4.13. The model is capable to describe 

this property with an %AAD of 0.875%, 0.709%, 0.955%  for the methanol mixtures, and 

0.560%, 0.488%, 0.442%  for the ethanol mixtures of the studied DESs (i.e, [Ch]Cl:EG, 

[Ch]Cl:GL and [Ch]Cl:UR respectively). These results are of the same order of accuracy 

as those of water and allow to validate the robustness of the model when facing alternative 

solvents in combination with DESs, regardless of the composition. 
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Figure 4.13. Density (ρ) – temperature (T) diagram at atmospheric pressure for ternary mixtures: [Ch]Cl 
: EG (1:2) DES with methanol (a) and  ethanol (b),  [Ch]Cl : GL (1:2) DES with  methanol (c) and ethanol 
(d),  [Ch]Cl : UR (1:2) DES with methanol (e) and ethanol (f), all at different molar fractions of the 
respective cosolvent. In all figures, symbols correspond to experimental data (Haghbakhsh & Raeissi, 
2018a, b, 2020; Kim & Park, 2018; Wang et al., 2020),  while the lines to soft-SAFT predictions (with 
parameters from Table 4.2). 

 
 

Finally, the viscosities of [Ch]Cl:EG (1:2) in solutions with methanol and ethanol 

and of  [Ch]Cl:GL (1:2) in solutions with methanol were also estimated using soft-SAFT 

+ FVT and displayed in Figure 4.14. 
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Figure 4.14. Viscosity (η) – temperature (T) diagram, at atmospheric pressure, modeled using FVT 
parameters shown in Table 4.3 for the mixtures: [Ch]Cl:EG (1:2) DES with methanol (a) and ethanol (b) 
and [Ch]Cl:GL (1:2) DES with methanol (c), all at different molar fraction of the respective cosolvent. In 
all Figures, symbols correspond to experimental data (Haghbakhsh et al., 2021b; Wang et al., 2020), while 
the lines correspond to the soft-SAFT + FVT calculations.  

 

 

Similarly, the model is also capable to reproduce the non-ideal behavior at all 

methanol and ethanol compositions with remarkable agreement (ADD% of 3.74 for 

[Ch]Cl:EG (1:2) and ADD% of 4.71 for [Ch]Cl:GL (1:2)). This reconfirms the validity 

of soft-SAFT + FVT to provide a common framework to describe the viscosity of the 

[Ch]Cl based DESs studied in this Section, as well as the effect of water, methanol and 

ethanol on this property.  
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Despite this success, this approach has limitations, particularly related to the 

sensitivity of FVT parameters. Llovell et al. (2013a) demonstrated that minor changes in 

these parameters had a significant impact in the viscosity of the n-alkanes family, 

particularly at low temperatures. This sensitivity can be extrapolated to other families of 

compounds, adding a challenge when predicting the viscosity of new DESs or mixtures 

for which experimental data are not readily available.  

In order to overcome this limitation, a complementary approach based on Machine 

Learning technique for a more flexible and versatile viscosity modelling is presented in 

the next Section.  

 

4.2 Addition of an Artificial Neural Network-Based Molecular Approach for 

Predicting the Viscosity         

   

     Section 2.3.2 highlights that numerous studies in the literature have demonstrated    

the elevated accuracy achieved by molecular-based ANNs models in predicting the 

physicochemical properties of DESs. Nonetheless, achieving a good level of accuracy 

does not only depend on optimizing the ANN effectively, but also on selecting the 

appropriate input descriptors. These descriptors should be capable of capturing the 

molecule's essential characteristics and leading to the accurate determination of a specific 

physicochemical property value. In this context, the conductor-like screening model for 

real solvents (COSMO-RS) and their molecular charge density distributions (𝜎-profile) 

have been previously used as input parameters in ML models to obtain highly accurate 

predictions of different properties of DESs, as discussed in Section 2.3.2. 
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However, the use of ML techniques to quantify viscosities across wide 

temperature and compositional ranges for mixtures of DESs with cosolvents has received 

limited attention. Considering the critical role of cosolvents on DES viscosity, the 

objective of this Section is to construct an ANN model to anticipate this influence 

precisely, as an alternative and more versatile method than the use of the Free-Volume 

Theory, whose parameters degeneracy may restrict the parametrization of more mixtures. 

The ANN model is designed to describe the viscosity of the prevalent sustainable [Ch]Cl-

based DESs, whether in their pure form or when combined with water or other cosolvents, 

by employing the temperature and the compound σ-profiles as molecular descriptors, 

acquired through the conductor-like screening model for real solvent segment activity 

coefficient (COSMO-SAC). The reliability of the developed model is validated using 

several statistical parameters, and its predictive capability is verified by addressing new 

hydrogen bond donors and solvents not included in the training, as well as calculating the 

applicability domain evaluation. Additionally, the influence of the molecular descriptors 

as input parameters on the viscosity of DESs is reported and rationally discussed. A 

summarized representation of the methodology used is in this Section shown in Fig. 4.15. 

 

 
Figure 4.15. Summary of the methodology scheme used in the development of the ANN. 



CHAPTER 4. Characterizing the Thermophysical Properties of Choline Chloride-Based 
DESs and Their Mixtures with Cosolvents 

 103 

 

4.2.1 Experimental Dataset 

 
 

In this study, a DES viscosity (mPa·s) database containing 1891 experimental data 

points was used to develop a feed-forward ANN model. The collected experimental data 

includes 48 different DES mixtures based on [Ch]Cl with 18 different HBDs: phenol 

(PH), glycerol (GL), ethylene glycol (EG), triethylene glycol (TEG), propionic acid (PA), 

oxalic acid (OA), levulinic acid (LevA), glutaric acid (GLA), malonic acid (MA), lactic 

acid (LA), p-cresol, 1,4-butanediol (1,4-BT), monoethanolamine (MEA), diethanolamine 

(DEA), methyldiethanolamine (MDEA), D-glucose (D-GLU), D-fructose (D-FT) and 

urea (UR). Additionally, the database also contains mixtures of DESs with four 

cosolvents: water, methanol (MeOH), isopropanol (IPA) and dimethyl sulfoxide 

(DMSO). The exact distribution includes 273 data points of pure DESs, and 1618 DESs 

+ cosolvent data points, including Water (894), Methanol (360), Isopropanol (208), and 

Dimethyl sulfoxide (156).  

Table 4.6 presents a comprehensive list of the dataset, with DESs and mixtures 

considered in this study for the ANN design, along with the composition and temperature 

ranges for the datasets and the corresponding references. The dataset covers a wide range 

of viscosity measurements (0.3862 – 4722 mPa·s) and temperature (283.15 – 363.15 K), 

with data containing 279 systems of different compositions at atmospheric pressure for 

binary and ternary mixtures.  
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Table 4.6. Summary of studied DESs and DES + cosolvents including their experimental temperature and viscosity 
ranges at atmospheric pressure, number of data points and corresponding references. 

DES System Range of T 
(K) 

Range of ƞ 
(mPa.s) 

Data 
points References 

DES1 [Ch]Cl + PH (1:2) 293.2 – 333.15 19.5  –  120.77 9 (Guo et al., 2013; Zhu et al., 2017) 
DES2 [Ch]Cl + PH (1:3) 293.2 – 333.15 13.77 – 57.84 8 (Guo et al., 2013; Haghbakhsh et al., 2022) 
DES2.1 [Ch]Cl + PH (1:3) + H#O 293.2 – 333.15 1.09 – 56.09 45 (Haghbakhsh et al., 2022) 
DES3 [Ch]Cl + PH (1:4) 293.2 – 318.2 14  – 40.23  6 (Guo et al., 2013) 
DES3.1 [Ch]Cl + PH (1:4) + H#O 293.2 – 333.15 1.1 – 43.9 45 (Haghbakhsh et al., 2022) 
DES4 [Ch]Cl + PH (1:5) 293.2 – 318.2 11.26 – 31.96 6 (Guo et al., 2013) 
DES5 [Ch]Cl + PH (1:6) 293.2 – 318.2 9.46 – 27.03 6 (Guo et al., 2013) 
DES6 [Ch]Cl + GL (1:2) 283.15 – 363.15 19.59 – 1003.9 13 (Wang et al., 2020; Yadav et al., 2014) 
DES6.1 [Ch]Cl + GL (1:2) + H#O 283.15 – 363.15 0.39 – 669.90 204 (Wang et al., 2020; Yadav et al., 2014) 
DES6.2 [Ch]Cl + GL (1:2) + MeOH 288.15 – 323.15 0.43  –  425.75 144 (Wang et al., 2020) 
DES6.3 [Ch]Cl + GL (1:2) + DMSO 288.15 – 323.15 1.418  –  497.3 104 (Zuo et al., 2024) 
DES6.4 [Ch]Cl + GL (1:2) + IPA 288.15 – 323.15 1.13  –  418.5 104 (Zuo et al., 2024) 
DES7 [Ch]Cl + GL (1:3) + H#O 298.15 – 343.15 10.98 – 62.05 10 (Codera et al., 2023) 
DES8 [Ch]Cl + GL (1:4) 293.15 – 323.15 87.96 – 578.2 7 (Rodriguez et al., 2016) 
DES9 [Ch]Cl + EG (1:2) 283.15 – 323.15 17.41 – 87.45 9 (Wang et al., 2020) 
DES9.1 [Ch]Cl + EG (1:2) + H#O 288.15 – 323.15 0.6 – 54.67 144 (Wang et al., 2020) 
DES9.2 [Ch]Cl + EG (1:2) + MeOH 283.15 – 323.15 0.43 – 60.35 153 (Haghbakhsh et al., 2021a; Wang et al., 2020) 
DES9.3 [Ch]Cl + EG (1:2) + DMSO 308.15 – 323.15 1.40 – 24.88 52 (Zuo et al., 2024) 
DES9.4 [Ch]Cl + EG (1:2) + IPA 288.15 – 323.15 1.16 – 55.70 104 (Zuo et al., 2024) 
DES10 [Ch]Cl + EG (1:3) 293.15 – 348.15 6.79 – 30.17 12 (Codera et al., 2023) 
DES10.1 [Ch]Cl + EG (1:3) + H#O 293.15 – 333.15 10.47 – 37.35 9 (Gajardo-Parra et al., 2020) 
DES11 [Ch]Cl + EG (1:4) + H#O 293.15 – 333.15 9.01 – 31.8 9 (Gajardo-Parra et al., 2020) 
DES12 [Ch]Cl + EG (1:5) + H#O 293.15 – 333.15 7.5 – 28.49 9 (Gajardo-Parra et al., 2020) 
DES13 [Ch]Cl + EG (1:6) + H#O 293.15 – 333.15 6.91 – 25.56 9 (Gajardo-Parra et al., 2020) 
DES14 [Ch]Cl + MA (1:0.5) 303.15 – 353.15 46.2 – 1460.3 6 (Mjalli & Naser, 2015) 
DES15 [Ch]Cl + MA (1:1) 303.15 – 353.15 15.2  –  417 6 (Mjalli & Naser, 2015) 
DES15.1 [Ch]Cl + MA (1:1) + H#O 293.15 – 348.15 10.14 – 2016 24 (Florindo et al., 2014) 
DES16 [Ch]Cl + MA (1:2) 303.15 – 353.15 30  –  800 6 (Mjalli & Naser, 2015) 
DES17 [Ch]Cl + TEG (1:3) 298.15 – 358.15 9  –  68 7 (Mjalli & Naser, 2015) 
DES18 [Ch]Cl + TEG (1:4) 298.15 – 358.15 8.1 – 61.9 7 (Mjalli & Naser, 2015) 
DES19 [Ch]Cl + TEG (1:5) 298.15 – 358.15 7.5  –  53 7 (Mjalli & Naser, 2015) 
DES20 [Ch]Cl + TEG (1:6) 298.15 – 358.15 6.5 – 44.9 7 (Mjalli & Naser, 2015) 
DES21 [Ch]Cl + UR (1:1.5) 303.15 – 353.15 36.5  –  663 6 (Mjalli & Naser, 2015) 
DES22 [Ch]Cl + UR (1:2) 293.15 – 363.15 19.95 – 1371.9 8 (Yadav & Pandey, 2014) 
DES22.1 [Ch]Cl + UR (1:2) + H#O 293.15 – 363.15 0.57 – 436.11 72 (Yadav & Pandey, 2014) 
DES23 [Ch]Cl + UR (1:2.5) 303.15 – 353.15 24.8  –  473 6 (Mjalli & Naser, 2015) 
DES24 [Ch]Cl + OA (1:1) 308.15 – 348.15 208.3  –  3332 9 (Florindo et al., 2014) 
DES24.1 [Ch]Cl + OA (1:1) + H#O 293.15 – 348.15 10 – 74.18 12 (Florindo et al., 2014) 
DES25 [Ch]Cl + LevA (1:2) 293.15 – 348.15 22.23 – 320.6 12 (Florindo et al., 2014) 
DES25.1 [Ch]Cl + LevA (1:2) + H#O 293.15 – 348.15 7.21 – 53.39 12 (Florindo et al., 2014) 
DES26 [Ch]Cl + GLA (1:1) 293.15 – 353.15 105.8  –  2968 13 (Florindo et al., 2014) 
DES26.1 [Ch]Cl + GLA (1:1) + H#O 293.15 – 353.15 9.32 – 78.24 13 (Florindo et al., 2014) 
DES27 [Ch]Cl + LA (1:1) 303.15 – 333.15 202.4 – 1245.3 7 (Alcalde et al., 2018) 
DES27.1 [Ch]Cl + LA (1:1) + H#O 288.15 – 353.15 5.53  –  1554.5 33 (Alcalde et al., 2019) 
DES27.2 [Ch]Cl + LA (1:1) + MeOH 303.15 – 333.15 0.7  –  220.96 63 (Alcalde et al., 2018) 
DES28 [Ch]Cl + LA (1:1.5) + H#O 288.15 – 353.15 4.60 – 4005.06 26 (Alcalde et al., 2019) 
DES29 [Ch]Cl + LA (1:2) + H#O 288.15 – 353.15 5.43 – 3823.11 25 (Alcalde et al., 2019) 
DES30 [Ch]Cl + LA (1:2.5) + H#O 288.15 – 343.15 7.08 – 4722.11 23 (Alcalde et al., 2019) 
DES31 [Ch]Cl + p-cresol (1:2) 293.15 – 333.15 19.6 – 133.68 9 (Zhu et al., 2017) 
DES32 [Ch]Cl + 1,4-BT (1:3) 303.15 – 343.15 15.7 – 49.3 9 (Deng et al., 2020) 
DES33 [Ch]Cl + 1,4-BT (1:4) 303.15 – 343.15 14 – 54.75 9 (Deng et al., 2020) 
DES34 [Ch]Cl + 1,4-BT (1:5) 293.15 – 333.15 19.64 – 93.6 9 (Gajardo-Parra et al., 2020) 
DES35 [Ch]Cl + 1,4-BT (1:6) 293.15 – 333.15 18.98 – 91.44 9 (Gajardo-Parra et al., 2020) 
DES36 [Ch]Cl + MEA (1:5) 293.15 – 323.15 14.98 – 18.98 4 (Li et al., 2022) 
DES36.1 [Ch]Cl + MEA (1:5) + H#O 293.15 – 323.15 1.21  –  58.42 36 (Li et al., 2022) 
DES37 [Ch]Cl + MEA (1:6) 293.15 – 323.15 13.62 – 54.07 4 (Li et al., 2022) 
DES37.1 [Ch]Cl + MEA (1:6) + H#O 293.15 – 323.15 1.12 - 50.14 36 (Li et al., 2022) 
DES38 [Ch]Cl + MEA (1:8) 293.15 – 323.15 11.42 – 44.9 4 (Li et al., 2022) 
DES38.1 [Ch]Cl + MEA (1:8) + H#O 293.15 – 323.15 1.12  –  42.61 36 (Li et al., 2022) 
DES39 [Ch]Cl + MEA (1:10) 293.15 – 323.15 10.29 – 39.49 4 (Li et al., 2022) 
DES39.1 [Ch]Cl + MEA (1:10) +H#O 293.15 – 323.15 1.18  –  37.94 36 (Li et al., 2022) 
DES40 [Ch]Cl + DEA (1:6) 293.15 – 333.15 49.91  –  567 3 (Adeyemi et al., 2018) 
DES41 [Ch]Cl + DEA (1:8) 293.15 – 333.15 53.36 – 565.3 3 (Adeyemi et al., 2018) 
DES42 [Ch]Cl + DEA (1:10) 293.15 – 333.15 54.56 – 611.4 3 (Adeyemi et al., 2018) 
DES43 [Ch]Cl + MDEA (1:6) 293.15 – 333.15 22.01 – 139.8 3 (Adeyemi et al., 2018) 
DES44 [Ch]Cl + MDEA (1:8) 293.15 – 333.15 20.99 – 126.3 3 (Adeyemi et al., 2018) 
DES45 [Ch]Cl + MDEA (1:10) 293.15 – 333.15 9.26 – 54.54 3 (Adeyemi et al., 2018) 
DES46 [Ch]Cl + D-GLU(1:1) +H#O 293.15 – 353.15 52.01 – 2509.5 13 (Florindo et al., 2017) 
DES47 [Ch]Cl + D-FT (1:1) + H#O 293.15 – 353.15 28.99 – 995.34 13 (Florindo et al., 2017) 
DES48 [Ch]Cl + PA (1:2) 288.15 – 338.15 13.53 – 91.74 11 (Cui et al., 2017) 
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4.2.2 Molecular Inputs  

