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A �m de obter um conjunto mais completo de dados experimentais sobre

o processo de coalescência de bolhas, foram levados a cabo experimentos de

coalescência de bolhas esferoidais com uma interface gás-líquido plana e livre de

surfactantes. As propriedades dos �uidos foram medidas e correlacionadas em

uma faixa de temperatura entre 20 e 30 °C. Técnicas de visualização em �uidos

foram utilizadas para estimar o tamanho, velocidade e tempo de coalescência das

bolhas. O tempo de coalescência foi determinado usando dois critérios de �colisão�: o

critério físico, baseado na distância entre a superfície superior da bolha e a interface,

e o critério hidrodinâmico, baseado na velocidade da bolha. As distribuições

gama representaram bem a distribuição dos tempos de coalescência das bolhas em

suas velocidades terminais. Foi encontrada uma relação linear entre o tempo de

coalescência e o número de rebotes. O critério hidrodinâmico foi mais consistente

na representação dos nossos dados sobre o tempo de coalescência. Um modelo

simpli�cado foi desenvolvido para descrever o movimento de uma bolha após sua

primeira colisão com a interface. O modelo foi validado com dados experimentais

e previu adequadamente o movimento das bolhas até a coalescência. Uma análise

comparativa mostrou que o modelo funciona bem usando dois conjuntos de condições

iniciais, prevendo as velocidades experimentais e a frequência de oscilação das bolhas

nos experimentos.
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In order to obtain a more complete set of experimental data on the bubble coales-

cence process, experiments were conducted with spheroidal bubbles coalescing with a

�at and surfactant-free gas-liquid interface. The �uid properties were measured and

correlated over a temperature range of 20 to 30 °C. Fluid visualization techniques

were used to estimate the size, velocity, and coalescence time of the bubbles. The

coalescence time was determined using two �collision� criteria: the physical criterion,

based on the distance between the top surface of the bubble and the interface, and

the hydrodynamic criterion, based on the bubble's velocity. Gamma distributions

e�ectively represented the distribution of bubble coalescence times at their terminal

velocities. A linear relationship was found between coalescence time and the num-

ber of bounces. The hydrodynamic criterion was more consistent in representing

our data on coalescence time. A simpli�ed model was developed to describe the

movement of a bubble after its �rst collision with the interface. The model was

validated with experimental data and predicted the bubble's motion and behavior

until coalescence. A comparative analysis showed that the model performed well

using two sets of initial conditions, predicting the experimental velocities and the

bubbles' oscillation frequency observed in the experiments.
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Chapter 1

Introduction

1.1 Motivation

The study of bubble coalescence plays an important part in many areas of interest in

industrial, engineering and technological applications, such as mass and heat transfer

equipment e.g. bubble columns [2, 3], separators [4], mineral �otation [5, 6], two-

phase �ow in pipes [7, 8], among others. The experimental analysis of this complex

phenomenon improves models and predictions of dispersed multiphase processes

where coalescence can occur.

Coalescence refers to the process in which two or more �uid particles merge

into one after a collision, resulting in the loss of the original particles' individual

identities. The probability that a collision will lead to coalescence is de�ned as

coalescence e�ciency. In previous studies, several air bubble collisions were observed

within the cell. However, despite theoretical models predicting a high probability of

coalescence, none were actually observed. The coalescence of bubbles at interfaces

resembles the interaction between a small bubble and one of in�nite diameter over

an in�nite interaction time. In this scenario, the probability of coalescence is always

one, meaning every collision leads to coalescence. This approach has been widely

adopted for its simplicity and high e�ciency.

The literature review of bubbles coalescence at an interface showed that it is

important to obtain a more complete data set on the liquid �lm drainage process

due to the diversity of theoretical assumptions and a lack of estimation of the initial

drainage stage in the ellipsoidal-wobbling bubble regime. For this reason, experi-

ments of air bubbles colliding at a �at free air-water interface without the presence

of surfactants were carried out. We used high-speed imaging in �uids to estimate

the bubble characteristics and coalescence time. A simpli�ed model was proposed

to predict the motion and velocity of bubble at the interface until coalescence.

This work provides novel insights into bubble coalescence, complementing exist-

1



ing data and presenting results that align with previous knowledge. These results are

important for planning new experiments of bubbles' coalescence using other �uids

and conditions.

1.2 Objectives

1.2.1 General Objective

� Realize an analysis of the coalescence time of ellipsoidal-wobbling air bubbles

colliding with an air-water interface for di�erent approaching velocities.

1.2.2 Speci�c Objectives

� Adapt the coalescence cell built by COELHO [9] for experiments of bubble

coalescence with a �at interface.

� Measure density, viscosity, electrical conductivity, and surface tension at dif-

ferent temperatures in a working range of 20 to 30 °C.

� Calculate the coalescence time of an individual distribution of bubbles.

� Analyze bubbles' bouncing and coalescence criterion.

1.3 Organization

The work is divided into the following chapters.

Chapter 2 provides a literature review concerning the e�ect of the characteristics

of bubbles rising in still liquid on the coalescence time at a �at gas-liquid interface

without surfactants and the modeling of bubble bouncing at the interface until

coalescence.

Chapter 3 presents the experimental analysis of the coalescence time of bubbles

at a interface with the assessment of two collision criteria.

Chapter 4 comprises the modeling of bubble bouncing and the determination of

the critical Weber number for coalescence.

Conclusions and suggestions are provided in Chapter 5. Additionally, the docu-

ment includes bibliographic references and appendices.
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Chapter 2

Literature Review

The shape and movement of bubbles in a �uid due to forces such as gravity, drag,

weight, and added mass have been addressed in several literature works and an a

priori acknowledgment of dimensionless numbers such as Reynolds, Weber, Mor-

ton, Eötvös, and Galilei [10, 11] can e�ectively predict the regime and the current

conditions of bounce and coalescence between bubbles [12�14]. To understand the

coalescence mechanism, several studies have analyzed the coalescence of bubbles

with interfaces, as well as the parameters that in�uence the contact and the coales-

cence times. This chapter summarizes the literature on bubble-interface coalescence

experiments without the presence of surfactants. Additionally, it presents a review

of models for such approach.

2.1 Bubble-Interface Coalescence Experiments

The simplest system for the study of coalescence involves the collision of bubbles

with �at interfaces. The bubble coalescence with interfaces resembles an interplay

between a small bubble and a bubble of in�nite diameter for an in�nite interaction

time. This approach has been widespread due to its simplicity and high e�ciency.

KIRKPATRICK e LOCKETT [15] carried out a set of experiments on bubble

coalescence with �at interfaces to understand the in�uence of approach velocity on

coalescence. In their �rst experiment, a cloud of air bubbles was kept within a region

of a vertical tube by a downward water �ow. They observed an almost complete

absence of coalescence attributed to the large approach velocities of bubbles in the

cloud. The second experiment con�rmed the e�ect of the approach velocity by

analyzing the coalescence of a single bubble with a diameter of 5 mm colliding

with an air-water interface. They found that bubble coalescence was rapid at a

low approach velocity because the �lm rupture occurred before the bubble bounced,

while, at a high approach velocity, the bubble bounced before the �lm rupture,

considerably increasing the coalescence time.
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DOUBLIEZ [16] performed experiments to measure the thickness of a thin liq-

uid �lm formed between an interface and approaching bubbles at terminal velocity

using either distilled water or alcoholic solutions. Bubbles from 0.54 to 0.86 mm in

diameter were formed at the tip of a capillary tube by blowing nitrogen at a rate of

less than one bubble per second. He measured the liquid �lm thickness using inter-

ference fringe shifts, showing that it can reach the order of microns. In addition, he

concluded that the models based on the lubrication theory fail to predict the initial

drainage stage due to their assumptions.

SANADA et al. [17] conducted bubble-interface coalescence experiments using

silicone oil and nitrogen bubbles recorded using a high-speed video camera. They

concluded that the coalescence time is a single function of the Weber number in

low-viscosity liquids with Mo ≲ O(10−8), observing that the coalescence time in-

creases with the Weber number. The number of bounces was the most in�uential

parameter determining the coalescence time. In addition, they determined a critical

Weber number for coalescence for low-viscosity liquids that agreed well with the ex-

perimental and theoretical results of [18], whose values areWecrit = 0.104 and 0.117,

respectively. They showed that the coalescence time is longer for a high-viscosity

liquid for the same Weber number. They also observed the formation of foaming

above the interface of high-viscosity liquids.

SUÑOL e GONZÁLEZ-CINCA [13] observed air bubbles with diameters between

0.27 and 1.85 mm rising and bouncing at an ethanol-air interface. They concluded

that the bouncing time, de�ned between the �rst collision (the �rst maximum in

the bubble position) and the coalescence, increases linearly with the Weber number,

and the height of the �rst bounce also depends linearly on the bubble equivalent di-

ameter. They noted that the movement of the bubble center is similar to a damped

oscillator, and a large bubble does not reach heights larger than its equivalent di-

ameter after the �rst bounce because the buoyancy force drastically decreases the

bubble velocity after the �collision.�

ZAWALA e MALYSA [19] studied the in�uence of the impact velocity and the

thickness of the �lm formed on the coalescence time at a water-air interface of

bubbles with diameters ranging between 1 and 1.76 mm. They concluded that

the higher the impact velocity, the larger the bubble shape deformation and the

liquid �lm thickness formed between the bubble and the interface. Furthermore,

the larger the liquid �lm thickness, the longer the time required to reach the �lm

rupture thickness, in other words, the more intense the bubble bouncing. The

latter statement agrees with KIRKPATRICK e LOCKETT [15] results. ZAWALA

e MALYSA [19] estimated a critical thickness of rupture of the liquid �lm using

a lubrication model between 5 and 18 µm for coalescence times of 3 and 5 ms,

respectively, assuming an initial �lm thickness of 100 µm.
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SATO et al. [20] conducted experiments of bubbles bouncing at a free surface in

pure water to verify the validity of a simple mass-spring model. The model agrees

well with the experiments, and the time of the bubbles contacting the free surface

was a function of the characteristic period of the oscillator.

HORN et al. [14] presented a coalescence map for bubbles in surfactant-free

aqueous electrolyte solutions consisting of a plot of salt concentration against bubble

approaching speed to indicate the transitions between the di�erent types of behav-

ior during bubble collisions being a�ected by surface forces, the thin �lm drainage

and the boundary conditions (mobile and immobile interface) at the air-water inter-

face. They validated a compilation of literature results including KIRKPATRICK e

LOCKETT [15] and LEHR et al. [21]. For these authors, the critical Weber num-

ber above which the bubbles bounce is equal to 1, which agrees to the solutions of

the �ow and deformation during the approach of two bubbles along their centerline

presented by CHESTERS e HOFMAN [22], but is only half of the critical Weber

number measured experimentally by SANADA et al. [12]. The criterion of criti-

cal Weber number separates two regimes in the bubble coalescence map de�ned by

HORN et al. [14]: the rapid inertial drainage and the elastic bounce regime.

The bubble regime can be e�ectively predicted using the dimensionless numbers

Galilei, Eötvös, Reynolds, and Morton. Dimensionless numbers such as Eo and Mo

depend solely on the properties of the continuous and dispersed phases, whereas

Red and Mo also depend on the phase velocities in addition to the properties of

the phases. Figure 2.1 presents the Eötvös, Morton, and equivalent diameter of the

experimental data set I by FONTALVO et al. [27] plotted within the Eötvös-Morton-

Reynolds diagram by CLIFT et al. [10]. The expected bubble regime corresponds

to the oscillating ellipsoidal or wobbling region in the gray region on the map,

which aligns with the observations from the bubble trajectories. Experiments were

conducted in a region where the terminal velocity was achieved, but the ellipsoidal

motion had not yet fully developed. To analyze the in�uence of this trajectory

on coalescence time, it is necessary to use more than one camera to capture the

displacement in di�erent planes.

Likewise, the experimental dimensionless Galilei and Eötvös numbers were plot-

ted in the Galilei - Eötvös diagram presented by TRIPATHI et al. [11]. As shown

in Figure 2.2, the expected bubble regime corresponds to the oscillatory region (de-

picted in blue on the map) and is located very close to the yellow region, representing

peripheral and central breakage. This proximity may explain the appearance of some

satellite bubbles observed in previous experiments. The Galilei number can also be

calculated using the relationship between the Morton and Eötvös numbers, as sug-

gested by TRIPATHI et al., given by Mo = Eo3/Ga4. Additionally, a secondary

vertical axis corresponding to the equivalent diameter was added to the diagram for
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Figure 2.2: Data set I in Galilei-Eötvös-Morton diagram [11].

Although the literature on bubble coalescence at a gas-liquid interface is exten-

sive, few works have conducted experiments on bubble-interface coalescence in the

ellipsoidal-wobbling regime. Therefore, more data on this process is necessary to

understand the phenomenon, given the diversity of theoretical assumptions and the

lack of a precise de�nition of the initial drainage stage.

In this work, experiments were conducted with wobbling air bubbles of approx-

imately 4 mm in diameter, colliding on a �at, surfactant-free air-water interface.
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The objective was to estimate bubble characteristics and coalescence times using

advanced high-speed imaging techniques, providing a more comprehensive analy-

sis of the phenomenon. By focusing on the ellipsoidal-wobbling regime, this study

addresses a gap in the literature, revealing longer coalescence times and a higher

number of bounces compared to previously reported values. Furthermore, a linear

relationship between the coalescence time and the number of bounces was estab-

lished, indicating a constant period for the experiments. These �ndings enhance

the understanding of bubble coalescence and signi�cantly advance knowledge in this

�eld.

2.2 Bubble-Interface Coalescence Models

The coalescence frequency is calculated by physical models as the product of two

distinct functions: collision frequency and coalescence e�ciency. The derived mod-

els, based on physical quantities, are de�ned according to the mechanisms of each

collision [2, 23]. These models determine e�ciency as the ratio between coalescence

time and interaction time. The bubble-interface approach allows the liquid �lm to

drain until it reaches its critical thickness for rupture, invariably leading to coales-

cence. Thus, the probability of coalescence is always one. Therefore, modeling this

phenomenon focuses on the �lm drainage rate during the collision and the bouncing

of the approaching bubble at the interface.

DUINEVELD [18] used the coalescence and bouncing condition for two bubbles

derived by CHESTERS e HOFMAN [22] to model the approach of a spherical bubble

to a free surface. The procedure used by the author solves an equation of motion

until the bubble hits the surface and deforms. This condition depends on an initial

distance from the bubble's center of mass to the surface. After that, they apply the

bouncing criterion determined by the approach velocity. That is, if the velocity is

too low the bubble coalesces with the free surface, otherwise, the pressure in the

liquid �lm between the bubble and the free surface strongly increases, deforms the

bubble, and exerts a repelling force incorporated into the equation system.

ZAWALA et al. [24] analyzed the bouncing of air bubbles with 1 mm in diameter

at resting and vibrating air/oil interfaces. They modeled the �lm drainage time and

the dynamic radius of the liquid �lm formed. The model showed that the drainage

time is directly proportional to the liquid viscosity, the radius of the �lm formed

(in second power), and inversely proportional to the driving force causing the �lm

thinning. The model also depends on the initial �lm thickness. According to ex-

periments, the deformation (radius of the liquid �lm) allows the bubble to bounce

when the drainage time is longer than the contact time with the interface i.e. a

large deformation increases the drainage time. They also observed that the bub-
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bles approached the interface at a constant terminal velocity, then rapidly slowed,

stopped, and bounced. After bouncing, the bubbles began a second approach. The

time to bubble rupture depends on bubble size, liquid viscosity, and the number of

rebounds.

SATO et al. [20] also derived a model to predict the time duration of the contact

of a bubble upper surface with a free surface. The model comprises two linear springs

in series and an energy conservation equation to account for the restoring forces and

deformations of the bubble and free surfaces, calculating contact time based on

their elastic constants, deformations, and approach velocity. Results showed that

for smaller bubbles (equivalent diameter less than 1.2 mm), the deformations of

both the bubble and free surfaces play important roles in bubble bouncing on a

free surface, while for larger bubbles, the contribution of the bubble deformation

for the estimation of the contact time is much less than that from the free surface

deformation.

MANICA et al. [25] modeled the rise and impact of bubbles at an initially �at but

deformable ultra-clean liquid-air interface taking into account the buoyancy force,

hydrodynamic drag, inertial added mass e�ect, and drainage of the thin �lm. They

compared the results with literature experimental observations. The collision and

bounce of such bubbles with a water/air, silicone oil/air, and ethanol/air interface

were predicted with excellent agreement without any �tting parameters. According

to the authors, it is essential to start with a model that can predict the approach

speed correctly to model the bouncing behavior accurately.

FENG et al. [26] studied experimentally and numerically the dynamics of an air

bubble bouncing at a liquid/liquid/gas (water/oil/air, respectively) interface, which

they refer to as a compound interface. According to the author, when a bubble

interacts with a thin layer of oil on top of bulk water, the oil layer modi�es the

interfacial properties and thus the entire process of bouncing and bubble bursting.

The experiment results suggest that the oil viscosity mainly in�uences the pressure

in the water �lm, hence the drainage �ow between the oil layer and the bubble. They

compared numerical results from a reduced-order mass�spring�damper model with

experiments to describe the bounce of a droplet/bubble at the compound interface

focused on the contact time and coe�cient of restitution. The model was found to

capture the contact time of the �rst impact quite well.

