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Nos reservatorios brasileiros do pré-sal sao produzidas grandes quantidades
de o6leo leve contendo altos teores de CO, em altas pressoes, caracterizando
um desafio na sua modelagem termodinamica a partir de equacoes de estado
(EdEs) convencionais. Para realizar predi¢oes mais acuradas nessa regido, hd uma
necessidade frequente de se efetuar o procedimento de estimagao de parametros.
Portanto, neste trabalho foi desenvolvida uma ferramenta computacional que
executa, de forma confiavel, essa estimacao de parametros, com interface interativa
e amigavel ao usudrio, permitindo a criacao de gréaficos de avaliacao paramétrica
e da funcao objetivo em cada ponto da otimizagao. Foram sistematizadas novas
metodologias para a estimacao de parametros utilizando esta ferramenta: uma
utilizando simultaneamente dados de equilibrio liquido-vapor e liquido-liquido e
outra utilizando dados de teor de agua no ponto de orvalho. Utilizando a EdE
Cubic-Plus-Association (CPA), essas metodologias foram devidamente validadas
com dados de literatura. Foram obtidos novos parametros da CPA para a agua,
que levam em conta o valor experimental da energia de ligacoes de hidrogénio, e
para a sua mistura bindria com COs, cujo desvio médio absoluto relativo ao teor
de dgua a pressoes acima de 200 bar baixou de 27.3% para 3.3% em comparacao
com publicagdes anteriores. Por fim, esse estudo foi aplicado em uma unidade
de processamento de gas natural, modelada com os parametros encontrados neste
trabalho.
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Brazilian pre-salt reservoirs represent the discovery of large amounts of light
oil, but at high pressures and containing high levels of CO,, being a challenge in
its thermodynamic modelling by conventional equations of state (EoS). In order
to perform more accurate predictions, it is necessary to execute the procedure of
parameter estimation. Therefore, in this work a computational tool was developed
that reliably carries out this parameter estimation with interactive and user-friendly
interface, allowing the creation of charts containing parametric and objective
function evaluations in each point of the optimization. New methodologies for
parameter estimation were systematized utilizing this tool: the first one by applying
simultaneously vapour-liquid and liquid-liquid equilibria and the other handling
water content in dew point condition. Utilizing the EoS Cubic-Plus-Association
(CPA), these methodologies were properly validated with literature data. New CPA
parameters for water, which take into account the experimental value of its hydrogen
bonds energy, and for its mixture with CO5 were obtained, whose average absolute
deviation in the water content at pressures higher than 200 bar fell from 23.7% to
3.3% compared to previous publications. Finally, this study has been applied into

a natural gas process unit, modelled with the parameters found here.
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Chapter 1

Introduction

1.1 Motivation

Petroleum is one of the most abundant natural resource in the world. Its refinery
products can fuel factories, industries, vehicles, as well as be raw material to develop
polymers such as plastic and rubber. It can also provide electric energy from the
coal burning.

For this reason, the discovery of large amounts of petroleum under a thick salt
layer in ultra-deep waters around Santos Basin, Brazil, is among the most important
in the world over the last decade. These so called pre-salt reservoirs contain high
quality light oil (over 25° API), with high commercial value.

However, it also involves a high gas-oil rate, high CO, content, high pressure (up
to 1000 bar) and low temperature conditions (BELTRAO et all [2009). Therefore,
it is necessary to develop specific technologies adapted to this challenging scenario
in order to make this exploration feasible (SANTOS, 2015)).

Firstly, a common issue in oil and gas exploring is the possibility of hydrate
formation, capable to clog entire oil lines. Figure [1.1| shows an example of its
potential damage. In order to prevent that, a typical course of action is to add
thermodynamic inhibitors (e.g. methanol) directly to the reservoir fluid. However,
it is an expensive procedure due to the solvent loss, and used only as a last
resource (LUNDSTROM| 2005). These inhibitors change the chemical potential
of the phases, causing an increase of the hydrate formation pressure (or decreasing

its temperature).
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Figure 1.1: An example of a clogged line due to the hydrate formation. Image taken

from [TECPETRO

An alternative to methanol are glycols such as ethylene glycol (MEG). They
have the upside of being less volatile, avoiding inhibitor losses with its recovery.
However, when recovering the glycol aqueous solution, there is the possibility of
BTEX compounds (benzene, toluene, ethyl-benzene and xylenes) to be dragged
along the water removed. These components are extremely dangerous to health, and
most legislations around the world fix a tight limit for their emissions, in the order
of 1 ppm in water. Thus, it is essential to thermodynamically model precisely the
hydrate equilibria in the presence of inhibitors and the phase equilibria with water
to design or optimize the transport means, processing and production of natural
gas (HAGHIGHI| 2009).

When designing or simulating equipments it is important to calculate correctly

the thermodynamic properties of the fluids and solids involved.  However,
experimental data are not always available, so it is desirable to hold a model
that has a high degree of data prediction or extrapolation. Some of the preferably
used models in the oil and gas industry are the cubic equations of state, such as
Soave-Redlich-Kwong - SRK (SOAVE], and Peng-Robinson - PR
'ROBINSON| |1976)), both based on the van der Waals’ equation (VAN DER WAALS,
1873)). They are relatively simple models, and the parameters for a vast quantity of

compounds have been already determined in the literature.

However, these equations generate better predictions for non-polar substances.
In the natural gas processing, some of the most central compounds are either highly
polar (water, alcohols, glycols) or have the possibility to form induced hydrogen

bonds (HsS, COq, aromatic compounds). In this scenario, an improved model may
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be necessary to perform proper calculations.

Thermodynamic properties of these substances are determined by intermolecular
forces (PRAUSNITZ et al. (1999), particularly the hydrogen bonds. Numerous
equations of state (EoS) have been proposed along the years, in order to predict
these effects. Most of them belong to one of these theories: chemical, lattice
or perturbation. One of the most important EoS proposed is derived from the
Statistical Association Fluid Theory - SAFT (CHAPMAN et al) 1988). Several
variants of this EoS were proposed later.

From one of these wvariants, the Cubic Plus Association -
CPA (KONTOGEORGIS et al, 1996) was modelled, simpler but as efficient
as the former for aqueous systems. It can be considered as an alternative to predict
the behaviour of polar mixtures and uncomplicated enough to be implemented for
modelling complex industrial systems.

One particularity of these equations is that they must have their parameters
estimated from experimental data. However, KONTOGEORGIS et al| (2006a)
stated that, due to the complexity of non-cubic EoS, there are known issues in
this procedure such as multiple solution sets or correlations between the manipulated
parameters. Therefore, this procedure tends to be complicated and time-consuming.

Because of that, this work proposes the development and validation of a
computational tool to perform this procedure. The main idea is to offer a
user-friendly interface, a wide variety of options and analyses, with the possibility to
export the results to another application such as Excel. Besides, it will be possible

to generate charts such as:

e The behaviour of each manipulated parameter versus the respective objective

function in the search space of a stochastic method;

e The correlation effect between each pair of parameters in this same search

space;

e General phase equilibria results (deviations, equilibrium diagrams etc).

Because this is a visual, fast and applicable tool, it was included the cubic EoS
(SRK and PR) together with the CPA. Besides, it allows the user to flexibilize the
cubic EoS parameters instead of using the ones calculated by critical properties and
acentric factor, potentially improving their results. In the Oil and Gas industry, the

simplest approach is always the best, as long as it is effective.



1.2 Objectives

In view of what has been exposed, the general objective of this dissertation is to
develop, validate and provide a thermodynamic parameter estimation tool, with a
user-friendly interface, and apply it to a natural gas processing plant simulation.

As for specific objectives, the following stand out:

e To develop a computational program for parameter estimation from

experimental data;

e To study metrics, numerical methods and optimization strategies for each

parameter estimation case;

e To re-estimate pure components’ parameters using the CPA equation of
state (KONTOGEORGIS et al. [1996) using systematic and fast procedures,
after validating the program outputs with experimental data available in the

literature for pure components and mixtures;

e To perform a parameter estimation of binary systems using data from mixtures
containing water and light gases. Validation is to be performed from
temperature, pressure and humidity of published data on multicomponent

acid gases;

e To simulate an industrial natural gas processing unit applying all previous

optimized parameters, comparing to commercial process simulators outputs.

1.3 Organization of the Text

In order to achieve the aforementioned objectives, this text is divided by chapters
referent to each relevant stage of the development of this dissertation.

In Chapter 2 a natural gas dehydration process unit with glycols is presented,
pointing out the importance of the right thermodynamic modelling. Besides, in this
chapter a bibliographic review of the main equations of state is presented, from cubic
equations to association models, arriving to the CPA equation of state. Thereon,
the main parameter estimation procedures published in the literature are stated.

In Chapter 3 the mathematical modelling behind the parameter estimation
applied to thermodynamics is detailed, along with the algorithms used in the
program. It starts from the thermodynamic functions, then describes the
optimization methods used in the calculations and finally presents the parameter

estimation metrics and procedures.



Chapter 4 summarizes most of the main functions of the program proposed in
this work, the ThermOptimizer. It details not only each interface component that
is already designed, but also the features it offers.

In Chapter 5 some of the possible results achieved with the ThermOptimizer
are presented. Among them, there is a performance analysis of the program; a
penalization analysis related to the critical point behaviour of water using the
SRK EoS; pure parameter estimation for polar components with the CPA EoS,
validating the results with liquid-liquid equilibria data; a CPA EoS binary parameter
estimation using the metrics described in Chapter 3; and a dehydration plant
analysis, comparing the optimized results with commercial simulators.

Finally, in Chapter 6 the relevant conclusions are presented, as well as suggestions

to future works.



Chapter 2

Bibliographic Review

2.1 Natural Gas Processing

In the natural gas processing, it is necessary to adequate the product to
commercial specifications, removing some compounds that would otherwise decrease
its sale value, or damage downstream equipments and lines. For example,
these impurities can be water, liquid heavy hydrocarbon fractions (Cg;) or acid
gases (LUNDSTROM, 2005)).

The following is a set of specific compounds and what damage they would cause
if not removed from the natural gas (SANTOS, [2015):

Hydrogen sulphate — toxic and corrosive;

Carbon dioxide — corrosive and can crystallize in low temperature processes;

Water — hydrate formation and corrosion;

Heavy hydrocarbons — can condensate or form solids in transport lines.

Besides, the environmental legislation about atmospheric emissions are
increasingly tighter around the world, especially for benzene, toluene, ethyl-benzene
and xylenes (BTEX compounds). The health risk of exposure to these substances
in the downstream is extensively described and evaluated by authors such
as [EDOKPOLO et al,| (2015). Therefore, they must be extracted from the stream.

As there are several processes to purify the natural gas, this work will focus on
the dehydration processes. There are different approaches for them (BRASIL et al.,
2011):

e Absorption by a liquid solvent such as glycols;

e Adsorption by a solid such as silica gel, alumina or a molecular sieve;



e Permeation by polymeric membranes.

For instance, in Brazilian platforms the most common process is the glycol

absorption.

2.1.1 Absorption Process in Dehydration

This process consists of inserting a substance capable to selectively solubilize
water from the gas stream (BRASIL et al., |2011). The choice of this solvent is

usually for economic reasons, such as:

e Ease of regeneration, normally related to the non-volatility of the solvent;
e Potential loss to evaporation;

e Solvent cost.

Although alcohols like methanol and ethanol have high affinity with water,
compounds of the glycol family (e.g. MEG — mono-ethylene glycol — or TEG
— tri-ethylene glycol) are used more often because their vapour pressure is lower,
facilitating the regeneration and avoiding evaporation losses.

Figure[2.1]shows an outline of this process. The main equipment is the absorption
tower. The gas (already without heavy hydrocarbons) flows in counter-current with
the regenerated TEG (or 'poor TEG’). The TEG solution, when it flows out of
the bottom of the tower, changes into a rich TEG’ solution, is heated and flows
into a three-phase separator to remove any hydrocarbons from the gas that may
have been solubilized. The TEG solution feeds the regenerator, being vaporized
at a temperature close to its degradation temperature. Consequently, the water
content of this solution is reduced when cooled back, becoming the 'poor TEG’ in
the bottom of the regenerator. After that it is further cooled and returns to the

absorption tower.
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Figure 2.1: A simplified flowchart of a TEG dehydration plant, adapted
from BRASIL et al.| (2011)

2.1.2 BTEX Issues in Dehydration

In the separation stage just before the regeneration, utmost care must be taken
because the BTEX compounds are some of the possible liquid hydrocarbons to be
separated. If this stage is not done properly, some of these poisonous substances
may leave the regenerator dragged with the water vapour. Thus, the solubility of
aromatic components in solutions with water and glycols are of great academic and
industrial interest (FOLAS et al., [2006a)).

Even though there is only partial solubility of BTEX compounds in aqueous
glycol solutions, most legislations specify roughly 1 ppm as the maximum limit
of these components in water, lower than the solubility in the conditions of the
regenerator. Therefore, the thermodynamic modelling of these complex mixtures
must be robust enough to predict how to avoid this limit. These phenomena are often
better modelled by equations of state, which will be described in the Section

However, it is important to mention that different commercial process simulators
diverge greatly (often by orders of magnitude) when simulating streams containing
benzene. Therefore, one of the focus of this work, which will be detailed later,
is to perform a solid evaluation of these compounds and utilize an advanced
thermodynamic model that can take into account the association effects between

benzene and water and between benzene and glycols.



2.2 Equations of State

2.2.1 Overview

In the Oil and Gas industry, thermodynamic models based on equations of state

are widely used, especially those of cubic format on the molar volume, for the
following reasons (KONTOGEORGIS and FOLAS| 2010):

e Suitable to be used in a wide range of pressure and temperature;
e Simple models with fast calculation and easy convergence;
e Can predict liquid and vapour properties;

e Most of cases there is no necessity to use more than one binary interaction

parameter (k;;);

e Good VLE prediction for multicomponent mixtures containing hydrocarbons

and non-polar compounds;
e Extensive data bank and correlations available for the k;; values.

Thus, cubic equations present a middle ground between applicability and
simplicity, being the simplest equations capable to represent the vapour-liquid
equilibrium behaviour (SMITH et al., 2005]).

The first famous cubic equation of state was proposed by VAN DER WAALS
(1873), as can be seen in Equation (2.1):

RT a
Vb V2
P is the pressure of the system, T its temperature, V' the molar volume and

R = 0.0831446 bar.L/mol.K the universal gas constant. This equation has two

parameters: a, related to the attraction energy between the molecules, and b, which

pP= (2.1)

is the co-volume of the component. After his contribution, countless cubic equations

of state were published, usually by the format described by Equation ([2.2)):

RT a(T)
V—b (V+eb)(V +ob)

where the parameters ¢ and ¢ depend on the equation, and a and b can be

pP= (2.2)

evaluated by an adjustment in the critical region. It is based on the fact that the

critical isotherm shows a horizontal inflection, resulting on the condition dictated

by Equation ({2.3):
oP (&P
OV ) plpy  \OVZ);

9

=0 (2.3)
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Solving Equations ([2.2)) and ({2.3)) for a and b in the critical point, Equations (12.4))
and ([2.5)) are formed:

R*T? a(Tr,w)R*T?
oT.) == = yome)R T, P) (2.4)
RT,
b= (2.5)

The parameters @ and 2 also depend on the equation. 7T, is the critical
temperature of the component, P, its critical pressure, «(Tg,w) an auxiliary
function which must be equal to 1 in the critical point, with Tr = T/T. being
the reduced temperature and w the Pitzer acentric factor (PITZER] 1995), defined
by Equation ({2.6)):

w=—1.0—log (P5") . _o7 (2.6)

Pt = P /P, is the reduced saturation pressure of the component. These
equations of state are implicit to volume, which means that they must be solved
either analytically or numerically. Let ¢ and B be defined by Equations ([2.7)

and (2.8):

a
-4 9.
4= mr (2.7)
bP
B =— 2.8
RT (28)
Rearranging Equation (2.2)), Equations ([2.9)) and (2.10) are formed:
F(Z)=24+[le+c—-1)B—11Z*+[¢B — (e + 0 —e0)B* — (e + 0)B]Z (2.9)
—€eoBX(B+1)—qB*=0 '
PV
4= — 2.10

The compressibility factor Z is then calculated by solving Equation . Note
that there can be found three different roots of Z: the lowest is a liquid phase type
root; the highest is a vapour phase type root; and the intermediary does not have
any physical meaning.

For mixtures, the most common approach is the classic mixing rules (VAN DER!

WAALS, [1873). In a compound with n components, it is possible to evaluate

parameters a and b of mixture, according to Equations (2.11)) and (2.12)):

10



n n

a = Z Zl’il’j((liaj)()ﬁ(l — k?”) (211)

i=1 j=1

b= b (2.12)
=1

x; is the composition of the component ¢ in the mixture, and the parameter k;;
is called the binary interaction parameter, and it is calculated usually by estimation
from experimental data. Besides, it is common to introduce a temperature

dependent expression for this parameter (Equation (2.13)):

k’i]‘ — kij,O —|- kij,lT (213)

In order to improve the accuracy of these EoS when modelling polar mixtures,
it is also possible to apply more advanced mixing rules, based on activity coefficient
expressions such as Wilson, UNIQUAC or NRTL (PRAUSNITZ et al| (1999).
However, in this project the classical mixing rules will be focused. Therefore, a
suggestion for future works will be to insert one or more of these advanced rules into
the parameter estimation procedures, analysing their effectiveness.

Finally, as stated earlier, the parameters €, o, ¥ and ) change to each equation
of state, with two of the most notable being the Soave-Redlich-Kwong (SOAVE]
1972)) and the Peng-Robinson (PENG and ROBINSON| 1976) equations of state.

2.2.2 The Soave-Redlich-Kwong (SRK) EoS

The SRK equation of state is defined when ¢ = 0 and ¢ = 1, forming
Equation ([2.14)):

RT a(T)
V—b V(V+b)

The parameter a is a function of T, given by Equations (2.15)) and (2.16)):

P =

(2.14)

a(T) = apa(Tg,w) = ag[l +m(1 — Tg>))? (2.15)
m = 0.480 + 1.57w — 0.176w? (2.16)

ap and b can then be defined by Equations (2.4) and (2.5)), using ¢ = 0.42748
and 2 = 0.08664.
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2.2.3 The Peng-Robinson (PR) EoS

For the PR equation of state, € = 1—v/2 and 0 = 14++/2, forming Equation ([2.17)):
RT a(T)

V—b V(V+0b)+0bV —0)

The parameter a is calculated by the same Equation (2.15)) as SRK, but with a

different expression for m, described in Equation ([2.18]):

P =

(2.17)

m = 0.37464 + 1.54226w — 0.26992w° (2.18)

ap and b can also be defined by Equations (2.4)) and (2.5)), but using ¢ = 0.45724
and 2 = 0.07780.

2.2.4 Modifications for Polar Components

Despite all aforementioned advantages of cubic equations of state, they still have
some downsides, especially when modelling polar compounds, such as water.

Therefore, various authors have proposed modifications for them, attempting to
improve the results on modelling mixtures with polar compounds, principally in the
a function of their attractive term (VALDERRAMA| 2003). Some notable functions

studied are:

Mathias-Copeman Modification (MATHIAS and COPEMAN), 1983
These authors expanded the original a function, adding two more terms in it,
forming Equation ([2.19)):
a(Tr,c) = [+ e1(1 —TH%) + co(1 — TR?)? + cs(1 — Th)*? (2.19)

The parameters ¢;, ¢3 and c3 are specific for each component. One disadvantage
of this function is that, although the results indeed improved for polar compounds,
the insertion of two more empirical parameters causes a super-parametrization of

the model: it needs more experimental data to become reliable.

Kabadi-Danner Modification (KABADI and DANNER),, 1985)

This modification is exclusively applied to water in the SRK equation of state,
and it is defined by Equation (12.20)):

a(Tg,c1) = [1+ (1 = TH®))? (2.20)
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The value of ¢; = 0.662 is originally used for water. For all other substances,

Equation ([2.15]) applies.

Peng Modification (PENG et al., 1985

This modification is also exclusively applied to water, but used only in the PR
equation of state, according to Equation (2.21)):

[1.0085677 + ¢1 (1 — T%5)]2, T9 < 0.85

2.21
1+ m(1 —T9%%))2 , T95 > 0.85 (2.21)

Oé(TR, Cl) = {
The value of ¢; = 0.8215 is used for water, only when T%° < 0.85. For all other
substances, the second expression of Equation (2.21]) applies, with m calculated by

Equation ({2.18]).

Extension to Parameter Estimation

For parameter estimation purposes, detailed in Chapter [3, it is preferable to
flexibilize all EoS specific parameters, when applicable: ag, b, ¢, ¢o and cs.

Therefore, Equations , , and , as well as the definitions
of ¢; in this Section, will be suppressed in these procedures. However, in order to
compare the optimized results with the literature parameters, these equations were
also implemented. Hereafter, when the parameters are defined by these equations
they will be called the original parameters of each equation of state or a function.

In the specific case of the Peng Modification to the « function, there is a
discontinuity when 7% = 0.85. In order to prevent that in the parameter estimation
procedure, the parameter ¢, is recalculated through the temperature range according
to Equation ([2.22)):

, 1.0085677 — 1
a=a 1- 085

where ¢, is the parameter ¢, value calculated when 75 > 0.85. No publication

(2.22)

in the literature with such implementation was found.

2.2.5 Association Theories

Standard cubic equations do not have a term that takes into account explicitly
chemical association and, because of that, their efficacy when modelling complex
mixtures is limited (AVLUND et al., [2011). In this context, it can be necessary to
modify them more deeply, from theoretic expressions rather than empirical. With
this background, the association theories became extensively studied.

Association theories can be assigned to three great subjects (SANTOS| 2015):
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e Chemical theories, based on the formation of new species. The extension of

association is defined by the number of oligomers formed;

e Lattice (quasi-chemical) theories, based on the formation of connections
between segments of different molecules that occupy adjacent sites of the
lattice. In this case, the extension of association is defined by the number

of connections;

e Perturbation theories, based on statistical mechanics. The extension of the

association is defined by the number of sites bonded per molecule.

When these theories are described in an equation of state, for instance, new
terms appear in the compressibility factor as contributions. Usually, in chemical
and lattice theories, these contributions are not completely separable (SANTOS,
2010), but, in perturbation theories, these terms are explicit and additive. Models
that follow these theories are called Association Models: with them, it is possible
to predict phase equilibrium of mixtures containing polar compounds or any other
capable to form hydrogen bonds.

Compounds that form complex mixtures to be studied in this work, such as water
and glycols, are called self-associating components because they are capable to form
hydrogen bonds. The formation of these bonds between two of the same molecule is
called self-association, such as pure water, while between two different molecules this
bond is called cross-association, such as water-ethanol mixture (SANTOS| 2015]).

Although these theories have different origins, it is worth mentioning that
various authors (ECONOMOU and DONOHUE, 1991; HENDRIKS et al., 1997;
MICHELSEN and HENDRIKS, [2001) concluded independently that there are
mathematical similarities between them for the contribution of hydrogen bonds.

One of the most popular model based on association theories is the SAFT
equation of state (Statistical Associating Fluid Theory). This model was first
idealized by WERTHEIM| (1984a.bl, 1986alb) when he presented a perturbation
theory that took explicitly into account hydrogen bonds. Then, CHAPMAN et al.
(1989, 11990) presented this theory in the form of an equation of state, named SAFT.
Its main feature is the consideration of the effects as additive terms of free energy.

Thus, these models based on perturbation theory are usually written as a

summation of terms of the Helmholtz function (A), as shown in Equation ([2.23):

F

A

-5 =F Foegm + Fenain + Fassoc 2.23

oT d + Fsegm + Fchain + ( )
The total dimensionless free energy F' is then obtained from the contributions of

the reference fluid (ideal gas, Fi4), attraction forces (Fieym ), chain formation (Fipain)

and association (Fyss.) free energies.
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The SAFT equation of state is referred by numerous authors as the Original
SAFT, because there have been countless modifications to this model throughout the
years. They differed basically in the reference fluid, the radial distribution function
and the dispersion term used. The chain formation and association contributions
are all similar to the Original SAFT (AVLUND) [2011)).