 

In this study, COSMO-SAC is employed to obtain the molecular descriptors, 

specifically σ-profiles, which represent the investigated DESs. These σ-profiles, 

discussed in Section 3.1.1, are used as inputs for the ANN model. All σ-profiles obtained 

in this Section were taken from the open-source LVPP-sigma profile database (Soares et 

al., 2017), freely available at https://github.com/lvpp/sigma. The 2D molecular structure 

and the geometrically optimized 3D COSMO-SAC surfaces of the 24 compounds 

investigated in this study are shown in Fig. 4.16. The molecular polarity is visually 

represented through a spectrum of colors ranging from blue to red. Shades of blue indicate 

a higher positive charge (associated with hydrogen-donating areas). In contrast, deeper 

shades of red denote a greater negative charge (corresponding to hydrogen-accepting 

areas). 

The σ-profile of a molecule provides valuable information about its structure, such 

as its polarity and the concentration of specific atoms within it. Consequently, the area 

under the σ-profile curves can be utilized to quantitatively represent the molecular 

surface, denoted as the Sσ-profiles (Torrecilla et al., 2010). Therefore, using these molecular 

descriptors as ANN inputs allows to establish a connection between the molecular 

structure and a specific property of the DES, such as the viscosity.  
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Figure 4.16. 3D geometrically optimized COSMO-SAC surfaces and 2D molecular structures of the 
compounds used to form the DESs and cosolvents investigated in this thesis. 

 

The accuracy of the developed models can be significantly improved by dividing 

the σ-profiles into multiple regions, which provides a more detailed representation of the 

molecule. However, this increased detail also introduces greater complexity, as it requires 

managing a larger number of inputs. Therefore, it is essential to strike a balance between 

model complexity and accuracy. Previous studies have experimented with σ-profiles 

divided into 6 (Wang, Jingwen et al., 2021), 8 (Alkhatib et al., 2022; Lemaoui et al., 2022; 

Sosa et al., 2020),  10  (Palomar et al., 2010),  and  even  51  regions  (Awaja et al., 2023).  
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In this study, to achieve an optimal balance between precision and computational 

complexity for the neural network, we chose to partition the σ-profiles of the compounds 

into eight distinct regions. The areas under the σ-profile curves within each of these 

delineated regions were computed through the trapezoidal rule, and their resulting 

numerical area values were then employed as Sσ-profiles of the 24 compounds investigated. 

Subsequently, the Sσ-profiles of the modeled DESs and their mixtures with cosolvents were 

computed through the conventional approach employed in the literature (Boublia et al., 

2022; Lemaoui et al., 2021; Lemaoui et al., 2022; Lemaoui et al., 2020a), which involves 

calculating the molar-weighted average of its constituents: 

 

						𝑆\]^_ =a𝑥 × 𝑆\
`

ab

`cH

= 𝑥[be]bg × c𝑆\
[be] + 𝑆\bgd +	𝑥PQ] × 𝑆\PQ] +	𝑥h@W@gi × 𝑆\h@W@gi	,	 (4.7) 

 

where NC is the total number of components in the DES mixture, 𝑥% is the mole fraction 

of component j in the mixture, and 𝑆#
% is the Sσ-profiles of component j in region i, from 1 to 

8 (e/�̇�). 𝑥[xI]xN, 𝑥JKk and 𝑥,-$-Nd represent the molar fractions of [Ch]Cl, the HBD and 

the cosolvent present within the DES, respectively.  

 

Analysis of the s-Profiles 

 

The discretized σ-profiles of the 24 compounds investigated were obtained 

through a COSMO-SAC methodology (Ferrarini et al., 2018) and contain 31 data points 

in the range of ± 0.03 (e/�̇�). The results are graphically represented in Fig. 4.17. By 

analyzing this figure, it is possible to observe different regions of Sσ-profiles based on their  
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polarized charge density: the strong hydrogen-bonding donor (HBD) region [𝑆U and 𝑆A], 

the weak HBD region [𝑆O], the non-polar region [𝑆c and 𝑆z], the weak hydrogen bond 

acceptor (HBA) region [𝑆{] and the strong HBA region [𝑆| and 𝑆}]. A detailed outline of 

the charge density ranges for these regions, accompanied by their corresponding 

molecular descriptors, is provided in Table 4.7. 

 

 

Figure 4.17. COSMO-SAC calculated σ-profiles for a) the anion and cation of the HBA [Ch]Cl salt, b) 
alcohols and glycols, c) acids, d) amines, e) carbohydrates and urea, and f) cosolvents. 
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Table 4.7. Eight molecular descriptors derived from Sσ-profiles used in this work and their corresponding 
charge densities and polarity regions. 

Molecular descriptor Screening charge density range 
 (e/A) 

Region 

S1 -0.030 < σ < -0.022 
strong HBD region 

S2 -0.022 < σ < -0.014 
   

S3 -0.014 < σ < -0.006 weak HBD region 
   

S4 -0.006 < σ <  0.000 
non-polar region 

S5   0.000 < σ < +0.006 
   

S6 +0.006 < σ < +0.014 weak HBA region 
   

S7 +0.014 < σ < +0.022 
strong HBA region 

S8 +0.022 < σ < +0.030 
 

 

The conversion of s-profiles into eight Sσ-profiles descriptors offers essential 

insights into the atomistic properties of each compound and their influence on governing 

intermolecular interactions by analyzing peaks in specific molecular descriptors. For 

instance, the peaks observed in the [S4] and [S5] zone (non-polar region) can be attributed 

to the non-polar alkyl groups present within the molecules, such as -CH3, -CH2 and -CH. 

Figure 4.17 (b) demonstrates that longer molecular chain lengths result in higher peak 

elevations in the non-polar region (e.g., triethylene glycol > 1,4 butanediol > ethylene 

glycol).  The peaks observed within the [S1-S3] zone mainly correspond to the positively 

charged H~� part of the molecules, which induce a shift toward the negative pole of the 

field. Conversely, within the [S6-S8] zone, the peaks are primarily associated with the 

electronegative regions of O~;, N~;or S~; found in the O-H, N-H and S=O groups, or to 

the anion [Cl]-, which exhibits a stronger screening charge density in [S7] zone, as 

illustrated in Figure 4.17 (a). The calculated areas below the Sσ-profiles, providing the [S1-

S8] descriptors for the compounds investigated are listed in Table 4.8.  
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Table 4.8. Calculated molecular descriptors for database compounds. 

#   Element 𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒 𝑺𝟓 𝑺𝟔 𝑺𝟕 𝑺𝟖 
1 [Ch]+ 0 0.01312 0.20541 0.05415 0.00771 0.01444 0.00900 0 
2 [Cl]- 0 0 0 0 0 0 0.10562 0 
3 PH 0 0.01216 0.04317 0.06867 0.08714 0.04321 0.00639 0 
4 GL 0 0.01587 0.05448 0.07956 0.02631 0.03927 0.03054 0 
5 EG 0 0.01192 0.03488 0.07491 0.02049 0.02708 0.02275 0 
6 TGE 0 0.01570 0.05789 0.20460 0.03551 0.03411 0.05554 0 
7 UR 0 0.02596 0.04423 0.02580 0.02552 0.02613 0.03211 0 
8 AO 0.00557 0.03218 0.03311 0.02188 0.03068 0.07935 0.00806 0 
9 LevA 0.00372 0.01097 0.08594 0.08181 0.02441 0.06248 0.03180 0 
10 GLA 0.00200 0.02327 0.08491 0.07629 0.02671 0.07711 0.03332 0 
11 MA 0.00177 0.02776 0.05414 0.03775 0.03341 0.07616 0.01704 0 
12 LA 0.00041 0.02047 0.04232 0.06983 0.03490 0.04545 0.02273 0 
13 p-cresol 0 0.01231 0.03789 0.09531 0.10338 0.04149 0.00711 0 
14 1,4-BT 0 0.01001 0.01627 0.14666 0.03940 0.02180 0.02399 0 
15 MEA 0 0.00753 0.04404 0.07809 0.02814 0.02050 0.02314 0.0026 
16 DEA 0 0.01512 0.04989 0.12950 0.04184 0.03085 0.03646 0.0014 
17 MDA 0 0.01572 0.03349 0.16378 0.05826 0.02845 0.03435 0 
18 D-GLU 0 0.02463 0.09704 0.08970 0.04728 0.08621 0.03401 0 
19 D-FT 0 0.02422 0.08896 0.09188 0.04251 0.07761 0.03473 0 
20 PA 0.00043 0.01162 0.03252 0.08665 0.03534 0.03739 0.01596 0 
21 H20 0 0.01009 0.02731 0.00690 0.00894 0.01866 0.01477 0 
22 MeOH 0 0.00814 0.01536 0.06314 0.01745 0.01369 0.01598 0 
23 DMSO 0 0.00019 0.07541 0.08251 0.01924 0.00852 0.02963 0.0065 
24 IPA 0 0.00693 0.01299 0.10624 0.05798 0.01209 0.01625 0 

 

 

4.2.3 ANN Model: Design and Evaluation 

 

The ANN design was conducted using the Neural Network Toolbox of MATLAB 

R2023a software, employing the Bayesian regularization algorithm (Foresee & Hagan, 

1997) as the training function for the ANN. The choice of this algorithm  was motivated 

by its ability to effectively handle overfitting and improve generalization performance by 

adjusting the complexity of the neural network during training based on Bayesian 

principles (Panigrahi et al., 2018) .The eight Sσ-profiles and the temperature descriptor in K 

(T) were employed as ANN input to predict the log10 viscosity (ƞ) of the DESs (here  

denoted   as  𝑙𝑜𝑔	(ƞ)  and  their  mixtures  as  an  output response.   The   reason   behind  
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calculating the logarithm instead of the direct property is to homogenize the weight when 

computing the errors of low viscosity compared to high viscosity data values. The 

predictive correlation is expressed as: 

 

          𝑙𝑜𝑔	(ƞ) 	= 𝑓	(	𝑆Ukm�, 	𝑆Akm�, … , 	𝑆}km�, 𝑇)   (4.8) 

  

The typical process of constructing a neural network for a specific task involves 

the optimization of the network structure. Therefore, to propose an effective design of the 

ANN model, this investigation has explored several network configurations, including 

single and double hidden layers with varying neuron quantities, in a similar manner as 

done by other authors (Matsukawa et al., 2021). Using the equations 3.42 - 3.44 from 

Section 3.2.1 and employing the hyperbolic tangent (tanh) as the activation function, the 

output neurons in the hidden layers 1 (𝐻@
(U))	 and 2 (𝐻@

(A))	are expressed as follows: 

 
 

																												𝐻@
(U) 	= tanh¥[𝑊@,%

(U)
�

%TU

. 𝑢% +	𝑏@
(U)¦  (4.9) 

 

																																		𝐻@
(A) 	= tanh¥[𝑊@,%

(A)
j

%TU

.𝐻@
(U) +	𝑏@

(A)¦					  (4.10) 

 

 

In these equations, the subscripts n and j denote the neuron and the input indices, 

respectively, while the superscripts (1) and (2) refer to the first and second hidden layer. 

W and b denote the weights and bias terms. The term 𝑢% in Eq. 4.9 represents the external 

inputs, encompassing the eight Sσ-profiles and the temperature. Finally, the output response 
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 (𝑙𝑜𝑔	ƞ) of the ANN model, using the linear transfer function (purelin) for activation, is 

expressed by Eq. 4.11, where the superscripts OL refer to the output layer, and the input 

to the output layer can be 𝐻@
(U)	or 𝐻@

(A), depending on whether the ANN configuration 

includes a single or double hidden layer. 