In view of the aforementioned considerations, a simpli�ed model was proposed

to predict bubble motion at the interface and the critical velocity for coalescence.

This model overcomes limitations primarily in�uenced by the de�nition of an initial

�lm thickness, considering the hydrodynamic criterion as the collision instant. Fur-

thermore, it was estimated that physical parameters such as the decay ratio, added

mass coe�cient, and oscillation frequency obtained from experiments align for the
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same number of bounces before coalescence.
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Chapter 3

Coalescence Time of

Ellipsoidal-Wobbling Bubbles at

Surfactant-Free Interface:

Experimental Analysis and Collision

Criteria

This chapter presents the content of the �rst article, �Coalescence Time of

Ellipsoidal-Wobbling Bubbles at a Surfactant-Free Interface: Experimental Analysis

and Collision Criteria,� which was published by the journal Chemical Engineering

Science [27].

This work experimentally analyzed bubbles' coalescence with an air-water in-

terface in the ellipsoidal-wobbling regime for di�erent bubble approach velocities,

encompassing the ranges of Eötvös, Weber, and Reynolds numbers of 2-3, 1-4, and

500-1100, respectively. We employed high-speed imaging to measure the bubbles'

size, shape, velocity, coalescence time, and number of bounces at the interface. We

investigated two criteria to determine the beginning of bubble-interface interaction

(�collision� ): the physical criterion, based on the distance between the bubble top

surface and the interface, and the hydrodynamic criterion, based on the bubble

velocity. Gamma distributions represent the coalescence times of bubbles at their

terminal velocities well. We found a linear relationship between the coalescence

time and the number of bounces. The hydrodynamic criterion was more consistent

in representing our data on coalescence time.
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3.1 Introduction

The coalescence of bubbles and droplets is important in many industrial and en-

gineering applications, occurring in mass and heat transfer processes in bubble

columns [2, 3], mineral �otation [6, 28], gas and oil transportation [7], wastewa-

ter treatment [29], among others [19, 30].

When two �uid particles, or a particle and an interface, approach each other

(�collision�), a thin �lm of the continuous-phase �uid forms between them. For

some conditions, this �lm drains to a critical thickness and breaks, joining the two

interfaces leading to coalescence, in which the �lm drainage is considered the control-

ling factor [22, 31, 32]. From the bubble �collision�, we can de�ne two characteristic

times: the iteraction time, that is, the time that bubbles remain close to each other,

and the coalescence time, de�ned as the time interval from the formation of the thin

�lm to its rupture, which is approximately equal to the �lm drainage time [33]. Since

not all �collisions� result in coalescence, the conditional probability of coalescence

after a �collision� is the coalescence e�ciency. The ratio between the coalescence and

interaction times is used to model the coalescence e�ciency [2, 23]. These charac-

teristic times are functions of several parameters such as �uid properties, �collision�

forces or velocities [30, 33], impurity or surfactant concentration [34�36], mobility

and deformation of the interfaces [37, 38], gravity [39], among others [40].

The simplest system for the study of coalescence involves the collision of bubbles

with �at interfaces [13, 15�17]. The coalescence of bubbles with interfaces resembles

an interplay between a small bubble and a bubble of in�nite diameter for an in�nite

interaction time. This scenario always allows the drainage of the liquid �lm up to

its critical thickness of rupture, leading to coalescence. Therefore, the probability

of coalescence is always one, and any �collision� results in coalescence, as shown in

Figure 3.1a. This behavior contrasts with bubble-bubble interactions, where the

coalescence e�ciency can be null under some conditions, as depicted in Figure 3.1b.

Many works analyzed the coalescence mechanisms. These works studied the liq-

uid �lm thickness at the onset of drainage and just before rupture [16], the in�uence

of the bubbles' approach velocity and the thickness of the �lm formed [15, 16, 41],

the liquid �lm drainage rate using models based on lubrication theory [19, 22, 25, 42],

the number of bounces [20, 25, 43], and the in�uence of concentration of surfactants

or additives that a�ect the interface's mobility [34�36, 44, 45].

Some works speci�cally studied the coalescence between a rising bubble in still

liquid and a �at gas-liquid interface without surfactants. KIRKPATRICK e LOCK-

ETT [15] conducted experiments on bubble coalescence with �at interfaces to under-

stand how approach velocity a�ects coalescence, �nding that high approach velocities

led to bubble bouncing at the interface. In contrast, low velocities resulted in rapid
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Figure 3.1: Images of (a) bubbles bouncing and coalescing at the interface and (b)
bubbles' collisions [1]. No coalescence was observed in the latter experiments.

coalescence. DOUBLIEZ [16] performed experiments using interference fringe shifts

to measure the thickness of the thin liquid �lm between bubbles and interfaces,

showing that it could reach the order of microns, concluding that the models based

on the lubrication theory fail to predict the initial drainage stage. DOUBLIEZ [16]

discovers a single relationship between coalescence time and Weber number in low-

viscosity liquids, where the number of bounces was the most in�uential parameter.

They determined a critical Weber number for coalescence in low-viscosity liquids

that agreed well with the experimental and theoretical results of [18], whose values

are Wecrit = 0.104 and 0.117, respectively. SUÑOL e GONZÁLEZ-CINCA [13]

observed air bubbles at an ethanol-air interface, concluding that the bouncing time

increases linearly with the Weber number, and the height of the �rst bounce also

depends linearly on the bubble equivalent diameter. ZAWALA e MALYSA [19] stud-

ied the in�uence of impact velocity and �lm thickness on coalescence time, �nding

that the higher the impact velocity, the larger the bubble shape deformation and

the liquid �lm thickness, resulting in more intense bubble bouncing, consistent with

earlier �ndings. SATO et al. [20] conducted experiments of bubbles bouncing at a

free surface in pure water to verify the validity of a simple mass-spring model. The

model agrees well with the experiments, and the time of the bubbles contacting the

free surface was a function of the characteristic period of the oscillator.

Several works addressed the behavior of isolated bubbles ascending in a pool

of a still liquid, predicting the regime from the Reynolds, Morton, and Eötvös di-

mensionless numbers [10, 11]. These dimensionless numbers, including the Weber

number, are also used in analyzing coalescence [12, 13]. For instance, HORN et al.

[14] presented a coalescence map for bubbles in surfactant-free aqueous electrolyte

solutions, whose coordinates are the salt concentration and the bubble approach
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velocity, based on the results compiled by KIRKPATRICK e LOCKETT [15] and

[21], among others. The critical Weber number determined agrees with the result

of Wecrit = 1 presented by CHESTERS e HOFMAN [22] for two deformed bubbles

approaching along their centerline. Their coalescence regime map de�ned the two

regions separated by the critical Weber number as the rapid drainage and the elastic

bounce regimes.

Although the literature on bubble coalescence at a gas-liquid interface is exten-

sive, only some works have conducted experiments on bubble-interface coalescence

in the ellipsoidal-wobbling regime. Therefore, more data on this process is necessary

to model the phenomenon, given the diversity of theoretical assumptions and the

lack of a precise de�nition of the initial drainage stage. Table 3.1 shows the ex-

perimental conditions carried out by KIRKPATRICK e LOCKETT [15], SANADA

et al. [12], SUÑOL e GONZÁLEZ-CINCA [39], and ZAWALA e MALYSA [19].

Table 3.1 shows a need for experiments for bubbles of intermediate size (2.5-4.5

mm) in the literature. Therefore, in this work, we conducted experiments of 4 mm

bubbles' coalescence with a �at, surfactant-free air-water interface.

We used advanced high-speed imaging techniques to measure bubble size, shape,

velocity, and coalescence time [46]. We developed and reported new methods for

determining the local bubble velocity and the uncertainties of the bubble image

moments, which were used to obtain bubble size and position uncertainties. The

Eötvös, Weber, and Reynolds numbers' ranges in our study are also shown in Table

3.1.

To calculate the coalescence time, we de�ned two �collision� criteria to determine

the instant at which the bubble and interface begin their close contact, forming the

thin liquid �lm: the physical criterion, based on the distance between the bubble's

top and the static interface, and the hydrodynamic criterion, based on the bubble's

instantaneous velocity.

This work structure follows. Section 2 details the materials and methods em-

ployed, providing a clear understanding of how we measured the �uid properties,

set up �ow visualization, and conducted the experiments. Section 3 presents the

data analysis, covering image acquisition, processing, bubble data measurements,

the de�nition of relevant dimensionless numbers, and estimating the uncertainty of

image moments. Section 4 presents the con�guration of the experimental data sets.

Section 5 presents and discusses the results, while Section 6 provides our conclusions.
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3.2 Materials and Methods

3.2.1 Materials

The properties of �uids were measured over the temperature range of 20 to 30 °C.

The experiments utilized pure water as the continuous phase, produced by a Marte

Pilsen-type distiller, �ltered and demineralized. Its density was measured using an

Anton Paar densimeter model DMA 4200M, with an accuracy of 10−4 g/cm3. The

viscosity was measured with a HAAKE MARS 40 rheometer, with a torque range

of 20 - 200 nNm and a resolution of 0.1 nNm. Surface tension was measured by a

KRUSS tensiometer, model K100C, using a Wilhelmy �at plate, with a deviation

of 0.02 mN/m within a measured range of 1 to 2000 mN/m. Electrical conductivity

was measured with a Metler Toledo conductivity meter model Seven Excellent, with

a 0.001 µS/cm resolution. Ultra-pure water has a conductivity of 0.055 µS/cm at

25 °C. The density of the air, used as the dispersed phase, is calculated at sea level

using a psychrometric chart.

Measured properties such as density, viscosity, and surface tension of the phases

were correlated with models of one or two parameters capable of predicting �uid

properties within the temperature range of 20 to 30 °C. The temperature of the

liquid phase was measured with a digital thermometer with a resolution of 0.1 °C

and expanded uncertainty of 0.13 °C for a coverage factor of 2. We used a Siberius

digital hygrometer model HTC-2 with a resolution of 0.1 °C to measure room tem-

perature and relative humidity, with measurement uncertainties of 0.30 °C and 1%

RU, respectively, for a coverage factor of 2.

The data and models used to calculate the �uid properties are provided in the

Supplementary Material 1. The standard uncertainties were calculated using Type

A and Type B evaluation methods [47]. The water electrical conductivity was mea-

sured as 0.2 µS/cm at 23 °C.

The water and room temperatures were obtained from an average of four mea-

surements taken during the experimental runs, which gave 24.40 ± 0.51 °C and

24.80± 0.68 °C, respectively. Their combined standard uncertainty include repeata-

bility error, thermometer resolution, and data from a calibration certi�cate. The

mean operating temperature was de�ned as the arithmetic average between the

mean water and room temperatures.

Table 3.2 presents the properties such as density, viscosity, and surface tension

between the phases with their uncertainties at a 95 % con�dence level, calculated at

the mean operating temperature of T = 24.60± 0.43 °C. The percent relative errors

for the density and viscosity of the continuous phase, the surface tension, and the

density of the dispersed phase are 0.70 %, 0.21 %, 0.31 %, and 0.34 %, respectively.
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Table 3.2: Phase properties at T = 23.0± 0.1 °C.

ρC [kg/m3] νC [mPa s] σ [mN/m] ρD [kg/m3]

997 ± 7 0.964 ± 0.002 65.2 ± 0.1 1.184 ± 0.001

3.2.2 Experimental Setup

We used high-speed imaging to calculate the bubble characteristics such as volume,

equivalent diameter, and instantaneous velocity in the stagnant liquid. The bubbles

were �lmed in the frontal plane of the test section of the experimental setup built

by COELHO [9] to observe coalescence. Figure 3.2 presents a schematic illustration

of the experimental setup. The unit was built to acquire experimental data on

the coalescence e�ciency of upward moving bubbles in a downward divergent �ow

channel. The experimental setup was adapted to experiments on bubble coalescence

with a �at interface in a liquid pool. A capillary tube with a 2 mm inner diameter

was vertically positioned at the bottom of the test section. This tube was connected

to a 1 ml syringe pump to guarantee slow air injection and achieve a single bubble

formation at its tip. The syringe pump was fabricated using a Stratasys Objet1000

Plus 3D printer. Its injected volume per step was calibrated by adjusting the mean

�owrate calculated based on the di�erence in mass and the actuation speed for the

syringe pump, driven by an Arduino code. The equipment used in the calibration

included a digital thermometer with a resolution of 0.1°C, two 50 ml beakers, one

100 ml beaker (both cleaned and dried), and a BEL Engineering precision balance

with a resolution of 1 mg.

The equipment used for the image acquisition consisted of a Phantom Speed-

Sense Lab M310 camera, a stroboscopic LED light, and a synchronizer/timer box.

Illumination was homogenized using a di�user sheet. The camera has a maximum

acquisition rate of 3260 frames per second (fps) with an image resolution of 1280 ×
800 pixels. Its sensor size is 25.6 mm × 16.0 mm of complementary metal-oxide-

semiconductor (CMOS) type, allowing for monochrome or color imaging with 12-bit

depth. Its pixel size is 20 × 20 µm. The camera was equipped with an AF Micro-

Nikkor lens with a focal length of 60 mm and an aperture range of 2.8 to 32. The

timer box was driven by a National Instruments counter/time board model PCIe-

6612, which synchronizes the camera and LED to a computer featuring an Intel Xeon

processor 2.5 GHz (8 CPUs) and 16 GB of RAM. Software Dynamic Studio 2015a of

DANTEC Dynamics was employed to con�gure acquisition image parameters such

as interframe, exposure, and illumination times.
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Figure 3.2: Experimental Setup.

3.2.3 Experimental Procedure

Before each experimental campaign, the coalescence cell was removed from the ap-

paratus, cleaned, and then rinsed three times with the same water used in the

experiments. Next, we �lled the test section with water, and slightly opened the

VW4 valve in Figure 3.2 to allow water to be slowly discharged into the tank to

position the interface. We positioned the interface at the desired height above the

tip of the capillary tube. During the experiments, the valve VW4 remained closed.

Reference strips were placed on the sidewalls of the coalescence cell to facilitate the

interface positioning. We took care to handle water without contaminating it. A wa-

ter sample from each experiment was stored and dated for properties measurements.

The duration of each experimental set, as well as the room and water temperatures,

were recorded. The mean operating temperature was determined.

The camera's �eld of view was adjusted to capture the bubble detachment, ascen-

sion, collision, and coalescence with the interface. The focus and e�ective aperture

of the diaphragm lens were adjusted manually. The distance between the object and

the camera must exceed the lens' minimum focal distance. Acquisition parameters

were synchronized with the timer box and modi�ed using the Dynamic Studio soft-

ware. We used an illumination time shorter than the exposure time to prevent pixel

saturation, thus reducing the motion blur [46]. The software's graphical interface
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allowed for a preview visualization of the camera view with the adjusted parameters.

If saturation occurred, we decreased the diaphragm aperture or the exposure time.

Each experimental set comprises several runs, each providing images with the

chosen number of frames in single-frame mode at the selected acquisition frequency,

given in frames per second (fps). In the syringe pump software driver, we con�gured

the number of steps and the actuation frequency of the pump in steps per second

(steps/s).

3.3 Data Analysis

The image-based measurement procedure comprises three stages: image acquisition,

digital processing, and measurement extraction. The �rst stage (acquisition) is

sensitive to external parameters such as vibrations, light �icker, focus, and hardware

characteristics like spatial resolution, shutter, and lens distortion. These factors

in�uence the second stage (image processing), which propagates these e�ects to the

measurements resulting from the third stage [48]. The following subsections describe

the image acquisition, the image processing, and the measurements' extraction for

the bubbles' characteristics.

3.3.1 Image Acquisition

The �rst step in analyzing an image is calibration. For calibration, we cleaned a 30

cm transparent ruler and positioned it immersed in the water at the center of the

cell aligned with the outlet of the capillary tube tip, as shown in Figure 3.3a. The

points O, A, and B in Figure 3.3a were set respectively at the origin of the image

coordinate plane xy and at two positions separated by a known absolute length, L,

provided by the calibration target. Figure 3.3b shows that the capillary tube and

interface appear black, with a gradual transition from white to black for the latter

due to interface refraction.

From the number of pixels in the image calibration segment, NL, and the absolute

distance in mm, L, we calculated the scale factor as follows:

We calculated the scale factor as the ratio of the number of pixels in the image

calibration segment and the absolute distance in mm, such that:

κ =
NL

L
(3.1)

A new x′y′ coordinate system was de�ned for each bubble, whose origin is the

initial position of its barycenter, given by the coordinates in pixels (xc0 , yc0). The
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Figure 3.3: Image analysis: (a) estimation of the scale factor for calibration, and
(b) image of the interface and capillary tube tip.

positions in the x′y′ plane are:

x′ = xc − xc0 ; y′ = yc − yc0 (3.2)

Once the conversion factor from pixel to mm is known, the position of a pixel

in mm in the x′y′ plane of the image, representing the horizontal and vertical axis,

respectively, is given by:

X ′ =
x′

κ
; Y ′ =

y′

κ
(3.3)

3.3.2 Image Processing

The intensity of a pixel, I(x, y), in a grayscale image, is given by an integer value

from 0 to (2bits − 1), where bits is the number of bits uses to de�ne each pixel, that

is, the number of represented grayscale tones. The values of x and y are the pixel

positions in the image coordinate plane, also represented by integer values, with

x = 1, ...Nx and y = 1, ..., Ny, for images with a resolution of Nx × Ny pixels. For

instance, in 12 bits, the image can store up to 4096 levels of gray, where usually black

corresponds to 0 and white to 4095. In the case of a binary image, there are only

two values for each pixel, 0 and 1, corresponding to black and white, respectively.