2.2.6 The Cubic-Plus-Association (CPA) EoS

The downside of the SAFT family equations is their complexity and difficulty to
converge reliably. Thus, it is convenient to develop an equation that could be simple
enough to be applied to engineering processes.

Based on these concepts, KONTOGEORGIS et al| (1996) proposed the
Cubic-Plus-Association (CPA) equation of state.  According to the authors,
it was developed to model complex mixtures with a mathematically simpler
approach. They wrote the Helmholtz function as a summation of two contributions
(Equation ([2.24))):

= thys + Flssoc (224)

In this expression, the term [, is the contribution made by a cubic equation
of state, and Fj.. is a SAFT related association term. These authors chose the
SRK equation of state to represent the physical contribution. Applying this to
Equation and deriving it, Equation is formed (KONTOGEORGIS
et al., (1996)):

P =

RT T 1 RT
a(T) (1+p

B B dlng
V—b V(V+b) 2V dp

)inZ(l —X4) (2.25)

with p = 1/V being the molar density of the mixture, X4, the molar fraction
of type ¢ molecules unbounded to type A sites and x; the molar fraction of the

component 7. X4, can be calculated using Equation (2.26]):

X4 = !
A; B
1+p> jxj§ BjAAzBJ

where B represents a type of bonding site different to A, and j represents the

(2.26)

index of a molecule that may or may not be different to the molecule i. A48 is
the association strength between the type A site in molecule i and the type B site
in molecule j, described by Equation ([2.27)):

AP = g(V)rel |exp =
RT

— 1} bi; 3P (2.27)

15



e4iBi and P4 are called, respectively, the association energy and the
association volume parameter; b;; = (b; + b;)/2 is the mean value of co-volumes
of molecules i and j; and g(V)"/ = g is the radial distribution function, defined by
the Equation (KONTOGEORGIS et al., |1999):

1 _bp

- 2.2
1-197 17 34 (2:28)

9

It is important to mention that if 4% = 348 = ( (i.e. there is no association
effect in the compound) then the CPA EoS automatically reduces to the SRK
EoS (KONTOGEORGIS and FOLAS| [2010)).

The physical energy parameter a(7") is calculated similarly to Equation,

adapted to Equation ([2.29):

a(T) = ag[l + ¢ (1 — TH5)]? (2.29)

On the other hand, other authors such as LI and FIROOZABADI (2009)) have
preferred to use the Peng-Robinson equation of state for the cubic term of the CPA,

forming the Equation (2.30) instead of Equation ([2.25)):

P =

V—b V(V+b+b(V-b 2V

RT a(T) 1 RT <1+p8gr;g) ;xi;<1_XAi)
Z (2.30)

In this work KONTOGEORGIS et al.| (1996) model will be used for calculations
because of the extensive literature available to validate the program (DERAWI
et all [2003; FOLAS et al, 2006a; SANTOS et al., 2015a; [ YAKOUMIS et al., |1998).
Besides, KONTOGEORGIS et al| (2006ajb) made a throughout revision of the
advances of the CPA (SRK based) equation of state in its ten first years of the
original publication, contributing with even more data to this work. Therefore, the
implementation of the Equation is not in the scope of this dissertation. A
suggestion for future works would be the implementation of this equation of state.

Therefore, when applied to parameter estimation procedures, there are five
parameters to be manipulated in the CPA equation of state: three of them in the
physical term (ag, b and ¢;) and two in the association term (e4¢% and p4i5).

For binary mixtures, the classical mixing rules in Equations ,
and apply for the physical part of this EoS.

Besides, there can be a combination between two potential associating
compounds (e.g. water and TEG), resulting on a cross-association mixture. Thus,

AiBj

the parameters and 345 from the association term need combining rules (CR)

rather than mixing rules.

According to KONTOGEORGIS and FOLAS (2010), various CRs were
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suggested over the years, but only two of them kept generating promising and
satisfactory results: CR-1 rule (Equations (2.31) and (2.32))) and the Elliott’s
Combining Rule (ECR, Equation ([2.33)):

By - 7 2.31
s : @31

BB _ | /BB BAE; (2.32)

AN /AABANE (2.33)

Besides, the CPA equation of state can also be used in mixtures with a
self-associative component and an ’'inert’ component, but with the possibility of an
induced cross-association between them. This is called solvating effect (SANTOS|
2015). In this case, a modified CR-1 rule is used, successfully applied to mixtures
with water or glycols and aromatic or olefinic hydrocarbons (FOLAS et al., 2006a).

AiBj can still

In this case, 84% must be estimated from experimental data and e
be calculated from Equation , considering ¢4/% = 0 (i.e. non self-associating
component).

For parameter estimation purposes, another possibility is to further modify the

4iBi and 4P from experimental data,

CR-1 rule, estimating both the parameters
as well as k;jo and k;;; from Equation (2.13)), if convenient. Some results of this
approach will be discussed in Chapter

In this work, the cubic equations of state were fully programmed by this
author. However, for the CPA it was decided to link the core of the program to a
pre-programmed Dynamic Link Library (or 'dll’, for short), developed by the Center
for Energy Resources Engineering (CERE), from Denmark Technical University
(DTU). The reason for this choice is that it is a well matured code, where all the
main thermodynamic properties are available as output, including stability analysis
for liquid-liquid equilibria, allowing this work to focus directly on its applications.

Moreover, this equation is more complex than pure cubic equations of state,
demanding more computational effort, and MICHELSEN (MICHELSEN| [2006;
MICHELSEN and HENDRIKS, 2001) proposed numerous modifications to its
solution methods and to the radial distribution function ¢ in order to make it faster
to converge and thus applicable to engineering processes.

On the other side, outer thermodynamic calculations such as saturation pressure,
liquid-liquid flash and water content in dew point conditions, as well as optimization
methods, metric assembly and the interface objects, were also fully programmed by
this author.
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2.3 Parameter Estimation

In general, models are useful tools to describe physical processes. For practical
purposes, a process designer will choose the model that can better predict the system
over one that contemplates the most phenomena involved. Therefore, a simple model
with well-estimated parameters can be superior to a sophisticated model with poorly
estimated parameters (ALBERTON; [2010)).

Thus, parameter estimation can be defined as an optimization procedure
where a model is used as a reference and the parameters are modified until the
values obtained by this model become as near as possible to the experimental
data (SCHWAAB and PINTO, 2007). In order to assure the attainment of
the best parameters, the objective function and optimization methods must be
chosen carefully. As a minimization method, all estimation procedures must follow
Equation ([2.34)):

min S(X), subject to h(X) =0 (2.34)

The vector X is composed of the parameters to be manipulated, the restrictions
h(X) in this work are defined by the thermodynamic model and the objective
function S(X) is described in Equation ([2.35)):

S(X) =¥ -Y)V Y -Y") (2.35)

Considering that experimental measures of variable Y are not correlated, the
matrix V. becomes diagonal (ALBERTON, [2010)), and Equation (2.35) takes the

form of Equation (2.36)):

o~ | L e — vk’
S(X)=> [— > —] (2.36)
Ne < O

n. is the number of experiments and n, is the number of calculated variables; the
superscript e means 'experimental” and * means 'calculated’; and o; , is the variance
of the experimental variable.

Experimental data can be scarce and often there is no replica to them, so variance
values can be unavailable or unreliable; in these cases, o, is commonly equalled to
the experimental point yf, itself for thermodynamic purposes (KONTOGEORGIS
et al., 2006a; SANTOS, 2015). The main advantage of this practice is that the
term becomes dimensionless. Also, when estimating pure components’ parameters,
it takes into account that measure errors are higher in regions of high pressure.
This assumption agrees with reality, even if not with the same proportions. For

instance, there are only a few equipments available to take precise measures at higher
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pressures. On the other hand, it is possible to apply statistical analysis techniques
to construct a critical evaluation to this approach and verify which simplifications
derive from it, since the development of a fast computational tool can allow advances
in this study that is non-usual in literature.

When applied to the CPA EoS pure parameter estimation, there are a wide
variety of possible solutions. That is, different parameters sets resulted in
similar deviations from experimental data (usually, saturation pressures and liquid
densities). Nevertheless, KONTOGEORGIS et al| (2006a)) stated that the usual
variables alone are not enough to properly predict the thermodynamic properties.
For instance, when applied to mixtures with liquid-liquid equilibrium (LLE),
frequently the solution set of this optimization failed to predict the experimental
data (DERAWTI et al. [2003)). Therefore, in order to select the best parameters, they
used LLE experimental data to ’guide’ the optimal solution.

Originally, they did not recommend inserting LLE terms directly to the
Equation ([2.36)), using the compositions of each phase as variables, but instead
testing 'good’ sets of parameters (i.e. with low deviations of pure saturation pressure
and liquid density/volume) in some mixtures with LLE (for example, water +
n-hexane, or MEG + n-heptane) until a general solution is found.

Besides, SANTOS et al| (2015c) suggested that a combination of objective
functions of the VLE variables and LLE variables could be useful to facilitate this
selection, weighted by a user defined variable. Chapter |3 explains in details a slight
variation of this analysis applied to this work.

For binary parameters, they are usually estimated by bubble pressure or
composition in LLE, as in [FOLAS et al| (2006a)). Also, in Chapter [3| all these

procedures will be detailed.
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Chapter 3

Mathematical Modelling

3.1 Thermodynamic Equilibrium Calculations

Equilibrium properties are essential in chemical process studies and designs, thus
most commercial process simulators provide various thermodynamic models to be
selected by the user.

In order to foresee thermodynamic properties, the phase equilibrium fundamental

equation must be solved, which is the fugacity equality, described by Equation (3.1):

fe=f=f=.i=12-,n (3.1)
where n is the number of components and «, 3, 7,..., are the phases in

equilibrium.
Alternatively, fugacity can be written in the form of its coefficient, according to
Equation ((3.2)):
5
f=tf-t
fi yi P

where f? is a fugacity of a component i in the ideal gas mixture, equal to the

(3.2)

partial pressure, where y; is its molar fraction and P the system pressure.

Fugacity coefficients can be calculated from volumetric data or from an equation
of state, which are often expressed as functions of P(T,V) (Equation (3.3)) or
V(T, P) (Equation (3.4)) (PRAUSNITZ et al., (1999).

~ f; 1 /opP T
RTWng; = RTIn - :/ 0 BT v Rz (3.3)
sz v (9nz TV V
VT
RTIng¢; = RTIn h —/P v, - 50N ap (3.4)
T /sz_ o 7 P .
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R is the universal gas constant, V' the molar volume, V; the partial volume of
the component ¢ and Z is the compressibility factor, given by Equation ([2.10)).

Using the equations of state described in Chapter [2| it is possible to evaluate
Equations and , and consequently all other properties can be calculated.

In this work, the main thermodynamic properties evaluated were saturation
pressure, compositions in liquid-liquid equilibrium (LLE) and water content in dew

point conditions.

3.1.1 Saturation, Bubble and Dew Pressures

Saturation pressure is defined here as the pressure of the system in vapour-liquid
equilibrium (VLE). When modelling mixtures, it may be called bubble pressure,
when the main phase is liquid (vapour is incipient), or dew pressure, when the
vapour phase prevails (liquid is incipient).

These calculations were implemented in a similar fashion as in Petrobras’s
Petrox® Process Simulator (NIEDERBERGER et all, 2009), based on a secant
method for converging composition and pressure simultaneously. The initial
estimative Py derives from Wilson’s expression (Equation (3.5))):

Py = Pooxp [5.373@ +1) (1 - ;)} (3.5)

where P. is the critical pressure, T, the critical temperature and w the acentric
factor.

For pure components, this algorithm becomes slightly different, as there is no
necessity of an inner loop for composition. Therefore, it can be solved by a successive

substitution method, briefly described as follows:

1. Initialization:

(a) Read the component’s properties and parameters, the EoS model,
temperature 7', maximum number of iterations ¢,,,, and the tolerance

€.
(b) IF Fy is not known THEN calculate it from Equation ({3.5]).
(c) Make P = Py, iter =0, flag = 0.

2. Loop:

(a) iter = iter + 1.
(b) Calculate ¢r (T, P) and ¢y (7, P) from Equation (3.4) applied to pure

components.

(¢) Keg = dr/dv; errp = |1 — K.
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(d) Keq X Pl-
(e) IF \er?"p\ > € and iter < imyq, THEN return to Step |2
(f) IF |errp| < e THEN flag = 1. Exit Loop.

)

(g) IF iter > ipmae THEN flag = —1. Exit Loop.
3. Solution:

(a) IF flag =1 (i.e. convergence achieved) THEN RETURN P.
ELSE it did not converge. RETURN —1.

In order to illustrate this calculation, Table presents a numerical example of
a pure component saturation pressure calculation. It is important to note that the

value of P; in its first row was previously calculated from Equation (3.5)).

Table 3.1: Numerical example for a pure water saturation pressure calculation (7, =
647.13 K, P. = 220.55 bar, w = 0.3449), at 7" = 350 K and using the CPA equation
of state parameters published by KONTOGEORGIS et al| (1999). Convergence
tolerance = 1074,

iter Koy = ¢r/dv errp Py [bar] P [bar]

1 0.8658 1.342e-1  0.4929  0.4268
2 0.9971 2.884e-3  0.4268  0.4256
3 0.9999 5.375e-5 0.4256 0.4255

3.1.2 Liquid-liquid Equilibrium (LLE)

For this calculation, a liquid-liquid flash was solved using the Rachford-Rice
Equation (PRAUSNITZ et al.,1999). Firstly, it is important to check the necessary

variables to calculate the compositions at each phase and the respective degree of

freedom (Equation ({3.6)).

F=C—P+2 (3.6)

In the LLE calculations performed in this work, there are two components (C' =
2) and two phases in equilibrium (P = 2). Therefore, Equation shows that
only two specified variables are needed to solve the LLE calculations (F' = 2), for
instance the temperature and pressure. That is, the compositions of each liquid

phase are independent of the feed global composition, as shown in Equations ([3.7))

and (3.8)):

Ky—1

T12) =
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 Ky(1 - Ky)

To(1) = Ko _ K, (3.8)

where z;;) stands for the composition of ¢ in phase rich in component j. In a

mixture water (1) with n-hexane (2), for example, x1(2) is the composition of water

in organic phase. Besides, K; = g/gi(z) / ai(l) is the liquid-liquid equilibrium constant,

function of T', P and @, ).

When calculating equilibrium in mixtures, it is important to avoid ’false

solutions’, in which K; ~ 1.0 V components. They are called trivial solutions and

they are a sign that the calculations did not converge. In all calculations containing

mixtures implemented in this work, an absolute tolerance of 0.01 was defined to

check if the system is in a trivial solution, summarized by Equation (3.9).

IF |K; — 1.0| < 0.01Vi=1,--- ,n, THEN solution is trivial. (3.9)

Therefore, the algorithm implemented in this work can be summed up as follows:

1.

2.

3.

Initialization:

(a) Read the components’ properties and parameters, the EoS model, the
temperature 1", pressure P, initial guesses for the compositions ;) o,

maximum number of iterations %,,,, and the tolerance e.
(b) Initialize K; =1, errg = 1, iter = 0 and flag = 0.
Loop:
(a) iter = iter + 1, K; yq = K; for i = 1,2.
(b) Calculate z;(;) from Equations (3.7)) and (3.8]).
(c) Calculate cgi(j) (T, P, x;(j)) for i = 1,2 from Equation (3.4).
(d) K; = i/ i) for i = 1,2
(e) IF iter > 1 THEN make errg = - W
(f) IF errg > € and iter < ijq THEN return to Step [2al
(g) IF |errk| < e THEN flag = 1. Exit Loop.
(h) IF dter > iy4, THEN flag = —1. Exit Loop.
Solution:

(a) Check for trivial solution (Equation (3.9)). IF trivial THEN make flag =
—2. RETURN empty array.
ELSE IF flag = 1 (i.e. convergence achieved) THEN RETURN the
compositions ;.

ELSE it did not converge. RETURN empty array.
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Table presents a numerical example of a LLE calculation for the binary

mixture water + n-hexane.

Table 3.2: Numerical example for a LLE calculation for the mixture water +
n-hexane, at T' = 333.15K and CPA equation of state parameters modelled in the
literature for water (KONTOGEORGIS et al.,{1999) and n-hexane (TSIVINTZELIS
et al 2011), with k;; = 0. Convergence tolerance = 107*. The initial guesses to
the compositions are related to the respective experimental data informed in the
program interface.

iter K K, K oia K5 014 T1(2) Ta(1) ErTK

0 1.0000 1.0000 - - 1.800e-3  4.500e-6  1.000e0
1 507.103  5.218e-6 1.0000 1.0000 1.972e-3  5.207e-6  1.916e5
2 503.951  5.218e-6  507.103  5.218e-6  1.984e-3  5.208e-6  6.255¢-3
3 503.726  5.218e-6  503.951  5.218e-6  1.985e-3  5.208e-6  4.467e-4
4 503.710 5.218e-6 503.726 5.218e-6 1.985e-3 5.208e-6 3.176e-5

3.1.3 Water Content of a Specified Gas

This calculation returns the water content of a known gas in order to allow
the system to be in the dew point at a specified temperature and pressure, based
on SHIGUEMATSU| (2014), calculated according to Equation (3.10)):

YH20 = YH20 (T, P, QDGJ?CLTCWL) (3.10)

where T is the system temperature, P the system pressure and y D stands for
the dry gas composition. Also, param stands for all EoS parameters related to the
system (from either pure components and each pair), including the manipulated
variables in the optimization. These variables are fixed throughout the algorithm.

This is an implicit calculation, solved by a numerical method, originally being
the bisection due to its sturdiness (SHIGUEMATSU| 2014). However, in this work,
this method was improved to a combination of bisection and secant mathematical
methods in order to accelerate it.

The function fy.,,, the objective function of this method, is calculated from the

vapour-liquid equilibrium of the system (Equation (3.11)).

fdew (nH20) - zxz -1 (311)
=1

where ngoo is the mole quantity of water in the gas in the current iteration
(manipulated variable in the numerical method) and z; the mole fraction of each of

the n. components in the liquid phase in equilibrium. FEvery time this function
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is evaluated, two other variables are calculated in its output: err, defined by
Equation (3.12)), and a boolean ¢rv, which informs whether the current system is or
not in trivial solution (Equation ({3.9)).

err = (3.12)

where y; is the molar fraction of the vapour in equilibrium with the liquid with
molar composition x;.

The algorithm implemented for calculating f,.,, is described as follows:
1. Initialization:

(a) Read the components’ properties and parameters, the EoS model, n 0,
T, Py Do 88 well as the maximum number of iterations 4,,,, and the

tolerance e.
(b) For i =1---n. IF i # igso THEN y; = ype.i/(1 + nm20).
(€) Yigso = nu20/(1 + nm20).
(d) Calculate K; = P /P, with P by Equation (3.5).
(e) Calculate z; = y;/K; for i = 1---n, and normalize x.
(f)

f) Make iter =0, S, =1, err, = 1.

2. Loop:

(a) iter = iter +1; S, = 0.

(b) Calculate QZLJ(T, P,x) and &S\V’i(T, Py) for ¢« = 1---n. from
Equation ((3.4]).

(c) Calculate K; = ngﬁLl/g/ng fori=1---ne.

(d) Calculate z; = y;/K;, Sy = Sz +x; fori =1---n,.

() Spo = Sz1, Sz1 = Sy, erry = |Sz1 — Sio|. Normalize x.
(f) IF err, > € and iter < impq, THEN return to Step
(g) IF |err,| < e THEN flag = 1. Exit Loop.

(h) IF dter > iyq4, THEN flag = —1. Exit Loop.

3. Solution:

(a) IF flag = —1 THEN make err = 0; F' = 1; trv = true.
ELSE Check for trivial solution (Equation (3.9))). IF trivial then trv =

true and make err = F' = 0;

ELSE trv = false, err = \/> i<, (yi — 2:)%, F = Sy — 1.
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(b) RETURN |[F err tru).

Also, as in the work of SHIGUEMATSU (2014), it was decided to convert the
variable ngso to another basis, in order to keep its limits between 0 and 1, as

presented in Equation (3.13]).

§ = exp(—nm20) (3.13)

This variable is originally limited in the interval [0,1]. Nevertheless, trivial
solutions in this calculation mean that the current water content is too low (that
is, the respective value of £ is too high). Therefore, whenever a trivial solution is
achieved in a f4.,, evaluation, the current value of £ substitutes the upper limit of

this variable, &,,4., as in Equation ([3.14]):

gmax = Min (gtriviah 5maat,old) (314)

As previously mentioned, in this work the numerical method related to this
calculation was implemented as a hybridization of bisection and secant methods.

These methods are described in the following algorithms:
e Bisection Step (B.S.), from known values of &; and &,:

1. Make ny = —In(&) and evaluate [Fy,erry,trvi] = fiew (n1) if these

variables were not already obtained in previous iterations.
2. IF trvy = false THEN

(a) IFF1>OandF2<00rF1<OandF2>OTHENd§:§2—£1.
ELSE d¢ = & — &.

(b) &v =& +0.5d¢.
ELSE & is already too high. Make &y = 0.5¢;.
3. ny = —In(&y).

4. Evaluate [Fy,erry, troy| = faew (nn).

e Secant Step (S.S.), from known values of water mole quantity n; and ny and

the respective values of F', err and trv calculated by f4.,, in prior iterations:

1. IF trv; = true or trvg = true THEN &y = & — 0.1 F1 (& — &) /(Fy — Fy).
ELSE &y = & — Fi(6 — &)/(F, — ).
2. Protection to avoid reaching values out of bounds:

IF €N > gma:p THEN ’SN = fmax —0.5 (fmam — Max (517 52))
ELSE IF ¢y < 0 THEN éx = 0.5Min (&1, &)

26



3. ny = —ln(fN)

4. Evaluate [Fy,erry, troy| = faew (nn).
The main method is solved then as follows:
1. Initialization:

(a) Read the components’ parameters, EoS model, temperature T', pressure

P, dry gas composition Ype and the maximum percent to the water
H20

max ?

content y as well as the maximum number of iterations i,,,, and the

tolerance e.

Calculate ny = y#29 /(100% — yH29).

~ Ynmax

Define the auxiliary variable: & = exp(—ny).

Make gmax =1, 52 =1 and 510 = 51-

Make & = &y, Fo = Fiy, errg = erry, trvg = troy.

)
)
)
) Execute B.S., obtaining ny, {y, Fy, erry and troy.
)
) Execute S.S., obtaining new values for ny, {y, Fi, erry and troy.
)

Initialize iter = 0, flag = 0, bis = false (checker for case 02)

(a) Make iter = iter + 1, erryq = erry.
(b) Current solution lies on three possible cases:

e Case 01: IF truy = true THEN reinitialize the method modifying

the value of &q:
1. &10 = 0.8 §10 + 0.2 Snawy §1 = 10, &2 =1
ii. Execute B.S., obtaining ny, &y, F, erry and troy.
iii. Make & = &y, Fy = Fly, errg = erry, truy = troy.
iv. Execute S.S., obtaining new values for ny, &y, Fl, erry and
tron.
e Case 02: IF truy = false and bis = true THEN execute B.S. with
current values of & and &, obtaining ny, {n, Fy, erry and troy.

e Case 03: IF trvy = false and bis = false THEN proceed with the

secant method as usual:

i. Make 61 = 52, F1 = FQ, e€rry = €rry, 62 = f]v, F2 = FN, €rro =

erry.
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ii. Execute S.S., obtaining new values for ny, &y, Fy, erry and

troy.