 

																																							𝑙𝑜𝑔	ƞ	 =[𝑊@,%
(��).𝐻@

(U	-0	A)
j

%TU

+	𝑏@
(��)					  (4.11) 

 

 

To evaluate and assure the prediction power of the designed ANN, the database 

consisting of 1891 data points was split into two primary sets, a training set containing 

80% of the data and a testing set containing 20%. Within the testing dataset, 

approximately 9% was designated for internal testing during the ANN's development, 

denoted as the "testing set". In contrast, around 11% formed the "external testing set", 

which remained completely untouched during the development process of the ANN. The 

selection of the external testing set employed the "ordered response" method (Boublia et 

al., 2023; Gramatica et al., 2016), where the 	log	(ƞ) values of all DESs were sorted from 

lowest to highest, and then one out of every nine data points was selected for external 

testing set. Subsequently, the remaining data was randomly divided into training and 

testing sets for the ANN's development. This meticulous approach not only enhances the 

credibility of the model's performance evaluation, but also underscores its ability to 

generalize effectively to unseen data. 

Furthermore, a comprehensive statistical analysis was conducted, considering 

classical metrics, such as the coefficient of determination (R2) to assess the linear 

correlation between the calculated, the experimental data root-mean-square error (RMSE)  
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to measure the data dispersion around the zero deviation, and the average absolute relative 

deviation (AARD) to evaluate the relative absolute deviation from the experimental data 

(Zendehboudi et al., 2019). These metrics were determined using the following equations: 

 

𝑅A = 1 −
∑  log ƞ1g7,# − log ƞ	,4N,,#¡

A
i
#TU

∑  log ƞ1g7,# 	 − 	log ƞ©©©©©©¡i
#TU

A  

 

 

 (4.12) 

𝑅𝑀𝑆𝐸 = 	�
1
𝑁[  log ƞ	,4N,,# − log ƞ1g7,#¡

Ai

#TU
 

 

 

 (4.13) 

															𝐴𝐴𝑅𝐷	(%) =
100
𝑁 [ª

log ƞ	,4N,,# − log ƞ1g7,#
log ƞ1g7,#

ª
i

#TU

  (4.14) 

 

In these equations, log ƞ	,4N,, log ƞ	1g7 and log ƞ©©©©©© represent the calculated, the 

experimental and the average value of the logarithm of DESs viscosities, respectively, i 

represent the specific data point considered, and N indicates the total number of data 

points. 

Furthermore, to define the range of molecules in which the model prediction may 

be considered reliable, an Applicability Domain (AD) analysis was carried out. The AD 

of the developed ANN model was analyzed by means of the William plot (Gramatica, 

2007), which is constructed by plotting the standardized residual (𝑆𝐷𝑅#) against the 

leverage value (ℎ#) of each data point 𝑖, with AD boundaries defined as horizontal 

boundaries (-3 < SDR < +3) and vertical boundaries (0 < ℎ# 	< h∗), where ℎ∗ denotes the 

critical leverage value. The points located outside the AD boundaries are treated as 

outliers, and their presence is attributed to variations in the chemical structure compared 
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 to the selected data points of the structural centroid used in the training set (Gramatica, 

2007). The ℎ#  and ℎ∗ (Tropsha et al., 2003), and the 𝑆𝐷𝑅# 	are expressed as follows: 

 

                                          ℎ# =	𝑣#(𝑉>𝑉);U × 𝑣#> 	 

 

                (4.15) 

ℎ∗ =
3(𝑑∗ + 1)

𝑝  
   (4.16) 

 

															𝑆𝐷𝑅# =	
log ƞ	,4N,,# − log ƞ1g7,#

�∑  log ƞ	,4N,,# − log ƞ1g7,#¡
i
#TU

A

𝑁

						, 

 

 

(4.17) 

 

 

being 𝑑∗ the number of inputs within the ANN model, which is 9 in this study, 𝑣# a matrix 

with dimensions of 1 × 𝑑∗, and 𝑉 a matrix with dimensions 𝑝 × 𝑑∗, where 𝑝 indicates the 

number of experimental data points in training. The superscript T denotes the transpose 

of the matrices. Lastly, the coverage of the AD in a William plot can be characterized by 

Eq. 4.18, where N	#@$#"1 represents the total number of data points within the boundaries 

of the AD, while N	 denotes the entire number of data points (including both the training 

and testing set). 

 

																														𝐴𝐷,-d104�1 	(%) = 	
N	#@$#"1

N	
× 100     (4.18) 
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Optimization of the ANN Structure 

 

The performance of an ANN model is significantly influenced by the number of 

neurons in the hidden layer, which exerts a considerable impact on the complexity and 

accuracy of the resulting models (Shahbaz et al., 2012). Insufficient neurons in the hidden 

layer can generate an under-fitted model, resulting in lower accuracy in the training and 

testing data. Conversely, an excessive number of neurons may lead to overfitting, wherein 

the model achieves high training accuracy but poorer performance on testing data. 

Therefore, selecting the appropriate number of neurons in the hidden layer is pivotal for 

an optimal ANN model performance. As a first attempt, several network structures with 

a single hidden layer were examined, each one employing various neurons ranging from 

1 to 25. Figure 4.18 illustrates the influence of varying the number of neurons in the first 

hidden layer on the RMSE values. Notably, the figure shows that the ANN model with 

24 neurons achieved the most favorable performance in predicting the viscosity logarithm 

of DES, with an RMSE value of 0.01954. 

 

 

Figure 4.18. Effect of the number of neurons on the RMSE for predicting the viscosity of DES using the 
Bayesian regularization algorithm for training ANNs with one hidden layer. 
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 Previous literature have shown that highly non-linear relationships tend to be 

more accurately modeled using ANNs with two or more hidden layers (Asensio-Delgado 

et al., 2022; Boublia et al., 2022; Lemaoui et al., 2022). Based on this information, an 

extensive analysis was performed, exploring the impact of adding a second hidden layer 

to the ANN. For that purpose, two layers of ANNs were designed, spanning from 1 to 25 

neurons in each layer, and the performance of each network was assessed in terms of 

RMSE and complexity of the model. Figure 4.18 shows the RMSE results from 

examining 625 two-hidden layer configurations. Among these configurations, the ANN 

featuring 19 neurons in the first hidden layer and 16 neurons in the second hidden layer 

has been selected as the optimal compromise between accuracy and architecture 

complexity, as it is the simplest model that achieves one of the lowest RSME, obtaining 

a value of 0.01424 in predicting the logarithm of DES viscosity in the total training and 

testing set. This RMSE is approximately 27% lower than the RMSE obtained by a model 

with a single hidden layer consisting of 24 neurons (0.01954). 

 

 

Figure 4.19. Effect of the number of neurons on the RMSE for predicting the viscosity of DES using the 
Bayesian regularization algorithm for training ANNs with two hidden layers. 
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Hence, it has been determined that the most effective architecture for predicting 

the provided dataset is 9-19-16-1. The schematic diagram of the optimal ANN is 

displayed in Figure 4.20, and the weights and biases of each neuron are reported in Table 

4. 9. 

 

 

Figure 4.20. Schematic diagram of the optimal ANN model with a (9-19-16-1) configuration. 

 

 
 

Additionally, the developed ANN has been integrated into an open source and 

user-friendly Excel spreadsheet, which is freely available in a published contribution 

(Alencar et al., 2024).  Figure 4.21 shows the prediction of the viscosity of DES 6.1, as 

detailed in Table 4.6. 
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Figure 4.21. Image of the Excel Spreadsheet available in for the prediction of viscosity of the DES 6.1 (as 
detailed in Table 4.6) available in (Alencar et al., 2024).   

 

 Statistical Analyses 

 

Following the determination of the optimal ANN configuration, the performance 

of the developed model in predicting the training and test sets was analyzed by the 

assessment of various statistical parameters. A detailed summary is provided in Table 

4.10. 

 
 
Table 4.10. Summary of the statistical parameters for the performance evaluation of the developed ANN Model. 

         Metric  Training  Testing  External testing Total  

R2 0.99989 0.99723 0.99809 0.9995  

RSME (log ƞ) 0.008271 0.037594 0.035381 0.017887  

AARD (%) 1.6288 1.4729 1.5225 1.6031  

ADcoverage (%) 94.3122 92.8571 94.7867 94.1667  

Data points 1512 168 211 1891  
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The ANN model exhibits high statistical performances, achieving an R2 value of 

0.99989 and an AARD of 1.6288% for the training set, 0.99723 and 1.4729% for the 

testing set, and 0.99809 and 1.5225% for the external testing set. Furthermore, the RMSE 

values for predicting log ƞ were also quite low, standing at 0.008271, 0.037594 and 

0.035381 for the training, testing and external testing sets, respectively, providing further 

evidence of the ANN model reliability.  

Figure 4.22 displays scatter plots of experimental and predicted DESs log ƞ 

values, demonstrating the excellent model fit and absence of overfitting, with most points 

closely aligned along the y = x diagonal. 

 

 

Figure 4.22. Parity graph comparing experimental and predicted DESs log η values from the ANN model, 
with corresponding 𝑅U values from a) training, b) testing and c) external testing. 
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The residual plot was also employed to analyze the model's accuracy for further 

evaluation. As illustrated in Figure 4.23, the proposed model exhibited exceptional 

performance in predicting the log η of DESs, with 99.15 % of residuals concentrated 

within the ±0.05 range. 

 

 

Figure 4.23. The residual deviation between the experimental and predicted DESs log η values for training, 
testing and external testing sets. 

 
  

Furthermore, an y-scrambling approach was applied to ensure that the obtained 

ANN was not correlated by chance. Firstly, the dataset was modified by randomly 

arranging the log ƞ responses. Then, another ANN model with the same hypertuned 

parameters (i.e. the same network architecture) was created for the randomly reordered 

responses, and the y-scrambling regression coefficient (𝑅pE�D*C�(A ) value of the new model 

was calculated. This procedure was performed 100 times to generate new randomly 

reordered  responses  and  ANN  models.  The mean  value  of 𝑅pE�D*C�(A  was found to be  
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0.2086, which suggests that there is no significant correlation due to random chance in 

the regression, reinforcing the validity of the ANN. 

In order to further ensure the robustness of the selected descriptors and their 

insensitivity to changes in the input dataset, a cross-validation test based on the leave-

one-system-out technique (Lemaoui et al., 2021) was conducted. Aiming to assess the 

predictivity of a thermophysical property, the cross-validation is performed for systems 

rather than individual data points or random sets of points, in a similar manner as done 

for QSAR models in a recent contribution, where this validation was done by anions (Liu 

et al., 2023). Thus, this technique is computed here by excluding one DES from the 

training set and determining the model’s internal fit assessed by the coefficient of 

determination calculated for the DES “predicted as new” by the developed model. The 

process is then repeated multiple times until all the DESs shown in Table 4.6 are held-out 

once from the training set, and an average of the internal fits is computed as the Q2 cross-

validation coefficient. The mean value of Q2 was found to be 0.9044, which reflects the 

robustness of the model.  

Considering all error analyses, the developed ANN, based on COSMO-SAC σ-

profiles of the compounds and the experimental data temperature, exhibits a strong 

capacity to accurately describe DESs and DESs + cosolvent viscosities with very modest 

deviations. 

 

Applicability Domain 

 

The scope and reliability of the developed ANN model can be further assessed 

using  the  Applicability  Domain  (AD)  analysis.  Evaluating  the  AD  holds significant  
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importance, especially for molecular-based ANNs, as it quantitatively defines the range 

of molecules and conditions where the prediction can be performed accurately (Lemaoui 

et al., 2021; Lemaoui et al., 2023; Tropsha et al., 2003). The AD of the developed ANN 

model was assessed using the William plot, shown in Figure 4.24, where the AD 

boundaries are defined by the vertical dashed line (0 < ℎ# 	< h∗) and the horizontal dashed 

lines (-3 < SDR < +3) (Tropsha et al., 2003). 

 

 

Figure 4.24. William plot for the log η of the total set of DESs. 

 

The analysis reveals that most of the DESs data employed in the development of 

the ANN model and the external testing are within the AD boundaries, with an ADcoverage 

of 94.167% across the entire dataset. However, the predictions in training, testing and 

external testing of some few data points at exceptional temperature values are considered 

structural  outliers  due  to  their  leverage  values  surpassing  ℎ∗ or  SDRs exceeding the 

standard limit of ±3. Nevertheless, these outliers constitute a minor fraction, accounting  



CHAPTER 4. Characterizing the Thermophysical Properties of Choline Chloride-Based 
DESs and Their Mixtures with Cosolvents 

 124 

 
for less than 6% of the total data points. Hence, the database used in this study does not 

contain a substantial number of outliers and the developed ANN model is properly 

accurate within its domain of applicability, indicating the robustness and reliability of the 

proposed ANN model due to its large AD and structural coverage. 

 

Molecular Descriptor Importance 

 

To assess the significance of the individual input variables within the molecular-

based ANN model and their influence on the viscosity of the DESs, a relative contribution 

analysis has been performed. This analysis was conducted employing the Partial 

Derivatives (PaD) method, identified as the most effective approach for studying the 

relative contributions of input parameters to the ANN's output (Gevrey et al., 2003). The 

PaD method involves computing the partial derivatives of the output over the input 

variables (Asensio-Delgado et al., 2022). The results of the relative contribution of the 

molecular descriptors inputs related to the discretization of the s-profiles are illustrated 

in Figure 4.25. 

 

 
Figure 4.25. Relative contributions of the S1-8 molecular descriptors inputs to the log η of the DESs for the 
optimized ANN (9-19-16-1) calculated with the PaD method. 
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As it can be observed, the regions with strong hydrogen bonding areas exhibit the 

most significant contributions to the log η of the DESs, as the strongest HBD region [S1] 

presents a relative contribution of 78.71% and the strongest HBA region [S8] of 11.23%. 

From a chemical perspective, the viscosity of DESs primarily depends on the strength of 

hydrogen bonds, as the extensive network of these bonds limits the mobility of free 

species within the DESs, leading to a viscosity increase (Mbous et al., 2017; Zhang et al., 

2012). As an example, the viscosity of [Ch]Cl-based DESs is significantly higher when 

using a diacid, like oxalic acid, as the HBD, compared to a monoacid, like levulinic acid, 

due to the formation of additional hydrogen bonds (Florindo et al., 2014). Figure 4.26 

provides a visual representation of the direct influence of all input variables on the output, 

illustrating the relationship between derivatives of the log η with respect to each input 

variable and their corresponding input. 