Bubble image processing

Figure 3.4a demonstrates the initial manual image �ltering conducted for every ac-

quired image set. This step is crucial as it delineates the phenomenon of interest

from the detachment of the bubble from the capillary to its coalescence with the

interface. The detachment corresponds to the neck break that connects the bubble

to the capillary, while the coalescence corresponds to the rupture of the liquid �lm

between the bubble and the interface. Following this, a series of sequential oper-
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Figure 3.4: Image processing: (a) bubble detachment and coalescence, and (b)
sequence of steps done on the image processing.
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Figure 3.5: Pixel intensity values near to bubble interface and resulting binary
image.

ations were systematically applied to each image to identify the bubbles and their

characteristics. The sequence of image processing steps and the resulting image at

each stage are clearly depicted in Figure 3.4b.

We employed the following image operations: pixel inversion, invert image sub-

traction to eliminate static elements, pixel inversion to return to the values of I(x, y)

of the original image, image binarization using Eq. 3.4 with the threshold intensity,

Ithresh, determined by Otsu's method [49], bubble �lling to eliminate the dark region

in its center, and image masking to remove uninteresting areas or elements de�ned

in a mask from the image set, particularly re�ections of the bubble when it is close

to the interface.

I(x, y) =

{
0 , if I(x, y) > Ithresh

1 , otherwise
(3.4)

Figure 3.5 shows the intensity values close to the bubble interface for a 12-bit

grayscale image on the left and the resulting image of the above processing that

generates the �lled binary image with I = 1 inside the bubble on the right.

The algorithm also executes the following steps to determine the uncertainties

in the image moments due to the bubble image binarization.
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� Using the �nal binarized image of the bubble, it calculates the number of pixels

inside the bubble, Nb, and outside, Nout, as being the di�erence between the

total number of pixels (Nx ×Ny) and Nb.

� Using the original grayscale image of the isolated bubble, it determines the

∆Ithresh as 5 % of the di�erence between the mean intensity values inside,

Ib, and outside the bubble, Iout, such that ∆Ithresh = 0.05|Iout − Ib|, where
Iout = 1/Nout

∑Nout

k=1 Ik and Ib = 1/Nb

∑Nb

k=1 Ik.

� It determines the perturbed thresholds of intensity Ithresh + ∆Ithresh and

Ithresh −∆Ithresh and the resulting values of N+
b and N−

b , respectively

The algorithm calculates the zeroth and �rst image moments of the binary image

from their de�nitions:

mij =

∫∫
D
xiyjI(x, y)dxdy =

Nb∑
k=1

xi
ky

j
k∆x∆y, (ij) = (00), (10), (01) (3.5)

where ∆x = ∆y = 1 in pixel units. The zero-order moment, m00, corresponds to

the area of the bubble in pixel units, whose barycenter in the xy coordinates is:

xc =
m10

m00

; yc =
m01

m00

(3.6)

Then, it computes the second-order central moments of the binary distribution,

µij, i+ j = 2, from:

µij =

∫∫
D
(x− xc)

i(y − yc)
jI(x, y)dxdy =

Nb∑
k=1

(∆xk)
i(∆yk)

j∆x∆y (3.7)

where ∆xk = xk − xc and ∆yk = yk − yc.

Finally, the algorithm recalculates the imagem moments using the perturbed

threshold intensities Ithresh + ∆Ithresh and Ithresh −∆Ithresh. Section 3.3.5 explains

the calculation of the moments' uncertainties due to the binarization process.

Besides, for each bubble image, we also determined the coordinates of the lower

(x, y)bottom and upper (x, y)top corners of the rectangle that contains the bubble

projected area.

Gas-liquid interface image processing

The interface image processing follows a procedure similar to bubble image pro-

cessing. The procedure begins with binarizing the original grayscale image using a

threshold determined by Otsu's method, as given in Eq. 3.4. This results in a white
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Figure 3.6: Interface image processing

interface on a black background. Image masking is then applied to remove all image

features except the capillary tube and the interface.

To determine the interface vertical position, the coordinates in pixels of the

lower (yintbottom) and upper (yinttop) corners of the rectangle containing the interface

projected area are determined. Thus, we de�ned the vertical interface position as:

yint =
(
yinttop + yintbottom

)
/2 (3.8)

Figure 3.6 shows the resulting image of the interface processing, indicating the

interface's top and bottom positions and the vertical position of the capillary tube

tip in pixel units.

The rising height is the vertical distance between the interface position and the

capillary tube tip calculated as:

hris = yint − ytip (3.9)

We used Eqs. 3.1 and 3.3 to calculate the vertical positions of the interface, Yint,

and capillary tube tip, Ytip, and the rising height, Hris, in mm. We assumed the un-

certainty of the interface position as half the di�erence between the top and bottom

positions, determining the uncertainty in the rising height from error propagation.

The distance from the capillary tip to the interface was carefully selected to ensure

that the bubble reached its terminal velocity without developing the helical motion

observed in previous experiments. Furthermore, the 50 mm thickness of the test

section had no noticeable e�ect on movement development.

3.3.3 Bubble Data Measurements

Bubble volume and shape

Assuming that the bubble is a spheroid, the second-order central moments calcu-

lated using Eq. 3.7 were used to calculate its major and minor semi-axes and the
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orientation of the major semi-axis with the horizontal [50]. The major, a, and minor,

b, semi-axes of an ellipse are given by:

a =

[
16λ3

1

π2λ2

]1/8
(3.10)

b =

[
16λ3

2

π2λ1

]1/8
(3.11)

where λ1 and λ2 are the eigenvalues of the covariance matrix of the second-order

central moments, given by:

λ1,2 =
µ20 + µ02

2
±
√
4µ2

11 + (µ20 − µ02)2

2
, λ1 > λ2 (3.12)

The angle of the major semi-axis with the x-coordinate axis is calculated as

follows:

θ =
1

2
tan−1

(
2µ11

µ20 − µ02

)
(3.13)

We computed the inverse tangent function in the above equation using the function

atan2(2µ11, µ20 − µ02) as it gives θ in the correct quadrant.

The complete analysis of the image moments and its interpretation using the

elliptical shape assumption is presented in the Supplementary Material 1.

The bubble's projected area approximated as an ellipse was calculated from its

major and minor semiaxis as:

Aellipse = πab (3.14)

The bubble's volume was approximated to that of an oblate or prolate spheroid,

depending on the orientation of its semi-axes, as follows:

V =
4π

3
abc (3.15)

where

c =

{
a, if − 45° < θ < 45°

b, otherwise
(3.16)

The bubble's equivalent diameter is de�ned by:

de =
3
√

6V/π (3.17)

To evaluate mean values for area, volume, and velocity of each bubble with

minimal interference from its detachment and �collision� with the interface, we used

just the images acquired when the bubble barycenter was in middle half of the

available liquid height, that is, Y ′
c ∈ [Y ′

min + ∆Y ′, Y ′
max − ∆Y ′], where Y ′

min = 0,
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Y ′
max = max{Y ′

top}, and ∆Y ′ = 0.25Y ′
max.

Considering N images, the bubble's mean area and volume were calculated using

the following weighted average:

φ =

∑N
n=1 φnωn∑N
n=1 ωn

(3.18)

where φn is the variable value, and ωn is the corresponding weight given by the

reciprocal of the experimental measurement uncertainty ωn = 1/u(φn). The sample

standard deviation was also calculated as sφ =

√∑N
j=1(φj−φ)2

N−1
. The mean equivalent

diameter was determined from the bubble's mean volume using Eq. 3.17.

The mean velocity was estimated in as the slope of the linear model:

Y ′ = UY ′t+ Y ′
0 (3.19)

whose parameters were adjusted using the Orthogonal Distance Regression (ODR)

method [51].

To evaluate the accuracy and repeatability of the de and UY ′ data for each

experimental data set, we determined the arithmetic means of their determination

errors at the 95% con�dence level and their standard deviations, both expressed as

percentages of the corresponding mean values.

Bubble's instantaneous vertical velocity

The vertical component of the bubble's velocity at a given time instant, t, is obtained

by adjusting the linear model Y ′
c (t) = ζ ′0t+ ζ ′1 to a (t, Y ′

c ) data set in a time interval

around t. The ζ ′0 and ζ ′1 coe�cients were also estimated using the ODR method,

being UY ′
j
= ζ ′0. The data set is symmetrically distributed around t in a moving

window given by ∆t = 2n∆tmin, where ∆tmin = 1/facq. The window contains

2n+1 points from Y ′(tj − n∆tmin) to Y ′(tj + n∆tmin), or Y ′
j−n to Y ′

j+n, considering

Y ′
j = Y ′(tj).

For the initial (j < n) and the �nal (j > N − n) time instants, the �tting of

the data sets in the interval from Y ′
0 to Y ′

n, and from Y ′
N−n to Y ′

N , respectively,

determines the instantaneous velocity. The �rst and the last velocity values were

calculated by forward and backward �nite di�erences, respectively.

We assumed that there is an agreement between the instantaneous velocity cal-

culated using two di�erent windows (∆t1 and ∆t2) when there is a large percentage

(>95%) of their points satis�es the following condition:

|UY ′(t,∆t2)− UY ′(t,∆t1)|
[u[UY ′(t,∆t2)]2 + u[UY ′(t,∆t1)]2]0.5

< 1 (3.20)
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Estimation of coalescence time

The drainage of a thin liquid �lm formed when the bubble and the gas-liquid inter-

face are very close to each other controls the coalescence time. Since the thin �lm

thickness is of tenths of micrometers [16], image analysis cannot resolve it. Thus,

we de�ned the coalescence time as the time interval between the instant when the

bubble �nally coalesces with the interface, tf , and the time, tcoll, which is the onset

of formation of the thin liquid �lm between the interfaces. Thus, the coalescence

time is de�ned by:

tc = tf − tcoll (3.21)

Since the image analysis cannot resolve the liquid �lm thickness, to determine

tcoll, we de�ned two criteria for its onset: the �rst time the bubble gets close to the

gas-liquid interface, that is, at the �rst �collision.� The physical collision criterion

(PCC) de�nes tcoll when, for the �rst time, the distance between the bubble's top

surface and the interface is null, considering its uncertainty:

tcoll = tj if hfj − u(hfj) ≤ 0 (3.22)

where hf at the time instant tj is the distance between positions of the top surface

of the approaching bubble, Ytop, and the static interface, Yint, given by:

hfj = Yint − Ytopj (3.23)

Image processing estimated the bubble's top surface and static interface posi-

tions. We assumed the interface position as the average between the top and bottom

interface positions, that is:

Yint = (Yinttop + Yintbottom)/2 (3.24)

The hydrodynamic collision criterion (HCC) de�nes tcoll when, for the �rst time,

the bubble's vertical velocity is null considering its uncertainty:

tcoll = tj if Uyj − u(Uyj) ≤ 0 (3.25)

The mean and standard deviation of the tc data for several bubbles were calcu-

lated directly from the experiments and by assuming a two-parameter (α, β) gamma

cumulative distribution of the form:

F (tc) =
γ(α, βtc)

Γ(α)
(3.26)
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where tc = α/β and s(tc) =
√

α/β2. We calculated the experimental cumulative

density function as:

F̂ (tc) =
1

(N + 1)

N∑
i=0

tci<tc

1 (3.27)

and used it to determine α and β with their uncertainties at a 95 % con�dence level

using the ODR method.

3.3.4 Relevant Dimensionless Numbers

In this study, the relevant dimensionless numbers are Eötvös, Morton, Weber, and

Reynolds, de�ned as:

Eo =
∆ρgd

2

e

σ
(3.28)

Mo =
gν4

C(ρC − ρD)

ρ2Cσ
3

=
gν4

C∆ρ

ρ2Cσ
3

(3.29)

We =
ρCU

2

yde

σ
(3.30)

Red =
ρCUyde

νC
(3.31)

3.3.5 Estimation of uncertainty of the image moments.

Applying the generalized Reynolds transport theorem in the continuous formulation

of the moments to calculate the variation of the moments mij, we have:

δ

(∫∫
D
xiyjdxdy

)
=

∫∫
D
δ(xiyj)dxdy +

∫∫
∂D

xiyj(δrs · n̂)dS (3.32)

where ∂D is the boundary of D, rs is the position vector over ∂D, n̂ is the outward

unit vector normal to ∂D, and S is the arc lenght along ∂D. The last term in Eq.

3.32 is the contribution of the size variation of D in the moment variation.

The discrete form of Eq. 3.32 applied to a bubble with Nb pixels is:

δ

(
Nb∑
k=1

xi
ky

j
k

)
=

Nb∑
k=1

δ(xi
ky

j
k) + δ

[
Nb∑
k=1

xi
ky

j
k

]
(3.33)

The uncertainty of mij comes from Eq. 3.33 as:

u (mij) =

√
u2
(
m

(D)
ij

)
+ u2

(
m

(∂D)
ij

)
(3.34)
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where

u2
(
m

(D)
ij

)
=

Nb∑
k=1

u2(xi
ky

j
k), (3.35)

and u
(
m

(∂D)
ij

)
is the uncertainty corresponding to the last term of Eq. 3.33. We

approximated this term using the bubble's images with N+
b and N−

b pixels, deter-

mined by the threshold perturbation analysis of the binarization process, shown in

Section 3.3.2, giving:

u
(
m

(∂D)
ij

)
=

1

2

[
m

N+
b

ij −m
N−

b
ij

]
(3.36)

where, in pixel units, we de�ned

m
N±

b
ij =

N±
b∑

k=1

xi
ky

j
k (3.37)

Using the uncertainties of the pixels' positions, u(xk) and u(yk), we can write:

u
(
xi
ky

j
k

)
= xi

ky
j
k

√(
iu (xk)

xk

)2

+

(
ju (yk)

yk

)2

(3.38)

which, by assuming that u (xk) and u (yk) are equal to the sensor's positioning

uncertainty, u (x), becomes:

u
(
xi
ky

j
k

)
xi
ky

j
k

= u(x)

[(
i

xk

)2

+

(
j

yk

)2
]1/2

(3.39)

Since u(x) is quite small and the factor between brackets in Eq. 3.39 is also

small for the lower order moments as i << xk and j << yk, we neglected u2
(
m

(D)
ij

)
in Eq. 3.34, obtaining:

u (mij) = u
(
m

(∂D)
ij

)
=

1

2

[
m

N+
b

ij −m
N−

b
ij

]
(3.40)

Similarly, we approximated the uncertainties of the central moments as:

u (µij) = u
(
µ
(∂D)
ij

)
=

1

2

[
µ
N+

b
ij − µ

N−
b

ij

]
(3.41)

where, in pixel units, we de�ned

µ
N±

b
ij =

N±
b∑

k=1

(∆xk)
i(∆yk)

j (3.42)

Appendix 3.A gives details on the evaluation of the uncertainties of all bubble's
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characteristics, derived quantities, and dimensionless numbers described in Sections

3.3.3 and 3.3.4.

3.3.6 Numerical procedure

We implemented all image analysis and data processing in Python using some li-

braries: OpenCV (version 4.6.0.66) for thresholding and binarization, NumPy (ver-

sion 1.23.1) and Pandas (version 1.4.3) for handling data arrays and data frames,

SciPy (version 1.9.0) for performing regression using the ODR method [51], and

Matplotlib (version 3.5.2) for generating graphics.

We implemented the algorithm to process an image to obtain the binarized bub-

ble image, determine its moments, calculate the perturbation to the binarization

threshold, and determine the moments' uncertainties by recalculating the moments

of binary bubble images obtained using perturbed thresholds. We validated the

algorithm against images with known moments.

We also implemented the algorithm to determine the bubble's local vertical veloc-

ity using the bubble barycenter positions in a set of consecutive frames in a moving

time window and the ODR package for model �tting.

3.4 Experimental data sets

We performed experiments using di�erent camera acquisition frequencies, pump

actuation speeds, and image resolutions. We organized the experimental runs into

di�erent data sets to determine the bubble characteristics, coalescence time, and

number of bounces. For all experimental data sets, we employed a micro-Nikkor lens

with a focal length of 60 mm, an e�ective aperture of f/D = 16, and an exposure

time of 50 µs. The image resolution was 1280 × 800 pixels, Nframes = 2500 in

single frame mode and Nsteps = 212. For 212 steps in the syringe pump, the injected

volume was 40.4± 1.5µl, calculated by the pump volumetric calibration:

Vinj = NstepsRv (3.43)

where Rv = 0.19 ± 0.01 µl/step is the pump volumetric resolution for the 1 ml

syringe. The injected volume at each experimental run generated a unique bubble

with an equivalent diameter of approximately 4.26 mm.

Table 3.3 lists other con�gurations used for the di�erent data sets and gives the

values for the scale factor. The reader should note that the scale factor error is

approximately 3% for all experimental data sets. One of the con�gurations in Table

3.3 is the time delay between the activation of the syringe pump (�rst action) and

the camera trigger (second action), which was necessary to capture the bubble's
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Table 3.3: Con�gurations of the experimental data sets.