(c) IF |erroq — erry| < |errqal, then bis = false.

ELSE bis = true, enabling the B.S. in the next iteration (Case 02).

(d) IF |Fn| < € and troy = false THEN flag = 1. Exit Loop.
ELSE IF iter > 1, THEN flag = —1. Exit loop.
ELSE return to Step

3. Solution:

(a) Make ypoo = 100% x ny /(1 + ny).
(b) IF flag =1 THEN RETURN yg90.
ELSE the method did not converge. RETURN 0.

In the Case 02, the equilibrium variables in previous iteration are too different
than in current iteration, even if it is not a trivial solution. It is a sign that a
trivial solution may be nearby and another secant step could attain this undesirable
result. This is the least common case, but it was still implemented in order to avoid
resetting the calculations unnecessarily (Case 01).

Table [3.3| presents a numerical example of this method in a binary mixture
water + CO, using the CPA equation of state. It is important to mention that
iter = 0 means that the variables in this column were obtained before the loop.
Also, although the & value is always initialized with 1, this Table shows in this
column its value calculated from the first bisection step, cited in the item [11] of the
algorithm.

In this example, the first two iterations resulted in trivial solutions. In both
of them, the variable &, was recalculated accordingly and the bisection and secant
steps were performed. Consequently, the value of £y reduced in each iteration and
it eventually reached a value whose fy.,, calculation did not end in a trivial solution.
After that it was possible to perform successive secant steps until the convergence

was attained. There were 12 fg4.,, evaluations in this procedure.
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Table 3.3: Numerical example for a water content calculation for the mixture
water + CO,, at T = 298.15 K, P = 50.66 bar and CPA equation of state
parameters modelled in the literature for water (KONTOGEORGIS et al., [1999)
and COy (TSIVINTZELIS et al) 2010), with the binary parameters k;; = 0

and G = [Buwater = 0.0692, considering the solvation effect between these

components (LI and FIROOZABADI, 2009). Convergence tolerance = 107¢. The

yH20 value was set at 0.5% (n; ~ 0.00502). 'BS’ and ’SS’ mean Bisection Step and

Secant Step, respectively, as previously described.

iter 0 1 2 3 4 5
C Initial: Case 01: Case 01: Case 03: Case 03: Case 03:
¢ BS+SS BS+SS BS+SS SSonly SSonly SS only

&o 0.99499 0.99599 0.99679 0.99679 0.99679  0.99679
& 0.99499 0.99599 0.99679 0.99840 0.99956  0.99943
F 4.15188 3.30829 2.60364 1.09350  -0.13408  0.00796
&2 0.99749 0.99799 0.99840 0.99956 0.99943  0.99944
Fy 1.96181 1.48627 1.09350  -0.13408  0.00796  3.08e-5
EN 0.99974 0.99963 0.99956 0.99943 0.99944  0.99944

troy true true false false false false
erry - - 0.81592 0.89984 0.89619  0.89618
Fy -0.13408  0.00796 3.08¢-5  -2.12e-8

Ny 0.00026 0.00037 0.00044 0.00057 0.00056  0.00056
ymo 0.0261%  0.0369%  0.0442%  0.0569%  0.0562%  0.0562%

3.2 Methods and Strategies of Optimization

Parameter estimation problem in Thermodynamics is a complex system, may
be highly sensitive to initial guesses and consequently may contain several possible
local minima. Hence, the optimization procedures executed in this work demanded
multi-variable search methods: a stochastic method to evaluate different local
minima and a deterministic method to refine the results.

The main advantage of using a stochastic method is that it does not need the
computation of derivative properties. Also, it performs a global optimization by
being possible to evaluate the objective function in any region of the search space
within a probability (SCHWAAB et al., 2008)).

In this work, these methods were combined in two possible schemes, based
on DAS et al. (2006): direct and parallel. As a consequence, there is the possibility

of the optimization methods’ hybridization.
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3.2.1 Stochastic Method

The stochastic method implemented is the Particle Swarm Optimization -
PSO (KENNEDY and EBERHART] [1995)), conveniently adapted to the calculations
performed in this work. It is based on the behaviour of a group of animals, such as
a swarm of bees. It takes into account each individual solution (particle) and the

global solution in each iteration. The particles move around the search region in an

iteration k according to Equations (3.15) and ({3.16)):

k k—
B = wolY + errndy (i —u

(k=1)

v ij )t carnds(pipg — ut) (3.15)

1]

(k) _
Ui =u

(h=1) 1 B (3.16)

1] 1,

rnd; and rnds are random numbers with uniform distribution between 0 and
1, and wv;; is the velocity of the particle u;;. ¢ varies from 1 to the number of
manipulated variables, and j goes from 1 to the number of particles in the system.
pi; is the set of best particles updated each iteration and the subscript ipg is the

position of its best point. w, ¢; and ¢y are internal parameters of PSO:

e w is called inertial weight, implemented by SHI and EBERHART] (1998)) in
order to increase the odds of attaining the optimal solution during the search.
It decreases linearly, from a given wy to a given wy, so that in the beginning

there is an exploration phase and, in the end, an exploitation phase;

e (; is called cognition parameter, related to the individual movement, and ¢, is

called social parameter, related to the whole group movement.

In order to implement this method in this work, the following procedure was

conducted:

1. Initialization:

(a) Read Wo, wf? C1, Ca, imamv €A, €R, Npt7 Nma:m Lo, L07 UO'
(b) Imitialize k = 0, Soim = 10'°, w = wy, Ny = 0.

(¢c) Fori=1,--- ,Nyand j=1,---, Ny do:
(k)

1. Initialize the normalized position u,; to random values between 0

and 1.

ii. Initialize the velocities to O.
iii. Initialize the vectors yl(];) =pi; = ug?
iv. Evaluate the objective function f](k) = Fobj(x(k)), with wl(-k) = Lg; +

(U()Z' — LOz)uU? .

3
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2.

v. After an objective function evaluation, save internally the
intermediary values: z*), f](k) — Tint, Sint.-
vi. IF f](k) < S,tim THEN make z(®, f](k) = Totims Sotim and ipg = j.
vii. Make f,; = fj(k).

Loop:

(a)
(b)

optg = false, opty = false, k =k + 1.
Fort=1,--- ,Nyand j=1,---, Ny do:

i. Evaluate the mnew positions and velocities according to

Equations and .

ii. Evaluate the objective function, just as Step .

i, IF /% < £, THEN f,; = f* and p;; = o). ELSE go to
Step .

iv. IF f,; <= Sotim THEN make opty = true. ELSE go to
Step .

v. IF (Sotim — foj) >= (€rSotim + €4) THEN make optp = true and
Ny = 0.

vi. Make z(*®), fj(k) = Totim, Sotim and ipg = j.

vii. Evaluate y; according to Equations (3.17)) and (3.18]):

]’c;j _ fpj - fpj,min (317)

fpj,max - fpj,min

y; = [u;]fy] (3.18)

IF opty = false or (opty = true and optg = false) (i.e. if no new best
solution was found or new best solution found is closer to the previous
one than the tolerance ¢) THEN Ny = Ny + 1.

Update the inertial factor (Equation (3.19))):
Ny
chw + NV

Evaluate Equations (3.20) to (3.22)), as recommended by MORAES et al.
(2015).

(3.19)

w = wy + (wg — wp)

Npt

yi = Z wjyl-J (320)

Jj=1;j#ipg
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1
_ ly; —yipg |l
“ = : (3.21)
k:hk#ipg ”yk_yipg”

lyll = [%Zf] (3.22)

(f) Evaluate the stop criterion: ||g — 7,4l < €a. IF this expression is false
or Ny < Np. THEN go to Step [2al ELSE go to Step

3. Optimal point achieved. RETURN =z, and Sym.

It is important to note that there were some adaptations included to the PSO

in this work:

e In order to ensure the reached solution is the best one, it has been decided to
modify the convergence test: the optimal solution has to be inside the tolerance
for a number of consecutive times (defined by the user in the interface) in order
to be checked for stop criterion. Because of the random feature of PSO, it is
noted that sometimes when the method is going to a local minimum and
suddenly a better minimum is found far from the previous value. It happened

specially if ¢; >> cs.

e Whenever there is a computation of the objective function, its value is saved
on an array S;,;, and respective parameters on an array x;,. This practice

is essential to generate scatter plots and parameter analysis charts detailed in
Chapter [4]

3.2.2 Deterministic Method

The deterministic method implemented is the Flexible Polyhedra Method, also
known as Simplex (NELDER and MEAD) [1965). It has been chosen mainly because
it does not need computation of the derivatives of the objective function. Also, its
implementation is relatively simple and it is efficient to find the optimal solution
near the initial guess.

From a set of (n + 1) points forming a simplex in a n-dimensional plane, new
simplexes would be formed by reflecting one of the points and/or expanding or
contracting it according to the objective function value. Considering Fy, Py, --- , P,
sets of n variables each forming points of a known simplex, and yg, y1, - , ¥, their
respective objective functions, Equation defines its centroid, discarding the
highest value of ¥, Ynign:
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1 n+1
Pei== > Py i=1--,n (3.23)

j=1,j#high
There are then three possible movements in this method: reflection, contraction

and expansion, defined, respectively, in Equations (3.24)), (3.25) and (3.26)):

Pio = (1+a)Pc; — aFpign (3.24)
Py g = BP,phign + (1 — B)Pc; (3.25)
Py =7Pa+ (1 —7)Pc¢ (3.26)

« is the reflection parameter, § the contraction parameter (must be lower than
1) and v the expansion parameter (must be greater than 1). All these movements
were implemented as NELDER and MEAD) (1965) described, thus the focus of this
work is to point out the differences in how these points were initially obtained.

Firstly, these authors suggested to initialize the simplex from its vertices.
However, as the EoS parameters are correlated with each other, not all sets of
parameters result in convergence in the calculations. Therefore, it was decided in

this work to generate a cluster around the initial guess, implemented according to
Figure |3.1]

Read x©, a, 8,7V, imax € L, U©®
Initialize npe = Nyar + 1, Xorim = X, Sorim = Fopj(x(?)
Save intermediary values: x© = x;.; Sorim = Sint

Random cluster generation (P; ;): j = 2, ijym = 0 ‘

0
Pi{(lzxi( Y1 = Sotim No j=j+1
~ PE =10 +md (U - 1) iim =0 |
Yj = Fop;j(P¥) J > Mpe?
Yes
’—{ Fopj converged? I
No . .
lim = lym +1

No lim = limax? Yes Yes

| Cluster P;; formed. I

Figure 3.1: Random cluster formation for Simplex method.

Another adaptation implemented was due the fact that despite the simplex’s
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points originally have no bounds, thermodynamic variables must be bounded to
avoid major convergence problems. NELDER and MEAD| (1965)) suggested in their
work to apply logarithm to a non-negative variable. Based on this affirmation,
Equation and its inverse, Equation , are proposed and implemented in

this work.

x;ij—Li+e€
P.=r7l Ty " 3.97
’J g n(Ui—xi,j—i—e) ( )

(L; —€) + (U; + €) exp (%)
1+ exp (%)

¢ is a low value (order of 107?) inserted to avoid division by zero or logarithm

xz7‘7 =

(3.28)

of zero; 7 = 1 is a possible tuning factor to the expression; and L; and U; are the
lower and upper bounds of z; ;, respectively. Consequently, F;; is limitless while
L; <z ; <U.

Specifically in this stage, there is an option in the developed software to tighten
the bounds of the manipulated variables in order to accelerate the cluster formation.
It is called Initial Cluster Size and will be further described in Chapter 4l These
new bounds substitute the variables LEO) and Ui(o) in Figure m to the variables L;
and U;.

Once the cluster is formed, the algorithm is described as follows:

1. Imnitialization: Make iter = 0.

2. Loop:

(a) iter = iter + 1.
(b) Reflection, expansion and contraction tests implemented according to

Equations (3.24)), (3.26)) and (3.25]), respectively.

(c) Each time y = Fy;(2) is evaluated, save intermediary values:  — n;
Yy — Sint-

(d) Re-evaluate the new positions of the lowest value (y0,,) and highest value
(Ynign) of y.

(e) Evaluate the convergence criterion, calculating Err = ||y — Ymeanl|

using the norm defined by Equation (3.22)), and yean defined by
Equation ([3.29):

mean — j 2
y - Yj (3.29)



(f) Calculate Errp = Y7 ||P; — Piow|l using the norm defined by
Equation (3.22)). P, stands for the point whose objective function

results in Y.
(g) IF Errp < Err THEN Err = Errp.
(h) IF Y10 < 1 THEN Err = Err/yion-

~—

i) IF yipp >= Smt,o THEN Err = Err + €4.
(j) IF Err > €4 and iter < i, THEN go to Step ,

3. Solution:

(&) Totim is calculated from Equation (3.28), with P, ; = P jow, and Setm =
Ylow-

(b) Optimal point achieved. RETURN =z, and S,

As it can be seen in the algorithm, another modification implemented was
related to the convergence criteria. Even though the variable Err is calculated
as proposed by NELDER and MEAD| (1965), some modifications were included in

the implementation:

e If the lowest value of y is lower than 1, then Err was divided by ¥ow-
This modification tightens the tolerance, ensuring the attainment of the best

solution;

e If no new minimum value of y is found yet, than add the given tolerance to
Err. This forces the optimizer to find a new solution at least once during the

loop.

e Lrrp is a variable calculated analogously to Err, but with respect to the size
of the simplex. If it is smaller than the variable Err at any iteration (i.e. after

successive failed contractions) then Errp becomes the new criterion.

3.2.3 Hybridization

It is commonly seen in the literature - e.g.|[SANTOS| (2015) - a serial combination
of a stochastic and a deterministic method in order to perform a global optimization
of the desired system. The former method searches for all possible local minima in
the region and the latter acts as a refinement of its result, as can be seen in the

following scheme:

e Run PSO Method as previously described.

35



(0) (0)
e Make 257y prpx = Totim,pso and Sgryprpx = Sotim,PSO-

e Run Simplex with a random cluster around its initial guess.

e Optimal point of the Simplex execution is the final solution. RETURN 2,4,

and St

Nevertheless, DAS et al.| (2006) proposed a combination between these methods

inside the same loop in order to achieve the optimal solution most efficiently. Based

on this approach, this work also proposes a combination between the implemented

PSO and Simplex methods in parallel, further hybridizing them. The algorithm for

this purpose is shown below.

1. Inmitialization: Initialize PSO method as previously described.

2. Loop:

(a)
(b)

()

Execute one iteration of PSO.

0 0
Make a:giw)nplem = Zotim,pso and Sgi;plez = Sotim,pso- Generate a random
cluster according to Figure around this point.

Run Simplex method.

€rrs = €RSotim,si’rnpleac + €4. IF |Sotim,PSO - Sotim,simplea:| >=errg THEN
Ny = 0. ELSE Ny = Ny + 1.

Update Lotim,PSO = Lotim,simplex and Sotim,PSO - Sotim,simplea:-

Replace the worst point of the swarm (i.e. the point whose objective
function value is the highest) by the Simplex solution. Make ipg equal to

its position.

Update the inertial factor and evaluate the tolerance of PSO just as

previously described.

Evaluate the stop criterion: ||g — 3,4l < €4. IF this expression is false
or Ny < Npa THEN go to Step [2al ELSE go to Step

3. Optimal point achieved. RETURN i, pso and Syiim, pso-

It is important to state that, although the implementation is based on the work

of IDAS et al| (2006), they are not equal. Their tandem’ approach consists of

creating several simplex clusters in each iteration, solving them simultaneously. In

this work, after each iteration of PSO only one cluster is formed around the current

PSO’s best point (i.e. the point with the lowest value of objective function). Then

it is solved by the Simplex method and its solution substitutes the former PSO’s
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worst point (i.e. the point with the highest value of objective function), making it
the new best point of the stochastic method.

Despite the fact that the combination of the optimization methods in parallel
allows to reach the optimal value faster than the usual linear 'PSO - Simplex’
approach, both calculations were implemented in this work, and the user will be
able to select them freely in the interface. The advantage of the serial approach is
that it allows the generation of proper parametric and statistical analysis, as well

as scatter points evaluations.

3.3 Parameter Estimation

For the purposes of this work there will be five different approaches to the

objective function:

e Parameter estimation of a pure compound using vapour pressure and liquid

density data.
e Binary parameter estimation using compositions in liquid-liquid equilibrium.

e Parameter estimation of a pure compound using simultaneously vapour
pressure, liquid density and liquid-liquid equilibrium compositions (binary

mixture between an associating and a non-associating compound).

e Binary parameter estimation using pressure calculation (for vapour-liquid

equilibrium).

e Binary parameter estimation using water content calculation in a
multicomponent mixture (containing obligatorily water and at least one more

compound).

3.3.1 Pure Components

In this case, the calculated variables studied are the saturation vapour pressure

(P) and the liquid density (p) of a pure component. Thus, the objective function

becomes (Equations (3.30)) and (3.31))):

1S (B =P s (= pp)?
S(Xp)=— E o +§ — + Fw (W, Xp) (3.30)
€ |i=1 1) i=1 Pt

[CLO b C1 Co Cg]T IF not CPA

o {[GO bc e/R BT IF CPA (3.31)
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In addition to the original expression in Equation (2.35)), in this work an extra
restriction Fyy (W, Xp), related to the critical region behaviour of the system, are
implemented, with W being the weights defined by the user. Therefore, this
restriction takes the form of a penalization function.

The original values of ay and b of the cubic equations of state (Equations
and ) were calculated based on the restrictions dictated by Equation ([2.3)).
However, when these parameters become freely manipulated, such restrictions
are violated, so they were inserted in the objective function as can be seen in
Equation , transforming them into dimensionless terms and squaring them

to avoid negative values.

V. (0P ’ V2 (0°P ?
Fw(w7&) = w lﬁc (W>T:Tj + wq |:Fc (W)T:Tj (3.32)

The weights W = [w; ws]’ are specified by the user. It is important to
emphasize that no relevant publication has been found regarding this parameter
estimation procedure as described in this work. Therefore, adding the critical region
penalization effect term in the metric is a potential contribution of this work to the
academic community.

The general algorithm can be seen on Figure |3.2]

| Read P¢, p%, X, EoS, Comp, 0;, 0, wy, Wy, initialize § = 0
Evaluate [P}, Z;;4| = PSAT(Comp, T;, EoS, X)
Did it converge?

I No
Yes ¢ 1
For pi = P{/RTiZyq S =1el5
i=1..,m | ] if 0; = 0theno; = Pf Exit subroutine

if o = 0thena] = pf P
N —>| Penalizations?
Fp = [(Pie —-P; )/Ui]z

Fr = [(pf = p))/0{]? Yes No S=S5/n,
§=S+Fp+Fg Exit subroutine

V, = RT,Z.(Comp, E0S, X) /P,
[(dP/dV)r=r, (d*P/dV*)r_r,] = DPDVC(Comp,E0S, X)
2 2
dP, = [(V,/P.)(dP/dV)r=r,| :dP; = [(VZ/P)(d?*P/dV?)r_r,]
FW = Wldpl + Wzdpz

S=S/n,+Fy
Exit subroutine

Figure 3.2: Algorithm to evaluate objective function of pure component case.
'PSAT’ and 'DPDVC’ are internal functions, dependent to the temperature
(T), thermodynamic model (EoS), component critical properties (Comp) and
manipulated variables.

This approach needs the following data to accomplish the parameter estimation:
e Critical properties (7, P. and w);
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e Experimental temperature data (T);
e Experimental pressure data (P¢) and their variances (op), if available;

e Experimental liquid density data (p®) and their variances (o,), if available

(optional).

If there is no liquid density data available, calculations may proceed using only
pressure as calculated variable. Also, the penalization effect is optional and the
user is able to add or remove it in the interface, as will be explained in details in
Chapter [4

The experimental variances are not obligatory data either. If the user does not
wish to enter their values, there will be an option to allow that op; = P° and
0p; = pS (i.e. the respective experimental variables). This applies to all metrics
described here.

Thus, with these data, the saturation pressure is calculated in order to satisfy
Equation , where the phases a and [ are, respectively, liquid and vapour.
Density can be calculated as the inverse of the molar volume.

Also, if the user activated the penalization effect, the program will then
calculate the critical volume and the necessary derivative properties, according to
Equation , adding them to the objective function.

If the pressure calculation does not converge, the program will automatically

return a very high value to the objective function (currently it is equal to 10'°).

3.3.2 Binary Mixtures by Liquid-liquid Equilibrium
Calculation

This case is similar to the previous metric, with the main difference being the
calculated variables in the objective function, related to the liquid-liquid equilibrium
(LLE) of the system, calculated by the algorithm described in the Section [3.1.2]
Also, there is no penalization function, i.e. Fy(W,Xp) = 0. Therefore, the
objection function is calculated by Equation and, with the estimable variables
indicated in Equation . Among the available EoS in the program, only the

CPA can perform this calculation.

1| (2 — x?—nz (91 1. — x5 1)
S(Xp)=— ’ ; .
(Xe) = - Do Z - (3.33)
i=1 Tr_11,0 i=1 11,
XP — [k12 0 k12 1 gcross/R CTOSS]T (334)
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As stated in the Section the LLE calculations do not depend on the global
composition of the liquid. Then, with these data, the compositions of each liquid
phase in equilibrium can be calculated according to Equations and .

The algorithm is shown in Figure (3.3

’ Read x{_;;, xf;_;, X, EoS, Comps, 6,_,,, 04, ,, T, P, initialize S = 0 ‘

: 2
Yes P>07 lNO
Yes P; = PBUB(Comps, T;, EoS, X)
Did it converge?
No
[x,*_,,,l-,x,*,_,'i] = LLE(Comps, P;,T;, EoS, K) P, = max[PSAT(Compj,T,-,EoS)] ‘
Eor Did it converge? J
i=1,..,n, Yes l No
ifOx_yy; = Othenoy, i =x7 'S = 1e15.
ifaxll—l,i = 0thenoy, ,; = x5, Exit subroutine
« 2
Fin= [(xf—n,i - x1—n,i)/UxI_u.i]
Fior = [(xfl—l,i - x;I—I,i)/O-x”_I.i]
Fopj = Fopj + Fi—i + Fry—g

S=S/n,
Exit subroutine

Figure 3.3: Algorithm of the objective function calculation of the binary mixture
case in LLE. 'PBUB’ calculates bubble pressure of the system and "PSAT’ calculates
the saturation pressure of a pure component.

It is not uncommon that experimental data on LLE do not explicit the pressure
of the system. In these cases, the program may calculate the bubble pressure of
an equimolar mixture of the compounds. If this calculation does not converge
either, then the highest pure component’s saturation pressure will be applied in the
calculation of the liquid compositions. Thus, the required data for this approach

are:

e Components 1 and 2’s pure parameters and critical data.
e Experimental temperatures (7).
e Experimental pressures (Pf, optional).

e Experimental composition data of component 1 in phase rich in component
2 (x9_;;) and vice-versa (z9,_;), as well as their variances (o,,_,, and o,,, ,,

respectively), if available.
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3.3.3 Validating Pure Component Parameters with LLE
Data

As described in the Section several authors recommended to use LLE
calculations with specific compounds to select the best parameters for pure
components. This work proposes an improvement to this analysis, in order

to automate it. It consists in unifying both previous objective functions into

Equation (3.35)).

S(Xp) = Spure(Xp1) + wSrre(Xp2) (3.35)

Spure 18 the objective function defined by Equation (3.30), Sp.g is the objective
function defined by Equation (3.33]) and w is a user-defined weight. All pure (Xp1)
and binary (Xpg) parameters can be manipulated at once in this approach, i.e.

Xp = [Xp1 Xps]. The methodology proposed is as follows:
1. Select the range of temperatures of the experimental points to calculate Sy .

2. Generate a set of pure parameters using the approach in the Section [3.3.1}

Both optimization methods PSO and Simplex are required.