 

 

 
Figure 4.26.  Partial derivatives of the log η with respect to each input variable represented against its 
corresponding input variable. 
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Figure 4.27 also shows a visual representation of the direct influence of all input 

variables on the output, depicting the relationship between these derivatives and the 

resulting log η of the DESs.  

 

 

Figure 4.27.  Partial derivatives of the log η with respect to each input variable represented against the 
log η. 

 

 

Both Figures 4.26 and 4.27 demonstrate the sensitivity of the output (log η) to 

each input variable, where higher values of the partial derivatives indicate greater 

sensitivity. This means that small changes in an input variable with a high partial 

derivative value significantly impact the output. Specifically, in Figure 4.26(a) and Figure 

4.27(a), it can be observed that the [S1] descriptor has the highest partial derivative values, 

indicating that this descriptor most significantly affects the viscosity of DESs in this 

ANN.  Overall,  the  relative  contributions  mentioned  above  provide  valuable  insights  
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related to the impact of hydrogen bonding on viscosity, facilitating an ad-hoc selection of 

promising DESs for specific applications.   

 

Predictive Capabilities 

 

As previously stated, the purpose of this study is to develop a versatile tool able 

to accurately estimate an important property, such as the viscosity, in a wide range of 

conditions. Consequently, it is crucial to evaluate the predictive capabilities of the model 

presented. Hence, the developed ANN is here applied to predict the viscosities of some 

DESs in specific conditions not included in the experimental dataset. This includes 

scenarios featuring different combinations of HBDs and cosolvents, which were outside 

the scope of both the training and testing procedures. In particular, these data encompass 

a new HBD, 2,3 butanediol, through the prediction of DESs based in [Ch]Cl : 2,3-

butanediol at different ratios (Deng et al., 2020), as well as ethanol as a new cosolvent, 

through mixtures of [Ch]Cl : EG (1:2) at various ratios (Haghbakhsh et al., 2021a), 

extending the model's predictive capacity beyond its original scope. The s-profile of these 

new compounds are shown in Figure 4.28. 

 

 
Figure 4.28. COSMO-SAC calculated σ-profiles for the new cosolvent (Ethanol) and the new HBD (2,3-
butanediol), with their 3D geometrically optimized COSMO-SAC surfaces. 
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The calculated areas below the Sσ-profiles, providing the [S1-S8] descriptors for these 

two compounds are listed in Table 4.11.  

 

Table 4.11. Calculated molecular descriptor for compounds used in extrapolation tests. 
      Element 𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒 𝑺𝟓 𝑺𝟔 𝑺𝟕 𝑺𝟖 

Ethanol 0 0.00785 0.01276 0.08856 0.03699 0.01283 0.01575 0 
2,3 Butanediol 0 0.01246 0.03107 0.11845 0.04512 0.02689 0.02570 0 

 

 

The comparison between the experimental data and the extrapolated predictions 

of DES viscosities for the first test, using ethanol as a new cosolvent, with the proposed 

ANN is depicted in Figure 4.29.  

 

 

 

Figure 4.29. Viscosity predictions in the presence of a new cosolvents: Viscosity experimental data 
(Haghbakhsh et al., 2021a) (symbols) and predictions calculated (dashed lines) by the proposed optimized 
ANN model (9-19-16-1) for [Ch]Cl- EG (1:2) + Ethanol at different proportions.  
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The high accuracy achieved by the network to predict the viscosity of [Ch]Cl:EG 

(1:2) in solution with ethanol is demonstrated through the low AARD of 6.19% 

encountered across a wide range of ethanol proportions, spanning from 10% to 90% of 

the molar fraction. It is important to remark that no degeneracy is observed when 

increasing the amount of cosolvent in the solution. 

The second test explores the addition of 2,3-butanediol as a new HBD combined 

with [Ch]Cl at different ratios. The predictions show reasonable agreement with the 

available experimental data, as illustrated in Figure 4.30. While the results offer and 

acceptable AARD of 18.91%, the major deviations are caused by the inclusion of a 

proportion with a bigger amount of 2,3-butanediol (1:4) and grow at lower temperatures. 

On the other hand, the results for the [Ch]Cl:2,3-butanediol (1:3) are excellent in the 

whole range of temperatures. 

 

 

Figure 4.30. Viscosity predictions in the presence of a new HBD (2,3-butanediol): Viscosity experimental 
data (Deng et al., 2020) (symbols) and predictions calculated (dashed lines) by the proposed optimized 
ANN model (9-19-16-1) for [Ch]Cl- 2,3-butanediol at different proportions.  
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Finally, the extrapolation capacity of the ANN is further stressed by predicting a 

range of extremely high viscosities, omitted from the dataset due to values exceeding 

4000 mPa·s (Florindo et al., 2014), for the DES [Ch]Cl: OA (1:1). The results are plotted 

in Figure 4.31. Remarkably, the ANN predicts the viscosity of [Ch]Cl: OA (1:1) with an 

AARD of 8.57%, covering a wide range of viscosity values from 5000 to 16000 mPa·s, 

highlighting the capacity to estimate values where measurements are difficult due to the 

inherent complexities of a highly viscous flow. 

 

 

Figure 4.31.  Extrapolation capability of the ANN for data outside the fitting viscosity range. Viscosity 
experimental data (Florindo et al., 2014) (symbols) and predictions calculated (dashed lines) by the 
proposed optimized ANN model (9-19-16-1) for [Ch]Cl:OA (1.1) at low temperatures. 

 
 

Additionally, all these new experimental data are tested for their AD, yielding a 

95.45% of ADcoverage, implying that most of them fall within the model's applicability 

domain. The William plot of these data is shown in Figure 4.32. Particularly, the data for 

[ChCl] : OA (1:1) at the lowest temperatures fall outside the AD of the model. Therefore,  
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the developed model can be considered reliable, except for these specific data points, for 

which viscosity predictions should be treated with caution. 

 

 

Figure 4.32. William plot for the log η of the extrapolations set of DESs. 

 

4.3 Key Findings of the Chapter         

 

 This chapter develops a framework to describe the impact of cosolvents on the 

thermophysical properties of [Ch]Cl-based DESs. The soft-SAFT EoS, combined with 

FVT, effectively characterizes density, isentropic compressibility, speed of sound, vapor-

liquid phase equilibria and viscosity for various DESs and their mixtures with cosolvents. 

This model provides a robust and transferable parametrization, accurately predicting the 

behavior of DESs across different HBDs, ratios and temperatures. Additionally, an ANN 

model using COSMO-SAC-based σ-profiles and temperature inputs was developed to 

estimate viscosity of [Ch]Cl-based DESs, using a database of 1891experimental viscosity 

measurements. The ANN achieved high accuracy, demonstrating excellent performance 

metrics  and  predicting  viscosity  for various [Ch]Cl-based DESs, including new HBDs 
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 and cosolvents not included in the training dataset. This ANN model facilitates efficient 

property prediction, significantly accelerating research and industrial application of 

DESs. Together, these methods provide a comprehensive and reliable approach for 

understanding and predicting the properties of DESs, aiding in their development and 

practical application. 
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         5 
Gas Separation Technological Applications 

using DESs 
 

 

This chapter delves into the selective recovery of Greenhouse Gases (GHGs) using Deep 

Eutectic Solvents (DESs). The investigation encompasses two primary areas: the 

separation of commercial refrigerant blends and the recovery of ammonia from a mixture 

containing carbon dioxide from melamine streams. The solubility of a range of GHGs in 

DESs is examined using the soft-SAFT EoS, which includes determining enthalpy and 

entropy of dissolution, Henry’s constants, as well as ideal and competitive selectivity of the 

DES in GHG blends.
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Currently, global warming represents one of the most pressing topics in modern 

science, exerting far-reaching impacts across virtually all areas of society and serving as 

an incentive for public policies, regulations, and studies (Hoesung, 2023). The advance 

of this phenomenon can be attributed mainly to the anthropogenic emission of greenhouse 

gases (GHGs), whose atmospheric concentration has increased in recent years (The 

NOAA Annual Grenhouse Gas Index (AGGI)). Historically, the most common GHGs 

have been carbon dioxide (CO2), nitrous oxide, methane, and fluorinated gases (F-gases) 

("Inventory of U.S. greenhouse gas emissions and sinks: 1990-2018," 2020).  

 In this context, the exploration and application of DESs in gas capture and 

separation technologies have attracted considerable attention, as highlighted in Section 

2.2. These solvents offer the capacity for selective extraction and separation of various 

compounds, providing a sustainable and efficient alternative to traditional solvents. 

Particularly, the ability of DESs to facilitate the capture of gases, particularly CO2 and 

other greenhouse gases, underscores their potential in addressing environmental 

challenges and promoting cleaner industrial practices.  

 As shown in Section 2.3.1, previous studies have highlighted the remarkable 

predictive capability of soft-SAFT EoS in characterizing the solubility of GHGs in DESs.  

Therefore, this section delves into describing, via soft-SAFT EoS, two specific 

applications of DESs in gas separation and capture, highlighting their efficacy and 

versatility in this pivotal domain. 
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5.1 Recovery of Commercial Refrigerants Blends 

 

5.1.1 The Case Problem 

 

F-gases are mainly employed in the refrigeration industry and are emitted at much 

lower rates than other GHGs. As of 2019, these compounds accounted for approximately 

2.3% of the total GHG emissions globally (IPCC, 2024). However, their high global 

warming potentials (GWPs), usually thousands of times the value of CO2, dramatically 

raises their impact, leading to further regulations to lessen global warming effects. The 

Kigali Amendment to the Montreal Protocol ("Amendment to the Montreal protocol on 

substances that deplete the ozone layer," 2016) established the future of usage of F-gases, 

aiming to significantly decrease global hydrofluorocarbon (HFC) emissions to 0.9-1 Gt 

of CO2 equivalent per year by 2050, along with a reduction in the surface warming to 

0.04°C by 2100, which presents an uninspiring contrast to current projections of 1.9-3.6 

Gt of CO2 equivalent per year and surface warming of 0.14-0.31°C, respectively (Velders 

et al., 2022). In this context, there are several challenges to address. For example, it is 

essential to determine the source of emissions and analyze the appropriate methods for 

reducing them from specific sources  (Sovacool et al., 2021). Indeed, F-gases, especially 

HFCs, have been characterized by a remarkable increase in their emissions over time 

("Fluorinated greenhouse gases," 2019; Velders et al., 2022). Thus, treating these 

substances represents one of the most challenging tasks in modern chemical engineering.  

Destruction of F-gases is the most direct approach to remove these compounds. 

However, it still copes with difficulties such as high energy demands, hazardous 

decomposition products under non-optimal conditions, and lack of technological 

availability in every country (Castro et al., 2021; Sheldon & Crimmin, 2022). A circular 



                             CHAPTER 5. Gas Separation Technological Applications using DESs 

 137 

economy framework around F-gases may circumvent this issue, reducing the requirement 

to produce new F-gases (Castro et al., 2021). Regardless of the approach, an efficient and 

highly selective recovery of F-gases from end-of-life equipment is crucial for adhering to 

mid and long-term phase-out regulations. However, using F-gases under highly non-ideal 

conditions, such as in azeotropic blends (Morrison & McLinden, 1993), limits the 

alternatives for performing the separation process.  

  Among techniques involved in recovering F-gases, absorption into ionic liquids 

(ILs) and deep eutectic solvents (DESs) has raised as a promising alternative, as 

elucidated in Section 2.2.2. The application of ILs to the absorption process is widely 

spread in the literature (Asensio-Delgado et al., 2021; Han & Row, 2010; Lei et al., 2014; 

Vega et al., 2010), while DESs have been studied in a more limited way, with a significant 

increase over past years (Castro et al., 2020; Codera et al., 2023; Demirbek et al., 2024; 

Jovell et al., 2020). Some advantages have been attributed to DESs over ILs, namely 

lower toxicity, viscosity, and corrosivity,  better degradability and lower production cost 

(Prabhune & Dey, 2023).   

  Merging a remarkable predictive capability with a lower computational cost, 

previous studies have highlighted the accuracy and predictive power of the soft-SAFT 

EoS variant  (Blas & Vega, 1997) in characterizing the thermodynamic behavior of F-

gases (Albà et al., 2021; Albà et al., 2023; Alkhatib et al., 2022), including the modelling 

of their solubility in DESs (Demirbek et al., 2024; Jovell et al., 2020).   

Thus, this section is devoted to verifying the potential absorption of four common 

F-gases (R-125, R-134a, R-32, and R143a) using specific low-cost, non-toxic, and 

environmentally friendly DESs. For this purpose, solubility description via soft-SAFT 

EoS of these F-gases in DESs composed of tetramethylammonium chloride (TMAC) and 

[Ch]Cl as HBA, and ethylene glycol, glycerol and lactic acid as HBD. Figure 5.1 
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illustrates the molecular structures of all compounds studied in this section. The 

thermophysical model is then used to describe various properties, including the density 

and viscosity of pure DESs, the enthalpy and entropy of dissolution, Henry’s constants, 

and ideal selectivity. Additionally, the study assesses the competitive selectivity among 

gases in multi-component mixtures based on commercial refrigerant blends and DESs. 

From this information, a rational analysis is provided to determine the best DES for 

recovering a specific  component in a given commercial blend, facilitating the pre-design 

of a gas separation unit for industrial applications. 

 

 

 

Figure 5.1. Chemical structures of the compounds studied in this section. 
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5.1.2 Molecular Models  

 

From a computational perspective, two HBAs ([Ch]Cl and TMAC) and three 

HBDs (ethylene glycol – EG, glycerol – GL, and lactic acid – LA), forming a total of five 

combinations (excluding the TMAC and LA combination), were studied in detail. 

As concluded in Chapter 4, modelling DESs using the individual-component 

approach provides a more reliable representation of their behavior. Therefore, in this 

section, DESs are modeled as mixtures of two independent species using this approach. 

The models for [Ch]Cl, GL, EG, and water were described in Chapter 4, and their soft-

SAFT parameters are presented in Table 4.2. TMAC is modeled similarly to [Ch]Cl, as 

an associating compound with two association sites each—one positive and one 

negative—to simulate the cation-anion interaction. LA is modeled with two association 

sites, one positive and one negative, to mimic the hydroxyl groups present in these 

molecules, following the same approach used for GL and EG. The F-gases R-125, R-

134a, R-143a, and R-32 are described as homonuclear chains with two association sites 

each—one positive and one negative—to simulate the dipole moment caused by the 

molecule's electronegativity. This model has demonstrated superior performance in 

describing interactions with ILs and DESs. (Demirbek et al., 2024; Jovell et al., 2020). 