Con�gurations
Data Sets

I II III

Runs 1 � 30 31 � 35 36 � 40
facq (fps) 500 1000 1000

fpump (steps/s) 50 10 10
Delay (s) 1.5 21.0 21.0
κ (px/mm) 23.0 ± 0.7 22.5 ± 0.6 49.9 ± 1.4
Top (°C) 23.7± 0.3 23.0± 0.1 23.0± 0.1

detachment, ascension, and coalescence with the interface. The mean operational

temperature for all experiments was in the 23-25 °C range. Table 3.3 lists the Top

values for data sets I, II, and III.

Appendix 3.B compares bubble volume via pump calibration and image process-

ing for di�erent pump actuation and acquisition frequencies. Results show that the

mean bubble volume is independent of the injection �ow rate up to 200 steps/s.

3.4.1 Con�gurations of the experimental data sets

For data set I, the total acquisition time was 5 s, and the injection time was 4.24 s.

Therefore, the time delay of approximately 1.5 s allows for measuring coalescence

times up to 2.26 s, which is the di�erence between the total acquisition time and

the injection time plus the time delay.

To measure the bubble characteristics better, we reduced the pump actuation

frequency by �ve times and increased the image acquisition frequency by twice in

experimental data set II. For this data set, the total acquisition time was 2.5 s,

and the injection time was 21.2 s. Therefore, a delay of approximately 21.0 s was

necessary, allowing recording up to 2.3 s of the phenomenon.

We conducted experimental data set III to analyze the bubbles' bouncing at

the interface with the highest possible resolution of our equipment by using the

minimum focal length and rotating the camera 90 degrees to maximize the number

of pixels vertically. The scale factor obtained was almost double that of previous

experiments. Additionally, we decreased the distance between the interface and the

injection tube to obtain bubble approaching velocities lower than their terminal

velocity.
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3

Figure 3.7: Bubble behavior in coalescence experiments: 1 - Detachment, 2 - As-
cension, 3 - Bouncing and coalescence.

3.5 Results and Discussion

The Supplementary Material 1 lists the results for the bubble characteristics, di-

mensionless numbers, and coalescence times of each run of experimental data sets

I, II, and III.

3.5.1 Bubble behavior

Figure 3.7 illustrates three stages of bubble behavior after detachment from the

capillary until coalescence. The �rst stage occurs immediately after the detach-

ment, where the lower part of the bubble moves much faster than the rest due to

the action of the interfacial forces. In the second stage, the bubble deforms as it

ascends through the �uid, assuming approximately the shape of a spheroid. The

�nal stage involves the bubble's interaction with the interface, where its shape is

approximately a spherical cap that oscillates and slides at the interface until co-

alescence. Furthermore, the interface deforms and is pushed upwards due to the

bubble's presence.

3.5.2 Image Processing Validation

Static Interface Position

Table 3.4 presents the results of the image processing applied to images of the static

air-water interface from experimental data sets I, II, and III, determined as described

in Section 3.3.2. Table 3.4 lists the values for Yinttop , Yintbottom , Yint, Ytip and Hris,

which are the vertical positions of the top, bottom and middle of the interface,

the tip of the capillary tube, and the rising height. All vertical positions represent
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Table 3.4: Static interface processing results.

Set Yinttop [mm] Yintbottom [mm] Yint [mm] Ytip [mm] Hris [mm]

I 27.7 ± 0.1 26.5 ± 0.1 27.1 ± 0.6 2.11 ± 0.02 25.0 ± 0.6
II 28.4 ± 0.1 27.9 ± 0.1 28.1 ± 0.3 3.18 ± 0.02 24.9 ± 0.3
III 9.89 ± 0.01 8.37 ± 0.01 9.1 ± 0.8 1.17 ± 0.01 8.0 ± 0.8
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Figure 3.8: Bubble's ascension: (a) trajectory of bubble barycenter, and (b) vertical
positions of the bubble's centroid, top and bottom surfaces. Run 1 of experimental
data set I.

heights from the bottom of the image.

Bubble volume and velocity

We chose run 1 of the experimental data set I from Table 3.3 to exemplify the

determination of the trajectories, volume, mean ascension velocity, and the vertical

component of the instantaneous velocity of the rising bubbles.

Figure 3.8a shows the bubble's trajectory through the X ′ and Y ′ coordinates of

its centroid, while Figure 3.8b depicts the vertical positions of the bubble' s centroid,

Y ′
c , top surface, Y

′
top, and bottom surface, Y ′

bottom. As observed, the bubble follows an

almost rectilinear trajectory until it approaches the interface. After the �collision�,

the bubble oscillates and slides at the interface, as shown by the displacement of

Y ′
bottom and the horizontal centroid position, X ′

c, respectively.

Figure 3.9 presents the results for the bubble's volume and ascension velocity of

run 1. Figures 3.9a and 3.9b represent V × Y ′
c and Y ′

c × t data, respectively, where

V came from Eq. 3.15. The model given by Eq. 3.19 determined UY ′ from Figure

3.9b data. The ODR method provides the standard deviation of UY ′ and its error

at a 95 % con�dence level.

For all runs of data set I, Figure 3.10a compares the mean bubble projected area
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Figure 3.9: Results for the bubble's (a) volume and (b) centroid position and ascen-
sion velocity for run 1 in the experimental set I.

estimated from the zeroth-order moment and the mean area determined from the

ellipse's semi-axes determined from the image second-order central moments. For

the same data, Figure 3.10b compares the mean bubble volume obtained using the

ellipse's area and the spheroidal shape hypothesis to the injected volume calculated

from the pump calibration. Equation 3.18 calculates the mean values using all

bubble images for a given run during its ascension. The volume injected by the

pump was 40.4±1.5µl, obtained by the Eq. 3.43, and the light gray region in Figure

3.10b represents its margin of error.

For all runs of data set I, the mean bubble area obtained from the image zeroth-

order moment and the elliptical approximation agree well. The bubble volume

estimated from the injected volume for all runs of this data set also agrees well with

the values estimated from image analysis, as they are equal within their margin of

error. The di�erence between the mean volume of all runs and the injected volume

is lower than 1%. The image processing determines a single bubble's volume more

accurately than the predicted injected volume, as shown by the error bars in Figure

3.10b. These results validate the hypothesis of elliptical and spheroidal shapes used

to estimate the bubble's volumes from the images.

Figure 3.11 compares the mean ascension velocity, UY ′ , with the vertical com-

ponent of the instantaneous velocity, UY ′ , calculated as described in Section 3.3.3

using the time intervals of ∆t1 = 12 and ∆t2 = 16 ms for runs 1 to 4 of experimen-

tal data set I. These intervals represent moving windows with seven and nine data

points, respectively, as ∆tmin = 2 ms for this experimental set. As can be seen, the

velocity uncertainty decreases as ∆t increases. The instantaneous velocity closely

aligns with the mean velocity in the bubble's ascension period, decreasing when it

approaches the interface. From 98.5 to 99.0 % of the measured data points for each
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Figure 3.10: Comparison of (a) bubbles' areas using image processing with and
without the elliptical shape assumption and (b) their volumes using image process-
ing and the injected volume determined from the syringe pump calibration for the
experimental data set I.

bubble satis�es the condition given by Eq. 3.20. Hence, we opted for the moving

window with seven data points (∆t = 12 ms) to estimate the instantaneous bubbles'

velocity. This interval yielded more local and less smooth results, even though with

slightly larger errors than those using a moving window with nine data points. An

increase in the frame acquisition rate might mitigate these errors. A less smoothed

UY ′ data is important for detecting its steep drop due to the bubble interaction with

the interface.

Figure 3.12 shows UY ′ and the bubbles' top surface velocity, UY ′
top
, near the

interface position, Y ′
int, for runs 1 to 4 of the experimental set I. We used the time

window with seven data points to calculate both vertical velocities. The shaded

region corresponds to the Y ′
int error of error. As mentioned earlier, the error of UY ′

increases as the distance between the bubble and the interface decreases due to the

deviation of the data points from the employed linear model. Nevertheless, this

approach gave the lowest error coe�cients in the adjustment. Both UY ′ and UY ′
top

decrease, reaching zero when the bubble is at the interface.

In addition, Figure 3.12 shows the �collision� instants detected by the PCC and

the HCC. The PCC relies on the distance between the bubble top face and the static

interface, while the HCC employs the velocity, considering their uncertainties. In

all cases, the collision instant predicted by the PCC criterion precedes that of the

HCC. Using the HCC, after reaching the interface, UY ′ oscillates around zero until

coalescence.
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Figure 3.11: Behavior of UY ′ × Y ′ against UY ′ calculated for the ascension stage.
UY ′ determined using ∆t = 12 and 16 ms for four runs of the experimental set I,
including the percentage of data agreement using these two intervals.
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Figure 3.12: Behaviors of UY ′ and UY ′
top

calculated using the seven-point moving
window near the interface for four runs of experimental set I.
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Figure 3.13: Equivalent diameter and mean ascension velocity for the experimental
data sets (a) I and (b) II

.

3.5.3 E�ects of the injection �owrate and the image acquisi-

tion rate

To increase the accuracy of the bubble's characteristics, we obtained the experi-

mental data set II using a pump actuation frequency �ve times lower (10 steps/s)

and an image acquisition frequency twice higher (1000 fps) than those used in the

experimental data set I.

Figure 3.13 compares the equivalent diameter and mean ascension velocity de-

termined from experimental data sets I and II with the results from CLIFT et al.

[10] for pure and contaminated water. In both experimental data sets, the exper-

imental data for the bubbles' ascension velocity are within the range of ±10 % of

the bubble's terminal velocity for pure water. The accuracy and repeatability of the

experimental data set I were 0.34 % and 1.20 %, respectively, while the correspond-

ing values for the experimental data set II were 0.83 % and 0.23 %. These results

are in excellent agreement with previous knowledge, indicating that we managed to

achieve the conditions of bubble ascension in pure water.

Figure 3.14 shows the behavior of the bubbles' centroid, bottom, and top vertical

positions over time near the interface for runs 1 and 2 of data set I and runs 31 and

32 for data set II. In experimental data set I, bubbles' bouncing is easily perceived,

with amplitudes decreasing after each bounce. Although the terminal velocity and

coalescence time results were better determined for the experimental data set II,

observing the number of bubble bounces at the interface was di�cult because of the

small amplitude of bounces.

36



0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
t [s]

15

16

17

18

19

20

21

Y′
 [m

m
]

Y ′c
Y ′top

Y ′bottom

(a)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
t [s]

15

16

17

18

19

20

21

Y′
 [m

m
]

Y ′c
Y ′top

Y ′bottom

(b)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
t [s]

15

16

17

18

19

20

21

Y′
 [m

m
]

Y ′c
Y ′top

Y ′bottom

(c)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
t [s]

15

16

17

18

19

20

21

Y′
 [m

m
]

Y ′c
Y ′top

Y ′bottom

(d)

Figure 3.14: Vertical positions of the bubbles' centroid (Y ′
c ), bottom surface (Y ′

bottom),
and top surface (Y ′

top) for runs (a) 1 and (b) 2 of data set I, and runs (c) 31 and (d)
32 of data set II.
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Figure 3.15: Snapshots of bubbles from runs 31, 32, and 33 of data set II at �collision�
times with the interface using the (a) PCC and (b) HCC, and (c) at coalescence
times.

3.5.4 Coalescence time distribution at terminal velocity

Figure 3.15 displays snapshots of the bubbles' at �collision� times as detected by

both collision criteria, and at the coalescence time with the interface for runs 31, 32,

and 33 of data set II. Figures 3.15a and 3.15b show, respectively, the �collision� times

according to PCC and HCC, and Figure 3.15c shows the coalescence instants. The

PCC detected the collision when the bubbles were farther from the interface. In

contrast, the HCC detected it when the bubbles visually touched the interface, which

is more consistent with forming a thin �lm between the bubble and the interface

before coalescence.

Table 3.5 gives the estimated parameters for the gamma distribution using the

coalescence times determined using both �collision� criteria. Both parameters were

determined with uncertainties around 10-12 %. Figure 3.16 compares the adjusted

cumulative distribution with the experimental cumulative density function using

PCC and HCC. For both �collision� criteria, the empirical cumulative distributions

and their adjusted gamma distribution exhibit similarity and agreement.

Table 3.6 presents the mean value, tc, standard deviation, s(tc), and their uncer-

tainties at the 95% con�dence level for the coalescence time data calculated directly

from the experiments and from the gamma distributions adjusted to the coalescence

times determined using both �collision� criteria. The values of tc and s(tc) obtained

directly from the experimental data and from the gamma distribution agree well,

but the u95(tc) values do not, being about 2.5 times smaller for the estimates using
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Table 3.5: Estimated parameters for the gamma distributions for tc for data set I
using both collision criteria.

Criterion
Parameters

α± u95(α) β ± u95(β)

PCC 3.9± 0.4 7.0± 0.8
HCC 3.7± 0.4 6.8± 0.9

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
tc [s]

0.0
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1.0

F,
F

F for PCC
F for HCC

F using PCC

F using HCC

Figure 3.16: Comparison between the �collision� time data obtained using PCC and
HCC for data set I to the adjusted cumulative distributions.

the gamma distributions.

3.5.5 Bubbles' bouncing analysis

We carried out the experiments of data set III (Runs 36, 37, 38, 39, and 40), with

its larger image resolution, κ=49.9 px/mm, to analyze bubbles' bouncing. Although

the data set I experiments did not always allow us to count the number of bounces

accurately, we managed to extract seven experiments (Runs 5, 8, 14, 16, 20, 23,

and 24) for which we could count the number of bubble bounces. Besides, in data

set III, the bubble rising height was smaller, making the bubbles' mean velocity

at �rst �collision� with the interface about 60 % of their terminal velocity (see

Supplementary Material 1).

Table 3.6: Coalescence time results for data set I using both collision criteria.

Criterion
Experimental results Estimates from F (tc)
tc s(tc) u95(tc) tc u95(tc) s(tc) u95(s)

PCC 0.56 0.29 0.11 0.56 0.04 0.28 0.02
HCC 0.54 0.29 0.11 0.54 0.05 0.28 0.02
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Table 3.7: Morton and Weber numbers for experimental data sets I and III.

Set Mo× 1011 We

I 2.86 ± 0.03 3.62 ± 0.09
III 3.04 ± 0.03 1.26 ± 0.19

Table 3.7 presents the Morton and mean Weber numbers with their uncertain-

ties at the 95% con�dence level for data sets I and III. According to HORN et al.

[14], if the Weber number calculated with the bubble approaching velocity exceeds

Wecrit ∼ 1, the bubble bounces. All our experiments were above this boundary, indi-

cating bubble bouncing, which indeed occurred. The We values for the experiments

in data set III were the nearest to the Wecrit boundary, showing much lower coales-

cence times than those observed for the experimental data set I (see Supplementary

Material).

Figure 3.17 shows the vertical positions of the centroid, bottom surface, and top

surface for the bubbles in runs 36 to 40 of data set III, organizing them according to

the number of bounces. We counted the number of bounces at the interface before

coalescence, considering the number of times the bubble approached the interface

after the �rst collision. As the amplitude decreases after each �collision�, counting

the bounces as their number increases becomes di�cult. Even for the resolution of

data set III, it was di�cult to count a large number of bounces.

The reader can notice in Figure 3.17 that the uncertainty in the vertical position

of the bubble barycenter largely increases at some instants. Figure 3.14 also shows

the same behavior, although to a lesser extent. These larger uncertainties in Y ′
c came

from the increase in the uncertainties of the zeroth and �rst-order moments of the

bubble image when its upper surface is close to the gas-liquid interface. We deter-

mined these larger uncertainties were due to lighting changes associated with bubble

and interface deformations that a�ected the image binarization process. Neverthe-

less, the Y ′
c values at such instants agree with those at neighbor points, which do

not present such an increase in their uncertainties. Moreover, we could count the

number of bubble bounces even for the runs that presented such behavior.

SANADA et al. [12] stated that tc increases with Nbounces. Thus, we assumed

a linear relationship representing the tc(Nbounces) dependency, testing linear models

with two parameters and one parameter. For the latter, tc(0) = 0, and it is given

by:

tc = T Nbounces (3.44)

where T is the predicted bouncing period in milliseconds.

We �tted the two linear models to the available data for data sets I and III.

In these data regressions, the standard uncertainty on the number of bounces was
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Figure 3.17: Behaviour of the vertical position of the centroid (Y ′
c ), bottom face

(Y ′
bottom), and top face (Y ′

top) of the bubbles until their coalescence with the interface
for data set III.
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Figure 3.18: Fitted linear model between tc and Nbounces for the experimental data
sets I, III, and I+III, using (a) PCC and (b) HCC.

Table 3.8: Comparison of resulting T from experiments.

T [ ms]

DS I DS III DS I+III

PCC 40.5 ± 1.4 43.4 ± 5.1 40.9 ± 1.4

HCC 37.8 ±1.5 37.6 ± 0.4 37.7 ± 1.0

evaluated as type B, considering an error of unit and a triangular probability dis-

tribution. Only the Eq. 3.44 model correlated the available tc data using HCC or

PCC for both data sets with statistically signi�cant parameter values, which occurs

when the 95 % con�dence interval does not include zero. Therefore, we presented

results only for this model.

Figure 3.18 shows the �tted linear model for tc(Nbounces) (Eq. 3.44) using the

experimental tc data determined either using PCC or HCC for data sets I and III,

either separately or together. Table 3.8 presents the parameter's values determined

for these di�erent data sets using both collision criteria.