3. Choose a second component to calculate S;rg. Usually aliphatic hydrocarbons
are chosen (e.g. n-hexane or n-heptane), provided there are available

experimental data.

4. Generate a set of binary parameters using the approach in the Section |3.1.2),
with the parameters obtained in Step Both optimization methods PSO

and Simplex are required.

5. Select the initial weight wy (it is recommended to be << 1), the final weight

wr and the number of calculations n.
6. Make Aw = (wp — wp)/n.

7. Generate a new set of parameters using Equation ([3.35]) for w = wy, using only
the method Simplex with the parameters found in Steps [2| and [4] as an initial

guess.
8. Make w = wg + Aw

9. Generate a new set of parameters using Equation (3.35|) for w, using only the
method Simplex. Use the set of parameters obtained in the previous step as

an initial guess to this step.

10. Return to Step [§| until w = wp.
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From this method, it is possible to analyse the behaviour of Sy,,. and Sirg for
various values of weight, enabling the generation of Pareto analyses. Also, once there
is an initial guess relatively close to the solution, the Simplex method can be used
without a previous global search, greatly accelerating the calculations. Thus, this
can be considered a major contribution of this work to the academic community.
In Chapter 5| the VLE-LLE Methodology will be properly validated and results for

some components will be shown and discussed.

3.3.4 Binary Mixtures by Bubble or Dew Pressure
Calculation

As for the case with the LLE metric, Fyy(W,Xp) = 0. Also, there is only

one calculated variable, which is the pressure of the system, as can be seen on

Equations ([3.36]) and (3.37):

1 & )2
S(Xp) = — 3.36
(Xp) ey ; Upz (3.36)
k ko) IF not CPA
b= [ 12,0 A12 1] no (3'37)
[k12 0 k12 1 gcross/R cross] IF CPA

The pressure can be calculated as bubble or dew, depending on the available
composition data, whether they are from liquid phase or vapour phase. If both are
available, the user can choose the type of calculation in the interface. The algorithm

is similar to the pure component case, as shown in Figure

’ Read y7, X, EoS, Comps, g;, initialize S = 0 ‘

——

Evaluate P; = PBUE-DEW(Comps, T;, EoS, X)
Did it converge?

Yes | No

For _
i=1,..,n,
if 0; = 0theno; = Pf S =1lel5
= [(Pf = P)/ai]? Exit subroutine
Fobj = Fopj + Fp

S=5/n,
Exit subroutine

Figure 3.4: Algorithm of the objective function calculation of the binary mixture
case from the bubble or dew pressure of the system (Section|3.1.1). ’"Comps’ contains
the components’ critical properties and EoS parameters.
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Therefore, the data required in this approach are:

e Components 1 and 2’s pure parameters and critical data;
e Experimental temperature data (7);
e Experimental pressure data (Pf) and their variances (op), if available;

e Experimental composition data of component 1 (if 21, bubble calculations are
performed; if y;, dew calculations are performed; if both, the user decides the

type of pressure calculation).

With these data, bubble or dew pressures are also calculated in order to satisfy

Equation (3.1)), where the phases « and [ are, respectively, liquid and vapour.

3.3.5 Multicomponent Mixtures by Water Content

Calculation

In this case there is also only one calculated variable, which is water content in
dew point, as previously described in the Section[3.1.3] As in the binary calculations,
the penalization function Fy (W, Xp) = 0.

Hence, the objective function is given by Equation (3.38]), with the estimable

variables by Equation (3.39)).

1 e e % 2
S(Xp) = — (Y20 291{20) (3.38)
Ne < oc .
i=1 Y2
ki—wa er ki—wa er r IF t CPA
= [ ter,0 t ,1] no (339)
o [ki—water,o ki—water,l 552521567«/ R z‘cigjgter]T IF CPA

The user is allowed to choose which pair(s) whose parameters are desired to be
estimated, as long as one of the components of the pair is water. Figure shows
how this objective function is implemented.

The input data required in this approach are:

All components’ pure parameters and critical data.

All non-estimated binary parameters.

Binary parameters to be estimated.

Experimental temperature data (7).

e Experimental pressure data (P).
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Read y£,,, X, EoS, Comps, a, initialize S = 0 |

_ —

VHEE %] = max(2y;50 1 1); yiss = 107°[%]
Evaluate yj,o,[%)] = XH20 (Comps, EoS, T, P, yag, X, yis&, yHit)
Did it converge?

For Yes | No

i=1,..,n, l l
if 0; = 0 then o; = yfj30,; S =1el5
] ) ; .
Fy = [(Yffzo,i _ szo'i)/Ui] Exit subroutine
S=S+F
S=5/n,

Exit subroutine

Figure 3.5: Algorithm of objective function calculation of multicomponent mixture
case using gas humidity data. 'XH2O’ is an internal function of the program,
described in the Section [3.1.3] 'Comps’ is an object containing the components’
specifications, such as critical variables and EoS parameters.

e Composition of the dry gas in each point (y b G).

e Experimental water content data (ym20) and their variances (o, ;), if available.

All binary parameters not filled by the user will be considered equal to zero. Also,
as only the Simplex method is executed with this metric, an initial guess is necessary.
That is why the binary parameters values to be estimated are required to this

calculation. Section presents an example of how to initialize these parameters.

3.4 Procedure to Parameter Estimation from

Pure to Mixtures

When modelling water saturation points of natural gas streams containing high
levels of COy (60%) and HyS at high pressures, a proposed procedure (providing

that experimental data is available in all cases) is:

e If the pure component parameters are not available, estimate them by
Section [3.3.1] solving by PSO and Simplex, or by Section [3.3.3}

e Estimate the binary parameters of each pair by Section or Section [3.3.4]
depending on the availability of the experimental data, solving by PSO and
Simplex;

44



e From an initial guess composed of the previous results, re-estimate the binary
parameters of pairs containing water using Section [3.3.5, solving by only

Simplex.

45



Chapter 4
Computational Aspects

This Chapter will address the details of the program written to perform the
necessary calculations to this work, showing its features, interfaces and advantages

of modelling and calculating thermodynamic properties.

4.1 Software Basis

The program developed in this work is called ThermOptimizer, or ThermOpt for
short. It has been written in two computational languages: C# and Fortran, both
using the Visual Studio environment.

Firstly, C# is an object-oriented language, most commonly used to create forms

and interface items in general. Its advantages are:

e [t shows all possible methods and properties of a variable while writing it on

a code;
e Excellent error feedback, being able to track errors at real time;
e Automatic garbage memory handler, avoiding memory leakage;
e Open libraries available for free on the Internet (e.g. matrix calculations);

e Can establish connections with many other languages by .dll files, such as

Fortran.

Therefore, it was chosen to be the main interface language. The thermodynamic
calculations, however, have been written in a sturdier language such as Fortran. Its
main benefit is the management of arrays, which is faster than C#’s.

Currently, ThermOpt’s interface is divided in three tabs: Pure Component,
Binary Mixture and Multicomponent Mixture, inside two major tabs: Input and

Output. All tabs have their own features, implemented in user-friendly interfaces.
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Besides, there are some components present in all tabs, henceforth called the

General Features of ThermOpt. In the next topics, these features will detailed.

4.2 Input Features

4.2.1 Pure Component Tab

Figure shows the interface of this tab. It contains the following traits: Input
Data, Thermodynamic Model, Parameters to be Estimated and Objective Function.

Each feature will be detailed further in this Section.

a2 ThermOptimizer - Alpha Version o=
Load.. + Sawe.. = Options Run.. = Component Data Bank T
Input | Output
Pure Component ‘ Binary Mixture | hMulticompaonent M\xlure‘
Input Data Thermodynamic Model
Companent Name
1) Water Lit |5 Water 2) Equation of State Alpha Function
Critical Temperature [K] Critical Pressure [bar]  Acentric Factorw
B47.13 20 55 03449 po BT _oale,T) RTak,
— V-t V(V+i) 2V aley T = [1+ 6,(1 — T.25)]2
Pressure Liguid Density
& Temp[;r]ature ﬁr[e;;]“’e “ariance Density ‘ariance |2 ¥ 52[1 - X,) =Flav)
[bar] [kmalir®]  [kmolim?] 4 £ A :
R
1 291,208 | 0.020721 1 556.34992 1 .
2 | »7F8  |0030825 1 5522374 1 A= bEglV) (ex'pﬁ -1)
3 304151 | 0.044982 1 55.08923 1
4 310622 | 0064472 ! 54.94627 ! CPA Component Association Scheme
5 317.084 | 0.090870 1 54.79475 1
= No Scheme @ 4C 0 2B
6 323865 | 0126082 1 54.63455 1
7 | swom |07z 1 54.46554 1 o2 - Solvation
— - 4)
Objective Function 5) 3)Parameters to be Estimated
Pressure Density [N b e &/R 10008 Calculate Objective Function...
Newp 3 Digy:
calc exp 4 2
AN EERTY N (e -
N, 2 2z
wri 9 R = B)
Critical Region Penalization
z 2
|78 (BP) VZ/aZp
+ | Wy | les twa |5 lag
P A\av T, PV 7
Variances
O Experimental Point @ Fixed
ABORT CALCULATIONS

Figure 4.1: Main features of Pure Component tab. 1) Input and experimental data.
2) Thermodynamic model used in this execution. 3) Parameters to be estimated.
4) Button to calculate objective function of a specific set of parameters, without
optimizing. 5) Objective function to be minimized. 6) Diagnostics box, progress
bar and ’abort’ button (General Features). 7) Miscellaneous functions (General
Features).

Input Data

In this field the user must insert the following information:

e Name of component. It does not have to be the real name of component.
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It acts as a means to differentiate from other components when calculating

mixtures.

e 'Is Water’ check-box. If checked, ThermOpt will consider that this component
is water, regardless of what the user named it. Some internal calculations are

specific to water, for instance some « functions described in Chapter [2|

e Critical temperature, critical pressure and acentric factor. It is important to
mind the units of measure in each field: temperatures are always shown in

Kelvin, pressures in bar and densities in kmol/m?.

e Experimental Data: list of experimental temperatures, pressures, densities and
their variances. Depending on the objective function details, some columns
will be hidden making it easy to the user visualize which inserted data is

actually used on each execution of the program.

Thermodynamic Model

In this region the user will select the thermodynamic model (equation of state
+ « function, when applicable) which will suit the parameter estimation procedure.

Currently there are three equations of state inserted: SRK (Equation (2.14)), PR
(Equation (2.17)) and CPA (Equation (2.25])). For each cubic equation, the available
o functions are: original (Equation (2.17))), Mathias-Copeman (Equation (2.19))) and
modifications specially made for water (SRK: Equation ; PR: Equation )
As for the CPA EoS, the only option available is a modified Mathias-Copeman
equation with ¢, = ¢3 = 0.

Each time the user changes the equation of state or the o function, the interface
will change dynamically in order to help the visualization of the system. Figures
and .3 show these interfaces.

Another option available only for cubic equations is to fix the parameters ag
and b to their original values, calculated by critical properties. This option does
not appear for CPA because it does not have ’original parameters’, they have to be

estimated instead. When this option is checked, Figure [4.4] is shown.
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Equation of State Equation of State
[ Peng-Robinson v ] Soave-Redlich-Kwong v ]

RT aoa’(Cl,Tr) p= RT _aoa(Cl,TT)
V—b VWV+b)+b(V->b) V—b VIV +b)

P =

Equation of State
Cubic-Plus-Association v]

RT  apa(cy,T,) RTgX,

P=v=0 " v+ 2V

X, = 2(1 - X)) =fAV)
Aj

A=bBg(V) (exp% - 1)

Figure 4.2: Interfaces of each Equation of State implemented in ThermOpt.

Alpha Function Alpha Function
[ Original '] [Peng et al Modification V]
a(e,Ty) = [1+ 61 = TP If Water:
T%5 < 0.85:
¢, = 0.37464 + 1.54226w — 0.26992w? a(cy, T) = [1.0085677 + ¢; (1 — T,?5)]?

Peng-Robinson
Equation of State Only T,%5 > 0.85:
a(ey, T) = [1+¢1(1 = T29))?
(10085677 — 1)
1-0.85

=G

Else:a(cy,T,) = [1+ ¢, (1 — T2%)]?

Alpha Function Alpha Function
[ Original '] [ Kabadi-Danner V]
Soave-Redlich-Kwong _ 0.5v12 . _ _ 70.8Y]2
Equation of State Only ale, Ty) =14+ ¢, (1 -T2°)] If Water:a(cy, T,) = [1 4 ¢,(1 = T?)]
c; = 0.480 + 1.57w — 0.176w? Else:a(cy, Ty) = [1+ (1 — T05))?

Alpha Function

[ Mathias-Copeman ¥ ]

All Equations of State a(e,Ty) = [1+ ;1 — TP + c,(1 — T2)?
+c3(1 = T2%)3)?

Figure 4.3: All o functions currently implemented into ThermOpt.

V| Fix a0 / b Parameters

o= WRTE S ORT
0 P. "’ P.

Figure 4.4: Interface shown when the option 'Fix a0 / b Parameters’ is checked.

49



Parameters to be Estimated

This field is extremely important to a user-friendly interface, because it changes
dynamically as the thermodynamic model is modified. Figure shows some

possible combinations.

Parameters to be Estimated
1) o b

Parameters to be Estimated
2) ag b €1

Parameters to be Estimated
3) dp b €1 Co C3

Parameters to be Estimated
4 a p ¢ /R 10008

Parameters to be Estimated
5) €1 Co Cs

Parameters to be Estimated
6) Cq

Figure 4.5: Combinations of parameters to be estimated. 1) SRK or PR +
original « function; 2) SRK or PR + water-specific a functions, or CPA without
self-association; 3) SRK or PR + Mathias-Copeman « function; 4) CPA with
self-association; 5) SRK or PR 4+ Mathias-Copeman AND aq and b fixed; 6) SRK
or PR + water-specific a functions AND aq and b fixed.

Besides, if the user specifies the upper and lower bounds of a variable to the same
value, it will also disappear from this interface, because this variable will become

specified instead of manipulated.

Objective Function

For the Pure Component tab, this region consists of three dynamic images,
cach one referring to a term of the objective function defined on Equations ((3.30))
and (3.32)). The Density and Critical Region Penalization options can be turned on

or off just by clicking on them, as shown on Figure 4.6
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Density

e"p calc xP)Z
o
Critical Region Penalization

W1 +wy |—

apP V2 a%p
6V vz r

c
Figure 4.6: Interface appearances of Density and Critical Region Penalization terms
when turned off.

In addition to that, as detailed in Chapter [3 it is not common to have
experimental variances available on the literature, so there is the possibility to
use the own experimental points as denominators of the objective function. To
perform that, the user should click the option correspondent inside the box labelled
"Variances’: either fixed values or the experimental variables. Figure [4.7] shows how

these selections will appear in the interface.

Pressure Pressure

1 Nexp (pgate — Piexp)z 1 Nexp (pgate Piexp)z

4 2
i=1 i=1 (IDLexp)

N, exp 4 N, exp

exp calc P)
Nexp Z .

Figure 4.7: Interface appearance when the user clicks on "Experimental Point’ option
in "Variances’ box, from the 'Fixed’ option.

exp calc exp)z

Pi
Nexp Z exp)z

Density Density

4.2.2 Binary Mixture Tab

Figure shows the interface to this tab. It also contains the features Input
Data, Thermodynamic Model, Parameters to be Estimated and Objective Function.
Each of them will be detailed further in this Section.
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3= ThermOptimizer - Alpha Version [ ===
Load... ~ Sawe.. ~ Options Run.. - Component Data Bank ?)
Input | Output
Pure Component | Binary Mixture | Multicompanent M\xlure‘
Input Data 1} Thermodynamic Model
Component | Cornpaonent Il - 2) Equation of State Alpha Function
Te B47.13 507 6 3 Mixing Rules
Pc 220,55 302496
o5
w Factor 013449 0.3013 a= Zz;zix)[alajj 1-k;) b= Zx,b, ke =kt kT
Parameter al 1.227770863 23.681 T 7 T
Parameter b 0014515 0.10789 il CPA, Equation of State and Combining Rules
* RT a 1RT a lng
Aqueous Component Phase Equilibria P= P bimii v ( )Z Z(l — X, )
@ Component | © Comporent Il &) Heither © WLE @ LLE v e
_ i}
" XA. - v+ E] szg Xy AAES A%E = b ﬁ.q Elg[V) exp( )7 1]
Ternperature  Pressure  Cormposition  Composition o
# P A 2
[K] [bar] of lin phase I of Il in phase | g _ . - " - .
@ Elliott/CR-1 () Solvation Effect © Modified CR1
273,15 |0.086%8... | D.o0D13B02 | 3.331E06 B A8
A — 4i8) — A5}
2 | 2315 |0.18408.. | 00003538 | 24777E06 e = BAEE = |BAS A
3 313.15 0.44464 0.00083053 2 4097E-06 4)
4 | 33315 |ogeeos.. | oooistis | 287evEDs -| 3)Parameters to be Estimated
N N N e Calculate Objective Function...
Objective Function 5) k!},O e l
Compositions in each liquid phase
Nowps Ngrpa
calo axp calc axp
1 Vi =X ) H) e 1 (xH [ 11 1 6)
N, N,
sxpl =1 (xi i1 exp2 i=1 (x” 1
Variances
@ Experimental Point
© Provided manually
© None
[ ABORT CALCULATIONS l

Figure 4.8: Main features of Binary Mixture tab. 1) Input, experimental data
and phase equilibrium selector. 2) Thermodynamic model used in this execution,
focused on mixture and combination rules. 3) Parameters to be estimated - depend
on the EoS, combination rule and bounds given by the user. 4) Button to calculate
objective function of a specific set of parameters, without optimizing. 5) Objective
function to be minimized. 6) Diagnostics box, progress bar and ’abort’ button
(General Features). 7) Miscellaneous functions (General Features).

Input Data

In this field, the user must input the following data:

e Name and specifications of both components. If these components are available
in the Component Data Bank, then just entering their names is enough to fill

the remaining fields of this table (critical properties, EoS parameters, ...).

e Aqueous component. Select which component is water (regardless of its name):

Component I, Component IT or neither.

e Phase equilibria. Select whether VLE or LLE calculations are to be conducted.
Note that LLE calculations are available only for CPA EoS.

e Experimental data. List of the experimental temperature, pressure,

compositions data and their variances, if needed. Analogously to the Pure
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Component Tab, some columns will be hidden depending on the format of
the objective function. The intention is to facilitate the visualization which

inserted data is actually used on each execution of the program.

Thermodynamic Model

In this region, the user can select the FoS and the o function which will suit the
parameter estimation procedure, in the same way as in the Pure Component Tab.
The difference lies on the combining rules for CPA model, where the user can select

depending on the mixture to be studied:

e Elliott/CR-1. Uses the CR-1 Combination Rule (Equations (2.31) and (2.32])).

Used on mixtures of two self-associating components where this rule can

be used without great deviations, or on mixtures where at least one of
the components is non-associating at all (e.g. water + ethanol, or water
+ n-hexane). The Elliott Combining Rule (ECR, Equation ({2.33))) is an

implementation for future versions of ThermOpt.

e Solvating Effect. Makes use of Equation (2.31)) and manipulates the parameter
p4iBi Used on mixtures with a self-associating and a non self-associating
compound that performs cross association in this mixture (e.g. water +

benzene).

e Modified CR-1. Manipulates both cross association parameters 4% and
4B Used on mixtures of two self-associating components or mixtures
described on Solvating Effect item, in order to improve predictions by adding

parameters to the optimization.

Each time the user changes the EoS or the combining rule, the interface will also

be modified dynamically in order to facilitate the visualization.

Parameters to be Estimated

As in the Section this field changes dynamically as the thermodynamic

model’s options are adjusted. Figure shows some possible combinations.
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Parameters to be Estimated
1) kijo kijy BAB 48R

Parameters to be Estimated

2) ku 0 kUJ BAiEj

Parameters to be Estimated

3) kuﬂ ku,
Parameters to be Estimated
4 ko

Figure 4.9: Possible combinations of parameters to be estimated in the Binary
Mixture tab. 1) CPA EoS + Modified CR-1 option; 2) CPA EoS + Solvation Effect
option; 3) CPA EoS + ECR/CR-1 option or PR/SRK EoS; 4) Same as (3), but
with both limits of variable k;;, equal to zero, forcing k;; to be constant.

Objective Function

For the Binary Mixture tab, it consists on one dynamic image for VLE option
or another dynamic image for LLE option (see Figures and [4.11)).

Pressure - calculation mode: |Bubble Pressure v
I g Dew Pressure

arp
1 (P.m“ gm) Bubble Pressure

Figure 4.10: Objective function interface for VLE case in Binary Mixture tab. The
user can select the type of pressure calculation - bubble or dew.

Compositions in each liquid phase

Ngppa 3 Naxrpa 2
! exp { gxp
1 (xf i — i- H n 1 (xfcfa F — H I
N, N
exnl =1 (xf I axpd =1 ( 1

Figure 4.11: Objective function interface for LLE case in Binary Mixture tab.

As for the variances, there are three options available:

e Experimental Point. The objective function is normalized by own experimental

points.
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e Provided manually. The user will insert the variances.

e None. All variances will be equal to 1.

4.2.3 Multicomponent Mixture Tab

Figure shows the interface to this tab. Analogously to the previous tabs,

it contains Input Data, Thermodynamic Model and Objective Function, but the
parameters to be estimated are shown in a separate interface, inside the 'Binary

Parameters...” button. Each feature will be detailed further in this Section.

a= ThermOptimizer - Alpha Version ===
Load... ~ Sawe.. ~ Options Run.. - Component Data Bank 8)
Input | Output
Pure Component | Binary M\xturel Multicomponent Mixture ‘
Input Data 4) 5) Thermodynamic Model
) Equation of State Alpha Function
Add Component Binary Parameters 3) .
Cubic-Plus-Association - Mathias-Copeman
1) Water Component 1 gumpunem = Water Content Calculation
Name Water_Lit coz_Lit H25_Petrox Su20 = F(T.P, ¥ tryges) (method: bisection + secant)
P T 304.21 37353
Po 220.55 73.8305 896291 Voo (gusssy = (T Py ¥ame — caleulate x'until ZX.' -1=0
w Factor 0.3449 0.2236 0.0942 - ]
‘ 0 v
Mixing Rules
%) Temperature Pressure Wyster Dry(* a5
K] [bar] Contert [%] Campos a= sz[a(a(aj) (1-ky) b= Zx-b- Ky = gz + by T
3093 137.9 0.0855 RI T 7 i
2 344,26 53.95 0.6023 01 CPA Equation of State for Mixtures
B ET a 1RT dln
3 310.93 137.3 00855 n: - _ _15T (1+p Q)ZXEZU—XAJ
4 34426 58.95 05939 0: Vb VV+b) 2V 8 S LT L
v AiBy
5 327.59 103.42 0.23% 0 X =Y s e 2k
A i) — 18 _
B 346 94725 05202 0 C OV Ly Xy AN AR = b B gV || ) =
7 344.26 63.95 0615 1}
g 310.93 75.04 0.1706 0.6
9 310.95 48.2 0.191 059 _
« 0 v
7)
Objective Function
Water Content
W .
1 acp ymlc _ ygw 2 Variances
—_— ATHI6 JTHIGL @ Experimental Point
Ny, axpy2 ,
v © Fi
= (o - Fixed [ ABORT CALCULATIONS I

Figure 4.12: Main features of Multicomponent Mixture tab. 1) Input data for each
component. 2) Experimental data needed. 3) Thermodynamic model used in this
execution. 4) Button that adds manually a new component to the system. 5) Select
parameters and check the objective function of a specific set of parameters, without
optimizing. 6) Objective function to be minimized. 7) Diagnostics box, progress
bar and ’abort’ button (General Features). 8) Miscellaneous functions (General
Features).