The complete set of parameters for the new compounds explored in this section of 

the thesis is derived from previous works (Albà et al., 2020; Asensio-Delgado et al., 2020; 

Lloret et al., 2017; Vilaseca et al., 2010)  and is presented in Table 5.1 
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Table 5.1. Molecular weight and soft-SAFT molecular parameters optimized for the species that form 
DESs, and F-gases studied in this section. 

 

 

5.1.3 Solvents Thermophysical Characterization  

 

Before examining the solubility of F-gases, the performance of the soft-SAFT EoS 

in calculating the density and dynamic viscosity (using the FVT approach) of the DESs 

was assessed. Utilizing the pure-component parameters detailed in Table 4.2 of Chapter 

4 and Table 5.1 of this chapter, the density-temperature diagram for the five studied DESs 

was predicted and is presented in Figure 5.2. 

As observed, soft-SAFT predictions are highly accurate when compared to the 

experimental data, with an %AAD of 1.12%, 1.51%, 1.52%, 1.16% and 1.13% for 

[Ch]Cl:GL (1:3) + 10wt% water, TMAC:GL (1:3), [Ch]Cl:LA (1:3), [Ch]Cl:EG (1:3), 

and TMAC:EG (1:3), respectively. To achieve these low values of %AAD for [Ch]Cl: 

LA (1:3) and TMAC-based DESs, a binary parameter η = 0.978 was introduced for 

[Ch]Cl:LA (1:3) and η = 1.023 for both TMAC-based DESs. Still, this minor correction, 

with a temperature-independent common coefficient, ensures quantitative agreement 

across both TMAC-based DESs. 

 

Compound Mw 

(g/mol) 
𝒎 

𝛔 
(Å) 

𝛆/𝐤𝐁 
(K) 

𝜺𝑯𝑩/𝐤𝐁 
(K) 

𝒌𝑯𝑩 
(Å3) 

Reference 

TMAC 109.6 3.818 3.413 360.8 3384 2100 Lloret et al. (2017) 

LA 90.08 1.812 4.059 433.1 1510 3200 Lloret et al. (2017) 

R-125 120.02 1.392 4.242 148.8 1685 24050 Asensio-Delgado et al. (2020) 

R-134a 102.03 1.392 4.166 166.6 1862 24050 Albà et al. (2020) 

R-143a 84.04 1.392 4.103 149.0 1717 24050 Vilaseca et al. (2010) 

R-32 52.00 1.321 3.529 144.4 1708 24050 Asensio-Delgado et al. (2020) 
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Figure 5.2. Density (ρ) – temperature (T) diagram, at atmospheric pressure, for the DESs: TMAC:EG 
(1:3), TMAC:GL (1:3), [Ch]Cl:LA (1:3), [Ch]Cl:GL (1:3) + 10%wt water and [Ch]Cl:EG (1:3). Symbols 
correspond to experimental data (Codera et al., 2023; D. Clijnk, 2024; Tavares Duarte de Alencar, 2024) 
and lines to soft-SAFT modelling (with parameters from Table 4.2 and 5.1). 

 

 

The experimental viscosity data of the studied DES have also been theoretically 

modeled using FVT coupled with soft-SAFT, applying the spider-web methodology 

(Cané et al., 2017) to fit the FVT parameters for the compounds forming the examined 

DESs using mixture data. The density values required to use FVT were calculated through 

the soft-SAFT EoS utilizing parameters outlined in Table 4.2 of Chapter 4 and Table 5.1 

of this chapter. The optimized parameters for [Ch]Cl, GL, water, and EG are already 

presented in Table 4.3 of Chapter 4, and the optimized parameters for the other 

compounds explored in this section are included in Table 5.2. 

 
 

Table 5.2. FVT viscosity parameters optimized for DESs forming molecules. 

Compound  𝜶     
 (J	mN molLH kgLH) 

			𝐁 · 10²  
 

𝐋𝒗 · 10²   
(Å) 

LA 525.20 0.0858 1.5284 
TMAC 379.55 0.7920 0.0042 

 

 
The performance of the model to describe the DESs viscosities is displayed in 

Figure 5.3. 
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Figure 5.3. Viscosity (η) – temperature (T) diagram, at atmospheric pressure for the DESs: TMAC:EG 
(1:3), TMAC:GL (1:3), [Ch]Cl:LA (1:3), [Ch]Cl:GL (1:3) + 10%wt water and [Ch]Cl:EG (1:3). Symbols 
correspond to experimental data (Codera et al., 2023; D. Clijnk, 2024; Tavares Duarte de Alencar, 2024), 
while the lines to FVT soft-coupled to SAFT calculations. 

 

 

At standard ambient temperature (298.15 K), noticeable differences in viscosity 

among DESs were observed. Notably, the DES composed of TMAC:GL (1:3) exhibited 

the highest viscosity, surpassing 250 mPa⋅s. This rise in viscosity is attributed to the 

higher number of hydroxyl groups of GL compared to the TMAC:EG (1:3) DES, 

facilitating enhanced hydrogen bonding interactions with TMAC and, consequently, 

leading to higher viscosity levels. About the soft-SAFT + FVT predictions, an excellent 

agreement between the model and the viscosity data has been found (lines of Figure 5.3), 

with an AAD% of 8.46%. The major deviations correspond to the lowest temperatures, 

where the uncertainty of the viscosity measurements is higher. Otherwise, the description 

of aqueous DES is remarkable, reconfirming the high versatility of the approach in 

achieving a reliable description of this property at different conditions. 
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5.1.4 Solubility in [Ch]Cl and TMAC Based-DESs 

 

Once the density and viscosity of the investigated DESs has been described, their 

capacity to absorb the most common refrigeration F-gases (R-32, R-134a, R-143a, and 

R-125) is studied. In Figure 5.4, the vapor-liquid equilibria for the DESs with F-gases at 

300.15K are plotted.  

 

 

Figure 5.4. Vapor-liquid equilibria for the DESs with F-gases at 300.15 K. Symbols correspond to 
experimental data (Codera et al., 2023; D. Clijnk, 2024; Tavares Duarte de Alencar, 2024), while the lines 
to soft-SAFT predictions. 
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A comprehensive analysis of the results demonstrated a relatively low solubility 

of F-gases for all DESs investigated here, which can be attributed to the absence of 

fluorine atoms in their chemical structure. Previous works (Castro et al., 2020; Jovell et 

al., 2020) have suggested that fluorine atoms in DESs can enhance the F-gases solubility 

by forming hydrogen bonds (H-F-H), at the price of a more complex synthesis and higher 

environmental impact. In the DESs under investigation in this section, it appears that the 

primary influence lies on a weak physical absorption dominated by entropic effects, 

where the volume of the F-gas molecule plays a key role. Indeed, R-32, the smallest F-

gas among those studied, being the only single-carbon compound (with two fluorine 

atoms), exhibits the highest solubility. Concerning the two-carbon refrigerants, it may be 

noted that the amount of fluorine atoms in F-gases do not consistently correlate with 

enhanced solubility. For instance, while R-134a, containing four fluorine atoms, ranks as 

the second compound with the highest solubility, R-125 (with five fluorine atoms) and 

R-143a (with three fluorine atoms) exhibit similar and lower solubility levels compared 

to other F-gases. In this case, two different effects play a role. On one hand, R-125 has a 

low solubility due to the presence of five fluorine atoms, forming a relatively stable 

structure of a certain size and leaving low allocation for strong interactions with the DESs. 

Conversely, the asymmetric R-143a, with three fluorine atoms at the same molecule end, 

exhibits a high dipole moment (Fouad & Vega, 2018), but lacks the previously mentioned 

H-F-H structure, resulting in a lower solubility. In any case, this variation in solubility 

among these F-gases presents an advantage for their separation. Specifically, it suggests 

that R-125 and R-143a could potentially be readily separated from mixtures of F-gases 

containing R-134a and R-32. 

Although the qualitative outcomes among all DESs are somewhat similar, it is 

notable that TMAC:EG (1:3) exhibits a slightly higher absorption capacity, closely 
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followed by [Ch]Cl:LA (1:3), and then by [Ch]Cl:EG (1:3), [Ch]Cl:GL (1:3) + 10wt% of 

water, and finally TMAC:GL (1:3). The latter seems to be clearly related to its higher 

viscosity, possibly affecting mass transfer. In any case, no substantial differences are 

appreciated among all DESs, suggesting that the influence of the DESs structure on the 

solubilities of the F-gases appears to be modest. However, it is important to remember 

that the choice of the best solvent will be determined by selectivity and not by solubility. 

The thermodynamic model, also shown in Figure 5.4, provides a good agreement 

with the experimental data. The molecular parameters provided in Table 4.2 (from 

Chapter 4) and 5.1 are used here to deal with multicomponent calculations, where each 

combination between DES and F-gas is treated as a ternary mixture, except for the 

corresponding F-gas with the DES [Ch]Cl:GL (1:3) + 10wt% water, which is treated as a 

quaternary mixture. Subsequently, the model must account for all possible interactions 

among the three or four compounds involved. On one side, cross-association interactions 

between sites are explicitly considered by using the combining rules shown in Eqs. 3.23 

and 3.24, with only positive-negative interactions being allowed. On the other side, given 

the very different structure of the molecules involved, it is necessary to apply a correction 

in the crossed dispersion by means of the energy binary parameter, 𝜉#% (see Eq. 3.22). No 

further size corrections are necessary for the Berthelot combining rule (see Eq. 3.21) with 

𝜂 = 1 for all binary combinations, with the exception of the TMAC:HBDs and 

[Ch]Cl:LA DESs (as explained in Section 5.1.3), having a constant value of 𝜂 = 1.023 

for TMAC and 𝜂 = 0.980 for [Ch]Cl, respectively. All these equations are detailed in 

Section 3.1.2. A summary of the necessary 𝜉#% 	 values to quantitatively describe the F-

gases solubility in DESs is provided in Table 5.3 
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Table 5.3. soft-SAFT energy binary interaction parameter (𝜉	\`) adjusted in this work. 

         Compound i Compound j 𝝃	𝒊𝒋 

[Ch]Cl        R-143a 1.13738 
[Ch]Cl                               R-125 1.21031 
[Ch]Cl R-134a 1.14499 
[Ch]Cl R-32 1.29977 
TMAC R-143a 1.04771 
TMAC R-125 1.12775 
TMAC R-134a 1.05766 
TMAC R-32 1.29998 

EG 𝐹 − 𝑔𝑎𝑠𝑒𝑠 1.10080 
LA 𝐹 − 𝑔𝑎𝑠𝑒𝑠 1.17705 
GL 𝐹 − 𝑔𝑎𝑠𝑒𝑠 1.05315 

[Ch]Cl Water 1.04500 
R-134a Water 0.85000 
R-143a Water 0.85000 

 

 

Some remarkable trends emerge from analyzing the values of these parameters 

and their relevance to the interactions within the mixture. Notably, most cases exhibit an 

energy binary parameter 𝜉#% 	 greater than one, specifically in adjusting the interactions 

involving the DESs forming molecules and F-gases. These results suggest that the 

classical Lorentz-Berthelot combining rules underestimate the solubility of the F-gases in 

the DESs, indicating potential missing interactions within the model for the investigated 

mixtures. Interestingly, a consistent 𝜉#% 	 value is observed across interactions between 

each HBD and the four F-gases, suggesting that the parameter can be transferred among 

F-gases if no experimental data are available. For the case of the quaternary mixture 

containing water, one parameter between [Ch]Cl and water was transferred from Chapter 

4 (𝜉=1.0450). In contrast, the parameter for interactions between R-134a or R-143a with 

water was optimized here and fixed at 𝜉=0.8500. Overall, the soft-SAFT calculations 

effectively describe the solubility of each F-gas in the examined DESs, showing good 

agreement with experimental data as depicted by the lines in Figure 5.3. The individual 

deviation values are available in Table 5.4. 
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Table 5.4. Absolute averaged deviations (AAD) of the soft-SAFT predictions for Vapor-liquid 
equilibria of  DESs with F-gases at 300.15 K. 

DES 
AAD (%)  

R- 143a R-125 R-134a R-32 

TMAC : GL (1:3) 11.55 7.32 10.15 10.64 

[Ch]Cl : GL (1:3) + 10wt% water 12.57 7.61 4.24 2.98 

[Ch]Cl : EG (1:3) 4.27 3.87 3.23 3.00 

[Ch]Cl : LA (1:3) 13.51 10.15 5.35 11.02 

TMAC : EG (1:3) 5.42 2.41 3.61 2.83 

 

 

5.1.5 Enthalpy and Entropy of Dissolution 

 

The absorption of F-gases into the DESs does involve examining additional 

thermodynamic metrics, apart from solubility, such as the absorption enthalpy and 

entropy. These metrics provide insights into the strength of the interactions and the degree 

of order when a gas is dissolved into the solvent, respectively (Cadena et al., 2004). Their 

values under different constant compositions can be determined utilizing data derived 

from the soft-SAFT EoS, according to the following equations: 

 

																																																											∆𝐻"#$ = −𝑅𝑇A  "	�Hl$
">

¡
g$
																																											(5.1) 

																																																													∆𝑆"#$ = −𝑅𝑇  "	�Hl$
">

¡
g$
	,																																						    (5.2) 

 

where ∆𝐻"#$ is the molar enthalpy of dissolution ∆𝑆"#$ is the molar entropy of dissolution; 

R is the universal gas constant (8.3145 J.mol-1.K-1); 𝑃# is the partial pressure of the 

dissolved gas i; T is overall system temperature and xi  is the mole fraction of the dissolved 

gas i in the DESs, which is fixed at 0.0001 (a very low gas concentration). The results for 

of each F-gas within the respective DESs are provided in Table 5.5. 
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Table 5.5. Calculated enthalpy and entropy of dissolution for F-gases in DESs from 298.15 to 333.15 K 
at xi = 0.0001. 

 

 

As can be seen in Table 5.5, R-32 exhibits higher negative values of ∆𝐻"#$ among 

the F-gases, which implies that all investigated DESs have a higher affinity for R-32 than 

for the other F-gases studied. Regarding the results of ∆𝑆"#$, negative values are found in 

all cases, stemming from the gas's condensation. The decrease in entropy caused by this 

phase transition is not compensated by the entropy generated from the disruption of the 

F-gases into the organized structure of the DESs. 