Table 3.8 clearly shows that only the HCC led to a �tted model for both data

sets with the same parameter value with low uncertainties. Besides, Figure 3.18

shows that the �tted models for each data set or for the two data sets using HCC

are identical, which does not occur for the tc data obtained using PCC. Therefore,

the linear model using the tc data obtained using the HCC is more consistent with

the available data.

We could not identify any relationship between the coalescence time of a bounc-

ing bubble and its initial approaching velocity (see Tables 5 and 7 of the Supple-

mentary Material).
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3.5.6 Comparison with literature data

This section compares our data with those available in the literature, examining

di�erences and similarities in bubble diameters, coalescence times, and the number

of bounces.

The bubbles' diameter of 4 mm presented in this study is smaller than those in

the experiments conducted by KIRKPATRICK e LOCKETT [15] for bubbles with

a 5 mm diameter, but larger than those reported by SANADA et al. [17], SUÑOL

e GONZÁLEZ-CINCA [13], ZAWALA e MALYSA [19] and SATO et al. [20], who

analyzed bubbles with diameters smaller than 2 mm.

Our experiments measured larger coalescence times than those reported in the

literature, and our bubbles also bounced more on average.

In our experiments, the coalescence time ranged from 36 to 1550 ms for injection

distances of 8.0 to 25.0 mm, with more than nine bounces observed. KIRKPATRICK

e LOCKETT [15] reported coalescence times ranging from 150 to 180 ms for rising

heights within 8.7 to 27.0 mm, where the bubble either coalesces on the �rst contact

or oscillates twice before coalescence. On the other hand, SANADA et al. [12]

observed coalescence times from 0 to 60 ms with up to three bounces in low-viscosity

liquids, and ZAWALA e MALYSA [19] reported coalescence times within 3 to 5 ms

with up to �ve bounces. SUÑOL e GONZÁLEZ-CINCA [13] measured coalescence

times up to 100 ms with up to four bounces, and SATO et al. [20] observed a

maximum of four bubble bounces.

We could determine the bouncing period to be approximately 37.7 ms for bubbles

with the same diameter but di�erent approaching velocities. Only KIRKPATRICK

e LOCKETT [15] reported the time interval between the �rst two �collisions� to be

within 40 and 60 ms for similar rising heights. For SANADA et al. [17] experiments

with low-viscosity liquids, we estimated bouncing periods within 15 to 25 ms.

For small bubbles in the spherical regime, we expected that the coalescence time

and the number of bounces would increase with the bubble size, as the bubble

approaching velocity also tends to increase for the same rising height. For the

ellipsoidal-wobbling bubble regime, this seems not to be true as KIRKPATRICK e

LOCKETT [15] data and ours, both in this regime with the same range of rising

heights, do not agree in the number of bounces or the coalescence time.

3.6 Conclusions

In this work, we analyzed the coalescence time of ellipsoidal-wobbling air bubbles

with a surfactant-free �at air-water interface. The Morton number was 2.9× 10−11,

and the ranges of Eötvös, Weber, and Reynolds dimensionless numbers were 2 to 3,

43



1 to 4, and 500 to 1100, respectively. We used high-speed �uid imaging techniques

to measure the bubbles' size, velocity, and number of bounces at the interface. Two

criteria to establish the time of the �rst collision with the interface were de�ned:

the physical criterion, PCC, based on the distance between the top of the bubble

and the static interface, and the hydrodynamic criterion, HCC, based on bubble

velocity. We present results for the bubble volume, velocity, coalescence time, and

number of bounces at the interface before coalescence.

The terminal velocity of the bubbles was close to its literature value for pure air-

water systems under standard conditions. The distribution of coalescence time for

the bubbles colliding at terminal velocity was estimated using both collision criteria.

A two-parameter gamma distribution was for representing the coalescence time data

for both criteria.

We analyzed the relation between the coalescence time and the number of bubble

bounces. We determined that a linear model with just one parameter, the bouncing

period, can �t our data for both collision criteria. However, only the coalescence

time obtained using the HCC gave the same low-uncertainty value for the bouncing

period for two data sets with quite di�erent bubble-approaching velocities, making

this criterion more consistent with our data. Using the two data sets and the HCC,

the predicted bouncing period was 38± 1 milliseconds.
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Nomenclature

A area

a ellipse's semi-major axis

b ellipse's semi-minor axis

D domain of Nb

de equivalent diameter

F cumulative gamma distribution

F̂ empirical cumulative distribution

facq frequency of acquisition

fpump frequency of pump

hf bubble-interface distance

I pixel intensity

Ib mean intensity inside bubble

Imax maximum intensity

Iout mean intensity outside bubble

Ithresh intensity threshold

i �rst index/order

j second index/order

L calibration segment length

N number of total elements in a sample

NL number of pixels in the calibration segment
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Nb number of pixels inside bubble

Nbubbles number of injected bubbles

Nbounces number of bounces

Nout number of pixels outside bubble

Nframes number of frames

Nsteps number of steps

Nx number of pixels in x coordinate

Ny number of pixels in y coordinate

n̂ unit normal vector

n number of element in a sample

mij image moment of order i and j in the x and y coordinates

rs position vector

Rv mean pump volumetric resolution

S perimeter

s standard deviation

T temperature

t time

tc coalescence time

tcoll collision time

texp exposure time

tf �nal time

U velocity

u standard uncertainty

V volume

Vcalc volume by pump calibration
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Vinj injected volume

X x position in mm

x pixel position in x coordinate

xbottom bubble bottom position in x coordinate

xtop bubble top position in x coordinate

Y y position in mm

Yint interface position in mm

y pixel position in y coordinate

ybottom bubble bottom position in y coordinate

ytop bubble top position in y coordinate

Greek letters

α �rst parameter of the gamma distribution

β second parameter of the gamma distribution

χ generic measure

∆ di�erence between magnitudes

η generic power

Γ gamma distribution

γ incomplete gamma function

κ scale factor

λ eigenvalue

µij image central moment of orders i and j in the x and y coordinates

νC continuous phase dynamic viscosity

νD dispersed phase dynamic viscosity

ρC continuous phase density

ρD dispersed phase density
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σ surface tension

θ orientation of a with the horizontal

φ generic variable

ζ adjustment coe�cients

Abbreviations

Eo Eötvös number

Mo Morton number

Re Reynolds number

We Weber number

ODR orthogonal regression distance

Appendix

3.A Evaluation of the bubble's characteristics and

derived quantities uncertainties

We obtained the uncertainty of bubbles' derived quantities by propagation. For

instance, for a generic variable equal to the product of other variables raised to a

di�erent power, such as φ =
∏N

n=1 χ
ηn
n , we have:

u(φ)

φ
=

√√√√ N∑
n=1

(
ηnu(χn)

χn

)2

(3.45)

Hence, the propagation of the uncertainties of the image moments of order zero

and one determined the standard combined uncertainty of the position coordinates

of the bubble centroid (x′
c, y

′
c) in pixel units. Similarly, the standard combined un-

certainty of the vertical position of the bubble centroid in units of length resulted

from the propagation of the uncertainty of the position in pixels and the uncertainty

of the calculated scale factor. The scale factor uncertainty arises from combining

the uncertainty of the calibration segment length with the uncertainty in the num-

ber of pixels in the segment, where their uncertainties stem from the resolution of

the calibration target and the number of pixels for an error of unit, respectively,

considering a triangular probability distribution.
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The semiaxis uncertainties came from the propagation of the uncertainties of the

eigenvalues of the central moments. In particular, the uncertainty of the eigenvalues

(λ1,2) are calculated as:

u (λ1,2) =

√(
∂λ1

∂µ20

u(µ20)

)2

+

(
∂λ1

∂µ02

u(µ02)

)2

+

(
∂λ1

∂µ11

u(µ11)

)2

(3.46)

where
∂λ1

∂µ20

=
1

2
+

(µ20 − µ02)

2∆µ
(3.47)

∂λ1

∂µ02

=
1

2
− (µ20 − µ02)

2∆µ
(3.48)

∂λ1

∂µ11

=
2

∆µ
µ11 (3.49)

and

∆µ =
√
4µ2

11 + (µ20 − µ02)2 (3.50)

The uncertainty of the orientation of the ellipse's semi-axes came by propagating

the uncertainties of the centered moments, being given as:

u(θ) =
1

∆µ2

√
µ2
11u

2(µ20) + µ2
11u

2(µ02) + (µ20 − µ02)2u2(µ11) (3.51)

The propagation of the uncertainty of the ellipse's semi-axes lengths calculates

the uncertainty of the ellipse's area. The bubble's volume uncertainty came from the

uncertainty propagation of the semi-axes lengths of an oblate or prolate spheroid,

depending on the orientation of its semi-axes. The uncertainty of the equivalent

diameter was calculated from the volume uncertainty.

The uncertainty in the instantaneous vertical velocity came from the standard

deviation of the parameter of the adjusted linear model obtained via ODR.

The uncertainty of the coalescence time came from propagating the uncertainty

of the �nal time and the collision time. The uncertainty of any time instant is equal

to the uncertainty of the camera's exposure time, assuming a triangular distribution.

In addition, the uncertainty in any time interval, ∆t, is u(∆t) =
√

2u2(t).

The relative uncertainty of the bubble-interface distance came from propagating

the uncertainties of the interface and the top face bubble's position. The uncertain-

ties of the dimensionless numbers are calculated by propagating the uncertainties of

the bubbles' characteristics and the �uids' properties.

Finally, all the combined uncertainties were multiplied for a coverage factor to

obtain the error range with 95 % con�dence level.
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Table 3.B.1: Con�guration of the experimental data set A. For all runs, fpump =
50 steps/s, κ = 23.0± 0.7 px/mm, and no time delay.

Run facq (fps) N
(∗)
frames Nsteps

1 - 5 50 2000 1313
6 - 10 500 2500 212
(∗) in single frame mode

3.B Comparison of bubbles' mean volumes from

pump calibration and image processing

Two methods estimated the mean bubble volume: method 1, which employs the

syringe pump calibration, and method 2, which uses the image processing described

in Section 3.3.

3.B.1 Bubble volume from pump calibration (Method 1)

We calculated the mean bubbles' volume from pump calibration as the ratio of

the injected volume divided by the number of bubbles generated during injection,

Vcal = Vinj/Nbubbles, in which Nbubbles can be obtained from image observation or

signal treatment from image processing. The injected volume is the product of

Nsteps in each run and the pump volumetric resolution obtained previously through

calibration, Eq. 3.43.

The uncertainty of the mean volume from pump calibration is obtained by prop-

agating the uncertainties of the injected volume and the number of bubbles, where

the uncertainties of Nsteps and Nbubbles were both evaluated as type B considering an

error of unit and a triangular distribution.

3.B.2 Con�guration of the experimental data set A

We performed two sets of �ve runs with camera acquisition frequencies of 50 to 500

fps and a pump injection speed of 50 steps/s. Table 3.B.1 shows the con�guration

of these runs. The operational temperatures during the experiments were 22.58 ±
0.08 and 23.02 ± 0.08 ° C for the runs with 50 and 500 fps acquisition frequencies,

respectively.

3.B.3 Bubble volume comparison

Tables 3.B.2 and 3.B.3 present the results of the mean volume of bubbles determined

by methods 1 and 2 and their di�erence for the two sets of experiments of data set
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Table 3.B.2: Average volume results for 50 fps and Vinj = 250± 9 µl.

Run Nbubbles
Method 1 Method 2 |V cal − V | (µl)
V cal (µl) V (µl)

1 7 36 ± 2 39 ± 1 3
2 6 42 ± 2 40 ± 8 2
3 7 36 ± 2 38 ± 15 2
4 6 42 ± 2 42 ± 1 0
5 6 42 ± 2 41 ± 5 1

Table 3.B.3: Average volume results for 500 fps and Vinj = 40.4± 1.5 µl.

Run Nbubbles
Method 1 Method 2 |V cal − V | (µl)
V cal (µl) V (µl)

6 1

40.4±1.5

41.3±0.5 0.9
7 1 41.2±1.5 0.8
8 1 41.4±1.3 1.0
9 1 37.0±0.4 3.4
10 1 40.8±0.6 0.4

A. The volume injected for the runs with 50 and 500 fps was respectively 250 ± 9

and 40.4± 1.5 µl, calculated using Eq. 3.43.

In some experiments running at facq = 50 fps, 1 or 2 satellite bubbles formed

during the injection of 6 or 7 bubbles, which increased the error in the mean volume

obtained by the image analysis. For the runs at facq = 500 fps, only one bubble

formed. In this case, the error in the bubbles' mean volume obtained by method 1

was larger than that obtained from the images by method 2.

Figure 3.B.1 compares the mean bubbles' volume calculated by both methods

for the experiments at 50 and 500 fps of data set A. The mean bubbles' volumes

obtained by methods 1 and 2 agree within their margins of error. The repeatability

of the experiments was much better for the experiments at 500 fps, which generated

only one bubble. The mean bubbles' volumes with both methods at both acquisition

frequencies also agree within their error margins. These results strongly support the

spheroidal bubble hypothesis.

3.B.4 Bubbling regime

Figure 3.B.2 presents the mean bubbles' volume obtained via image processing

(method 2) as a function of the syringe pump actuation frequency, which is pro-

portional to the volumetric �owrate through the capillary tube. This �gure includes

the data from experiments using facq = 50 and 500 fps for fpump = 50 steps/s and
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Figure 3.B.1: Comparison of bubbles' volume obtained by the two methods for the
experimental data set A.
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Figure 3.B.2: Bubble volume via image processing (method 2) as a function of the
acquisition and pump frequency.

from other experiments, in which facq = fpump and equal to 30, 60, 120 and 200 fps or

steps/s, respectively. These results show that the mean bubbles' volume is indepen-

dent of the injection �ow rate up to 200 steps/s, indicating that bubble formation

occurred in the slow-bubbling regime, in which the interfacial force dominates the

gas momentum in�ux.
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Chapter 4

A Simpli�ed Model for Bubble

Bouncing at Surfactant-Free

Gas-Liquid Interfaces and Critical

Weber Number for Coalescence

This chapter presents an extended version of the second article, entitled �Modeling

Bubble Bouncing at Surfactant-Free Gas-Liquid Interfaces: Critical Weber Num-

ber for Coalescence,� which was submitted for publication in the journal Chemical

Engineering Science.

This study developed a model for bubble bouncing at gas-liquid surfactant-free

interfaces and applied it to previously obtained experimental data on the bounc-

ing and coalescence of ellipsoidal-wobbling air bubbles at water-air interfaces. The

model derives from the balance of forces acting after the �rst �collision� between

the bubble and the interface, including drag, gravity, buoyancy, virtual mass, and

restitution forces. The simpli�ed model is a linear second-order ordinary di�eren-

tial equation for the bubble's barycenter vertical position with three dimensionless

parameters, for which, we derived its analytical solution. Using two sets of ex-

perimental data as initial conditions, we estimated the three dimensionless physi-

cal parameters by �tting the available experimental data using the hydrodynamic

�collision� criterion (HCC) for detecting the �rst �collision�. The estimated model

parameters for bubbles with the same number of bounces agree well. The approx-

imated model reasonably represented bubbles' motion during bouncing until their

coalescence. The predicted oscillation frequency agrees with our previous prediction

within their error margins. Both the experimental data and simulated results for

the maximum bubble's velocity between bounces indicate that coalescence occurred

after this velocity dropped below 5 cm/s, which corresponds to a critical Weber
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number below 0.35.

4.1 Introduction

Bubble-interface coalescence occurs in several industrial processes, including froth

�otation, oil extraction, and chemical reactors. The coalescence frequency of bub-

bles is typically quanti�ed using physical models, by the product of two distinct

functions: collision frequency and coalescence e�ciency [2, 23]. These models are

de�ned according to the mechanisms of each collision. Most of them determine the

e�ciency as the ratio between the coalescence time and the interaction time. A

strategy to study coalescence is to analyze bubbles �collision� to a gas-liquid inter-

face. In this approach, bubbles always have enough time to drain the thin liquid

�lm formed between the interfaces during the collision, allowing the �lm to reach a

critical thickness for rupture, invariably leading to coalescence.

The literature on modeling bubble-interface coalescence focused on the �lm

drainage rate during collisions and the bubbles' bouncing behavior at interfaces.

Several researchers have contributed to the development of bubble-interface coales-

cence models. For instance, DUINEVELD [18] utilized conditions of coalescence and

bouncing of two bubbles presented by CHESTERS [33] to model the approaching

of spherical bubbles with diameters of 0.7 to 0.9 mm to a free surface, solving an

equation of motion until the bubble deforms upon colliding with the surface. This

model depends on the initial distance from the bubble's center of mass to the sur-

face, and the bouncing criterion is based on the approach velocity; velocities lower

than critical lead to coalescence, while higher velocities increase pressure in the liq-

uid �lm, causing deformation and repulsion. ZAWALA e MALYSA [19] analyzed

1 mm air bubbles bouncing at air/oil interfaces, modeling �lm drainage time as

being proportional to liquid viscosity and �lm radius, and inversely proportional to

the driving force for thinning. Their experiments showed bubbles approaching the

interface at terminal velocity, which slow down, stop, and then bounce. The time

to liquid �lm rupture depended on bubble size, viscosity, and number of rebounds.