Input Data & Thermodynamic Model

In this field, the user must input the following data:

e Name and parameters of all components in the mixture, with the first one

obligatorily being the water. Asin the Binary Mixture tab, if these components
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are available in the Component Data Bank, then just entering their names is
enough to fill the remaining fields of this table. The ’Add Component...’

button can be used to add as many components as the user needs.

e All available experimental temperatures, pressures, water content and dry
gas compositions. As already stated, the variance of the water content is

an optional variable;

e The binary parameters matrix and combination rule of each pair, accessed
when pressing the 'Binary Parameters...” button. Figure shows an

example of this interface.

o Parameters - o -
Component i Componant ka0 Kij1 Beta Eps/R Cross-Assoc
P P 1 (T-Indep.) (T-Dep.) Cross Cross Scheme
Water_Lit C02_Lit 0.1145 0 02 0 Only Bista spec. v
YWater_Lit H25 0.05 1] 0.1 0 Only Beta spec. v
YWater_Lit Methane 0.0028 0 0 0 Mo spec. v
O Co2_Lit H2s 0 0 0 i Mo spec v
O CO2_Lit Methane i i i i Mo spec. v
O H25 Methane 0 0 0 i Mo spec. v
Select/Unselect Al
| Calculate | | Show Variables Table | | Show Graphs P-yH20
Objective Function Average Deviation
1.56372E-002 8.5358 %

Figure 4.13: Interface formed when pressing the button 'Binary Parameters...” in
the Multicomponent Mixture tab. It is important to notice that, although the
parameters of all pairs are editable, only the ones containing water can be selected
to manipulate in the optimization. Also, the user can check the objective function,
the deviations and the graphs formed by the parameters to be input in this screen.

Finally, the thermodynamic model region in this tab has the sole purpose of
showing the EoS to the user, depending on the model chosen. The combining rules

Y

are selected in the 'Binary Parameters...” screen, as stated previously. Besides, the

details of the water content calculations are not shown in the interface due to its

complexity, as described in Section [3.1.3]

Objective Function

In this tab, the objective function has the most simple interface, consisting of
only one dynamic image, related to the Equation (3.38)).
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Analogously to the previous tabs, the variances can be inserted manually in the

input data or they can be equal to the respective experimental value of y20.

4.3 Output Features

These features are divided in three main groups: output results, plots and tables.

4.3.1 Output Results

These results consist of grids containing the main results of an estimation.

Depending on the case, there are some possible combinations, as shown in

Figures to [4.1§]

Optimization Results - Pure Component Parameters: Water

#

a(barl"2/mol™2) b (Limol) cl epg/R[K] 1000%heta ObjFunction  AAP% AAD% terations

Original Parameters
(Mo Bank Data Awvailable)

Calculated Pararmeters -

<8 0021136, |1.001936 ] 1] 8.5763E-002 | 7.0422 % |27.2B95 % -

P 1.3059308296679 |0.014716... |0.949697... | 1825.127... |BB.65164... | 9.3527E-005 | 0.2648 % | 0.7869 % 119
Re“”esd‘ﬁ;f&mm' 1 2856E572166595 | 0.014729. |1.036010.|1767.020. |95 63726 | 91491E-005 | 0.2252 % | 07863 % 306

Figure 4.14: Result’s grid of a pure component estimation of water using CPA
equation of state without penalization, showing parameters, objective function,
average deviation of each variable and number of iterations of each method. The
first line contains results for bank component parameters, if present. As there is
no 'Water’ component in the bank, it contains the original parameters instead,
calculated by critical properties and acentric factor (no association). The second line
contains PSO calculated parameters and the third line contains Simplex calculated
parameters.

Optimization Results - Pure Component Parameters: Water0. Penalization weights: w1 = 0.001; w2 = 0.001

r = . " # 15t Penalization 2nd Penalization
a(bar L 2/mol™2) b (Lmol) cl Obj Function  AAP TS . T
Original Parameters ; o
. o _ . :
(o Bank Dece Availeble) RN 0021136 0BE2 | 25318E-004  1.3409 9.3616E-021 1.2452E-009
CalcllstedEarametzic 5 73642139462017 |0.021757. |0.EE4246 | 42152E-005 | 05263 % 170 1.3588E-003 1.7087E-002

PS50

Fefined Parameters -

SIMPLEX 5.6B056720772715 |0.021343.. |0.656247 .. | 45397E-005 | D.5556 % 67 2.8671E-005 1.9622E-004

Figure 4.15: Result’s grid of a pure component estimation of water using SRK
equation of state + Kabadi-Danner « function. In this case, there is no "Water(’
component in the bank, so the first line is also calculated using original parameters.
The First and Second Penalization Term columns refer to Equation before
multiplying them to the weights.
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Otimization Results - Binary Parameter - CO2_Lit + Water_Lit

- epsiR Obj AAP :
Kij0 beta (Cross) (Crass) Functian %] # lterations
b Calculsted Parameters-PS0 | -0.201867311416005 |0.05772886016452... | 1001.625 | 8.8033E-002 | 241235 %
Refined Parameters - SIMPLEX | -0.176200089686273 |0.06856474070194... | 1001625 | S4451E-002 | 193608 % 58

Figure 4.16: Result’s grid of a binary parameter estimation of pair COy-Water by
pressure using CPA equation of state. In this case there are only the PSO and
Simplex results’ lines. It is important to notice that the column with values in bold
means that this parameter was not estimated, but calculated by a combining rule.

Otimization Results - Binary Parameter - Water_Lit + n-Hexane

) Ol AAHL AR ,
Kijd Funciion %] %] # terations
b Calculated Parameters - PSO 0.03927812233867... 25100E-001 | 19.5462% | 36.1081 %
Refined Parameters - SIMPLEX | 0.03927800846072... | 25100E-001 | 19.5462% | 36.1082 % 11

Figure 4.17: Result’s grid of a binary parameter estimation of the pair
n-Hexane-Water by liquid-liquid compositions metric using the CPA equation of
state.

r Simplex Results

Component i Component | Kij0 (T-Indep.) Erentzs Bl
Wyater_Lit COZ_Lit 0.46451845.. | 0.24123... FlEy A
Wyater_Lit H25 0.00733364... |0.16672... | 1001625 |
Wwater_Lit Methane Petrox  |-0.01667361... 0 0

COZ_Lit H25 a a 1]
Co2 Lit Methane Petrox 0 0 0 -
Objective Function Value Average Deviation (AAY"%)
1.17 49E-002 7.0471 %

| Plats: Function Evaluations |

| “ariahles Table |

Figure 4.18: Result’s grid of a binary parameter estimation of a gas composed by
water, COs, HyS and methane by the water content metric using the CPA equation
of state. This consists of a Simplex optimization procedure from a predefined initial
guess.

It is important to mention that the results presented in Figures to are
merely explicative. The recommended procedure is detailed in Section [3.4. The
binary parameters’ initial guesses are the results of estimation using the respective
binary mixtures, calculated by pressure, if their values are not available in the

literature.
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4.3.2 Plots and Reports

ThermOpt contains various graphic analyses to help the user visualize the results.
Although many of the following examples have been taken from pure component

cases, most of them can also be applied to mixtures.

PSO Results

In Chapter |3| it was shown that all of the intermediary values of the objective
function are saved in arrays x;,; and S;,;. These values allow ThermOpt to generate
scatter plots of each manipulated parameter, such as in Figure |4.19, Thus, the user
can check if there are multiple local minima and adjust the bounds to execute a
more efficient optimization. Also, these plots are coloured by a heat map, varying
from red (highest objective function values) to blue and then black (lowest objective

function values).

Objective Function Values

PSO Method - ObjF Evaluations .9-9955004
0.001 -
-
= " ) 'f. - -. ‘!- u 6.401E004

n " "a " . -
0.0008 | R I Y L -
u ] u ]
c j - [T
o - m Ng q " T u
© = u B L 3.706E.004
c  0.0006
S
L
(0]
=
O 0.0004-
Q
o
0 1.909E 004
0.0002 g
O T T T T 1.101E.004
1.15 1.2 1.25 1.3 1.35 14

Parameter a0 [bar.L"2/mol"*2]

1.01MED04

Figure 4.19: Example of scatter plot. Parameter ay versus objective function
evaluations calculated for water using CPA equation of state. All graphics can
be zoomed freely to analyse local minima region. The maximum objective function
value can be fixed, manipulating the heat color map to make the visualization easier.

Another possible PSO result plot is the parametric analysis, which is similar to
the scatter plot. The difference lies on the fact that, in this case, both x-axis and
y-axis are composed of manipulated parameters. Figure4.20/shows an example from
the same calculation as Figure [£.19]

The parametric analysis is useful to perform statistical studies. The maximum
value of the objective function, to be used as a criterion to select the parameter sets
calculated from the PSO, can be specified or calculated from statistical tests such

as chi-square or t-student.

29



Objective Function Values

Parameter Analysis S
0.02
6.401E-004

0.018
5
% 0.016 3.706E-004
Z - -
by T T '(Hr-‘f_,:% moLom
Q
£ 0.0144
o
Of? 1.909E-004
0.012
0_01 1.101E.004

1.15 1.2 1.25 1.3 1.35 14
Parameter a0 [bar.L*2/mol*2]

1.01MED04

Figure 4.20: Example of parameter analysis. Parameter ay versus b, calculated for
water using CPA equation of state. This plot shows clearly that possible solutions for
the parameter b lie on a narrow range, being in agreement with KONTOGEORGIS
et al|(20064).

Statistical Report

As mentioned earlier in this Section, statistical analyses can be performed from
the values stored in z;,; and S;,;. From them it is possible to predict bounds for the
estimable parameters inside which the optimized value would probably be. Thus,
the following calculations were implemented for the Pure Component Tab regarding

the statistical report:

e A confidence interval analysis, in which the chi-square test (SCHWAAB and
PINTO)| 2007) was implemented. The user inputs the desired confidence

interval C'I, and the program calculates the maximum value of the objective
function S,,4., as in Equation (4.1)):

x2(Prob)
Te

Sinaz = (4.1)

Where x?(Prob) is the value of the chi-square expression which results in a
probability Prob = 0.5(1+ C1), and n, is the number of experimental points.
This analysis can only be done when the objective function contains only one
term (saturation pressure) and all variances are equal. The program searches
in the PSO intermediate values with S <= 5,,,, and reports the parameters’

limits and deviations.

e A maximum error analysis, when both terms of the objective functions

are active. This analysis takes advantage of the fact that pure parameter
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estimations in the literature usually consider correlated data such as
DIPPr (DIADEM, 2004)), all of which reporting maximum deviations for each
expression. SANTOS et al.| (2015¢) discussed in their work an expression for
the objective function when the user knows the maximum errors for each
variable. Applying them to the Equation , Equation (4.2) is formed:

_ 2 2
Smaz - Errmax,P + Errmaw,p

(4.2)

where Errpeep and Errp,.,, are the maximum deviations for saturation
Thus, it has been

to generate a similar report for this generalized case.

pressure and liquid density, respectively. made possible

Figure presents the layouts of both reports.

ol Statistical Analysis Report * [Untitled.rtf] = | & ) ol Statistical Analysis Report * [Untitled.rtf] = | E ||

File... + Clase

Statistical Analysis Report - Pure Component Case
Chi-square Distribution

File.. = Close

Statistical Analysis Report - Pure Component Case

Maximum Experimental Error Evaluations:

Component: Water_Lit

| > Pressure =1.000 %
EoS: Soave-Redlich-Kwang, Alpha Function: Kabadi-Danner

> Density ~ =1.000 %

Estimated Paramaters

30 [bar L'2/mob2] b [Limol] cl Component: Water_Lit

E0S: Soave-Redlich-Kwong, Alpha Function: Kabadi-Danner
# of Experimental Data = 46
Degrees of Fresdom = 43 Estimated Parameters
a0l [bar. L"2/mni2] b [L/mol] cl
Critical Temperature =647 13 K

Reduced Temperature Range: | 0.45000 | 0.90000 | # of Experimental Data = 46

Degrees of Freedom = 43

Parameter Limits:

Critical Temperature = 64713 K

| MINIMUR | OPTIMAL | MAXIMUR | Reduced Temperature Range: | 0.45000 | 0.90000 |
Parameter a0 [bar L2/mal] | 740426 1813197 |8.75121 |
Parameter b [Limol] |0.0332316  |0.037321 |0.04143 | Parameter Limits:
Parameter ¢l 0767925 |0B77439  |105570 |
| MINIMUM | OPTIMAL | MAKIMUNM |
| MIN (OPT) | MAX Parameter a0l [bar.L2/mob2): | 4.57918 | 458768 1459813 |
ObjF: | 9.BE-008 | 1.38940 | Parameter b [Lmol] 100157099 |00157447  |00157782 |
AAPY: |03B07 % [214121% | Parameter c': 10560996 | 0862715 | 055484 |
I MIN (QPT) | MAX |
ObjF: | 0.000194 | 0.000200 |
AAP%: 109361 % (10011 % |
AAD%: | 06746 % |0.75671 % |

(a) (b)

Figure 4.21: Examples of statistical reports generated by ThermOpt regarding
a parameter estimation of water using the SRK EoS with the Kabadi-Danner o
function. (a) Chi-square test with confidence interval equal to 95%. (b) Maximum
error analysis with Errya. p = Errpes , = 1.0%.

Simplex Results

Saving intermediary values of the objective function into x;,; and S;,; also made
it possible to generate analogous graphics for the Simplex method (Figure .

Also, even though this is a result of a refining’ of the PSO method, it is possible
the final solution to be far from the initial guess, depending on the expansion factor

of the Simplex selected by the user.
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Simplex Method - ObjF Evaluations

0.000102

0.0001

9.8E-054

9.6E-05+

9.4E-05+

Objective Function

9.2E-05+

gE'OS T T T T
1.28 1.29 1.3 1.32 1.33 1.34

Parameter a0 [bar.L"2/mol"2]

Figure 4.22: Parameter ag values versus the objective function, calculated for water
using CPA EoS, in a Simplex method executed just after the PSO from figures [4.19

and .

General Results

Besides intermediary results, it is possible to view graphics regarding the final
solution, such as phase equilibrium variable deviations [%], saturation curves and

experimental versus calculated variables. Figures to[4.27 show examples of each
case.

Water_Lit - Pressure Deviations Water_Lit - Liquid Density Deviations
0.6 25
"
"
— 044 = s .
§ ™ ....llI... § 154 [ ]
c 029 " L] c . " u
s u " - o - [
= - = P=4 14 u
@© 0 ™~ L] L] g [ -
3 . " . 3 054 " .
O ol . T . a . .
% - '-....-' . % 0 . .l
© © L .I
o 041 - 9 -05- = .
z n é ", l..
< 6] R L LT
L]
-0.8 T T - : -1.5 T T - .
290 350 410 470 530 590 290 350 410 470 530 590
Temperature [K] Temperature [K]
(a) (b)

Figure 4.23: Pressure (a) and density (b) deviations [%] for water calculated by
CPA equation of state. Experimental data from DIPPr (DIADEM, 2004).
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Figure 4.24: Experimental versus calculated values of pressure (a) and density

(b) calculated for water using CPA equation of state. Experimental data from
DIPPr (DIADEM, 2004)).

Pressure [bar]

100

— Calculated
804 ®  Experimental

60

40

20

0.4 0.5

0.6 0.7 0.8 0.9

Reduced Temperature Tr

Figure 4.25: Saturation curve — reduced temperature versus pressure — calculated
for water using CPA equation of state. Experimental data from DIPPr (DIADEM,

2004).
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LLE Results - Water_Lit (I) + n-Hexane (ll)

1

° EXP Data-linll
0.1+ Calc Data-1linll |
x ExpData-Ilinl
______ Calc Data-Ilin |
5 0.014
R
3]
o
w 0.0014
@
s )
I .
T .
1E-05- o
* _,,,..,_.,-,-,.,- & x
-
1 E-06 | ‘ ‘
300 350 400 450 2

Temperature [K]

Figure 4.26:  Chart reporting liquid-liquid equilibria compositions versus
temperature of the binary mixture n-Hexane-Water, calculated by CPA equation
of state with k;; = 0 and water parameters from KONTOGEORGIS et al. (1999),
comparing to experimental data (TSONOPOULOS and WILSON|, [1983)).

Water Contentin CO2 - T = 348.15 K

2

‘| B Experimental

I‘ —— Calculated
= |
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O-: 1.5 |I n m
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© 1 \ u
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0.5 T T T
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Figure 4.27: Chart reporting dew pressures versus water content of the mixture
COy-Water, calculated by CPA equation of state using k;; = 0 and pAiBi =
Buwater = 0.0692, with water parameters from KONTOGEORGIS et al.| (1999)) and
T = 348.15K. Experimental data are from VALTZ et al.| (2004).
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4.3.3 Tables

For each case described in Section there is a table with all values used
or calculated. They can be promptly copied to an Excel sheet, for example.
Figure to show the tables corresponding to aforementioned cases for the

pure component.

P50 Method - Variables Table (16100 Total Function Evaluations)
Pararmeter a0 Parameter b Parameter ¢l Pararmeter Parameter Ohjec?ive it
[bar L*2frmol2] [Lirnol] eps/R [K] 1000%*beta Function
4 1. 0.0121663 112274 205616 132.4835 0.742463
1.53274 0.0134864 0.852059 1624.58 55,2057 0.944251
1.85947 0.0112472 1.445558 1709.35 90,5529 0.740895
1.53522 0.0132857 0.65965 1518.35 359655 3.34756
1.36695 0.0103247 0.860243 219261 110.484 1.11894
1.73299 0.0124419 0.735632 1573.82 125,796 0183115
1.53103 0.0195223 1.02845 1910.32 75,3601 0.115505
1.7861 0.0127916 1.1397 1939.76 12162 0.820022
1.56043 0.0120385 1.24624 2005.39 85867597 0772712
1.29103 0.0109323 0.585827 1760.41 132.866 031079
1.25347 0.0144336 1.23445 184222 11.831 0192573
1.53421 0.01007 16 1.40564 188275 55.6464 0.844443
1.00667 0.0107029 0.965433 1801.91 9736 0.1753
1.1664 0.0101808 1.30883 19758.09 148.91 1.07355
1.65285 0.0119333 0.879286 211141 86.8149 0.865726
1.42022 001914 0.681573 2060.13 54.34 0.0906915

Figure 4.28: Variables table for the PSO results case mentioned on Section [4.3.2]
Number of "Total Function Evaluations’ stands for the number of converged objective
function evaluations.

Simplex Method - Variables Table (733 Total Function Evaluations)
Pararneter a0 Parameter b Parameter 1 Parameter Pararmeter Ohjec?ive i
[barL"2/mal*2] [Lirmal] eps/R (K] 1000%beta Function
1.28614 0.0145196 1.22441 1678.75 14.707 0.000101075
1.28614 0.0148196 122441 1678.75 14707 0.000101075
1.28715 0.0148196 1.22382 1678.44 114682 0.000101049
1.28715 0.0145196 1.22382 1678.44 114682 0.000101049 =
1.28715 0.0145196 1.22382 1678.44 114682 0.000101049
1.2887 0.0145218 1.22284 1678.09 114 .66 0.0007100252
1.2887 0.0148216 122284 1678.09 114.66 0.000100952
1.2887 0.0148216 122284 1678.09 114.66 0.000100952
1.25104 0.0145239 122165 1677.6 114 547 0.0001002659
1.29125 0.0148214 122122 1677.41 114.585 0.000100254
1.25381 0.0145263 1.21992 1677.02 114,474 0.000100545
1.258539 0.0148319 12170 1675.9 114,416 0.000100764
1.25839 0.0148312 1.21701 1675.8 114,416 0.000100764
1.25839 0.0148312 1.21701 1675.8 114,416 0.000100764
1.30031 0.0145302 121539 1675.2 114.358 0.000100757
1.30445 0.0148371 1.21352 1674.51 14,229 0.0001007 44
1.30617 0.0145366 1.21225 1673.89 114.243 0.0001007 43

Figure 4.29: Variables table for the Simplex results case mentioned on Section [4.3.2]
Again, number of "Total Function Evaluations’ stands for the number of converged
objective function evaluations.
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Variables Tahle
Temperaturs [K] PExperimentaI Calculated Pressures Expe_ri_mental Liguid Cal;glated Liguid it
ressures [bar] [bar] Densities [kmalfm3] Densities [kmalfm3]
- o 0.0207214 0.0208276 55,3499 56 5075
297 B8 0.0308256 0.0309177 55.2237 56.248
304.151 0.0449824 0.0450404 55.0892 55.9862
310,622 0.0644724 0.0644702 54,9463 557218
317.094 0.0908701 0.05078 54,7948 55.4547
323.565 0.126083 0.125864 54,6346 55.1848
330.036 0.172392 0.172001 54,4655 549117
336.508 0.232457 0.231891 54,2876 54,6354
342.979 0.309512 0.308657 54,1006 54,3557 =
349.45 0.407089 0.405938 53.8043 54.0724
355.922 0.529361 0.527906 53.6987 53.7851
362.393 0.681016 0.679229 53.4836 53.494
368.864 0.867316 0.86521 53.2587 53.1985
375.33 1.0941 1.09174 53.0241 52.8987
381.807 1.36788 1.36536 527794 52.5942
388.278 1.69571 1.69316 52.5244 52.2848
394.749 2.08534 2.08297 52.2591 51.9704
401.221 2.54514 2.54331 51.9831 51.6506
407 532 3.08415 3.08316 51.6963 51.3253

Figure 4.30: Variables table for general results (phase equilibrium variables) case
described in the Section [4.3.2}

4.4 General Features

4.4.1 Diagnostics Region
It consists of the following components:

e A rich text-box containing messages about the calculation progress, or

intermediate values of the objective function if selected on ’Options’ window;
e Progress bars exhibiting in which iteration the program is compared to total;

e An ’Abort Calculations’ button for emergencies. It is possible to click on this

button to stop the execution and input the right data if a mistake is identified.

This region is visible in all tabs, either pure or mixtures, input or output.

4.4.2 Miscellaneous Region

This menu consists of general commands. It appears in all tabs of the program.
They are:
Load/Save

With commands, one can load or save the input data from or to a .txt file. In the

current version, these files have specific formats, with words separated by tabulation
("Tab’ button of keyboard), as can be seen below. Also, Figures to show

examples of the input files for each case.
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e For a pure component (the created file will be saved in "Pure’ folder):
Name [Component name]
unitT [Temperature units — C, F, K or R. Default: K]
unit P [Pressure units — kPa, Pa, atm or bar. Default: bar]
Tc [Critical temperature value in unitT]
Pc [Critical pressure value in unitP)]
w [Acentric factor value]
Texp Pexp Rhoexp

[Experimental temperatures] [Experimental pressures| [Experimental densities

(currently fixed in kmol/m?)]

% Experimental data for component water| -
% Ref: DIPFPr (DIADEM, 20043

% Trimind = 0.45%; Trimax) = 0.90

% ErrMax(Psat) = 0.2%; ErrMax(rhosat) = 1%

Marme wWater_Lit

unitT 4

unitk kPa

TcC 647,13

PC 22055

W 0.3449

Texp Fexp Rhoexp |
291.209 2.072135985 55.34992 3
297.680 3.082561897 55.22374

304,151 4.498241975 55.089273

310.622 6.447242083 54.94627

317.094 9, 087006008 54, 79475

323.565 12.60829771 54. 63455

330.036 17.23915043 5446554

336,508 23.24874717 5428759

342.979 30.951160472 54.10056

349,450 40, 708884135 53.90432

355.922 52.9361015 53.69870

362,393 68.10163545 53.48357

i6E. 864 BE6.73155261 53.25874

375,335 109.411388 53.02407

381.807 136.7879817 52.77935

JBE.278 169.5709252 52.52442

394,749 Z08.5336258 52.25906

401,221 254.5140101 51.98308

407,692 F08.4148925 51.69625 -

Figure 4.31: Example of input .txt file of a pure component. Note that experimental
values can be copied directly from an Excel sheet, and any text written after the
character "%’ will not be read, being used to comment the data.

e For binary pairs with VLE calculations (the created file will be saved in

'Binary’ folder):

Componentl [name of component 1 — if it is water then it must end with "*’]
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Component2 [name of component 2 — if it is water then it must end with ]
unitT [Temperature units — C, F, K or R. Default: K]

unitP [Pressure units — kPa, Pa, atm or bar. Default: bar]

VLE

Texp Pexp x1 y1

[experimental temperatures] [experimental pressures] [experimental liquid

composition of component 1] [experimental vapour composition of component
1]

% ~
# WLE between CO2 and water. Ref:

4

# Yaltz, A.; Chapoy, A.; Coquelet, C.; Paricaud, P.; Richon, D.

% Yapour-liguid Equilibria in the Carbon Dioxide-Water Swstem,

% Measurement and Modelling from 278.2 to 318.2 K.