 

5.1.6 Selectivity and Absorption Calculations 

 

 

The ability of an absorbent to selectively capture a specific F-gas from a blend 

mixture is crucial for tailoring gas recycling and separation processes. Thus, the ideal 

selectivity of each F-gas within the respective DESs is used to pre-screen their efficiency 

in separating binary F-gases mixtures. The ideal selectivity at infinite dilution, denoted 

as 𝛼, relates the amount of the F-gas dissolved in the DES at an isotherm set and is 

expressed as the ratio of Henry’s law constants between the two pure F-gases (Llovell et 

al., 2015). Following this, the soft-SAFT EoS is employed to predict pressure data as 

solubility approaches zero for each isotherm and compound. These predictions enable the 
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computation of the ideal selectivity for two specific refrigerants i and j in terms of the 

effective Henry’s law constants, as follows:  

 

                 						α#/%>= 
�j,kll
1 m

�j,kll
$ m =

��*
n1→p

� qn1
�
m

��*
n$→p

:qn$
?
m            ,                             (5.3) 

 

where 𝑘J,166#  signifies effective Henry´s law constant (Sander et al., 2022) for gas i at 

temperature T, while xi  denotes the mole fraction of compound i in the liquid. Lastly, αi/j  

represents the ideal selectivity at infinite dilution of the compound j with respect to the 

compound i.  The ideal selectivity obtained for a temperature of 300.15 K is plotted in 

Figure 5.5, where the effective Henry´s law constants are visually illustrated in the same 

figure and listed in Table 5.6. 

 

 

 

Figure 5.5. Calculated effective Henry’s constants (kH,eff) for F-gases (bars graph, left axis) and ideal 
selectivity (𝛼\/`, symbols and lines, right axis) in TMAC:GL (1:3), [Ch]Cl:GL (1:3) + 10%wt water, 
[Ch]Cl:EG (1:3), [Ch]Cl:LA (1:3) and TMAC:EG (1:3) at 300.15 K. 

 

 



                             CHAPTER 5. Gas Separation Technological Applications using DESs 

 150 

 
Table 5.6. Effective Henry’s law constants determined for the absorption of F-gases at 300.15 K in the 
selected DESs (MPa). 

DES 
Effective Henry’s law constants  

R- 143a R-125 R-134a R-32 
TMAC : GL (1:3) 76.294 103.48 27.492 7.1837 
[Ch]Cl : GL (1:3) + 10wt% water 63.148 54.029 19.668 5.1196 
[Ch]Cl : EG (1:3) 29.047 25.482 6.8669 3.5361 
[Ch]Cl : LA (1:3) 22.391 21.744 5.7818 2.6267 
TMAC : EG (1:3) 17.242 16.423 4.9858 2.7452 
 

 

The values of effective Henry´s constants are directly linked to the results 

observed for the solubility experimental data (Figure 5.4). TMAC:EG (1:3) shows the 

lowest kH, indicating a higher absorption capacity, followed by [Ch]Cl:LA (1:3), 

[Ch]Cl:EG (1:3), [Ch]Cl:GL (1:3) + 10wt% of water, and finally TMAC:GL (1:3), which 

exhibits the highest kH,eff for all F-gases. Additionally, it is evident that, for all DESs, R-

32 has the lowest kH,eff, followed by R-134a, while higher kH,eff values are consistently 

observed for R-125 and R-143a across all DESs (Demirbek et al., 2024). 

Concerning the ideal selectivity, Figure 5.5 illustrates the selectivity for the binary 

mixtures R-32/R-125, R-134a/R-143a, R-32/R-134a, R-125/R-143a and R-125/R-134a at 

300.15 K. Despite lower absorption capacities compared to fluorinated DESs (Castro et 

al., 2020; Demirbek et al., 2024), the DESs investigated in this study exhibit excellent 

selectivities for certain F-gas mixtures. The highest values (ranging between 5.98 and 

14.4) are obtained for the R-32/R-125 mixtures with the studied DESs, with TMAC:GL 

(1:3) having the best selectivity, indicating its preference for R-32 in this mixture. For the 

R-134a/R-143a mixture, the selectivity ranges between 2.78 and 3.46, with [Ch]Cl:EG 

(1:3) yielding the highest value. Unfortunately, none of the DESs considered in this work 

seems appropriate to separate R-125 from R-143, as it was previously inferred from the 

solubility figures. 
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The ideal selectivity calculated from effective Henry´s coefficients is an 

approximation based on the infinite dilution behavior of pure compounds (i.e., F-gases in 

this study), which does not consider the competition between the gases and is solely used 

to provide a first qualitative approximation on the separation capacity for each DESs. 

Based on this preliminary information, a more accurate assessment of the gas separation 

efficiency needs to be performed by studying the competitive selectivity to recover the 

compounds from multicomponent commercial refrigeration blends, including R410A 

(with 70.583 mol% R-32 and 29.417 mol% R-125), R407F (with 48.299 mol% R-32, 

20.129 mol% R-125, and 31.571 mol% R-134a), and R404A (with 35.7821 mol% R-125, 

60.392 mol% R-143a, and 3.826 mol% R-134a). 

In this case, the values of competitive selectivities (S) calculated for these gas 

mixtures are obtained throughout Eq. 5.4. 

 

𝑆	#	/% =
	�1/g1
�$/g$

                                            (5.4) 

 

 

where x is the mole fraction of each component in the liquid phase, and y is the mole 

fraction of each component in the gas phase. However, the intrinsic nature of Eq. (5.4) is 

originally thought for a binary comparison and needs to be adapted for ternary gas 

mixtures (R407F and R404A). In that case, we have opted to define the selectivity of one 

gas over the other two by considering the non-desired gases as a single entity “GASm”, 

where the 𝑥���# is the sum of their liquid mole fractions, and 	𝑦���# represents the sum 

of their vapor mole fractions. For instance, in a mixture comprising three gases (GAS1, 

GAS2, and GAS3), the equation to determine the selectivity (S) of GAS1 over the other 

two gases would be as follows: 
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                                              	𝑥���.	 = 𝑥���r + 𝑥���?                                                (5.5) 

                                             		𝑦���.	 = 𝑦���r + 𝑦���?                                                (5.6)                       

																																															𝑆	���s/	���#		 =
	�tuv#	/gtuv#
	�tuvs/gtuvs

				                                           (5.7) 

 

The equilibrium compositions in Eqs. 5.4 and 5.7 are obtained from liquid-vapor 

flash calculations using soft-SAFT EoS, which are computed by an iterative process that 

involves solving a flash model into the Rachford-Rice equation (Mejía et al., 2021). This 

calculation considers an initial global composition with a DES mole fraction of 0.7 

(𝑧km� = 0.7) and 0.3 for the corresponding F-gas blend (𝑧�;�4$ = 0.3), the latter with the 

commercial proportions previously stated, at the desired operating pressure and 300.15 

K, as illustrated in Figure 5.6. 

 

 

 

Figure 5.6. Illustration of liquid-vapor flash calculations via soft-SAFT EoS depicting the separation 
performance of commercial refrigerant blends at 300.15 K and various pressures (1, 5, and 10 bar). 
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The separation performance of three commercial refrigerant blends at 300.15 K 

and different pressures is shown in Figure 5.7. In general terms, the predicted competitive 

selectivity aligns with the ideal selectivity at infinite dilution from Figure 5.5, particularly 

at low pressure, where ideal conditions apply. However, on the one hand, while lower 

pressures enhance separation performance, as shown in Figure 5.7, this comes at the cost 

of reduced sorption capacity, evident in Figure 5.4, and consequently lower recovery. On 

the other hand, high-pressure conditions do not seem to be attractive, as they lead to 

decreased separation performance for specific DESs. Therefore, according to our 

analysis, operating under moderate pressure conditions is advisable for an efficient 

separation of F-gases.  

An analysis of Figure 5.7 also reveals that a high separation efficiency can be 

achieved to separate R410A compounds, with TMAC:GL (1:3) and [Ch]Cl:GL (1:3) + 

10wt% standing out, as seen in Figure 5.7 (a), while the latter has a higher competitive 

selectivity to separate R-32 from the blend R407F (i.e. so when adding R-134a, forming 

a ternary system), as shown in Figure 5.7 (b). Finally, no significant differences are 

appreciated when extracting R-134a from R404A blend (in the presence of R-125 and R-

143a), with a slightly better performance of [Ch]Cl:EG (1:3) and [Ch]Cl:LA (1:3) over 

the rest (see Figure 5.7 (c)).   
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Figure 5.7. Competitive selectivity of refrigerant blends in DESs at 300.15 K and different pressures, for a 
mixture with a global composition of 𝑧]^_ = 0.7	and 𝑧wLxyW	zg{|} = 0.3   modeled using soft-SAFT EoS 
for a) R32 recovery from R410A blend, b) R32 recovery from R407F blend and c) R134a recovery from 
R404A blend. 
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5.2 Separation of NH3/CO2 from Melamine Streams 

 

5.2.1 The Case Problem 

 

Several industrial chemical processes produce tail gases containing 

environmentally harmful components, such as carbon dioxide (CO₂) and ammonia (NH₃). 

Emitting these industrial tail gases directly into the atmosphere leads to significant 

pollution and environmental damage. CO₂ can originate from various energy sources such 

as natural gas, shale gas, biogas, syngas, and more (George et al., 2016; Huang et al., 

2014). NH₃ can be found in gaseous mixtures in various situations, including ammonia 

synthesis, refrigerating circuits, and water treatment (Appl, 2011). In particular, gaseous 

mixtures containing both NH3 and CO2 are found in melamine tail gas, where the 

separation of these compounds has become an urgent issue (Duan et al., 2022; Liu et al., 

2021; Makhloufi et al., 2013). 

Melamine (C3H6N6) is a vital industrial raw material extensively utilized in 

manufacturing thermal insulation materials, adhesives, and fiber materials (Liao et al., 

2021). Typically, the production of one ton of melamine through the decomposition and 

condensation of urea results in approximately 2.2 tons of tail gas, containing about 70% 

NH3 and 29% CO2 (Zeng et al., 2020). Annually, the global production of melamine 

exceeds 1.59 million tons, leading to substantial exhaust gas emissions (Xue et al., 2022). 

This not only contributes to greenhouse gas emissions but also represents a significant 

waste of valuable resources, as NH₃ is an important chemical material used as a versatile 

agent in preparing many fine chemicals (Deng et al., 2021; Ndegwa et al., 2008). 

Therefore, efficient separation and recovery of these gases can mitigate environmental 

impacts, enhance resource efficiency, and contribute to sustainable industrial practices. 
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According to literature reports, two primary methods have been developed for the 

simultaneous separation of NH₃ and CO₂ from gas mixtures. The first method involves 

co-producing urea or ammonium bicarbonate (Xiang et al., 2012; Zhuang et al., 2012). 

However, maintaining material balance in the co-production system is challenging, and 

excess ammonia cannot be effectively utilized (Xue et al., 2022). The second method is 

water scrubbing, which, while effective in separating NH₃ and CO₂, suffers from high 

utility consumption, making it an energy-intensive and costly process (Duan et al., 2022). 

An effective alternative method for NH3 recovery from tail gas streams in 

melamine production involves absorption into ionic liquids (ILs), particularly 

imidazolium-based ILs, which have proven to be cost-efficient compared to traditional 

water scrubbing techniques (Duan et al., 2022; Liu et al., 2021). Additionally, the viability 

of IL-based NH3 recovery from melamine tail gas has been validated through the 

construction of the first industrial test pilot plant worldwide run by the Institute of Process 

Engineering Chinese Academy of Sciences, with a capacity of 50 Nm3h-1 of IL-based 

NH3 recovery, with 3500 hours of stable operation (Zeng et al., 2020). Nonetheless, as 

previously discussed, DESs present a promising avenue for gas capture, offering notable 

advantages over ILs including lower toxicity, reduced corrosivity, enhanced 

degradability, and decreased production costs (Prabhune & Dey, 2023). Section 2.2 

underscores the extensive adoption of DESs in the literature for capturing CO2 (García et 

al., 2015; Oke, 2024; Warrag et al., 2017; Zhang et al., 2018; Zhang, Y. et al., 2024) and 

NH3 (Chen et al., 2020; Shao et al., 2024; Zhang, J. et al., 2024; Zhong et al., 2019).  

In this section, we analyze the solubility of CO2 and NH3 in three different [Ch]Cl-

based DESs formed with EG, UR, and GL. The ideal selectivity of NH3 versus CO2 in 

these DESs is examined, along with the prediction of absorption isotherms, enthalpy and 

entropy of dissolution and Henry's constants. Furthermore, the study predicts the 
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competitive selectivity of NH3 versus CO2 in multi-component mixtures based on 

melamine tail gas and DESs. From these analyses, a rational determination is made to 

identify the most suitable DES for efficient NH3 recovery and from melamine tail gas, 

while capturing the CO2 at the same time, supporting the initial design phase of an 

industrial gas separation unit. 

 

5.2.2 Molecular Models 

 
 

 The DESs [Ch]Cl: EG (1:2), [Ch]Cl: GL (1:2) and [Ch]Cl:UR (1:2) were modeled 

using the individual-component approach, as described in Chapter 4. In this manner, each 

individual component is characterized by a separate set of parameters. The models for 

[Ch]Cl, GL, EG, and UR were already explained in Chapter 4, and their soft-SAFT 

parameters are presented in Table 4.2. Additionally, to address the solubility of CO2 and 

NH3 in the DESs, a suitable model for these gases is necessary. A schematic picture of 

the models proposed is given in Figure 5.8. 

 

 

Figure 5.8. Image of the chemical structure for (a) carbon dioxide (CO2) and (b) ammonia (NH3), and 
sketch of the molecular model used to describe each compound within the soft-SAFT approach. 
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CO2 is modeled as a Lennard-Jones (LJ) non-associating chain, but explicitly 

incorporating quadrupolar interactions through the incorporation of the polar term. This 

requires not only the usual three soft-SAFT molecular parameters employed in non-

associating systems, but also the value for the quadrupole moment contribution, Q, and 

the fraction of chain segments containing the quadrupole, xp. For CO2, xp was fixed at 1/3, 

representing that only one third of the molecule is affected by the quadrupolar interactions 

(Figure 5.8a). The effective quadrupole moment for CO2 (Q = 4.40.10-40 C.m-2), derived 

from fitting, was consistent with experimental values. The final set of molecular 

parameters for CO2 was taken from Dias et al. (2006).  