SATO et al. [20] derived a model to predict the contact time between the in-

terface and bubbles with size between 0.6 and 1.6 mm using two linear springs to

account for the restoring force, assuming overall energy conservation. They showed

that deformations of both bubble and interface play an important role for bubbles

with radii below 0.6 mm. In contrast, surface deformation is more signi�cant for

larger bubbles. Furthermore, the contact time slightly increases with the number

of bubble bounces. FENG et al. [26] examined the dynamics of air bubbles with

1.3 to 1.64 mm of diameter at a compound interface (water-oil-air), �nding that

oil viscosity signi�cantly in�uences the pressure in the water �lm and its drainage.
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Their reduced-order model e�ectively captured the contact time and coe�cient of

restitution of bubble bouncing. These bubble-bouncing models use the analogy with

the mass-spring-damper system, di�ering mainly in the assumptions of the restitu-

tion force. SATO et al. [20] use two springs connected in series, considering that

the restoring forces due to each deformation should be balanced through the �lm

thickness between the bubble and free surfaces, and FENG et al. [26] proposed two

e�ective spring constants to represent a compound water-oil-air interface.

MANICA et al. [25] proposed a model including interface and bubble deforma-

tions, �lm drainage, and a force balance for the bubble incorporating buoyancy,

drag, added mass e�ect, and interfacial restitution forces. It takes into account the

behavior of the interface at large radial distances by incorporating its deformation

through a boundary condition. This model achieved excellent agreement with ex-

perimental literature observations for various interfaces in a bubble diameter range

of 0.4 to 1.6 mm.

Although current models for bubble-interface coalescence have signi�cantly ad-

vanced our understanding of the phenomenon, they face limitations as the de�ni-

tion of the initial �lm thickness, the prediction of the number of bounces before

coalescence, and the estimation of critical values of velocity and Weber number for

coalescence, and their applicability to bubbles larger than 2 mm in diameter.

Therefore, in this work, we modeled the bouncing of 4 mm diameter bubbles

at an interface without surfactants using an approximate model for the bubble mo-

tion after its �rst �collision� with the interface. The model has three parameters:

the bouncing frequency, the amplitude decay factor, and the bubble's added mass

coe�cient. The experimental data corresponding to the data set III presented by

FONTALVO et al. [27] was used to estimate the model's parameters, using two dif-

ferent sets of data to determine the model's integration constants. Furthermore, we

analyzed the maximum critical approaching velocity after each bounce to determine

the critical Weber number for coalescence.

This work structure follows. Section 2 details the deduction of the bubble-

bouncing approximate model, the calculation of bubble velocity, and the parameter

estimation. Section 3 presents the numerical procedure. Section 4 discusses the

results, and Section 5 provides our conclusions.

4.2 Bubble's motion model

We considered vertically oriented forces acting on a bubble in contact with a gas-

liquid interface, including drag, gravity, buoyancy, virtual mass, and surface resti-
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tution forces. The resulting equation of motion is [52, 53]:

(ρD + CV ρC)V
dUY

dt
= − (ρD − ρC)V g + FD + FR (4.1)

where the subscripts D and C refer to the disperse and continuous phases, re-

spectively, ρ is the density, V = 4/3πR3 is the bubble's volume, R is the equivalent

bubble's radius, g is the gravity acceleration, Y is the upward-oriented vertical coor-

dinate, UY is the vertical bubble's velocity, FD is the drag force, FR is the restitution

force, and Cv is the added mass coe�cient.

Similar to the modeling of the normal contact force in the soft-sphere model [52],

we used the following linear spring model for the restitution force:

FR = −k(Yc +R− Yint)σ, for Yc +R > Yint (4.2)

where subscripts c and int refer to the bubble's barycenter and gas-liquid interface,

k is the restitution coe�cient, and σ the surface tension.

We assumed the following drag force model [52]:

FD = −6πνCf(Re)
Ac

R
(4.3)

where νc is the dynamic viscosity, f is the drag factor, Re = ρC |UY |2R/νC , is the

Reynolds number, and Ac = πa2, being a is the horizontal semi-axis of a spheroidal

bubble .

Considering that
√
R/g has time units, we de�ned the dimensionless variables:

τ =

√
g

R
t, ξ =

Yc +R− Yint

R
, K =

ρC
ρD

(4.4)

resulting in

UY =
dYc

dt
=
√

Rg
dξ

dτ
,

dUY

dt
=

d2Yc

dt2
= g

d2ξ

dτ 2
(4.5)

where we assumed that Yint is constant. From Eqs. 4.2 and 4.4, the model assumes

ξ ≥ 0 after the �rst bubble-interface collision.

Substituting Eqs. 4.2 and 4.3 into Eq. 4.1 and using the de�nitions of the

dimensionless variables, Eq. 4.4, we derived:

(1 + CVK)
d2ξ

dτ 2
= (K − 1)− 9f(Re)

2Reg
K

a2

R2

dξ

dτ
− k

3

4π

K

Weg
ξ (4.6)

where we also de�ned

Weg =
ρC(gR)R

σ
,

1

Reg
=

νC
ρCR

√
Rg

(4.7)
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Since K >> 1 for a bubble at low pressure, we can write:

d2ξ

dτ 2
+ 2B

dξ

dτ
+ Eξ = C−1

V (4.8)

where

B =
9f(Re)

2CVReg

a2

R2
, E = k

3

2π

1

CVWeg
(4.9)

If we assume that CV , B, and E are constant in the process, we can derive the

analytical solution for Eq. 4.8 (see Appendix 4.A), which reads:

ξ(τ) =
1

CV (J2 +B2)
+ e−Bτ [C1 cos(Jτ) + C2 sin(Jτ)] (4.10)

where J2 = E−B2 > 0 is the oscillation frequency, and C1 and C2 are the integration

constants that can be calculated from experimental data, at τ = 0 or considering

other data at τ > 0.

4.2.1 Set 1 of data as initial conditions (IC1)

We estimated the constants C1 and C2 using initial conditions at the instant of the

�rst �collision�, τ = 0 when bubble velocity dξ/dτ is close to zero. In this case, we

have:

τ = 0, ξ = ξ(0),
dξ

dτ
=

dξ

dτ

∣∣∣∣
τ=0

(4.11)

Using Eq. 4.10, we calculated:

C1 = ξ(0)− 1

CV (J2 +B2)
, C2 =

B

J
C1 +

1

J

dξ

dτ

∣∣∣∣
τ=0

(4.12)

4.2.2 Set 2 of data as initial conditions (IC2)

Alternatively, we can determine C1 and C2 using two experimental values of ξ at

di�erent instants:

τ = 0 , ξ = ξ(0)

τ = τI , ξ = ξ(τI)
(4.13)

where τI is a second instant, in particular, the second maximum.

From Eq. 4.10, we determined:

C1 = ξ(0)− 1

CV (J2 +B2)

C2 =

[(
ξ(τI)−

1

CV (J2 +B2)

)
eBτI − C1 cos(JτI)

]
[sin(JτI)]

−1
(4.14)
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4.2.3 Maximum bubble's velocity between consecutive

bounces

We determined the maximum velocity after n bounces from the model represented

by Eq. 4.10, from which we can obtain:

UY =
√
gR
{
−Be−Bτ [C1 cos(Jτ) + C2 sin(Jτ)]

+e−Bτ [−JC1 sin(Jτ) + JC2 cos(Jτ)]
} (4.15)

The maximum bubble's velocity after n bounces comes from:

UYmax =
√
gR

(
dξ

dτ

)
maxn

, n = 1, ..., Nbounces (4.16)

which were compared to the corresponding experimental values.

We determined the maximum Weber after n bounces as:

Wemax = 2

(
ρU2

Ymax
d

σ

)
=

ρgd2

σ

(
dξ

dτ

)2

max

(4.17)

4.2.4 Initial guesses for the parameters

Due to the periodic behavior of the model given by Eq. 4.10, we needed good initial

guesses for estimating its parameters, which we obtained from selected experimental

data and some assumptions. We used subscript 1 to denote these initial guesses.

The initial guess for CV was always 0.5, which holds for a sphere accelerating in

an in�nitely non-viscous �uid. For calculating B1, we consider the �rst maximum

of ξ at τ1 > 0, where Jτ1 = 2π. Eq. 4.10 gives:

ξ(τ1) =
1

CV1(J
2
1 +B2

1)
+ C1e

−B1τ1 (4.18)

where ξ(τ1) was the experimental point that best represents this maximum. More-

over, we took τ1/2 from the experimental data as the instant that best approximates

the �rst minimum of ξ. Assuming that ξ is also a maximum at τ = 0, we can

estimate:

J1 =
π

τ1/2
(4.19)

Substituting Eq. 4.12, into Eq. 4.18, we have:

ξ(τ1) =
1

CV1(J
2
1 +B2

1)
+

(
ξ(0)− 1

CV1(J
2
1 +B2

1)

)
e−B1τ1 (4.20)
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or

B1 = − 1

τ1
ln


(
ξ(τ1)−

1

CV1(J
2
1 +B2

1)

)
(
ξ(0)− 1

CV1(J
2
1 +B2

1)

)
 (4.21)

Eq. 4.21 is nonlinear for B1, requiring an iterative solution. We use − 1
τ1
ln
(

ξ(τ1)
ξ(τ0)

)
as the �rst guess for B1.

4.3 Numerical Procedure

We performed all calculations in Python using the SciPy (version 1.9.0) libraries.

We used NumPy (version 1.23.1) and Pandas (version 1.4.3) to handle data arrays

and data frames. We employed Matplotlib (version 3.5.2) to generate graphics.

We used the experimental data of air bubbles' position, velocity, coalescence time,

and number of bounces at the air-water interface in the ellipsoidal-wobbling regime

for di�erent bubble approach velocities from a previous work [27]. The experimental

points of the �rst minimum and maximum values of ξ(τ) as well as their values at

the coalescence time, τc, were extracted from the experimental data, using Scipy

library functions to determine the local maxima and minima from the signal.

We �tted the parameters using the Scipy interface to the orthogonal distance

regression (ODR) routine [51], employing the initial guesses described in Section

4.2.4. We solved Eq. 4.21 using the SciPy function fsolve.

We assumed that there is an agreement between the approximate model predic-

tions and the experimental data for the bubble's position and instantaneous velocity

if the following conditions hold:

∆Yc =
|Yc,exp − Yc,model|

u(Yc,exp)
< 1 (4.22)

∆UY =
|UYexp − UYmodel

|
u(UYexp)

< 1 (4.23)

where u(Yc,exp) and u(UYexp) are the experimental uncertainties of the centroid po-

sition and its velocity at the 95% con�dence level.

For both initial conditions, we evaluated the model accuracy by comparing the

arithmetic means and standard deviations of the results of Eqs. 4.22 and 4.23 for

all data points of all experiments.

Except for the estimated model parameters, the uncertainties of derived quanti-

ties were obtained by the propagation of measurement uncertainties. All the com-

bined uncertainties were multiplied for a coverage factor to obtain the error range at
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the 95 % con�dence level. The ODR routine provides the standard deviation of the

model parameters and we calculate their uncertainties at a 95 % con�dence level.

4.4 Results and Discussion

The results below employed the data set III of FONTALVO et al. [27]. The hy-

drodynamic collision criterion (HCC) was chosen to determine the instant of the

bubble-interface �rst contact. Appendix 4.B presents the experimental data points

in terms of the dimensionless variables τ and ξ for runs 36 to 40.

4.4.1 Parameters' Estimation and their Analysis

Table 4.4.1 presents the initial guesses for the parameter estimation, applied for

estimating the model parameters using both initial conditions.

Table 4.4.1: B1 and J1 initial guesses, and CV1 = 0.5.

Run B1 J1

36 0.11 2.1
37 0.15 2.3
38 0.17 2.4
39 0.15 2.3
40 0.11 2.1

Tables 4.4.2 and 4.4.3 show the estimated parameters' values from the solution

obtained using the two sets of initial conditions. For the IC1 model, the arithmetic

mean values of B, CV , and J with their propagated uncertainties at the 95% con�-

dence level are 0.18 ± 0.08, 0.33 ± 0.03, and 2.41 ± 0.07, respectively. The relative

standard deviations are 51.6 %, 9.9 %, and 3.5 %. For the IC2 model, the mean

values of B, CV , and J , with their uncertainties, are 0.24 ± 0.11, 0.32 ± 0.03, and

2.47±0.06, with relative standard deviations of 45.4%, 9.6%, and 2.8%, respectively.

Although the relative standard deviations of J and CV for the model with IC1 and

IC2 are smaller than 10%, the relative deviation for B is much larger, which may

be attributed to its dependence on the drag coe�cient of highly deformed bubbles.

The estimated B and J values for the IC2 model agree within their error margin

for the bubbles with the same number of bounces, which did not occur for the IC1

model results.

The number of bounces can be calculated as:

N calc
bounces =

Jτc
2π

(4.24)
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Table 4.4.2: Parameters estimation for initial condition 1.

Run B CV J Nbounces

36 0.10 ± 0.01 0.357 ± 0.003 2.38 ± 0.01 3
37 0.12 ± 0.04 0.353 ± 0.004 2.34 ± 0.01 1
38 0.33 ± 0.02 0.290 ± 0.003 2.51 ± 0.01 6
39 0.22 ± 0.03 0.296 ± 0.003 2.50 ± 0.01 1
40 0.14 ± 0.02 0.345 ± 0.005 2.34 ± 0.01 3

Table 4.4.3: Parameters estimation for initial condition 2.

Run B CV J Nbounces

36 0.14 ± 0.01 0.358 ± 0.004 2.41 ± 0.01 3
37 0.24 ± 0.01 0.320 ± 0.009 2.49 ± 0.04 1
38 0.42 ± 0.02 0.279 ± 0.006 2.56 ± 0.03 6
39 0.26 ± 0.01 0.299 ± 0.008 2.49 ± 0.04 1
40 0.16 ± 0.01 0.333 ± 0.004 2.39 ± 0.01 3

where τc is the experimental dimensionless coalescence time. The number of bounces

obtained by Eq. 4.24 for runs 36 to 40 are approximately 3, 1, 6, 1, and 3, respec-

tively. These values agree with the experimental number of bubble bounces in each

run.

FONTALVO et al. [27] determined the period of bouncing using the HCC as

T = 38± 1 ms. For each run i, the values of J can be calculated from Eq. 4.4 and

T by

J calc =
2π

T

√
Ri

g
(4.25)

which gives 2.42, 2.42, 2.42, 2,43, and 2,45 for runs 36 to 40, respectively, all with

an uncertainty of 0.06 at a 95% con�dence level. Using IC2, the model predicted all

bouncing frequencies, except for run 38, in agreement with the estimated values of

J within their margins of error. Run 38 showed a slightly higher estimated J value.

In contrast, the J values estimated for the IC1 model agree with those calculated

from Eq. 4.25 for only two runs.

4.4.2 Predicting bubble's vertical position and velocity

Table 4.4.4 presents the percentage of Yc and UY data points that agree using the

criteria given by Eqs. 4.22 and 4.23 using IC1 and IC2 for calculating the model

constants. The arithmetic means of ∆Yc for the IC1 and IC2 models are 81.7 % and

80.8 %, while the corresponding values for ∆UY are 54.5% and 52.4%. The best

predictions are for cases 37 and 39 with the lowest bounce number. The standard

deviations using the IC1 model were 22.7 % and 19.9 % for ∆Yc and ∆UY , respec-
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tively, while the corresponding values for the IC2 model are 22.5 % and 17.9 %.

These results are quite similar.

Table 4.4.4: Percentage of data points satisfying Eqs. 4.22 and 4.23 using IC1 and
IC2 for data set III.

∆Yc,IC1 ∆Yc,IC2 ∆UY,IC1 ∆UY,IC2

Run % % % %

36 93.9 88.6 51.8 57

37 100 100 71.1 65.8

38 70.4 66.8 28.8 27

39 97.3 100 75.7 70.3

40 47 48.7 45.2 41.7

Figures 4.4.1 and 4.4.2 depict a comparison between the model prediction of Yc

and Uy against experimental data using IC2. As shown, the approximated model

reasonably represents the bubble's motion during bouncing until their coalescence

with the interface.
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Figure 4.4.1: Behaviour of Yc against t until bubble coalescence with the interface
for experimental data set III using IC2.
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Figure 4.4.2: Behaviour of Uy against t until bubble coalescence with the interface
for experimental data set III using IC2.

4.4.3 Critical velocity and Weber number for coalescence af-

ter bouncing.

We compared the maximum velocity after each bounce predicted by the model using

IC1 and IC2 with those determined from the experimental data. Table 4.4.5 presents

these results for runs 36 to 40 of data set III, which shows that the predicted UYmax

using IC1 are slightly better than those obtained using IC2. Except for run 38, the
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maximum bubbles' velocities between bounces determined using the experimental

and simulated data indicate that coalescence occurs when the velocity drops below

5 cm/s, which agrees with the critical velocity value estimated by KIRKPATRICK e

LOCKETT [15], and corresponds to a critical Weber number for coalescence below

0.35.

Table 4.4.5: Comparison of UYmax (mm/s) and Wemax between experiments and
model.