# Fluid Phase Equilibria, w. 226, 2084, pp. 333-344.

4

Componentl Co2 Lit

Component? Water Lit

unitT K =
unitP  bar

¥LE

Texp Pexp xl wl

278.22 5.918 ©9,08535 ©.99385

278.22 7.558  @.20852 &.993%

278.22 1¢.16  @.91111 &.9993

288.26 4.960  6,0928401 6,9959

288.26 11.93 ©.22367 ©.9936

288.26 19.41 89.91434 98,9991

298.28 5.ed@ @.909314 8.9935

298.28 19.97 9.92614 &.99:2

298.28 14.95 Q,90387 @.9972

295.28 24.83 @.@135%6 ©.9936

298.28 34,91  @.91772 @.9937

38,2 5.799 9,00275 8,994

3ge.2 18.8% @.20856 ©.9966 “

Figure 4.32: Input .txt file to a binary pair CO, - water with VLE data. Note that
any text written after the character ‘%’ will not be read, being used to comment
the data.

e For binary pairs with LLE calculations (the created file will be saved in 'Binary’

folder):

Componentl [name of component 1 — if it is water then it must end with ]
Component2 [name of component 2 — if it is water then it must end with ™|
unitT [Temperature units — C, F, K or R. Default: K]

unitP [Pressure units — kPa, Pa, atm or bar. Default: bar]
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LLE
Texp Pexp xI-II xII-1

[experimental ~ temperatures] [experimental  pressures] [experimental
composition of component 1 in phase rich in component 2| [experimental

composition of component 2 in phase rich in component 1]

There is no need to insert each pure component’s parameters because

ThermOpt will look for it inside the Component Data Bank, if available.

X

%

% LLE between water and n-hexane. Ref:

¥ Tsonopoulos, C.; Wilson, G. M,

% High-Temperature Mutual 5olubilities of Hwydrocarbons and Water.

Part 1: Benzene, Cyclohexane and n-Hexane.
AIChE Journal, w. 29(6), pp. 998-999, 1983.

38 58 B0 B2

Componentl Water_Lit

Component?2 n-Hexane

unitT K

unitP  bar

LLE

Texp Pexp #I-IT #IT-T
316,93 &, BEEHHE 2,336k -6
313.15 8.4537 1.23E-@3 4,356k -6
313.15 1.17E-83 d.975E -6
366.43 g, BEEEEE 5.736E-e6
367,55 5.95E-83 5.356E-86
373.15 3.482a 7.99E-@3 6.218E -&6
422,84 &, BEEHEE 2.7 1BE -85
423,15 12.548 3.11E-@&2 3.399E -85
473,15 35.168 1.18E-&1 l.SSBE—@M

Figure 4.33: Input .txt file to a binary pair water - n-hexane with LLE data. Also,
as pressure is not an obligatory variable, it is acceptable to have gaps in this field.

e For multicomponent mixtures (the program created file will also be saved in

"Multicomponent’ folder):

Components [Name of water component — it must end with "*’] [Name of dry

gas component 1] [Name of dry gas component 2] |...]
unitT [Temperature units — C, F, K or R. Default: K]
unitP [Pressure units — kPa, Pa, atm or bar. Default: bar]
Texp Pexp yH20% mol-frac-drygas

[Experimental temperatures] [Experimental pressures| [% of water in gas]

[Composition of dry gas in the same order as above]
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Components Waterg* CO2 H2% Methane
unitT K

unitP  bar

Texp Fexp yH2O% mol frac_drygas

318.93 137.989 9.8855 0.1188 0.0088 6.89%968
344,26 BE.95 B.6E23 B.1188 0.0888 6.89688
318,583 137.%98 0.8855 0.2608 00,0008 0,36006
344.26 BE.95 B.5939 9.2008 0.0008 @.3088
327.59 183.42 9.2338 0.0008 0.09888 8.9268
344,26 94,25 B.5262 B.e888 @8.2758 8,725
344,26 BE.95 B.6158 0.0888 6,1706 06,3368
3189.93 75.84 9.1786 0.6088 0.1888 @.3088
318.95 48.28 @.1918 @.5955 @.1888 @, 36815
318.95 7h.@@  @.1718 B.5988 B.89984 &.3d36
388,35 E3.68 2.2008 Q.68 &,88937  8,2968
388,35 129.39 1.90@@ @.6833 B.9981 @.29585
38@.35 17178 1.799@ @.6@21 B.@9988 @.2988
318.95 B2.68  B.2148 @.1742 B.5838 8.3219
338.75 84.30  9.8668 8,1497 &.6615 @, 1888
38@.35 75.6@  2.530@ @.1137 8.7654 8.1289
449,85 118,88 9.3888 @.1189 @.76@6 @, 1285
449,85 118.88 9.5888 ©.6151 ©.89936 ©.2914
449,85 173,18 8.4800 ©0,6031 ©,09951 @.BBIﬂ
< 1 >

Figure 4.34: Input .txt file for a multicomponent mixture of water, CO,, HyS and
methane.

As a suggestion for future works, new and more efficient ways of saving input

data can be implemented.

Options

This button contains general options of the optimization solver and bounds
to all estimable parameters. Figures shows the current visualization of the
optimization methods’ internal parameters, as explained in Chapter [3]

However, the Simplex method needed a new option, which is the size of the
initial cluster formed, in order to minimize the chances of non converging the
thermodynamic calculations, as well as to set a degree of refining related to the
initial guess (which was the solution of a PSO method). In order to find a solution
obligatorily next to the initial point, the option 'Do not go past Initial Cluster’
was implemented, substituting the previous bounds of all variables when checked.
On the other hand, when unchecked, the initial cluster formed cannot violate these

bounds.
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PSO Sabver | SIMPLEX Sulver | General Options | Bounds | PSO Salver| SIMPLEX Solver | General Options | Bounds
[ Hybridize PS0 with SIMPLEX Method
Max # of iterations 1000
Population Tolerance Tolerance 1 0E007
iterati Absalute 0.0007100
Max # of iterations 2 . Initial Cluster Size 4. 10000 % from initial point
4 of individual Relative 0.000100
o ndmeuats El [C] Wake Initial Cluster replace bounds
M”;#Uf Optimurm 10 Intarnal Factars
ermanence
Reflection Factor Alpha 1.0000
Contraction Factor Beta 0.50000
Internal Factors
Individual Factor c1 1.0000 Inertia Factor wi 0.90000 Expansion Factor Gamma 20
Global Factor c2 0.10000 Inertia Factor wF 0.10000
Reset to Defaults
Reset to Defaults

(a) (b)

| PSO Salver | SIMPLEX Salver | General Options | Bounds |

Thermodynamic Solver

Abgolute Tolerance 0.000010
Relative Tolerance (0.000100
Max # of iterations a0

[[] Show Intermediate ObjF Evaluations on Screen

[C] Estimate Using Only Half Experimental Data

()

Figure 4.35: Solvers in the 'Options’ interface of ThermOpt. (a) PSO method
solver options. (b) Simplex method solver options. (c¢) General options, such as
thermodynamic tolerances.

As for the option 'Show Intermediate ObjF Evaluations on Screen’, it is useful
to check in real time the progress of the optimization, and "Estimate Using Only
Half Experimental Data’ can be used in cases where there is a vast quantity
of experimental data. In these cases, it is interesting to calculate half of the
experimental points, alternating which will be calculated or ignored, and in the
end calculate the deviations with all of the points to check whether or not the EoS
is predicting them correctly.

In addition to that, Figure [4.36] shows the visualization of all the estimable
parameter bounds of the program. In the current version, for multicomponent

mixtures, all estimating binary pairs have the same bounds, defined in this tab.
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P50 Salver | SIMPLEX Salver | General Options| Bounds |

Lower Upper
Bounds Bounds

4 Parameter al [bar L"2/mal*2] _ -

Parameter b [Limal] - -

Parameter o - -

Parameter eps/R [K] 100.00 3000.00

Parameter 1000*beta 1.0000 1000.00

Binary Constant Parameater Kij0 -1.0000 1.0000
Binary T-dependent Pararmeter Kijl - -

Binary CPA Parameter beta_Cross 0.001000 1.0000

Binary CPA Parameter eps/R_Cross 100.00 3000.00

Pure Component Critical Region Penalization

Weight wil Weight wl
0.010000 0.001000

Figure 4.36: Estimable parameter bounds inside the ThermOpt options.

Run...

This button contains all the main execution commands:

Pure component estimation.

Binary parameter estimation by pressure or liquid composition.

Binary parameter estimation by water content (multicomponent mixture).

Pure component + Binary parameter estimation by VLE + LLE methodology.

e Pure component penalization analysis.

Pure component PSO histogram generator.

The former three commands are just direct estimation calculations, but the latter
three commands are special analyses implemented to improve the results of the pure
component parameter estimation procedure.

The combined pure component + binary parameter estimation by VLE + LLE
methodology executes the calculation according to the Section [3.3.3] There is
no dedicated interface to this procedure yet, so after the calculations ThermOpt
automatically opens a table with all the results.

Penalization analysis is a set of 'Pure component estimation’ executions with
penalization turned on, varying the weights in a mesh. See Chapter [5| for results of

this analysis.
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PSO histogram generator is a feature where, for a specified input data, a number
of independent PSO executions are performed in order to check if the solutions are
tending to the same region. It is an efficient way to check if its internal parameters
(¢1, c2, wo, wy) are well calibrated and if the method is stable. Figure shows

an example of histogram.

PSO Analysis - Histogram

300

250

200+

150

Frequency

100

50+

. - I

4575 4.585 4.595 4.605
Parameter a0 [bar.L"2/mol"2]

Figure 4.37: Example of histogram generated, analysing the parameter ag of water
calculated by SRK equation of state and Kabadi-Danner « function. The optimal
solution in this case lies on ag &~ 4.587 bar.L?/mol?.

Component Data Bank

The last feature of ThermOpt to be described in this work is a window
containing all estimated parameters for pure components by the user. When saving

pure component data, there is a sub-button called ’Output’ inside the menu (see
Figure [4.38)).

Save... v| Options  Run... = Component Data Bank
| Pure.. Input ~ Alt+Shift+3

Elinarg,f.l.. @u_t A_HB

Figure 4.38: Option to save results into the data bank.

This command saves estimated parameters and the equation of state used in a
txt file in the folder named 'Bank’, with the following format:

[Name of the component — if it is water then it must end with "]
[Critical temperature in K]

[Critical pressure in bar]
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Acentric factor]
Parameter ag in bar.L?/mol?]

Parameter b in L/mol|

[
[
[
[Parameter ¢]
[Parameter /R in K if CPA, or parameter ¢y if cubic]
[Parameter 10005 if CPA, or parameter c3 if cubic]
[CPA association scheme, if needed|
The name of the file will be '[Name of the component - does not need to be the
same as the file]_[Equation of State used].txt’. An example is shown in Figure [4.39

by the file named "Water CPA..txt’.

Water* #
BAF. 13

228,55

|, 3445

1. 1772848279607 8
B840 7 2E2282370
1.1916581483659E96
1765.73451114419
185 . 676662294484
A

Figure 4.39: .txt file to the data bank, named "Water CPA.txt’.
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Chapter 5
Results and Discussion

In this Chapter, the results obtained in this work will be discussed: a PSO
performance analysis; penalization analysis related to the critical point behaviour
of water using the SRK EoS; pure parameter estimation of polar components from
saturation pressure and liquid density, with subsequent validation using liquid-liquid
equilibria data to select a parameter set for water; a binary parameter estimation
using the metrics described in Chapter[3} and finally the application to a dehydration

unit using MEG, comparing the optimized results with commercial simulators.

5.1 PSO Performance Analysis

Before applying the ThermOpt to real systems, it is necessary to perform a
series of procedures to evaluate it. The first study conducted in this work was
the evaluation of the thermodynamic calculations’ speed. After each execution, the

diagnostics text-box displays the time elapsed, as shown in Figure [5.1}

Funning F50 Methad. .
F20 Method campleted.
Frogram completed in 0.24961 seconds.

ABORT CALCULATIONS |

Figure 5.1: Diagnostics text-box showing a result for a parameter estimation
procedure by the PSO method.

In order to perform such study, a PSO method was executed with specific options

to certify that it would use up a certain amount of iterations, so that tolerance values
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and internal factors can be ignored in all of the executions. As a consequence,
the program performs a fixed number of thermodynamic calculations, allowing this
analysis to be carried out. An example of these options in the interface is presented
by Figure |5.2

| PSO Solver SIMPLEX Solver [ General Options l Buundsi

Hybridize PSO with SIMPLEX Method

Population Tolerance
Max # of iterations Absolute 0.000100
# of individuals 1 Relative 0.000100
Min # of Optimum
Permanence
Internal Factors
Individual Factor c1 1.0000 Inertia Factor w0 0.90000
Global Factor c2 0.10000 Inertia Factor wF 0.10000

Figure 5.2: PSO options used for performance analysis for a case with 100 max
iterations and 1 particle per iteration. The minimum number of iteration in optimum
permanence must be the same as the maximum number of iterations in order to make
the solver ignore the tolerances.

The pure component used to perform this analysis was water, whose experimental
data was taken from DIPPr correlated data (DIADEM, 2004)), using 100 points from
its triple point to the critical point. The objective function used was the on defined
by the Equation , with the pressure term only and without the penalization
effect (Fy = 0), using the CPA EoS.

In this Section, as the optimized parameters’ values are not relevant, the focus

was on the time elapsed. For each case in Table the execution time presented
was calculated using the mean of three successive executions. Also, the computer

used in this test has the following features:
e Processor: Intel Core i7 2.90 GHz
e RAM Memory: 8 Gb
e Operational System: Windows 7 64 bits

It is important to notice that the calculations using the CPA EoS include a
internally implemented stability analysis in order to check if the desired phase is

found, contributing to the time consumed.
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Table 5.1: PSO performance analysis results. Each objective function (ObjF)
evaluation contains 100 saturation pressure (PSAT) calculations due to the number
of experimental data inserted.

#Particles #0bjF #PSAT

#lterations / Tteration Evaluations Evaluations ¢ s
10 1 10 1.0 x 10® 0.26
10 10 100 1.0 x 104 2.17
50 10 500 5.0 x 10* 8.72
100 10 1000 1.0 x 10° 16.88
50 20 2500 2.5 x 10° 44.19
100 50 5000 5.0 x 10° 83.46
100 100 1.0e4 1.0 x 10° 169.27
200 100 2.0e4 2.0 x 10° 315.76
500 100 5.0e4 5.0 x 106 742.72

Thus, the results from the Table show that ThermOpt can do about 5000
thermodynamic calculations per second in the tested computer (#PSAT Evaluations
/ Time), which is a potential to do long studies such as the calculations described

in the following sections.

5.2 Pure Parameter Estimation

In this Section results for pure parameter estimation will be presented for: water
(with and without penalization effect), ethylene glycol (MEG), diethylene glycol
(DEG), triethylene glycol (TEG) and 1,2-propylene glycol (PG).

5.2.1 Penalization Analysis for Water (SRK EoS +
Kabadi-Danner « Function)

As explained in Chapter [3] it was decided to insert an optional penalization term
to the objective function described in Section [3.3.1] The goal of this implementation
was to check the tendencies of the parameter sets obtained and to select the one
that resulted in the lowest deviations from the low temperature desired up to the
critical point.

In this work, the penalization analysis was performed as a series of executions
of the parameter estimation procedure according to Equations and
varying the weights w; and ws, forming a mesh. Each solution is then stored into
an array in order to show their plots after these executions.

To illustrate this study, this analysis was conducted for water. The main purpose

was to investigate the behaviour of this component using the SRK equation of state,
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along with the Kabadi-Danner « function to improve the results. Also, only the
pressure term was applied in the objective function, besides the penalty term itself,
as can be seen in Figure 5.3, Moreover, Figures to show the solver options
and Table the variables’ bounds applied. Table summarizes the experimental
data used and Table the weights’ values.

Input | Qutput

Pure Component ‘Bmary Mixture I Multicomponent Mixture

Input Data Thermodynamic Model
Component Name
Is Water Equation of State Alpha Function
Soave-Redlich-Kwong v Kabadi-Danner v
Critical Temperature [K] Critical Pressure [bar]  Acentric Factor w
EZE [ 2085 ] [IETE) Pl BT _mnla D) I Water alenT,) = [1 + ex(1 — TP
. . ~ V—b V(V+d) v * i
emperature ressure = _ 8512
# = s = —
[ [bar] [] Fix a0l / b Parameters Elsei aley, T,) = [1+ e,(1 - £)]
1 E’I’ 0.006105...
2 279.631 | 0.009660...
3 286103 | 0.01492849
4 292574 | 0.022570...
5 299045 0.033436
6 305517 | 0.048602...
7 311.988 | 0.069408...
Objective Function Parameters to be Estimated
Pressure Density (press to activate) Qg b € Calculate Objective Functi
Hoxp 2
calc exp
1y (&)
N, expy 2
=G

Critical Region Penalization
2 z

%A (6}’) V2 (GZP)

P \av T, P.\aV? T

Variances h ‘
@ Experimental Point O Fixed ‘

+ | Wi w3

ABORT CALCULATIONS

Figure 5.3: Input interface in the case studied in the Section m
Thermodynamic Solver
Absalute Talerance 0.000010

Felative Tolerance 0.000100

Max & of iterations 50

Figure 5.4: Thermodynamic options for the case studied in the Section m
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SIMPLEX Solver | General Options | Bounds

Hybridize P50 with SIMPLEX Method

Fopulation

Taolerance
hax # of iterations 100 Absolute 0.000100
# of individuals o Relative 0.000100
bdin # of Optimum 10
Fermanence
Internal Factors
Individual Factar ¢ 1.0000 Inertia Factar wl 0.90000
Global Factor c2 0.10000 Inertia Factor wF 010000

Figure 5.5: PSO options for the case studied in the Section m

Max # of iterations 4000

Taolerance 1 0E-008

Initial Cluster Size 4+ 10,000 % from initial point

bake Initial Cluster replace bounds

Internal Factors

Reflection Factor Alpha 1.0000
Contraction Factor Beta 0.50000
Expansion Factor Gamma 2.0000

Figure 5.6: Simplex options for the case studied in the Section .

Table 5.2: Parameter bounds for the case studied in the Section 5.2.1l These values

were obtained by trial and error in order to select bounds that contain all of the
possible solutions achieved in this Section.

Parameter Lower Bounds Upper Bounds
ag [bar.L? /mol?| 4.0000 8.0000
b [L/mol] 0.01500 0.03500
¢ 0.5000 1.0000
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Table 5.3: Input summary for the case studied in the Section

Data Type Saturation Pressure
Penalization Yes
Source DIPPr Correlation (DIADEM, 2004)
Variance Experimental Points
Tk Range 0.42 - 1.00
ATy 0.01

Table 5.4: Minimum and maximum weights’ values used in the Section [5.2.1], as well
as their variation between each execution (Aw).

Weight Minimum Value Maximum Value Aw
wn 0.000 1.000e-3 2.500e-5
Wy 0.000 1.000e-3 2.500e-5

For each value of w9, wy was varied by a fraction of its range as follows: [w;, ws] =
[0,0], [w,ws] = [2.5e-5,0], [wi,ws] = [5.0e-5,0], ..., [wy, ws] = [1.0e-3,1.0e-3],
generating a total of 1681 executions.

Table (5.5 shows some of the results obtained with these values. AAP is the

average absolute deviation of the pressures, defined by Equation ([5.1):

Pr — P
Pe

=1 t

AAP — 100%&‘3

Te

(5.1)

where P is the saturation pressure, n, the number of experimental points, the

superscript e means experimental data and * means calculated value.

Table 5.5: Penalization analysis’ results obtained from different values of weights.

SRK-KD original parameters: calculated from critical properties and ¢; proposed
by [KABADI and DANNER/ (1985).

wy Wy [bar.LC;(}mOIQ] b [L/mol] 1 S AAP|%)
0.0 0.0 7.4815 0.0327  0.8186 9.135e-6  0.2281
1.0e-4 0.0 6.7759 0.0280  0.7577 4.145e-5  0.3522
5.0e-4 0.0 5.9958 0.0233  0.6904 7.456e-5 0.6105
0.0 1.0e-4 5.7278 0.0218  0.6701 9.397e-5  0.8317
0.0 5.0e-4 5.6749 0.0215  0.6655 9.583e-5  0.8551
50e-4  5.0c-4 5.6667 0.0215  0.6647 9.624e-5  0.8543
1.0e-3  1.0e-3 5.6581 0.0214  0.6639 9.66le-5  0.8547
SRK-KD Original 5.6113 0.0211  0.6620 2.11le-4 1.2129
Parameters

When comparing to the pressure term of the metric, the penalization effect is
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strong (Table . This occurs especially for the second derivatives of the pressure,
weighted by wy. When values in order of 10~* are applied for ws,, the parameters’
values change abruptly, and the objective function values tend to increase together
with the respective deviations.

It is also important to mention that a higher value of the weights implies in an
increase of the penalization effect, and the parameter set calculated gets closer to the
SRK-KD original parameters. This is expected because, as detailed in Chapter [2]
these original parameters are the analytical solution for Equation , which is the
foundation of the penalization function Fy described in Equation , showing
consistency in the results obtained.

When plotting individual pressure deviations for each case, as shown in
Figure [5.7] this effect becomes clear. Even though the AAP% when w; = wy; = 0
(0.23 %) is lower than when w; > 0 and wy > 0 (up to 0.85%), the restrictions
presented in Equation are violated (critical point region). On the other side,
when w; > 0 and ws > 0 the critical region is better adjusted at the cost of losing

accuracy for the other regions.

Water - Pressure Deviations Water - Pressure Deviations

ol n -....-l!""-""'l...
..I-.---.'. "

n"-'.

...lln-lﬂ--.

Average Deviation [%]
.I
Average Deviation [%]
i=]
- ]

270 348 422 498 574 650 270 345 422 498 574 650

Temperature [K] Temperature [K]

Figure 5.7: Pressure deviations for two of the cases listed in Table Left:
w; = wy = 0 (AAP = 0.2281%). Right: w; = wy = 0.001 (AAP = 0.8547%).
Experimental data: DIPPr correlations (DIADEM, 2004). Critical temperature
used for water = 647.13 K. Images taken directly from ThermOpt.

In conclusion, there should be a compromise between the AAP% and the
accuracy near the critical point region. In ThermOpt the user can decide the
temperature range to be focused in, and whether the penalization should be applied
or not. Also, there is the possibility of performing Pareto analyses when varying w;
and wy simultaneously, correlating them into a single weight w. We consider that
this can be a contribution from this work, since the parameters can be adjusted
specifically for each engineering application.

This study could be extended to other equations of state, specially the CPA,

for which there is no analytic solution to the critical region restrictions. Besides, a
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common limitation to this thermodynamic model is the difficulty to correctly predict
its properties near the critical point. Therefore, a set of parameters that could
satisfactorily calculate in this region without losing the overall accuracy would be
absolutely sought by the researchers.