Following Llovell et al. (2012),  NH3 is modeled with four associating sites to 

capture the hydrogen bonding interactions that define its fluid-phase behavior. Three H-

type sites represent the hydrogen atoms, and one e-type site represents the lone pair of 

electrons (as depicted in Figure 5.8b). Only e−H associating interactions are allowed.  To 

develop a suitable parameter set for the NH3 molecular model, the soft-SAFT parameters 

are adjusted to match vapor−liquid equilibrium data. Llovell et al. (2012) had already 

adjusted NH₃ parameters, but they were not able to accurately describe the experimental 

data of the liquid phase at low temperatures, specifically between 275 and 375 K (see the 

right side of Figure 5.9), with an %AAD of 7.03%. This temperature range is crucial for 

the current study on the absorption of NH₃ from tail gas in melamine production with 

DESs. Consequently, new soft-SAFT parameters for NH₃ have been generated to achieve 

a better fit in the vapor-liquid equilibrium diagram of ammonia (%AAD of 1.02% in the 

275-375 K range). The updated molecular parameters for NH₃ and its previously 

calculated parameters, along with those for CO₂, are provided in Table 5.7. 
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Figure 5.9. Vapor-liquid equilibrium diagram of ammonia. The experimental data (circles) are taken from 
(NIST). The lines represent the soft-SAFT calculations, with dashed lines from Llovell et al. (2012) and 
solid lines from this work. 

 

 
Table 5.7. soft-SAFT molecular parameters optimized for the gases studied in this section. 

Compound    Mw 

 (g/mol) 
𝒎 

𝛔 
(Å) 

𝛆/𝐤𝐁 
(K) 

𝜺𝑯𝑩/𝐤𝐁        
(K) 

𝒌𝑯𝑩 
(Å3) 

Reference 

CO2* 44.01 1.571 3.184 160.2 - - Dias et al. (2006) 

NH3 17.04 1.418 2.974 280.5 483.0 2160.5  Llovell et al. (2012) 
NH3 17.04 1.873 2.679 236.5 1136 1498.0 This work 

 * Additional molecular parameters for the polar contribution: Q = 4.40.10-40 C.m-2, xp = 1/3. 

 

 

5.2.3 Solubility of CO2 in [Ch]Cl Based-DESs 

 

In order to have a robust and consistent molecular model, it is important to account 

for the binary interactions between all components in the system. Consequently, and 

before proceeding to evaluate the solubility of CO2 in the selected DESs, the binary 

system CO2-EG, for which experimental data were available (Gui et al., 2011), has been 

first examined. Results concerning the soft-SAFT description of the VLE for the mixture 
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between EG and CO₂ at different temperatures are depicted in Figure 5.10 and compared 

to experimental data (Gui et al., 2011).   

 

 
Figure 5.10. Solubility of CO2 in EG at different temperatures. Symbols represent experimental data from 
Gui et al. (2011), and lines soft-SAFT calculations. 

 

 

As can be seen, an excellent agreement was achieved (%AAD of 3.06%) by fitting 

a constant binary parameter ξ=0.886. This parameter was fitted to data at 298.15 K and 

used to predict the other three isotherms at 288.15, 308.15, and 318.15 K, ensuring that it 

can be temperature-independent.  

The next step consists in the description of the CO₂ solubility in the selected DES 

(using EG, GL and UR as HBDs), considering them as ternary mixtures. Although soft-

SAFT can qualitatively describe the behavior of the DES, as previously shown in Chapter 

4, achieving quantitative agreement with the available data of the ternary systems is 

crucial to properly assess the validity of these DESs for separation purposes. 

Consequently, it is necessary to account for all the binary interactions between the three 

components involved (HBA-HBD, HBA-CO2 and HBD-CO2).  
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The HBA-HBD interactions are always set to unity, as the DESs have already 

been described without involving additional binary parameters, as shown in Chapter 4. 

Concerning the HBD-CO2, the 𝜉 value corresponding to the interaction between EG and 

CO₂ has been determined in Figure 5.10. This 𝜉EG-CO2 value has been then applied to 

address the CO₂-EG interaction in the ternary mixture of [Ch]Cl:EG (1:2) + CO₂, while 

the 𝜉 parameter describing the interaction between [Ch]Cl and CO₂, has been fitted to the 

ternary data. Subsequently, the 𝜉[�B]��;��rvalue has been transferred to the other two 

[Ch]Cl-based DESs. Additionally, the 𝜉&QP;��rvalues, corresponding to UR and GL 

with CO₂, have been fitted to the corresponding ternary data. In both cases, the 

intermediate temperature isotherm is used to obtain optimal 𝜉 values, while the other two 

isotherms were predicted.  A summary of the necessary 𝜉 values to quantitatively describe 

the CO2 solubility in DESs is provided in Table 5.8. 

 

Table 5.8. soft-SAFT energy binary interaction parameter (𝜉	\`) adjusted in this work. 
         Compound i Compound j 𝝃	𝒊𝒋 

[Ch]Cl CO2 1.100 
EG CO2 0.886 
GL CO2 1.018 
UR CO2 1.095 

 

 

No further adjustments are necessary for the Berthelot combining rule with η=1, 

which is consistently applied across all binary combinations, except for [Ch]Cl: UR (1:2), 

where a constant η value of 0.9 between UR and CO₂ is necessary. This variation may 

potentially be attributed to findings from Crespo et al. (2019), which suggested that 

different types of hydrogen bonds may form in the [Ch]Cl:UR (1:2) mixture, beyond what 

simplified models can accurately capture. In our approach, we simplify these interactions 
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to two association sites each for [Ch]Cl and UR, in order to preserve transferable soft-

SAFT parameters, possibly underestimating certain interactions.  

Figure 5.11 presents the results for the [Ch]Cl-based DESs with EG, UR, and GL 

in a (1:2) ratio. Overall, this approach yields excellent predictions of CO₂ solubility across 

various isotherms for the DESs, with an %AAD of 6.02%, 3.24% and 5.17% for [Ch]Cl: 

EG (1:2), [Ch]Cl: GL (1:2) and [Ch]Cl: UR (1:2), respectively. This underscores the 

accuracy of the straightforward, yet reliable molecular models proposed with soft-SAFT. 

 

 

 
Figure 5.11. Solubility of CO2 at different temperatures in a) [Ch]Cl:EG (1:2) DES, b) [Ch]Cl:GL (1:2) DES and c) 
[Ch]Cl:UR (1:2) DES. Symbols represent experimental data  (Leron & Li, 2013a, b; Li et al., 2008), and lines soft-
SAFT calculations. 
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5.2.4 Solubility of NH3 in [Ch]Cl Based-DESs 

 

In an analogous manner as done for the solubility of CO2, the solubility of NH3 in 

DESs must be first characterized by accurately describing the binary interactions. For this 

reason, the mixture EG-NH3 for which experimental data were available (Zhou et al., 

2014), has been evaluated with soft-SAFT. The results of the soft-SAFT description of 

the VLE for the EG-NH3 mixture at various temperatures are presented in Figure 5.12. 

 

 

Figure 5.12.  Solubility of NH3 in EG at different temperatures. Symbols represent experimental data from 
Zhou et al. (2014), and lines soft-SAFT calculations. 

 

 

While CO2 was modeled as a non-associating (but polar) compound, the 

associating nature of ammonia, represented by 4 sites in soft-SAFT, allows to optimize 

the cross-association interactions between NH3 and the DESs components, given their 

substantial influence on thermophysical property predictions in such mixtures (Llovell et 

al., 2012). To optimize these interactions, suitable values for cross-association parameters 

were determined within a logical range based on the physical interpretation of chemical 
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reactions. A high cross-association energy is expected, indicating strong interactions, 

closer to those of a covalent bond. Specifically, a cross-association energy of 3093K 

between EG and NH3 was found suitable. Additionally, the size binary interaction 

parameter 𝜂	 = 0.9 was also fitted to better capture the behavior of the system in the whole 

range of compositions. The fitting was done to an intermediate temperature of 313.2 K 

and then used to predict, in a transferable manner, the solubility at other temperatures. As 

can be seen in Figure 5.12, these adjustments resulted in good agreement between 

experimental data (Zhou et al., 2014) and calculations using the soft-SAFT model, with 

an %AAD of 2.01%.  

The subsequent step involves detailing the solubility of NH3 within the selected 

DESs, treating them as a ternary mixture. Once again, the DES [Ch]Cl:EG is taken as the 

reference system to estimate all necessary binary interactions and cross associating 

parameters with NH3. While no binary parameters are required for the HBA:HBD 

interaction, a 𝜂 value of 0.9 was set to describe the interaction between EG and NH3 

(taken from the optimization shown in Figure 5.12), accompanied by a cross-association 

energy between them of 3093 K. The remaining interaction between the salt ([Ch]Cl) and 

NH3 was fitted to adjust the ternary mixture of [Ch]Cl: EG (1:2) + NH3, obtaining 

ξ[�B]��;�&?= 0.9 and  η[�B]��;�&?= 1.03 across all isotherms. These parameters were 

subsequently transferred to NH3 mixtures for the other two [Ch]Cl-based DESs with GL 

and UR. The remaining 𝜂JKk;iJ? 	values were optimized to a constant value of 0.97 for 

GL and UR using the intermediate temperature isotherm, with predictions extended to the 

other two isotherms. Finally, cross-association energy parameters were also determined 

between NH3 and the other HBDs, resulting in values of 3418K for GL and 2665K for 

UR, indicating strong interactions of covalent bonds. A summary of the necessary 𝜂 

values for quantitatively describing NH3 solubility in DESs is provided in Table 5.9. 
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Table 5.9. soft-SAFT size parameters (𝜂\`) adjusted in this work. 
         Compound i Compound j 𝜂	𝒊𝒋 

[Ch]Cl NH3 1.03 
EG NH3 0.90 
GL NH3 0.97 
UR NH3 0.97 

 

 
The outcomes for the [Ch]Cl-based with EG, GL and UR in a (1:2) ratio are 

illustrated in Figure 5.13. 

 

 

Figure 5.13. Solubility of NH3 at different temperatures in a) [Ch]Cl:EG (1:2) DES, b) [Ch]Cl:GL (1:2) 
DES and c) [Ch]Cl:UR (1:2) DES. Symbols represent experimental data (Duan et al., 2019; Zhong et al., 
2019), and lines soft-SAFT calculations. 

 
 

In summary, this approach yielded an accurate description of NH3 solubility 

across various isotherms for the studied DESs, with %AAD of 4.45%, 6.94% and 3.01% 

for [Ch]Cl: EG (1:2), [Ch]Cl: GL (1:2) and [Ch]Cl: UR (1:2), respectively. 
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5.2.5 Enthalpy and Entropy of Dissolution 

 

Using the expression described in Eq. 5.1 and 5.2, the enthalpy and entropy of 

absorption for CO2 and NH3 solubility were calculated. The mole fraction xi of CO2 and 

NH3 in the DESs was fixed at 0.01 (a low gas concentration). The results for each gas 

within the respective DESs are provided in Table 5.10. 

 

  
Table 5.10. Calculated Enthalpy and Entropy of Dissolution for CO2 and NH3 in DESs from 303.15 to 
333.15 K at a DES Liquid Phase Molar Composition of 0.01. 

 
 

 

As shown in Table 5.10, ∆𝐻"#$ is more negative for NH3  compared to CO2, 

indicating that all examined DESs exhibit a stronger preference for NH3 over CO2. In 

terms of ∆𝑆"#$ results, negative values are universally observed, attributed to the gas 

condensing, being also more negative for NH3  than for CO2, indicating that all examined 

DESs exhibit a stronger preference for NH3 over CO2. The reduction in entropy due to 

this phase transition is not compensated by the entropy generated from the disruption of 

CO2 or NH3 into the ordered structure of the DESs. 

 

5.2.6 Selectivity and Absorption Calculations 

 

 From the slope of the absorption isotherms from Figures 5.11 and 5.13, the 

effective Henry’s coefficients (𝑘J,166# ) of CO2 and NH3 have been calculated in the three 
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DESs. The  𝑘J,166#  values for the DESs at different temperatures are reported in Table 

5.11. 

 
Table 5.11. Effective Henry’s law constants determined for the absorption of CO2 and NH3 at different 
temperatures in the selected DESs (MPa). 

 
 
 

The effective Henry’s constants are directly linked to the solubility measurements 

depicted in those Figures. In general, all DESs exhibit larger values of effective Henry´s 

constants (i.e., lower affinity) for CO2 than for NH3. The values of CO2 absorption are in 

agreement with those reported in the literature for  ammonium salt-based DESs (Lloret et 

al., 2017; Ojeda & Llovell, 2018). As illustrated in Figure 5.14 (blue bars graph, left axis), 

[Ch]Cl:UR (1:2) shows the lowest kH,eff for CO2, indicating a higher absorption capacity, 

followed by [Ch]Cl:GL (1:2) and [Ch]Cl:EG (1:2). On the other hand, [Ch]Cl:UR shows 

the highest kH,eff for NH3, indicating a lower absorption capacity, and the other DESs 

exhibit lower similar values of kH,eff for NH3, as can be seen in Figure 5.14 (orange bars 

graph, left axis). 

Once all gases Henry’s law constants in the different DESs are estimated, the ideal 

gas selectivity can be easily calculated for all the DES using the Eq. 5.3. The ideal 

selectivity for the binary mixtures of NH3/CO2 obtained at 323.15 K is also plotted in 

Figure 5.14 (symbols and lines, right axis). 
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Figure 5.14. Calculated effective Henry’s constants (kH,eff) for CO2 and NH3 (bars graph, left axis) and 
ideal selectivity (𝛼aP$/b~%, symbols and lines, right axis) in  [Ch]Cl:EG (1:2), [Ch]Cl:GL (1:2) and 
[Ch]Cl:UR (1:2) at 323.15 K. 

 
 

The highest value of α�&?/��r 	(64.57) among the investigated DESs for the binary 

mixtures is obtained with [Ch]:EG (1:2), indicating the best selectivity and preference for 

NH3 in this mixture. Based on these preliminary results, [Ch]Cl:EG is preselected as the 

most suitable DES for NH3-CO2 separation. 