Exp. IC1 IC2

Run Bounce UY We UY We UY We

37 1 64.1 ± 3.7 0.53 ± 0.06 67.1 0.58 63.4 0.52

39 1 62.6 ± 1.8 0.51 ± 0.03 61.0 0.48 57.5 0.43

36

1 69.9 ± 2.2 0.63 ± 0.04 81.1 0.84 80.9 0.84

2 61.8 ± 1.4 0.49 ± 0.02 62.8 0.51 56.1 0.40

3 51.1 ± 0.7 0.34 ± 0.01 48.9 0.31 38.8 0.19

40

1 91.7 ± 8.3 1.11 ± 0.20 91.3 1.10 94.3 1.17

2 66.8 ± 1.5 0.59 ± 0.03 62.6 0.52 62.4 0.51

3 54.6 ± 1.1 0.39 ± 0.02 43.0 0.24 41.3 0.22

38

1 44.1 ± 0.9 0.25 ± 0.01 51.8 0.34 47.7 0.29

2 25.0 ± 0.8 0.080 ± 0.005 22.9 0.067 17.1 0.04

3 17.1 ± 0.6 0.038 ± 0.003 10.1 0.013 6.1 0.005

4 10.1 ± 0.3 0.013 ± 0.001 4.4 0.003 2.2 0.001

5 5.3 ± 0.2 0.0037 ± 0.0002 2.0 0.0005 0.8 0.0001

6 2.7 ± 0.2 0.0009 ± 0.0001 0.9 0.0001 0.3 0.00001

4.5 Conclusions

We modeled the bouncing motion of ellipsoidal-wobbling air bubbles at water-air

interfaces without surfactants until coalescence using a simpli�ed model based on

the balance of forces acting after the �rst bubble-interface collision. The model

represented well the bubbles' motion at the interface after their �rst �collision�.

We compared the model results using two sets of data (IC1 and IC2) to de-

termine its integration constants. The centroid position and its velocity predicted

by the model with both sets of initial conditions and �tted parameters agree with
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experiments for over 65% of the data points. The bouncing frequency predicted by

the model agrees with the previous experimental prediction of the bouncing period.

For the analyzed experimental runs, the added mass coe�cient was determined with

a standard deviation lower than 3 %. The IC2 model estimated values for the am-

plitude decay factor and bouncing frequency that agree within their error margins

for bubbles with the same number of bounces.

The maximum bubble's velocity values between bounces determined using the

experimental data and simulated results show that coalescence occurs after the veloc-

ity drops below 5 cm/s, indicating a critical Weber number for coalescence somewhat

below 0.35.
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Nomenclature

Ac projected area

B,E, J model parameters

C1, C2 model constants

CD drag coe�cient

CV added mass coe�cient

a ellipse's semi-major axis

FD drag force

FR restitution force

g gravity

J dimensionless frequency of an oscillation

k sti�ness

K ratio between of the continuous and dispersed phases viscosity

R equivalent radius

T temperature

t time

UYmax maximum instantaneous vertical velocity

UY instantaneous vertical velocity

u standard uncertainty

V volume

Yc vertical position of bubble's barycenter in mm
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Yint vertical interface position in mm

Greek letters

νC continuous phase dynamic viscosity

ρC continuous phase density

ρD dispersed phase density

σ surface tension

τ dimensionless time

τc dimensionless coalescence time

ξ dimensionless vertical bubble position

Abbreviations

Re Reynolds number

We Weber number

Wemax maximum Weber number after n bounces

ODR orthogonal distance regression

Appendix

4.A Deduction of bubble bouncing approximate

model

The solution of Eq. 4.8 is the sum of the solution of the homogeneous equation and

a particular solution.

ξ(τ) = ξh(τ) + ξp(τ) (4.26)

The characteristic polynomial of the ordinary di�erential equation is:

Ξ2 + 2BΞ + E = 0 (4.27)

whose roots are:

Ξ = −B ± i
√
E −B2 (4.28)

for J2 = E −B2 > 0.
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Table 4.B.1: Selected experimental points of data set III in terms of dimensionless
variables.

Exp. 36 37 38 39 40

τ1/2 1.50 ± 0.01 1.37 ± 0.01 1.30 ± 0.01 1.36 ± 0.01 1.48 ± 0.01
τ1 2.80 ± 0.01 2.53 ± 0.01 2.66 ± 0.01 2.45 ± 0.01 2.83 ± 0.01
τc 7.73 ± 0.01 2.53 ± 0.01 15.37 ± 0.02 2.45 ± 0.01 7.69 ± 0.01
ξ(0) 0.78 ± 0.05 0.77 ± 0.07 0.80 ± 0.01 0.79 ± 0.02 0.88 ± 0.02

ξ(τ1/2) 0.23 ± 0.01 0.29 ± 0.02 0.37 ± 0.01 0.34 ± 0.01 0.19 ± 0.01
ξ(τ1) 0.69 ± 0.05 0.65 ± 0.05 0.63 ± 0.03 0.66 ± 0.07 0.76 ± 0.03
ξ(τc) 0.59 ± 0.04 0.65 ± 0.05 0.53 ± 0.02 0.66 ± 0.07 0.64 ± 0.03

Thus, the solution of the homogeneous equation is:

ξh(τ) = e−Bτ [C1 cos(Jτ) + C2 sin(Jτ)] (4.29)

It is easy to show that the particular solution for this case is:

ξp =
1

CVE
=

1

CV (J2 +B2)
(4.30)

4.B Experimental Data

Tables 4.B.1 presents some selected data points from experimental data set III.

These points are used in the numerical procedure to estimate the model constants

and the initial guesses of the model parameters. They are presented in terms of

dimensionless variables de�ned in Eq. 4.4.
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Chapter 5

Conclusions and Suggestions

5.1 Conclusions

In this thesis, we analyzed the coalescence time of ellipsoidal-wobbling air bub-

bles colliding on a surfactant-free �at air-water interface encompassing the Morton,

Eötvös, Weber, and Reynolds dimensionless numbers of 2.9× 10−11, 2 - 3, 1 - 4, and

500 - 1100, respectively. We used high-speed �uid imaging techniques to measure

the bubble's size, velocity, and bounce with the interface.

We present results for the bubble volume, velocity, coalescence time, and number

of bounces at the interface before coalescence. The mean volume and the equivalent

diameter of bubbles were determined with excellent accuracy, giving the hypothesis

of an ellipsoid of revolution from the image processing. The terminal velocity of the

bubbles was close to its literature value for pure air-water systems under standard

conditions, being within ±10 % of this value. Two criteria to establish the time of

the collision were de�ned: the physical criterion, based on the distance between the

top of the bubble and the static interface, and the hydrodynamic criterion, based on

bubble deceleration. The distribution of coalescence time for the bubbles colliding at

terminal velocity was estimated by both collision criteria. A two-parameter gamma

distribution proved to be adequate for representing the coalescence time data for

both criteria.

The coalescence time was well-�tted by linear models as a function of the num-

ber of bounces for both collision criteria. We determined a period of an oscillation

between each bounce using the hydrodynamic collision criterion. The better ad-

justment to a linear model with a zero linear coe�cient makes this criterion more

consistent than the physical one.

Additionally, we modeled the motion of air bubbles bouncing up to coalescence

at water/air interfaces using an approximate model based on the balance of forces

acting on the bubble after the collision. The model represents fairly well the motion
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of bouncing bubbles until coalescence. Additionally, we made a comparative analysis

of the estimated parameters using two set of data to determine the integration

constants of the approximated model. We obtained that the velocity predicted by

the �tted model using both conditions agrees to the experimental data for more

than 60% of the data within their margins of error, including the maximum velocity

after n bounces. The bouncing frequency predicted by the model agrees with the

previous prediction in their margins of error. The critical bubble's velocity between

bounces occurred after this velocity drops below 5 cm/s, when the Weber number

was below 0.35.

These results are a basis for planning new experiments, analyzing the coalescence

of bubbles in stagnant �uids with di�erent properties and/or turbulent �ows.

5.2 Suggestions

An analysis of the current experimental data should focus on contact time i.e. the

duration a bubble remains in contact with the free interface or interaction time.

In addition, enhancements to the experimental setup can be made by using a

syringe pump for bubble injection with continuous operation and remote control via

Wi-Fi [54]. Additionally, a remote data acquisition with assisted processing using

deep learning methods, such as convolutional neural networks, should aim to detect

and process data in real-time, reducing the required hard drive space and increasing

overall data e�ciency.

Improvements in image processing are needed to address errors caused by lighting

changes associated with bubble and interface deformations, which a�ect the image

binarization process. These improvements should include the development of new

�lters and image processing operations.

The experimental operating range should also be expanded by using di�erent �u-

ids, such as water-glycerin mixtures or silicon oils, to analyze the e�ect of changing

�uid properties on oscillation frequency and the number of bounces before coales-

cence, which directly in�uences coalescence time.

Further investigation into the use of additives that promote coalescence could

help reduce coalescence times and increase e�ciency, particularly, in turbulent �ows

where coalescence does not occur.
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Appendix A

Supplementary Material 1

This supplementary material presents the �uid properties, the analysis of image mo-

ments and ellipses, and the experimental data in the following three sections. The

�rst section presents the data and models for calculating properties such as density,

viscosity, and surface tension of �uids in function of temperature. The second sec-

tion shows a complete analysis of image moments and interpretation with ellipses.

Finally, the third section presents the data on bubble characteristics, dimensionless

numbers, and coalescence times of experimental data sets I, II, and III.

A.1 Fluid Properties

This section presents the results of properties such as density, viscosity, and surface

tension of the phases as a function of temperature. The measurements were cor-

related with models of 1 or 2 parameters that can predict the �uid properties in a

temperature range of 20 - 30 °C.

A.1.1 Density

The density of water was previously measured over a temperature range of 20 � 30

°C presented in Table A.1.1.

The experimental data follows a linear and inversely proportional trend with

the range of temperature variation as observed in Figure A.1.1. The standard mean

value and standard deviation of the mean properties and the coe�cients of the linear

regression calculated by Orthogonal Distance Regression [51] are presented in the

�gure.

The calculation of continuous phase density and their uncertainty in kg/m3 in

a range of 292 to 300 K of temperature with a 95% con�dence interval can be
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Table A.1.1: Continuous phase density as a function of temperature, whose uncer-
tainty is u(T ) = 0.01 K.

T [K] ρ [kg/m3] u(ρ) [kg/m3]

293.15 997.86 5.89× 10−4

295.15 997.27 3.46× 10−2

297.15 996.82 2.08× 10−2

298.15 996.56 4.60× 10−4

299.15 996.19 2.08× 10−2

301.15 995.63 2.65× 10−2

303.15 995.04 1.99× 10−4

u95( )
0 -2.815E-01 1.666E-02
1 1.080E+03 4.969E+00

290 292 294 296 298 300 302 304
T [K]

993

994

995

996

997

998

999

1000

C
 [k

g/
m

3 ]

Regression
Experimental data

Figure A.1.1: Density as a function of temperature
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Table A.1.2: Continuous phase viscosity as a function of temperature. Temperature
and viscosity uncertainties are 0.01 K and 0.001 mPa s, respectively.

T [K] ν [mPa s]

292.09 1.070
292.62 1.050
293.15 1.040
293.66 1.030
294.17 1.010
294.68 1.000
295.18 0.987
295.69 0.974
296.18 0.963
296.68 0.951
297.18 0.940
297.69 0.929
298.19 0.919
298.69 0.909
299.19 0.897
299.69 0.887
300.19 0.875

calculated with the following functions:

ρC = β0T + β1 (A.1)

where

u(ρC) =
√

β2
0u

2(T ) + T 2u2(β0) + u2(β1) (A.2)

being T the temperature in Kelvin and u(T ) the temperature uncertainty at which

the property was measured.

The density of the air used as the dispersed phase is calculated at sea level by

the psychrometric chart and its standard relative uncertainty by the uncertainties of

mean temperature and mean relative humidity at which the property was measured.

A.1.2 Viscosity

The water viscosity was also previously measured over a 20 - 30 °C temperature

range as presented in Table A.1.1.

The calculation of the viscosity and its uncertainty in mPa s for a 95% con�-

dence interval was approximated to an inverse linear model as seen in Figure A.1.2

represented by the following equations:

νC =
1

β0T + β1

(A.3)
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u95( )
0 2.531E-02 3.863E-04
1 -6.458E+00 1.144E-01

288 290 292 294 296 298 300 302 304
T [K]

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

C
 [m

Pa
 s

]

Regression
Experimental data

Figure A.1.2: Viscosity as a function of temperature

u(νC) = ν2
C

√
β2
0u

2(T ) + T 2u2(β0) + u2(β1) (A.4)

where T is the temperature in Kelvin and u(T ) their uncertainty.

A.1.3 Surface Tension

Furthermore, the surface tension of water has also been previously measured over a

temperature range of 20 � 30°C presented in Table A.1.3.

The surface tension calculation and its uncertainty in [mN/m] for a 95% con�-

dence interval were approximated to an inverse linear model as seen in Figure A.1.3

represented by the following equations:

σ = β0
298

T
(A.5)

u(σ) = σ

√(
1

T

)2

u2(T ) +

(
1

β0

)2

u2(β0) (A.6)

The β0 and β1 of Eqs. A.1 - A.6 and their uncertainties were calculated by ODR.

The values of the parameters are presented in Table A.1.4.
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Table A.1.3: Surface tension as a function of temperature

T [K] u(T ) [K] σ [mN/m] u(σ) [mN/m]

292.78 0.02 65.772 3.41× 10−2

293.73 0.01 66.158 2.22× 10−2

294.21 0.01 65.692 2.25× 10−2

294.69 0.02 65.687 2.01× 10−2

295.2 0.01 65.289 2.69× 10−2

295.67 0.01 65.421 1.91× 10−2

296.17 0.01 65.056 2.24× 10−2

297.13 0.03 64.955 2.86× 10−2

297.61 0.02 64.845 1.67× 10−2

298.1 0.01 65.03 2.82× 10−2

299.56 0.05 64.386 2.19× 10−2

300.16 0.01 64.063 2.65× 10−2

u95( )
0 6.483E+01 1.176E-01
1 - -

290 292 294 296 298 300 302
T [K]

60

62

64

66

68

70

72

 [m
N

/m
]

Regression
Experimental data

Figure A.1.3: Surface tension as a function of temperature

Table A.1.4: Regression coe�cients.

ρC νC σ

β0 -0.28 ± 0.02 0.0253 ± 0.0004 64.8 ± 0.1
β1 1080 ± 5 -6.5 ± 0.1 -
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A.2 Analysis of Image Moments and Interpretation

with Ellipses

A.2.1 Deduction of the image moments

For a bivariate and binarized distribution, I(x, y) de�ned as:

I(x, y) =

{
1, if(x, y) ∈ D
0, if(x, y) /∈ D

(A.7)

The moment mij is calculated as:

mij =

∫ ∞

−∞

∫ ∞

−∞
xiyjI(x, y)dxdy =

∫∫
D
xiyjdxdy (A.8)

The moments can be calculated based on images formed by pixels, where I

represents the pixel intensity of the binary image, and Eq. A.8 becomes:

mij =
∑
x,y∈D

xiyj∆x∆y =

Nb∑
k=1

xi
ky

j
k∆xk∆yk (A.9)

where (xk, yk) is the center of the pixel k in D. Using pixel units, ∆xk = ∆yk =

∆ = 1 px.

The coordinates of the centroids (xc, yc) are the mean values of x and y given

by:

xc =
m10

m00

=
1

Nb

Nb∑
k=1

xk ; yc =
m01

m00

=
1

Nb

Nb∑
k=1

yk (A.10)

The central moments for the same distribution are de�ned as:

µij =

∫ ∞

−∞

∫ ∞

−∞
(x− xc)

i(y − yc)
jI(x, y) dx dy =

∫∫
D
(x− xc)

i(y − yc)
j dx dy (A.11)

In discrete terms, we have:

µij =
∑
x,y∈D

(x− xc)
i(y − yc)

j∆x∆y =

Nb∑
k=1

(xk − xc)
i(yk − yc)

j (A.12)

The �rst central moments in terms of the ordinary moments are µ00 = m00,

µ10 = m10 − m10

m00
m00 = 0, and µ01 = m01 − m01

m00
m00 = 0.

The covariance matrix of the central moments has the form:

Σ =

[
µ20 µ11

µ11 µ02

]
(A.13)
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Figure A.2.1: Change of reference (rotation) and representation of an ellipse on a
pixel map

which is symmetric and can be diagonalized by an orthogonal matrix constructed

with the eigenvectors of the eigenvalue problem: Σr = λr, or (Σ−λI)r = 0, leading

to a quadratic solution:

|Σ− λI| =

∣∣∣∣∣ µ20 µ11

µ11 µ02

∣∣∣∣∣− λ

∣∣∣∣∣ 1 0

0 1

∣∣∣∣∣ =
∣∣∣∣∣ µ20 − λ µ11

µ11 µ02 − λ

∣∣∣∣∣ (A.14)

|Σ− λI| = λ2 − (µ20 − µ02)λ+ µ20µ02 − µ2
11 = 0 (A.15)

The solution of Eq. A.15 gives the eigenvalues:

λ1,2 =
µ20 + µ02

2
±
√
4µ2

11 + (µ20 − µ02)2

2
, λ1 > λ2 (A.16)

The eigenvectors ri satisfying Σri = λri, with |ri| = 1, determine r1 and r2, and

Q = [r1 r2], such that QTΣQ =

[
λ1 0

0 λ2

]
, then Σr = λr, and QTΣQ·QT r = λQT r,

or Σ′r′ = λr′. Since QT = Q−1 (orthogonal), then Σ = (QΣ′QT ).