However, due to high interactions between its parameters, this analysis becomes
particularly complex, which is out of the scope of this dissertation. With the
availability of the tool developed in this work to the academic community, a
suggestion for future works is to perform this penalization analysis for polar

components using the CPA equation of state.

5.2.2 Parameter Estimation for Polar Components Without
Penalization (CPA EoS)

The second case studied in this work is the CPA equation of state parameter
estimation of polar components. The metric used is composed of saturation
pressure and liquid density, with no penalization effects. The components selected
were ethylene glycol (MEG), diethylene glycol (DEG), triethylene glycol (TEG),
1,2-propylene glycol (PG) and water. The 4C association scheme (HUANG and
RADOSZ, 1990)) was applied to all self-associating compounds, and the Table

resumes the general data used.

Table 5.6: Summary of the general data used for the parameter estimation procedure

of MEG, DEG, TEG, PG and water (CPA EoS).

Data Type Saturation Pressure and Liquid Density

Penalization No
Source DIPPr Correlations (DIADEM, 2004)
Variance Experimental Points
ATr 0.01

The goal of this analysis was to find the optimal solution of each case, regardless
of analysing the parameter search space. Therefore, it was decided to execute the
parallel PSO + Simplex optimization (described in Chapter [3) for all the results
presented in this Section.

Figures to show the parameters used in the ’Options’ visualization for
each optimization method, as well as the thermodynamic specifications for these

calculations.
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P50 Solver | SIMPLEX Solver | General Options | Bounds

¥| Hybridize PS0 with SIMPLEX Method

Population

Tolerance
kdax # of iterations 200 Absolute 0.000100
# of individuals 50 Relative 0.000100
Min # of Optimum 10
Fermanence
Internal Factors
Individual Factor 1 1.0000 Inertia Factor wi 0 90000
Glabal Factor c2 0.10000 Inertia Factor wF 010000

Figure 5.8: PSO options used in the parameter estimation procedures executed in
the Section m

P20 Salver| SIMPLEX Solver | General Options | Bounds

Max # of iterations 1000

Tolerance 1 0E-007

Initial Cluster Size 4+ 90000 % from initial point

Wlake Initial Cluster replace bounds

Internal Factors

Reflection Factor Alpha 1.0000
Contraction Factor Beta 0.50000
Expansion Factor Gamma 2.0000

Figure 5.9: Simplex options used in the parameter estimation procedures executed
in the Section [5.2.2}
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Thermodynamic Sokver
Ahsolute Tolerance 1.0E-00&
Relative Tolerance 0.000010

Max £ of iterations 100

Figure 5.10: Thermodynamic options used in the parameter estimation procedures
executed in the Section

Validating the Results: MEG

In the specific case of MEG, DERAWI et al| (2003)) selected results using
saturation pressure and liquid density as well. Therefore, this component was used

to validate the optimization capabilities of ThermOpt. The parameters’ bounds used
are shown in Table 5.7

Table 5.7: Parameters’ bounds used for MEG parameter estimation (CPA EoS),
obtained by a previous trial and error method.

Parameter Lower Bounds Upper Bounds
ag [bar.L? /mol?| 5.0000 20.000
b [L/mol] 0.0300 0.0700
c1 1.0000 2.0000
e/R [K] 1000.0 3000.0
10008 1.0000 100.00

Table shows the comparison between literature and calculated parameters
using the same reduced temperature range for the experimental data in each set.
AAP is calculated by Equation and AAp, the average absolute deviation of
the liquid densities, is defined by Equation ((5.2)):

100% = |p§ — p}
Anp= %57 - | (5:2)
€ =1 i

where p is the liquid density, n. the number of experimental points, the

superscript e means experimental data and * means calculated values.
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Table 5.8: Comparison between the literature parameters for MEG (DERAWTI et al.|
2003)) and the calculated ones from ThermOpt. The difference between 'Set 01’ and
"Set 02’ lies on the Ty range of the experimental data used in each case.

Set 01 Set 02
Literature Calculated Literature Calculated

ag [bar.L?/mol?]  7.1420 7.1404 14.697 14.691
b [mol/L)] 0.0510 0.0510 0.0525 0.0525
c1 1.7333 1.7360 1.1099 1.1104
e/R [K] 1662.7 1660.2 1215.1 1214.2
100053 83.900 84.216 18.400 18.473

Tk range 0.40 - 0.90 0.45 - 0.99
AAP (%) 1.069 1.067 1.153 1.153
AAp [%] 0.502 0.506 0.716 0.715

Slight differences are expected between the literature and calculated parameters
due to specificities of the implementation of the saturation pressure calculation such
as tolerances, convergence criteria etc. Hence, it can be inferred that ThermOpt’s

calculations for pure components are performed properly.

Applying to the Other Compounds (DEG, TEG, PG and water)

The same optimization approach was executed for the remaining components
studied. Table contains the respective bounds included in the optimizer and
table [5.10] shows the results obtained by ThermOpt.

Table 5.9: Bounds for the parameters to be estimated for DEG, TEG, PG and water,
as well as their temperature range for the experimental data (DIADEM, 2004).

DEG TEG PG Water
ag [bar.L?/mol?] 20.00 - 40.00 30.00 - 60.00 1.000 - 20.00 1.000 - 2.000
b [mol /L] 0.050 - 0.100 0.100 - 0.150 0.050 - 0.100 0.010 - 0.020
c1 0.500 - 1.500 0.500 - 1.500 0.500 - 3.500 0.500 - 1.500
e/R [K] 1000 - 3000 1000 - 3000 1000 - 3000 1000 - 3000
10005 0.100 - 50.00 0.100 - 50.00 10.00 - 150.0 50.00 - 150.0
Tr range 0.49 - 0.86 0.49 - 0.82 0.44 - 0.77 0.42 - 0.95
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Table 5.10: Parameters estimated by ThermOpt, using saturation pressure and liquid
density, for DEG, TEG, PG and water.

DEG TEG PG Water
ao [bar.L2/mol?] 30.499 47.480 4.4228 1.1534

b [mol /L] 0.0918 0.1312 0.0647 0.0147

¢ 1.0108 1.0864 3.1473 1.2323
/R [K] 2274.1 2463.3 1904.5 1758.1
10008 1.0939 0.4381 108.71 108.66
AAP [%)] 0.549  0.504 1.890 0.305
AAp %) 0.596 0.891 1.508 1.147

As mentioned in Chapter [2, using only saturation pressure and liquid density in
the objective function are not enough to attain a set of parameters that is capable to
correctly predict the behaviour of mixtures, specially when they are in liquid-liquid
equilibrium (LLE). When applied to these mixtures, frequently the optimized set
failed to predict the experimental data (DERAWI et al. [2003). SANTOS et al.
(2015¢) proposed in their publication a combination of objective functions using
VLE and LLE variables to guide this selection, weighted by a user defined number.
A slight variation of this methodology was implemented in ThermOpt to be applied
in this work, explained in details in Chapter [3]

Therefore, the parameters obtained in the Table [5.10| were used as initial guesses
to define the optimal parameters presented in the Section [5.3]

5.3 VLE 4 LLE Methodology for CPA EoS

Parameter Estimation

Table[5.8| evidences the steep difference between the parameters in Set 01 and Set
02 for MEG, with both of them providing low deviations from DIPPr correlations.
The reason for this lies on the large uncertainty of the DIPPr correlations (DERAWI
et al., 2003).

Hence, it is common to add LLE restrictions to the sets of parameters previously
generated (KONTOGEORGIS et al., [2006alb). However, this ’selection’” may be
a very time consuming process. Therefore, the henceforth called the VLE + LLE
Methodology was implemented in this work to improve the effectiveness of this
procedure.

Firstly, the glycols were analysed in order to validate this procedure, and after
that this methodology was applied to water in order to select a new set of parameters

using specific criteria, besides further validating the calculations.
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The common options for all of the components studied in this Section are shown
in Figure [5.11]

| PS0 Salver| SIMPLEX Solver | General Options | Eh:uundsl

Max # of iterations 1000

Tolerance 1 NE-008

Initial Cluster Size 4+ 10000 % from initial point
[] Make Initial Cluster replace bounds

Internal Factors

Reflection Factor Alpha 1.0000
Contraction Factor Beta 0.50000
Expansion Factor Gamma 2.0000

Figure 5.11: Simplex options used in the parameter estimation procedures executed

in the Section .

The parameters’ bounds were also the same for all cases. In this case,
the optimization procedure consists of solely one method (Simplex) executed
repeatedly with well-defined initial guesses (Table. Consequently, large bounds
(Table are adequate in order to limit the maximum size of the Simplex.

Table 5.11: Parameter bounds for the case studied in the Section .

Parameter Lower Bounds Upper Bounds
ao [bar.L? /mol?| 1.0000 80.000
b [L/mol] 0.0010 1.0000
1 0.1000 4.0000
e/R [K] 100.00 4000.0
10005 0.1000 200.00
ki -1.0000 1.0000

The objective function term Sppp was calculated from Equation (3.33). The
variances were considered to be the own experimental points in order to ensure that
the optimized solutions would generate the lowest possible deviations.

When applying the algorithm recommended in the Section [3.3.3] it was noted
that, in all cases, the curve formed by the objective function of the LLE term
(Spre) versus the objective function of the pure VLE term (S,ure) took the form
of rational-type functions in the positive quadrant. That is, Sp... and Sppr were

inversely proportional.
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Therefore, it was possible to determine a better set of parameters by choosing
the point placed on an intermediate position, where an increase of S, would result

in a lower decrease of Sy g and vice-versa.

5.3.1 Glycols

The selected alkane to evaluate LLE with all glycols studied in this Section was
the n-heptane (DERAWI et al., [2002).

For each compound, the following sets of parameters were chosen to the analysis:

e Set of Parameters 01 ("Set 01’). Generated by only saturation pressure and
liquid density (VLE variables). Its weight w on Equation (3.35) is equal to

Zero.

e Set of Parameters 02 (’Set 02’). Obtained graphically, from an intermediate

position of the curve.

e Set of parameters 03 ("Set 03). Calculated from the maximum allowed value of
Spure- It is obtained from the maximum errors reported by the corresponding
DIPPr correlation (DIADEM, 2004), according to Equation (5.3). These

maximum error values can be seen in Table [5.12

2 2
Smam,pure = ETTmaz,P + Errmax,p (53)

Table 5.12: Maximum errors in DIPPr correlations (DIADEM, 2004) for each
studied component in the Section m

MEG  DEG TEG PG

Error % in PSAT 300  10.0 100  5.00
Error % in pAT  1.00  3.00  3.00  3.00
Smaz pure 1.00e-3 1.09¢-2 1.09e-2 3.40e-3

MEG

Figures|b.12/and show the corresponding objective functions curve obtained
for MEG. The former shows the whole region analysed, from the solution of
Equation with w = 0 ("Set 01’) to the solution where Spe = Spuremas
(’Set 03’), and the latter focus on the region where the Set of Parameters 02 was
chosen, comparing to where would be situated the literature data (DERAWTI et al.|
2003).
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MEG Analysis
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Figure 5.12: Pareto analysis containing both objective function terms of
Equation (3.35]) for MEG, as seen throughout the studied region, showing the "Set

01, with w = 0 (red circle). Literature Set of parameters was taken from DERAWI
et al|(2003).
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Figure 5.13: Pareto analysis containing both objective function terms of
Equation (3.35)) for MEG, focusing on the region where the 'Set 02’ was selected

(diamond), comparing to the actual location of the Literature Set (DERAWTI et al.,
2003), marked as a square.

Also, Table summarizes the selected sets, comparing them to the one found

in the literature. Furthermore, another set of parameters was inserted in this table,
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"Set 007, which is the calculated set with Sy, closest to the literature set, in order

to validate the methodology proposed in this work.

Table 5.13: Parameters chosen using the VLE + LLE Methodology for MEG
(Smazpure = 1.0e — 3), comparing to the parameters from the literature (DERAWI
et al., 2003)). w consists of the weight inserted on Equation (3.35)).

Literature Set 00 Set 01 Set 02  Set 03

w - 0.143  0.000 0.129  0.611
ao [bar.L?/mol?]  10.819  10.834 7.1404 10.771 11.738
b [mol /L] 0.0514  0.0514 0.0510 0.0514 0.0512

o 0.6744  0.6730 1.7360 0.6834 0.5155

e/R [K] 2375.8 23768 1660.2 2369.2 2498.6
100083 14.100  14.054 84.216 14.381 9.8107
Spure 435¢-4  4.33e4 1.9led 4.15e-4 9.99e-4
AAP [%] 0.906  0.906 1067 0.848  1.929
AAp (%] 1581  1.582  0.506 1569  1.948

Besides, the sets presented in the Table [5.13] were compared to literature
parameters when applying to various LLE binary mixtures, as stated in Tables[5.14
to[5.17 The ’Set 00’ was excluded from these tables because their results are similar
to the literature set of parameters. In these tables, AAX, yc and AAXyc ., which

are the average absolute deviations for the compositions in LLE, are defined by

Equations (5.4)) and (5.5)).
100% = |75 go — 75
AAX. o = % Z | HC HC| (5.4)
ne i:1 x*,HC
o 100% = |"L‘§IC',* - ZET‘IC,*|
AAXpe. = > - (5.5)
Ne LHC,

7 is the polar component,

In the subscripts, '"HC’ stands for "hydrocarbon’ and
which is MEG in this case. Also, it is important to point out that all of the binary
parameters were optimized in ThermOpt, even when they were available in the

literature, in order to standardize the comparisons.
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Table 5.14: Results for the binary mixture MEG + n-heptane (DERAWI et al.
2002)). AAX vy ee.ue and AAX ge vee are calculated from Equations (5.4) and ((5.5)).

Literature Set 01  Set 02  Set 03

kij 0.0471  0.0488 0.0471 0.0458
Sotim 458¢-3  4.03e-1 4.71e-3 2.69¢-3
AAXypone (%) 1172 4018 1245  0.642
AAXpeuse (%) 5.351 46.04 5415  4.030

Table 5.15: Results for the binary mixture MEG + n-hexane (DERAWT et al.,2002)).
AAX g ae and AAX g mpe are calculated from Equations (5.4) and (5.5)).

Literature Set 01  Set 02  Set 03

kis 0.0592  0.0609 0.0592 0.0586
Sotim 1.98¢-2  4.02-1 1.97e-2 2.54e-2
AAXypenc (%) 1165 3860 1157  13.95
AAXpempe %) 5815 49.09 5854  5.529

Table 5.16: Results for the binary mixture MEG + benzene (FOLAS et al., 2006b)).
AAX g re and AAX e mpe are calculated from Equations (5.4) and (5.5).

Literature Set 01  Set 02  Set 03

kij 0.0480  0.0251 0.0479  0.0484
cross 0.0387  0.0517 0.0390 0.0331
Sopim 2.75¢-2  5.75¢-2 2.77e-2 2.39e-2

AAXypane (%) 3.692 1100 3.798  2.553
AAXpeupe %) 1452 19.08 1456  13.63

Table 5.17: Results for the binary mixture MEG + toluene (FOLAS et al., 2006b)).
AAX yEc.ne and AAXgeo vpe are calculated from Equations (5.4) and (5.5)).

Literature Set 01  Set 02  Set 03

ki 0.0470 0.0244 0.0470  0.0468
A 0.0384 0.0547 0.0388 0.0324
Sotim 1.85e-2  5.12e-2 1.87e-2 1.53e-2

AAX ygG.me (%) 4.798 6.908  4.777  5.176
AAX yemec (%) 10.20 16.88 10.26  8.896

DEG

Figures and present the corresponding objective functions curve for
DEG, in the same way as it was shown for MEG. Also, the results of the selected
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sets, as well as the LLE binary mixture evaluation with n-heptane, can be seen in

Tables [5.18 and [5.19]

DEG Analysis
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Figure 5.14: Pareto analysis containing both objective function terms of
Equation (3.35)) for DEG, as seen throughout the studied region, showing the "Set

01, with w = 0 (red circle). Literature Set of parameters was taken from DERAWI
et al.| (2003)
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Figure 5.15: Pareto analysis containing both objective function terms of
Equation for DEG, focusing on the region where the ’Set 02’ was
selected (diamond), comparing to the location of the set of parameters from the
literature (DERAWTI et al 2003)), marked as a square.
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Table 5.18: Parameter sets chosen using the VLE + LLE Methodology for DEG
(Smazpure = 1.09¢ — 2), comparing to the parameters from literature (DERAWI
et al., [2003). w consists of the weight inserted on Equation ({3.35]).

Literature Set 00 Set 01 Set 02 Set 03

w - 0.135 0.000 0.177  4.680

ap [bar.L?/mol?] 26.408 26.405 30.499 25.910 22.538
b [mol/L] 0.0921 0.0921 0.0918 0.0920 0.0862

c1 0.7991 0.7985 1.0108 0.8288 0.8974

/R [K] 2367.4 23685 2274.1 2320.0 2092.9
100053 6.4000 6.3719 1.0939 7.3901 16.990
Spure 7.80e-4 7.51le-4 8.95e-5 9.15e-4 1.08e-2
AAP (%) 1.855 1.773 0.547 2.081 6.192
AAp [%] 1.590 1.582 0.596 1.598 7.140

Table 5.19: Results for the binary mixture DEG + n-heptane (DERAWTI et al.|
2002)). AAXppc.ace and AAX e ppe are calculated from Equations (5.4]) and (5.5)).

Literature Set 01  Set 02  Set 03

kij 0.0656  0.1585 0.0660 0.0538

Sotim 1.45e-2  9.44e-1 1.35e-2 6.60e-3
AAXppene [%) 7100 1042 6416 2.518
AAXpeppe (%) 7712 9633 2518 6.820

TEG

Figure [5.16| shows the corresponding objective functions curve for TEG
throughout the analysis, from the solution of the pure VLE case (’Set 01’) to the
solution with Spure = Spure,maz ('Set 037), and Figure focus on the region where
the "Set 02’ was selected in this work.

The results of the chosen sets and the LLE binary mixtures evaluations can be
seen in Tables[5.20|and [5.23] These tables present the LLE in the following mixtures:
TEG + n-heptane, TEG + benzene and TEG + toluene.
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Figure 5.16: Pareto analysis containing both objective function terms of
Equation (3.35)) for TEG, as seen throughout the studied region, showing the ’Set

01, with w = 0 (red circle). Literature Set of parameters was taken from DERAWI
et al.| (2003)
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Figure 5.17: Pareto analysis containing both objective function terms of
Equation for TEG, focusing on the region where the ’Set 02’ was
selected (diamond), comparing to the location of the set of parameters from the
literature (DERAWI et al) 2003), marked as a square.
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Table 5.20: Parameter sets chosen using the VLE + LLE Methodology for TEG
(Smazpure = 1.09e — 2), comparing to the parameters from literature (DERAWI
et al., [2003). The weight w is taken from Equation (3.35)).

Literature Set 00 Set 01  Set 02  Set 03

w - 0.173  0.000 0.187  11.60
ap [bar.L?/mol?]  39.126  39.124 47.480 39.004 34.320
b [mol/L] 0.1321  0.1321 0.1312 0.1320 0.1239

1 1.1692  1.1688 1.0864 1.1740 1.2303

¢/R [K] 1724.3 17251 2463.3 1717.7  1509.9
100083 18.800  18.802 0.4381 19.256 44.659
Spure 1.56e-3  1.56e-3 1.4le-d 1.58¢-3 1.09e-2
AAP [%)] 3.018  3.042 0504 3.068  6.464
AAp [%] 1.607 1611 0.891 1.614  6.850

Table 5.21: Results for the binary mixture TEG + n-heptane (DERAWTI et al.|
2002)). AAX7pe uc and AAXyoree are calculated from Equations (5.4) and (5.5)).

Literature Set 01  Set 02  Set 03

kij 0.0939  0.1339 0.0937 0.0829

Stim 6.12¢-3  6.4le-1 5.99e-3 1.96e-3
AAXrpauce (%) 4.542 19.58  4.490  1.233
AAXporpe [%) 4497 7606 4452 3.390

Table 5.22: Results for the binary mixture TEG + benzene (FOLAS et al., 2006b)).
AAXr e e and AAX goree are calculated from Equations ((5.4]) and (5.5)).

Literature Set 01  Set 02  Set 03

kij 0.0362  0.2102 0.0362 0.0323
cross 0.0987  0.3191 0.0999 0.1502
Sosim 2.54e-3  4.15¢-2 2.54e-3 2.91e-3

AAXrpoue |%) 4459  7.906 4467 4731
AAXyerpe (%) 1308 1722 1300  1.026
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Table 5.23: Results for the binary mixture TEG + toluene (FOLAS et al., 2006b)).
AAXreg e and AAXyoree are calculated from Equations (5.4) and (5.5)).

Literature Set 01  Set 02  Set 03

ki 0.0374 0.0357 0.0374 0.0324
A 0.0465 0.0012 0.0471 0.0751
Sotim 8.0le-3  2.16e-1 7.85e-3 7.75e-3

AAXrpene %) 2.381 25.97 2226  5.241

)

AAXyorpe (%) 7279 3221 7.260  5.807

PG

Figures and as well as Tables and show the results for PG,
attained as the former studied glycols. The only available alkane to analyse the LLE
with propylene glycol was the n-heptane.
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Figure 5.18: Pareto analysis containing both objective function terms of
Equation (3.35) for PG, as seen throughout the studied region, showing the ’Set

01’ with w = 0 (red circle). Literature Set of parameters was taken from DERAWI
et al.| (2003)
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PG Analysis
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Figure 5.19: Pareto analysis containing both objective function terms of
Equation (3.35) for PG, focusing on the region where the 'Set 02" was selected

(diamond), comparing to the location of the literature set (DERAWI et al.l 2003),
marked as a square.

Table 5.24: Parameters chosen using the VLE + LLE Methodology for PG

(Smazpure = 3.40 x 1073), comparing to the parameters from literature (DERAWI
et al., 2003)). The weight w is taken from Equation (3.35]).

Literature Set 00 Set 01 Set 02 Set 03

w - 11.10  0.000 0216 23825
ao [barL2/mol?]  13.836  14.258 4.4228 13816 14.977
b [mol /L] 0.0675  0.0687 0.0647 0.0676 0.0711

1 0.9372  0.9288 3.1473 0.9526 0.9129

/R [K] 2097.8 21453 1904.5 2112.0 2149.1
10003 19.000  15.870 108.72 18.067 14.818
Spure 1.32e-3  1.32e-3 2.47e-4 7.88¢-4 3.40e-3
AAP [%) 1.890 2423  1.349  1.869  2.299
AAp [%)] 1.508 2019 0118  1.490  4.971

97



Table 5.25: Results for the binary mixture PG + n-heptane (DERAWTI et al.,2002)).
AAXpg e and AAX e pe are calculated from Equations (5.4) and (5.5)).

Literature Set 01  Set 02  Set 03

ki 0.0320 0.0549 0.0318  0.0448

Sotim 5.72e-3  7.03e-1 5.53e-3 5.31e-3
AAXpe e [%] 3.288 83.39 2959 2470
AAX g pe (%) 6.133 6.480  6.112 5.983

Discussion

Based on the results obtained, it is possible to infer that the VLE + LLE
Methodology implemented in ThermOpt succeeded in systematically finding a wide
range of CPA sets of parameters which fit satisfactorily the DIPPr correlations as
well as LLE experimental data with n-heptane.

Moreover, for MEG, DEG and TEG one of the sets (’Set 00”) obtained was similar
to the literature counterpart. It has been presented in the results to emphasize that
using the methodology proposed in this work it was possible to find, among others,
the parameter set presented in the literature depending only on the user’s selection
criteria.