The next step is to investigate the influence of the molar ratio of this DES on the 

selectivity of NH3 over CO2. For this, the solubility of both gases in the DES [Ch]Cl:EG 

was calculated at different ratios, including a lower ratio (1:1.7) and a higher ratio (1:2.5) 

of EG relative to [Ch]Cl compared to the [Ch]Cl:EG (1:2). The results of these solubility 

predictions are shown in Figure 5.15. 
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Figure 5.15. Solubility of a) CO2 and b) NH3 in the DESs [Ch]Cl:EG at different ratios at 323.15 K. 
Symbols represent experimental data (Duan et al., 2019; Leron & Li, 2013a) and lines soft-SAFT 
predictions. 

 
 

From the slope of the absorption isotherms shown in Figure 5.15, the 𝑘J,166# 	of 

CO2 and NH3, as well as the ideal α�&?/��r, were calculated for the three DESs. Table 

5.12 presents the 𝑘J,166#  values for the three DESs, while Figure 5.16 illustrates these 

values (bar graph on the left axis), and the ideal selectivity of NH3 over CO2 (symbols 

and lines on the right axis). 

 

 
 

Table 5.12. Effective Henry’s law constants determined for the absorption of CO2 and NH3 at 323.15K 
in the DES [Ch]Cl : EG at different ratios (MPa). 
                   DES CO2 absorption NH3 absorption 

[Ch]Cl : EG (1:2.5) 35.652 0.4334 

[Ch]Cl : EG (1:2) 33.628 0.5208 

[Ch]Cl : EG (1:1.7) 32.115 0.575 
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Figure 5.16. Calculated effective Henry’s constants (kH,eff) for CO2 and NH3 (bars graph, left axis) and 
ideal selectivity (𝛼\/`, symbols and lines, right axis) in the DESs [Ch]Cl:EG at different ratios at 323.15 K. 

 
 
 

The results reveal that increasing the molar ratio of [Ch]Cl:EG from 1:2 to 1:2.5 

decreases the CO2 absorption capacity, as evidenced by the increase in 𝑘J,166#  from 33.628 

to 35.652. Conversely, this change increases the NH3 absorption capacity, indicated by 

the decrease in the corresponding 𝑘J,166#  from 0.5208 to 0.4334. When the molar ratio is 

decreased from 1:2 to 1:1.7, the opposite effect occurs. Thus, increasing the molar ratio 

from 1:2 to 1:2.5 results in an approximately 27% increase in the ideal α�&?/��r, from 

64.57 to 82.25. 

As discussed in Section 5.1.6, the ideal selectivity calculated from effective 

Henry's coefficients is an approximation based on the infinite dilution behavior of pure 

compounds (CO2 and NH3 in this study). This method does not account for the 

competition between gases, providing only a preliminary indication of each DES's 

separation capacity. To accurately assess gas separation efficiency, competitive 

selectivity is evaluated here to simulate the recovery of NH3 from melamine tail gas. 
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According to Duan et al. (2022), a melamine tail gas produced in China  contains  7.6% 

N2, 0.4% H2O, 55% NH3, and 37% CO2 in mole fraction. For this analysis, we simplify 

this residual mixture to 60% NH3 and 40% CO2 in mole fraction. 

The competitive selectivity is determined using Eq. 5.4, where the equilibrium 

compositions are derived from liquid-vapor flash calculations employing the soft-SAFT 

EoS. This involve an iterative process that solves a flash model based on the Rachford-

Rice equation (Mejía et al., 2021). The calculation assumes an initial global composition 

with a DES mole fraction of 0.7 (𝑧km� = 0.7) and 0.3 for the melamine tail gas blend 

(𝑧�&?���r = 0.3), consisting of  60% NH3 and 40% CO2 in mole fractions, as previously 

specified, at different  pressures and 323.15 K, as depicted in Figure 5.16. 

 

 
Figure 5.17. Competitive selectivity of NH3/CO2 in a) [Ch]Cl-based DESs and b) [Ch]Cl-EG at different 
ratios, at 323.15 K and different pressures. The mixture has a global composition of 𝑧]^_ = 0.7	and 
𝑧b~%	y|}	aP$	zg{|} = 0.3 modeled using soft-SAFT EoS, which the CO2 and NH3 blend contains 60% NH3 

and 40% CO2 in mole fraction. 

 

 
In general, the predicted competitive selectivity aligns closely with the ideal 

selectivity at infinite dilution, as seen when comparing Figures 5.14 and 5.16. This 

correlation is especially evident at low pressures, where ideal conditions are predominant. 

However, lower pressures, while enhancing separation performance, come at the expense 

of reduced sorption capacity, as indicated in Figure 5.11 and 5.13, leading to lower NH3 
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recovery. Conversely, high-pressure conditions do not yield favorable outcomes, as they 

decrease the NH3-CO2 separation efficiency for [Ch]Cl-based DESs. Therefore, based on 

this analysis, operating under moderate pressure conditions is recommended for efficient 

NH3-CO2 separation. Figure 5.16 analysis also reveals significant potential for achieving 

high separation efficiency in NH3-CO2 separation. Among the studied DESs, [Ch]Cl:EG 

(1:2.5) stands out as the best choice for NH3 capture from melamine tail gas streams. 

 

5.3 Key Findings of the Chapter 

 

This chapter focuses on the selective recovery of greenhouse gases (GHGs) using 

DESs. The research includes the separation of commercial refrigerant blends and the 

recovery of ammonia from carbon dioxide mixtures in melamine streams. Using the soft-

SAFT EoS, the solubility of various GHGs in DESs was examined, determining key 

properties such as enthalpy and entropy of dissolution, Henry’s constants, and ideal and 

competitive selectivity. 

Among the DESs studied for refrigerants blends, TMAC:EG (1:3) exhibited a 

higher affinity for the studied F-gases, presenting a slightly higher absorption capacity. 

Despite having a relatively low absorption, the DESs investigated exhibited promising 

selectivity for separating F-gas mixtures, particularly those containing R-32, suggesting 

potential applications in separating commercial blends like R410A and R410F. 

Additionally, the solubility of CO2 and NH3 in [Ch]Cl-based DESs (with EG, UR, and 

GL as HBDs) was described. [Ch]Cl:UR demonstrated a higher CO2 absorption capacity, 

while [Ch]:EG showed a higher NH3 absorption capacity. For the recovery of NH3 from 

CO2 mixtures in melamine streams, [Ch]Cl: EG (1:2.5) emerged as the most effective 
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DES among those studied. These findings underscore the potential of DESs in advancing 

sustainable gas separation technologies. 
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                 6 
Conclusions and Future Works 

 
 

Based on the objectives of this doctoral thesis, which explores the physicochemical 

properties of DESs using a variety of computational tools, with a particular focus on their 

applications in GHG capture and separation, the encountered key findings and future 

lines of work are discussed.
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6.1 Conclusions 

 

This thesis’s primary goal was to explore the physicochemical properties of DESs 

using a range of computational tools, focusing particularly on their applications in GHG 

capture and separation. This approach utilized advanced techniques such as, quantum-

based charge distribution analysis through COSMO-SAC, the soft-SAFT EoS and 

molecular-based ANNs to (i) develop a consistent framework to describe the impact of 

cosolvents in the key thermophysical properties of the DESs  and (ii) assess their 

effectiveness in separating commercial refrigerant blends and separating ammonia from 

CO2 during the melamine production process. 

The main conclusions drawn from the analysis of the results obtained in this work 

are highlighted below: 

1. Two molecular models for several [Ch]Cl-Based DESs have been built within the 

soft-SAFT framework employing a simple and a more realistic approach. 

(a) The simplest model, considering the DESs as pseudo-pure compounds, 

demonstrated excellent agreement with experimental density data for both 

pure DESs and aqueous solutions, but its transferability is limited. 

(b) The second, more realistic model treated DESs as mixtures of independent 

species, accurately describing density, isentropic compressibility, speed of 

sound, and viscosity of pure DESs. It effectively accounted for the influence 

of adding alcohols or water as solvents on DESs density and viscosity, and 

reasonably predicted vapor-liquid equilibria and activity coefficients in 

aqueous DES mixtures. 

(c) This methodology allows the screening of the thermophysical properties of 

DESs, whose knowledge is essential pre-requisite for process design. 
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2. An ANN model was developed to estimate the viscosity of Choline-Chloride 

based DESs and their mixtures with cosolvents using COSMO-SAC-based σ-

profiles and temperature as parameter inputs. 

(a) The σ-profiles of the 24 compounds that form the DESs investigated, 

including amines, glycols, and carboxylic acids as HBDs, were obtained 

through COSMO-SAC methodology, each divided into eight descriptors. 

(b) The training dataset included 48 DES based on [Ch]Cl with 1891 data points, 

encompassing 18 different HBDs and mixtures of DESs with water, 

methanol, isopropanol and dimethyl sulfoxide. 

(c) The best performance in predicting the log η of DESs was found to be 9-19-

16-1 architecture, achieving an RMSE value of 0.01424, with high R2 values 

of 0.99989, 0.99723, and 0.99809 in training, internal testing and external 

testing, respectively. 

(d) The relative contributions of input variables to DESs viscosity in the 

molecular-based ANN model were evaluated using the Partial Derivatives 

method, revealing the substantial impact of hydrogen bonding regions on the 

the log η of DESs. 

(e) The developed ANN showed a remarkable extrapolation capacity, as it was 

capable to predict the viscosity of systems including solvents (ethanol) and 

HBD (2,3-butanediol) not considered in the training, as well as extrapolating 

to viscosity values outside the fitting range. 

3. A comprehensive study was conducted to model the solubility of four common F-

gases (R-125, R-134a, R-32, and R143a) in three [Ch]Cl-based DESs and two 

TMAC-based DESs. The study was carried out at 300.15 K and low pressure using 

the soft-SAFT EoS. 
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(a) The soft-SAFT calculations effectively described the solubility of each F-gas 

in the examined DESs, demonstrating good agreement with experimental 

data. Energy and size binary parameters were specifically tuned between the 

DESs components and the F-gases to achieve this accuracy. 

(b) The soft-SAFT EoS was employed to determine key properties such as 

enthalpy and entropy of dissolution, Henry’s constants, and ideal selectivity. 

(c) Among the DESs studied, TMAC:EG (1:3) showed a higher affinity for the 

studied F-gases, presenting a slightly higher absorption capacity. 

(d) Competitive selectivity among gases in multi-component systems based on 

commercial refrigerant blends and DESs was evaluated at 300.15 K and 

various pressures using soft-SAFT EoS. 

(e) Despite having a relatively low absorption, the DESs investigated exhibited 

promising selectivity for separating F-gas mixtures, particularly those 

containing R-32, thereby suggesting potential applications in separating 

commercial blends like R410A and R407F. 

4. A comprehensive study was conducted to model the solubility of CO2 and NH3 in 

three [Ch]Cl-based DESs with EG, UR, and GL as HBDs using the soft-SAFT 

EoS. 

(a) The soft-SAFT calculations effectively described the isotherms of CO2 and 

NH3 in the three DESs over the temperature range of 303.15 to 333.14 K, 

showing excellent agreement with experimental data. Temperature-

independent binary parameters for energy and size were meticulously 

adjusted between the DESs components and gases to achieve this level of 

accuracy. 
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(b) The soft-SAFT EoS was used to calculate essential properties including 

enthalpy and entropy of dissolution, Henry’s constants, and ideal selectivity. 

(c) Among the investigated DESs, [Ch]Cl:UR demonstrated a higher CO2 

absorption capacity, while [Ch]:EG showed a higher NH3 absorption capacity 

at 323.12 K using soft-SAFT EoS. 

(d) Competitive selectivity between NH3 and CO2 in multi-component mixtures-

based melamine tail gas (60% NH3 and 40% CO2 in mole fraction) and DESs 

was evaluated at 323.15 K and different pressures. 

(e) For the separation of NH3 from CO2 mixtures in melamine streams, [Ch]Cl: 

EG (1:2.5) emerged as the most effective DES among those studies. 

 

6.1 Final Remarks and Future Works 

 

This thesis has been devoted to combine different computational tools, taking 

advantage of the different strengths that they offer, to add more insight into the 

characterization of DESs and, particularly, in Choline Chloride-based solvents, given its 

low cost and synthesis. While the work presented here has successfully addressed with 

the description of key physicochemical properties and has provided a suitable platform 

for engineering applications in the field of gas treatment, this is only a first step that 

should be completed with further studies, in order to achieve a new industrial efficient 

technology. Consequently, a set of further strategies to continue this research are given 

below: 

 

1. Process simulation, integrating the soft-SAFT model to design a gas recovery 

pre-unit: Based on the results obtained in Chapter 5, a process simulation using 
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Aspen software could be carried out optimize the two gas recovery processes 

using DESs proposed in this thesis, focusing on enhancing energy efficiency, and 

addressing an adequate technoeconomic assessment. For this purpose, the soft-

SAFT thermodynamic model could be integrated into ASPEN, although it would 

also be possible to carry out the simulation using COSMO-SAC. 

 

2. Performing a Life Cycle Analysis (LCA) of the simulated recovery processes. In 

order to ensure the sustainability of the proposed units, it would be necessary to 

carry out a cradle-to-grave LCA to check the environmental impact of the DES 

production, electricity and energy process consumption, and final disposal to fully 

demonstrate that this circular economy approach is suitable and superior to current 

strategies. 

 

3. ANN for Predicting Additional Properties: Given the powerful performance of 

ANNs based on COSMO-SAC descriptors, it would be possible to develop 

additional ANN models to predict properties beyond viscosity, such as the toxicity 

or other environmental properties, that cannot be obtained with an equation of 

state, enabling comprehensive assessment and optimization of DES formulations. 

 

4. Refinement of the coarse-grained DESs models: As mentioned along the 

dissertation, a balance between model complexity and accuracy was seek. This is 

the main reason while the number of hydrogen bonding interactions has been kept 

limited to a restricted number of association sites. In some cases, such as for 

instance, [Ch]Cl : Urea, the number of possible interactions is known to be higher, 

limiting the accuracy of the predictions. In this regard, molecular simulations can 
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be used as an additional tool to gain insight on these interactions, as well as the 

behavior in the presence of water and cosolvents, and additional sites may be 

added to better capture the physicochemical properties. 

 

5. Extension of the screening to other DESs with a different HBA: As far as 

[Ch]Cl-based DESs are a very attractive option due to their availability and easy 

synthesis, the methodology presented in this work is applicable to other DESs. In 

this regard, the potential of natural deep eutectic solvents (NADES) based on 

betaine, menthol, and other natural products, could enhance the sustainability of 

these processes. 
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