Rotation

In Figure A.2.1, an ellipse is represented on a pixel map of dimensions Nx, Ny, along

with a change of reference obtained by a rotation around the center at the bubble.

The vectors r and r′ have respectively distinct coordinates in the (xy) system

and the (x′y′) system, which diverges from the initial system by an angle (θ), such

that:

r =

[
x

y

]T
r′ =

[
x′

y′

]T
(A.17)
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The relation between r and r′ is given by:

r = Qr′ (A.18)

where the rotation matrix Q for rotating a column vector r in Cartesian coordinates

about the origin to obtain r′ is:

Q =

[
cos θ − sin θ

sin θ cos θ

]
(A.19)

From the �gure, we have x′ = x cos θ + y sin θ and y′ = −x sin θ + y cos θ, or

equivalently x = x′ cos θ − y′ sin θ and y = x′ sin θ + y′ cos θ.

Therefore, the rotated central moments are de�ned as:

µ
′

20 = µ20 cos
2 θ + 2µ11 sin θ cos θ + µ02 sin

2 θ (A.20)

µ
′

02 = µ20 sin
2 θ − 2µ11 sin θ cos θ + µ02 cos

2 θ (A.21)

µ
′

11 = −µ20 sin θ cos θ − µ11(sin
2 θ − cos2 θ) + µ11 cos θ + µ02 sin θ cos θ (A.22)

To obtain a diagonal covariance matrix, we need to satisfy the following condi-

tion:

µ
′

11 = −µ20 sin θ cos θ + µ11(cos
2 θ − sin2 θ + µ11 cos θ + µ02 sin θ cos θ = 0 (A.23)

Isolating θ and substituting (1 − sin2 θ) = cos2 θ, and sin θ cos θ = 1
2
sin 2θ, we

have:

µ11(θ − sin2 θ) = sin θ cos θ(µ20 − µ02) = µ11 cos 2θ =
sin 2θ

2
(µ20 − µ02) (A.24)

Rearranging the above equation, we get:

2µ11

µ20 − µ02

=
sin 2θ

cos 2θ
= tan 2θ (A.25)

Therefore, θ can be expressed as:

θ =
1

2
arctan

[
2µ11

µ20 − µ02

]
(A.26)

Thus, the orientation was calculated in terms of the central moments µ20, µ02,

and µ11.
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From equation A.23, we also obtain:

cos2 2θ =

(
µ20 − µ02

2µ11

)2

sin2 2θ =

(
µ20 − µ02

2µ11

)2

(1− cos2 2θ) (A.27)

Simplifying, we have:

cos2 2θ

[
1 +

(
µ20 − µ02

2µ11

)2
]
=

(
µ20 − µ02

2µ11

)2

(A.28)

Taking the square root on both sides, we get:

cos 2θ

[
1 +

(
µ20 − µ02

2µ11

)2
]1/2

=
µ20 − µ02

2µ11

(A.29)

or
cos 2θ

2(µ20 − µ02)
=

1

4µ11

[
4µ2

11 + (µ20 − µ02)
2

4µ2
11

]−1/2

(A.30)

Rearranging, we get:

cos 2θ

2(µ20 − µ02)
=

1

2

[
(µ20 − µ02)

2 + 4µ2
11

]−1/2
(A.31)

The above equation will be important later in estimating the eigenvalues.

The de�nition of λ1 and λ2 is obtained from the second-order central moments

as follows:

µ
′

20 = µ20 cos
2 θ + 2µ11 sin θ cos θ + µ02 sin

2 θ (A.32)

By making the following substitutions: sin 2θ = 2 sin θ cos θ, sin2 θ = 1 − cos2 θ,

cos θ = 1+cos 2θ
2

, sin θ = 1−cos 2θ
2

, and sin 2θ = tan 2θ · cos 2θ we obtain:

µ
′

20 = µ20

(
1 + cos 2θ

2

)
+ µ11 (sin 2θ) + µ02

(
1− cos 2θ

2

)
(A.33)

=
µ20 + µ02

2
+ cos 2θ

(
µ20 − µ02

2

)
+ µ11 sin 2θ (A.34)

=
µ20 + µ02

2
+

cos 2θ

2
(µ20 − µ02 + 2µ11 tan 2θ) (A.35)

=
µ20 + µ02

2
+

cos 2θ

2(µ20 − µ02)

[
(µ20 − µ02)

2 + 4µ2
11

]
(A.36)

Substituting Eq. A.31 into Eq. A.36, we get:

µ
′

20 =
µ20 + µ02

2
+

1

2

[
(µ20 − µ02)

2 + 4µ2
11

]−1/2 [
(µ20 − µ02)

2 + 4µ2
11

]
(A.37)
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=
µ20 + µ02

2
+

1

2

[
(µ20 − µ02)

2 + 4µ2
11

]1/2
= λ1 (A.38)

Hence, the formula derived from the rotation µ
′
20 is in the same form as λ1.

Therefore, λ1 is the rotated central moment µ
′
02 by an angle θ.

Similarly, we can get:

µ
′

02 =
µ20 + µ02

2
− 1

2

[
(µ20 − µ02)

2 + 4µ2
11

]1/2
= λ2 (A.39)

Therefore, Eqs. A.38 and A.39 provide the de�nitions of λ1 and λ2 in terms of

the second-order central moments µ20, µ02, and µ11.

A.2.2 Representation of the ellipse.

The equation of the ellipse in Figure A.2.1 is given by Eq. A.40:

x′2

a2
+

y′2

b2
= 1 (A.40)

where a is the horizontal semi-axis and b is the vertical semi-axis. Thus,

y′ = ±b

√
1− x′2

a2
(A.41)

x′ = ±a

√
1− y′2

b2
(A.42)

Given that, all interior points of the ellipse have I = 1 and all exterior points

have I = 0, it follows that:

µ
′

20 =

∫∫
D
(x′ − x′

c)
2
dx′dy′ (A.43)

λ1 = µ
′

20 = 4

∫ a

0

(x′ − x′
c)

2

b
√

1− (x′ − x′
c)

2

a2

 dx′ (A.44)

Substituting

u =
x′ − x′

c

a
, du =

1

a
dx′, (x′ − x′

c)
2 = a2u2, (A.45)

we �nd that λ1 is equal to:

λ1 = µ
′

20 = 4a3b (A.46)
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Similarly, for λ2, we have

λ2 = µ
′

02 = 4

∫ b

0

(y′ − y′c)
2

[
a

√
1− (y′ − y′c)

2

b2

]
d (y′ − y′c) (A.47)

and substituting

v =
y′ − y′c

b
, dv =

1

b
dy′, (y′ − y′c)

2 = b2v2, (A.48)

we �nd that

λ2 = µ
′

02 = 4ab3 (A.49)

Hence, by the ratio of the eigenvalues, we can calculate the semi-axes:

λ3
1

λ2

=
(π
4

)3 a9b3

π
4
ab3

=
(π
4

)2
a8 (A.50)

a =

[
16

π2

λ3
1

λ2

] 1
8

(A.51)

λ3
2

λ1

=
(π
4

)3 a3b9

π
4
a3b

=
(π
4

)2
b8 (A.52)

b =

[
16

π2

λ3
2

λ1

] 1
8

(A.53)

Another de�nitions based on the centered moments are the aspect ratio (ε) be-

tween the semi-axes:

ε =
a

b
=

[
16
π2

λ3
1

λ2

] 1
8

[
16
π2

λ3
2

λ1

] 1
8

=
λ4
1

λ4
2

=
λ1

λ2

(A.54)

and the eccentricity:

ϵ =

√
1−

(
b

a

)2

(A.55)

A.3 Experimental Data

A.3.1 Bubble Characteristics

Tables A.3.1, A.3.2, and A.3.3 present the results of the bubble's projected area,

volume, equivalent diameter, and the mean ascension velocity of experimental data

sets I, II, and III, respectively.

87



Table A.3.1: Bubble characteristics of experimental data set I.

Run A [mm2] V [mm3] de [mm] Uy [mm/s]

1 10.4 ± 0.3 40.3 ± 0.2 4.25 ± 0.01 246 ± 6

2 12.9 ± 0.2 40.8 ± 0.2 4.27 ± 0.01 245 ± 3

3 12.1 ± 0.2 40.7 ± 0.6 4.27 ± 0.02 260 ± 4

4 12.2 ± 0.2 41.5 ± 0.7 4.30 ± 0.02 257 ± 3

5 10.5 ± 0.3 40.9 ± 0.7 4.27 ± 0.03 244 ± 5

6 12.9 ± 0.1 40.1 ± 0.2 4.25 ± 0.01 236 ± 2

7 12.4 ± 0.1 40.2 ± 0.4 4.25 ± 0.01 256 ± 3

8 10.6 ± 0.3 41.3 ± 0.7 4.29 ± 0.02 243 ± 4

9 13.0 ± 0.2 40.7 ± 0.1 4.27 ± 0.01 235 ± 2

10 12.6 ± 0.1 39.0 ± 0.1 4.21 ± 0.01 236 ± 2

11 10.0 ± 0.2 37.9 ± 0.4 4.17 ± 0.02 253 ± 6

12 10.0 ± 0.2 37.5 ± 0.4 4.15 ± 0.01 252 ± 6

13 11.9 ± 0.2 41.7 ± 0.8 4.30 ± 0.03 259 ± 5

14 10.6 ± 0.2 40.0 ± 0.4 4.24 ± 0.01 249 ± 5

15 11.5 ± 0.1 40.7 ± 0.8 4.27 ± 0.03 259 ± 4

16 12.8 ± 0.1 40.5 ± 0.2 4.26 ± 0.01 239 ± 3

17 12.5 ± 0.1 38.7 ± 0.1 4.20 ± 0.01 239 ± 2

18 13.0 ± 0.1 41.5 ± 0.2 4.29 ± 0.01 249 ± 3

19 12.7 ± 0.1 40.4 ± 0.2 4.26 ± 0.01 253 ± 3

20 12.9 ± 0.1 40.5 ± 0.2 4.26 ± 0.01 242 ± 3

21 12.5 ± 0.1 39.0 ± 0.1 4.21 ± 0.01 239 ± 2

22 10.3 ± 0.3 40.6 ± 0.4 4.26 ± 0.01 247 ± 5

23 11.8 ± 0.1 40.1 ± 0.5 4.25 ± 0.02 261 ± 4

24 12.7 ± 0.2 40.2 ± 0.2 4.25 ± 0.01 249 ± 3

25 10.3 ± 0.3 40.6 ± 0.4 4.26 ± 0.01 247 ± 5

26 12.4 ± 0.1 40.2 ± 0.4 4.25 ± 0.01 256 ± 4

27 13.0 ± 0.2 40.7 ± 0.1 4.27 ± 0.01 235 ± 2

28 10.1 ± 0.2 39.2 ± 0.3 4.21 ± 0.01 250 ± 6

29 10.6 ± 0.2 41.8 ± 0.1 4.31 ± 0.01 245 ± 4

30 12.5 ± 0.1 38.5 ± 0.2 4.19 ± 0.01 238 ± 2

A.3.2 Dimensionless Numbers and Coalescence Time

Tables A.3.4, A.3.5, and A.3.6 present the relevant dimensionless numbers as Eötvös,

Weber, and Reynolds, as well as the coalescence time using both collision criteria,
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Table A.3.2: Bubble characteristics of experimental data set II.

Run A [mm2] V [mm3] de [mm] Uy [mm/s]

31 12.6 ± 0.1 39.78 ± 0.04 4.24 ± 0.01 242 ± 2
32 12.7 ± 0.1 40.39 ± 0.04 4.26 ± 0.01 242 ± 2
33 12.7 ± 0.1 40.38 ± 0.04 4.26 ± 0.01 242 ± 2
34 12.5 ± 0.1 39.12 ± 0.04 4.21 ± 0.02 242 ± 2
35 12.9 ± 0.1 41.2 ± 0.2 4.29 ± 0.05 241 ± 2

Table A.3.3: Bubble characteristics of experimental data set III.

Run A [mm2] V [mm3] de [mm] Uy [mm/s]

36 12.7 ± 0.4 38.6 ± 0.3 4.24 ± 0.01 147 ± 3
37 12.7 ± 0.4 38.7 ± 0.4 4.26 ± 0.01 142 ± 4
38 12.5 ± 0.4 39.0 ± 0.5 4.26 ± 0.02 139 ± 5
39 12.6 ± 0.7 39.7 ± 0.9 4.21 ± 0.03 129 ± 4
40 12.7 ± 0.5 41.9 ± 0.4 4.29 ± 0.01 152 ± 2

of the experimental data set I, II, and III, respectively.

Table A.3.4: Dimensionless numbers and coalescence time of experimental data set
I. The coalescence time uncertainty is 2 ms.

Run Eo We Red × 10−3 t
(∗)
c [ms] t

(∗∗)
c [ms]

1 1.97 ± 0.05 3.36 ± 0.16 0.938 ± 0.03 694 680

2 2.47 ± 0.04 3.73 ± 0.09 1.047 ± 0.02 610 588

3 2.32 ± 0.04 4.08 ± 0.13 1.076 ± 0.02 968 948

4 2.34 ± 0.04 4.00 ± 0.10 1.069 ± 0.02 898 878

5 1.99 ± 0.06 3.31 ± 0.14 0.935 ± 0.02 360 346

6 2.47 ± 0.03 3.47 ± 0.07 1.009 ± 0.01 1356 1330

7 2.37 ± 0.03 3.99 ± 0.11 1.071 ± 0.02 774 752

8 2.03 ± 0.06 3.34 ± 0.13 0.943 ± 0.02 220 204

9 2.48 ± 0.03 3.44 ± 0.06 1.006 ± 0.01 1268 1242

10 2.41 ± 0.03 3.42 ± 0.07 0.996 ± 0.01 636 608

11 1.92 ± 0.04 3.50 ± 0.16 0.952 ± 0.02 412 398

12 1.92 ± 0.04 3.49 ± 0.16 0.951 ± 0.02 392 376

13 2.27 ± 0.04 3.98 ± 0.16 1.058 ± 0.02 506 488

14 2.03 ± 0.04 3.50 ± 0.15 0.966 ± 0.02 366 350

15 2.20 ± 0.03 3.93 ± 0.13 1.043 ± 0.02 476 460

16 2.46 ± 0.03 3.55 ± 0.08 1.020 ± 0.01 204 176

17 2.39 ± 0.03 3.49 ± 0.07 1.004 ± 0.01 694 666

18 2.49 ± 0.03 3.87 ± 0.09 1.068 ± 0.02 486 458
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19 2.43 ± 0.03 3.95 ± 0.11 1.073 ± 0.02 462 434

20 2.46 ± 0.03 3.65 ± 0.09 1034 ± 0.02 94 64

21 2.40 ± 0.03 3.48 ± 0.07 1.004 ± 0.01 530 500

22 1.96 ± 0.05 3.37 ± 0.15 0.939 ± 0.02 430 416

23 2.25 ± 0.02 4.03 ± 0.12 1.062 ± 0.02 304 288

24 2.43 ± 0.03 3.82 ± 0.10 1.054 ± 0.02 330 304

25 1.96 ± 0.05 3.37 ± 0.15 0.939 ± 0.02 432 418

26 2.37 ± 0.03 3.99 ± 0.11 1.071 ± 0.02 610 588

27 2.48 ± 0.03 3.44 ± 0.06 1.006 ± 0.01 1270 1240

28 1.93 ± 0.05 3.44 ± 0.17 0.945 ± 0.03 638 624

29 2.03 ± 0.05 3.39 ± 0.12 0.951 ± 0.02 726 712

30 2.39 ± 0.03 3.46 ± 0.06 1.000 ± 0.01 776 746
(∗) PCC (∗∗) HCC

Table A.3.5: Dimensionless numbers and coalescence time of experimental data set
II. The coalescence time uncertainty is 1 ms.

Run Eo We Red × 10−3 t
(∗)
c [ms] t

(∗∗)
c [ms]

31 2.40 ± 0.02 3.58 ± 0.06 1.002 ± 0.01 1548 1521
32 2.43 ± 0.03 3.61 ± 0.06 1.009 ± 0.01 765 748
33 2.42 ± 0.02 3.60 ± 0.06 1.008 ± 0.01 1132 1105
34 2.38 ± 0.02 3.57 ± 0.06 0.998 ± 0.01 1464 1448
35 2.46 ± 0.03 3.59 ± 0.06 1.010 ± 0.01 980 952
(∗) PCC (∗∗) HCC
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Table A.3.6: Dimensionless numbers and coalescence time of experimental data set
III. The coalescence time uncertainty is 1 ms.

Run Eo We Red × 10−3 t
(∗)
c [ms] t

(∗∗)
c [ms]

36 2.41 ± 0.08 1.33 ± 0.05 0.611 ± 0.02 133 113
37 2.41 ± 0.08 1.23 ± 0.07 0.588 ± 0.02 59 37
38 2.39 ± 0.08 1.19 ± 0.09 0.576 ± 0.02 248 225
39 2.41 ± 0.13 1.02 ± 0.07 0.536 ± 0.02 61 36
40 2.43 ± 0.10 1.43 ± 0.05 0.636 ± 0.02 135 114
(∗) PCC (∗∗) HCC
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