The only exception lied on the propylene glycol, whose "Set 00’ turned out to be
different from the literature set. The most probable reason to this discrepancy was
the fact that the temperatures range used by DERAWTI et al.| (2003) had started
with low values of pressure of PG (order of 1 Pa = 107° bar), which had greatly
affected its calculation, depending on the tolerances used. For instance, these
authors reported the pressure and density deviations for PG equal to 4.88% and
1.50%, respectively. ThermOpt found 1.89% and 1.51% for the same variables, as
seen in Table On the other hand, the parameters in ’Set 02’ were quite close to
the literature counterparts, further validating the methodology even with the prior
discrepancies in the pressure calculations.

In addition to that, it is not clear how to define specific criteria with
the methodology proposed in this work in order to replicate the parameters
obtained by the respective authors (DERAWTI et al., 2003; [FOLAS et al., [2006a;
KONTOGEORGIS et al.,1999), defined by the 'Set 00’ presented previously. Thus,
in this study the 'Set 02’ for each component was suggested as an independent
method to find parameters with potential of predicting LLE with hydrocarbons. As
seen specially in the tables of MEG and TEG, which contained results for mixtures
of these compounds with other hydrocarbons, the ’Set 02’ provided results with

deviations as low as in the authors’ papers.
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Moreover, the ’Set 03" was proposed to demonstrate the limits to this
methodology, where the objective function attained the maximum value allowed by
the DIPPr correlations’ errors. While their deviations in the binary mixtures with
n-heptane were lower than the other sets, this trend was not necessarily repeated
in the mixtures with other hydrocarbons, when applicable. Therefore, their LLE
results do not compensate the higher deviations in the VLE term.

Lastly, it is of crucial importance to point out that ’Set 02’ and 'Set 03" were
mere examples of possible approaches to select the most suitable parameters. The
main goal of this study is to present a tool that provides a systematic methodology
to generate a wide range of parameters which corresponds satisfactorily to both VLE

and LLE data, thus facilitating the user’s decision-making.

5.3.2 Water

For water the same analysis was conducted with specific differences:

e The selected hydrocarbon for such study was the n-hexane (TSONOPOULOS
and WILSON] [1983)), as also stated by KONTOGEORGIS et al.| (1999).

e TSONOPOULOS and WILSON] (1983) presented, in their work, temperature
dependent correlations to calculate the liquid compositions of each phase of the
mixture water + n-hexane. In order to explore the whole valid temperature
region, this correlation was used instead of the actual experimental data. The
temperature region selected is from 7' = 273.15 K to T' = 473.15 K.

e The DIPPr correlations errors for water is exceedingly lower than the glycols,
as seen in Table [5.26] Were the original 'Set 03’ was applied for this case, no

solution would be found.

Table 5.26: Maximum errors in DIPPr correlations (DIADEM, 2004) for water.

Water

Error % in P47 0.200
Error % in p°4T  1.00
Shmaz.,pure 1.04e-4

e Therefore, a new Set of Parameters 03 was proposed for water, due to the
availability of the experimental measure of its hydrogen bonds energy (KOH
et al),[1993)). This property was found to be Fy/R = 1813 K, which can be
compared to the parameter ¢/R (KONTOGEORGIS et al., 1996).
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When specifying the parameters for this new 'Set 03’, it was found that the
variable £/R also decreases when Sy increases, as seen in Figure . If the set
containing the value of ¢/ R exactly equal to the experimental findings of KOH et al.
(1993)) (circle) were the selected one, there would be a possibility of crudely predict

the behaviour of LLE in aqueous solutions of hydrocarbons.
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Figure 5.20: Chart containing the values of association energy for water versus
SrrLE, comparing with the literature values and the chosen ’Set 03’ in this work.
Ref. A: KONTOGEORGIS et al|(1999). Ref B: [ KOH et al.| (1993).

Therefore, the water’s new 'Set 03’ was selected as an intermediary value between
the experimental and the one reported by KONTOGEORGIS et al.| (1999), being
arbitrated with /R roughly equal to 1900 K.

Figure [5.21| shows the behaviour of all of the solutions in this methodology

applied to water, analogously to the glycols, and Table presents the main results
with the selected sets.
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Figure 5.21: Pareto analysis containing both objective function terms of

Equation (3.35) for water, showing the 'Set 01’, with w = 0 (red circle). Literature
Set was taken from KONTOGEORGIS et al. (1999).

Table 5.27: Parameter sets chosen using the VLE + LLE Methodology for water,
comparing to the parameters from literature (KONTOGEORGIS et al., [1999). w
consists of the weight inserted on Equation (3.35]).

Literature Set 00 Set 01 Set 02 Set 03

1000w - 877 0.00 502 115
ap [bar.L2/mol?]  1.2278  1.2224 1.1534 1.1631 1.0978
b [mol /L] 0.0145  0.0145 0.0147 0.0145 0.0145

1 0.6736  0.6650 12323 0.7865 1.0120

e/R [K] 20032 20088 1758.1 1974.3 1897.9
100083 69.200  68.897 108.66 75.517 89.078
Spure 3.450-4  3.44e-4 1954 2.86e-4 2.28e-4
AAP [%] 0.784 0777 0305 0.755  0.625
AAp [%)] 1.205  1.223  1.147 1.145  1.108

Also, Tables to show the results regarding mixtures with the
following hydrocarbons: n-octane, benzene and toluene. For the mixture with
n-octane, HEIDMAN and TSONOPOULOS| (1985)) also generated correlations for

their experimental data. Therefore, they were also adopted in this work, within the

range [297 — 522 K].
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Table 5.28: Results for the binary mixture water + n-hexane (TSONOPOULOS
and WILSON| 1983)). AAXw ye and AAX e w are calculated from Equations ((5.4))

and .

Literature Set 01  Set 02  Set 03

ki 0.0376 0.0108 0.0391 0.0321
Sotim 2.13e-1  3.97e-1 2.2le-1 2.44e-1
AAXw e (%) 12.28 33.36 11.05 10.99
AAX yew (%) 34.95 39.91 35.67  37.28

Table 5.29: Results for the binary mixture water + n-octane (HEIDMAN
and TSONOPOULOS|, 1985)). AAXwuc and AAXpycew are calculated from

Equations (5.4)) and (5.5)).

Literature Set 01  Set 02  Set 03

kij -0.0002  -0.0282 0.0015 -0.0051

Sotim 1.37e-1  2.54e-1 1.48-1 1.65e-1
AAXwpe (%] 9.190 18.83  9.818  5.424
AAXyew (%] 29.64 35.46  30.44  32.44

Table 5.30: Results for the binary mixture water + benzene (ANDERSON and
PRAUSNITZ, 1986). AAXyw ge and AAX yow are calculated from Equations ((5.4))

and .

Literature Set 01 Set 02  Set 03

ki 0.0439 0.0214 0.0461 0.0420
g 0.0770 0.0746  0.0830 0.0874
Sotim 4.06e-3  3.64e-3 3.67e-3 3.37e-3

AAXywue (%) 2.045 2545 2420  2.821
AAXgow %] 4381 4.240  4.228  4.153

Table 5.31: Results for the binary mixture water 4+ toluene (ANDERSON and
PRAUSNITZ, 1986). AAXw ge and AAX gow are calculated from Equations ((5.4))

and (5.5)).

Literature Set 01 Set 02  Set 03

kij 0.0194 -0.0061 0.0214 0.0166
A 0.0619 0.0548 0.0669  0.0696
Sotim 8.38e-3  7.29e-3 7.28e-3 6.27e-3

AAXwue (%] 1.156 1.084  1.090  1.135
AAXpew (%] 5952 7.007 5251  5.728
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Discussion

The "Set 00" was selected as the parameter set with the Sy, closest to the
literature set. It has been seen that the selected set was similar to the one presented
by KONTOGEORGIS et al| (1999), confirming the consistency of the proposed
methodology.

All sets, with the exception of ’Set 01’ in aqueous solutions with the alkanes,
were able to satisfactorily predict the LLE data.

The selection of ’Set 02’ depends on a series of factors, such as the limits of the
objective functions in the chart where the user can select the best position for each
specific application. These limits are defined by the user tolerance on where could be
the maximum allowed values of Sy, and Sirg in each case. The rigorous approach
would be to test all sets in a predetermined region for LLE with other components
until an optimal set is found. With the methodology presented (VLE + LLE), this
analysis may become simpler than what KONTOGEORGIS et al.[(2006b) published
in their paper due to its systematic feature. Consequently, we consider that this is
a contribution of this work to the literature.

Nevertheless, we considered the 'Set 03’ as the main parameter set to be
evaluated and compared against the published binary parameters and experimental
data. The main reason for that is the higher theoretical background, with the
variable €/ R nearer the value reported by KOH et al.|(1993)), without losing accuracy
in the LLE predictions.

Finally, as already stated in the Section [5.3.1] it is necessary to state that the
objective of this analysis is to provide a systematic guide to facilitate the selection of
the best parameters. Hence, a suggestion to future works may be to use this rigorous
approach to find the most proper parameters in a specific application. Eventually,

the final decision must be taken by the user.

5.4 CPA Binary Parameter Estimation Using
Water Dew Point

Having validated, optimized and selected parameters for pure components, this
Section will present a study of parameter estimation procedures for mixtures using
dew point experimental data. It is specifically applied to the natural gas production

process.
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5.4.1 Analysis of the Binary Mixture H,O + CO,

One of the most studied compounds of the natural gas is the carbon dioxide
(COy) due to its particular characteristics, specially its capability to do cross
association when mixed with water according to KONTOGEORGIS et al.| (2006b);
LI and FIROOZABADI| (2009). The parameter estimation procedure followed the
steps listed in the Section

e For the pure components, literature parameters (KONTOGEORGIS et al.,
1999)) and the 'Set 03’ from the Section were used for water, and the
parameters from TSIVINTZELIS et al.| (2010) were set for COy. They are
listed in Table (.32

e Parameter Estimation A: binary parameters were estimated from dew pressure
calculation optimized by PSO+Simplex. This work considers that there

is a solvation effect between CO, and water, even if the former does not

Cross

self-associate. The parameters to be optimized are then k;; and S

e Parameter Estimation B: Estimation A’s results were used as an initial

estimative to re-estimate these parameters using the water content metric
(Equation [3.38)) by the Simplex method.

Table 5.32: Pure component parameters used in the Section m

Water (Literature)® Water ('Set 03’)®  COS

ag [bar.L?/mol?| 1.2278 1.0978 3.5081
b [mol/L] 0.0145 0.0145 0.0272
c1 0.6736 1.0120 0.7602
e/R [K] 2003.2 1897.9 -
10005 69.200 89.078 -
“KONTOGEORGIS et al|(1999))
This work

4TSIVINTZELIS et al (2010)

Table [5.33] summarizes the experimental data used, and Table [5.34] presents
the estimable variables’ bounds. The options used are the same as reported in
Figures to [5.10]

Because of the high pressure values in the work of WIEBE and GADDY/ (1941)),
whose values reached up to 700 bar, the Estimation A did not give reliable results.
Therefore, only the data of VALTZ et al. (2004)) could be used in this stage of the
calculation. On the other hand, for Estimation B all experimental data could be

satisfactorily applied.
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Table 5.33: Summary of the data of the mixture studied in this Section.

Estimation A Estimation B

Data Type Dew Pressure Water Content

VALTZ et al.| (2004
Source VALTZ et al.| (2004) WIEBE and GAD%)Y (1>941)

Variance Experimental Points

# of Points 24 67

Table 5.34: Bounds for the water + CO, parameter estimation in this Section. These
values were obtained by trial and error.

Parameter Lower Bounds Upper Bounds

ki -0.5000 0.5000

ij

ross 0.0100 0.5000

ij

Tables and display the results of this procedure. Sp is the objective
function calculated by Equation (3.36)), and S, calculated by Equation (3.38]).
AAPye, and AAY are calculated according to Equations ((5.6) and (5.7)).

AAP,,,, = 100% § Z |P (5.6)
100% <= |y§ — ;|

AAY = L 5.7

Ne ; Yi 57)

Table 5.35: Estimation results for water (KONTOGEORGIS et al [1999) 4+ CO,

mixture studied in this Section.

Case ki; 0% Sp Sy AAPye,, (%] AAY [%)]
Estimation A -0.2324 0.0677 2.65e-2 3.37e-2 13.02 15.41
Estimation B 0.1542 0.1765 4.98e-2 2.15e-2 18.46 10.81

Literature Data® 0.1145 0.1836 5.20e-2 4.01e-2 18.92 16.13

ATSIVINTZELIS et al. (2011)

Table 5.36: Estimation results for water (Set 03) + CO mixture studied in this
Section.

Case ki; o708 Sp Sy AAPu, (%] AAY [%)
Estimation A -0.2408 0.0718 2.60e-2 3.39e-2 12.88 15.57
Estimation B 0.1701  0.2093 4.86e-2 2.11e-2 18.28 10.71

Based on the results presented in Tables [5.35 and |5.36}, it is possible to infer

that the dew pressure calculations lead to different parameters when compared with
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those obtained by the water content because of its restrictions. In higher pressures,

dew pressure calculations become exceedingly complex, affecting its convergence.
The work of WIEBE and GADDY| (1941)) focus on these extreme regions, therefore

changing the search space.

However, this issue did not occur in the optimization based on water content,
showing the success of the metric proposed (Equation. According to Table ,
the Estimation B’s parameters are close to the set published by [TSIVINTZELIS|
, but resulting in reduced deviations.

In addition to that, the 'Set 03" obtained for water succeeded to predict the water
content with slightly lower deviations than the set selected by KONTOGEORGIS|
(1999). Figures to illustrate these results with isotherms.

Water Content on CO2 - T =298.15 K
0.6

o
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o
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- --Literature Parameters
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o

Figure 5.22: Chart containing values of pressure versus water content in dew point
for the mixture Water + COs in an isotherm at T = 298.15 K. Experimental
data: WIEBE and GADDY]| (1941)). Literature parameters: KONTOGEORGIS|
et al| (1999) (pure water) and [TSIVINTZELIS et al| (2011)) (binary parameters).
Optimized parameters: this work ("Set 03’ for pure water).
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Water Content on CO2 - T =304.15 K
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Figure 5.23: Chart containing values of pressure versus water content in dew point
for the mixture Water + CO5 in an isotherm at 7" = 304.15 K. Experimental
data: WIEBE and GADDY]| (1941). Literature parameters: KONTOGEORGIS
et al.| (1999) (pure water) and T'SIVINTZELIS et al| (2011) (binary parameters).
Optimized parameters: this work ("Set 03’ for pure water).
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Figure 5.24: Chart containing values of pressure versus water content in dew point
for the mixture Water + COs in an isotherm at T" = 323.15 K. Experimental
data: WIEBE and GADDY] (1941). Literature parameters:  KONTOGEORGIS
et al.| (1999) (pure water) and TSIVINTZELIS et al| (2011) (binary parameters).
Optimized parameters: this work ('Set 03’ for pure water).
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Water Content on CO2 - T = 348.15 K
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Figure 5.25: Chart containing values of pressure versus water content in dew point
for the mixture Water + CO5 in an isotherm at T" = 348.15 K. Experimental
data: WIEBE and GADDY]| (1941). Literature parameters: KONTOGEORGIS
et al.| (1999) (pure water) and T'SIVINTZELIS et al| (2011) (binary parameters).
Optimized parameters: this work ("Set 03’ for pure water).

Analysing these charts (Figures to , it is concluded that even though
all sets of parameters predict the inversion effect of water content when the pressure
increases, the potential results of this study seem to be superior than the literature
parameters (KONTOGEORGIS et al.,1999; TSIVINTZELIS et al., 2011)). Besides,
in higher pressures (above 200 bar) the differences between each optimized case
and the calculations performed by the set modelled by the literature become more
prominent, as presented in Table [5.37. Therefore, it is possible to check if these

positive results persist when predicting the water content in multicomponent natural

gases.

Table 5.37: Estimation results for water + CO, mixture studied in this Section for
P > 200 bar.

Case AAY [%)]
Literature Data (TSIVINTZELIS et al., [2011)) 23.70
Optimized from water (KONTOGEORGIS et all 1999) 3.43
Optimized from water (Set 03) 3.34

Also, the metric selected for the water content calculation was particularly
important to the attainment of the lowest deviations. For instance, if the selected

variances were equal to 1 for all points, it was observed that the values of the
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objective function had had little variation throughout extensive ranges of k;; and
5%, Figures and illustrate this issue in PSO scatters generated from the
optimization for this mixture, using the parameter set 03 for water.

According to these figures, this modified objective function Sly varies from 0.58
to 0.61 in the range of k;; ~ [—0.5,0.3] and §{7°** = [0.02,0.35]. However, the actual
deviations can present a large variation in this region, from lower than 11% to higher
than 30%, with the best solution of this specific metric resulting in AAY = 22.97%,

as presented in Table [5.38|

Objective Function Values
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Figure 5.26: Scatter plot of parameter k;; versus objective function evaluations

calculated for the mixture water ("Set 03’) + COs using all o,;, = 1 in
Equation (3.38]). Image taken directly from ThermOpt.

Table 5.38: Estimation results for water (Set 03) + COg mixture studied in this
Section with S; defined by Equation with all variances equal to 1.
Case ki; cross Sy S, AAY (%]
Minimization of S; -0.4902 0.0406 1.00e-1 5.90e-1 22.97
Minimization of S, 0.1701  0.2093 2.11e-2 6.08e-1 10.71

Thus, these discrepancies corroborates the choice to weigh the objective function
with the experimental data values as variances in this work (AAP,.,, = 18.28% and
AAY =10.711%).
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Figure 5.27: Scatter plot of parameter [5;7°** versus objective function evaluations
calculated for the mixture water ('Set 03’) + CO using all o,;, = 1 in
Equation (3.38]). Image taken directly from ThermOpt.

5.4.2 Validation through Multicomponent Dew Point

Calculations

The same analysis performed in the Section |5.4.1] was replicated for the following
compounds: H,S, methane, ethane, propane and n-butane, in order to predict the
water content in dew point condition of multicomponent mixtures containing these
substances. Even though all of these components are not self-associating, HoS was
considered to perform cross-association with water, as in the case of CO,

el all, [0T5a).

Table [5.39| presents the parameters obtained for these mixtures, compared to the
published values in the literature (SANTOS et all, 2015b)).

Thereon, they were validated with various multicomponent systems studied in

the literature. In this work four mixtures have been studied, with the following

compositions in dry basis:

e Natural Gas (NG): 94% methane + 4% ethane + 2% n-butane.
Reference: CHAPOY et al.| (2005)).

e Natural Acid Gas 01 (NAG-1): 75% methane + 8% ethane + 4% propane +
13% CO,. Reference: MADDOX et al.| (1988).

e Natural Acid Gas 02 (NAG-2): methane + COy + H,S (various compositions).
References: (GPSA| (1998); HUANG et al.| (1985)).
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Table 5.39: Estimation results for each aqueous binary mixture studied in this
work. All interaction parameters presented within the literature sets were taken
from SANTOS et al.| (2015b)), and the "Set 03’ for water was used in the optimized
sets from this work. 'mCR-1" means that {7°* was calculated according to
Equation (2.31)).

Mixture Parameters  k;; Bgess e /RS, AAY (%]

Literature 0.1913 0.0624 1308.3  2.20e-2 11.83

Water +H5"  ppis Work  0.4003 02550 mCR-1  1.39e-2 7795

Literature 0.0098 - - 6.15e-3 5.582
b
Water + Methane® 1 e 0.0449 - _ 54003 4.765
_ Literature 0.1162 - ; 2.35¢-2  10.18
Water + Ethane® - Cwo 00721 - ] 13962 7.980
Literature 0.1135 - - 2.96e-2 9.731
d
Water + Propane® - v e 0.0661 - - 2.88¢-2  10.12
Water + n-Butane® Literature 0.0875 - - 1.98e-2 11.66
ate TPWANCT s Work 04522 - ; 1.24e-3  1.954

9SELLECK et al|(1952)

PFOLAS et al|(2007); MOHAMMADI et al|(2004); OLDS et al.|(1942)
IMOHAMMADI et al|(2004); REAMER et al.|(1943); SONG and KOBAYASHI| (1994);
ANTHONY and MCKETTA (1967)

dKOBAYASHI and KATZ| (1953); [SONG and KOBAYASHI (1994)

YREAMER et al.|(1944)

e Natural Acid Gas 03 (NAG-3): methane + propane + CO, + HyS (various
compositions). Reference: NG et al. (2001)).

Table shows the deviations in the water content in each case, using the

literature and optimized parameters previously described in Table [5.39]

Table 5.40: Mean absolute deviations for water content (AAY [%]) calculated for
each of the mixtures studied in this Section. Literature parameters were taken
from SANTOS et al.| (2015b)).

AAY [%] NG NAG-1 NAG-2 NAG-3

Lit. Parameters 2.578 23.34 9.011 12.18
This Work 1.448  14.50 8.328 18.26

With the exception of NAG-3, it can be inferred that the optimized parameters
obtained for binary mixtures have a high potential of predicting the water content

of multicomponent mixtures. Also, it is important to emphasize that one of the
'C'('OSS
ij

), but in this work it was decided to use only the two former variables to

pairs (water + H,S) is calculated in the literature with three parameters (k;;,
QTOSS
ij

optimize, calculating the latter by Equation (2.31). That is, it was made possible

and

to improve most of the results manipulating less parameters.
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The probable reason for the higher deviations in the case of NAG-3 may be the
harsher conditions of the experiments (NG et al.,|2001), where the pressures reached
values up to 690 bar. Simultaneously, for example, the conditions of the experimental
data available for water + methane (FOLAS et al) 2007; MOHAMMADI et al.l
2004; |OLDS et al., [1942)) did not surpass 30 bar.

However, if the user wishes to analyse specifically this mixture, it is possible
to re-estimate one or all water-containing binary parameters for these conditions.
For instance, if the water + HsS and water + methane parameters were to be
re-estimated using the experimental data on NAG-3 NG et al.| (2001)), keeping the
remaining values equal to the ones found in this work, the Simplex procedure of
ThermOpt would reach the following values: kyater—c, = 0.1470, kyater—m,s = 0.5265
and Bgo% g ¢ = 0.2012, with AAY = 11.60%. Thus, this deviation is lower than
the 12.18% calculated using the literature parameters. This further corroborates the

importance of a flexible optimizing tool rather than overall optimized parameters.

5.5 Application to an Industrial Dehydration
Unit

Having validated the CPA EoS parameters obtained and presented in the
previous sections, it is possible to apply directly to a fictitious industrial dehydration
unit to check if the results follow the expected tendencies of its key variables, such

as the dehydrated gas composition.

5.5.1 Generating New Parameters for Binary Mixtures
With Water

In this unit, the streams’ components are water, ethylene glycol (MEG), benzene,
CO4, Ny and alkanes up to Cs. The experimental data of each aqueous pair were

taken from the following references:

e Water + MEG: [CHIAVONE-FILHO et al] (2004)

Water + Benzene: ANDERSON and PRAUSNITZ (1986); (GORAL et al.
(2004)

Water + CO,: VALTZ ef al] (2004): WIEBE and GADDY] (1941)

Water + No: [FOLAS et al. (2007)

Water + Methane: [FOLAS et al|(2007); MOHAMMADI et al. (2004); OLDS
et al|(1942)
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o Water + Ethane: ANTHONY and MCKETTA] (1967); MOHAMMADI ¢f al]
(2004); REAMER et al.|(1943); SONG and KOBAYASHI| (1994)

e Water + Propane: KOBAYASHI and KATZ| (1953)); SONG and KOBAYASH]I]|
(1994)

e Water + n-Butane: REAMER et al/ (1944)

e Water + n-Pentane: ARLT et al.|(1979); MACZYNSKI et al.| (2004)

e Water + n-Hexane: TSONOPOULOS and WILSON] (1983) (correlation)

e Water + n-Heptane: MACZYNSKI et al, (2004)

e Water 4+ n-Octane: HEIDMAN and TSONOPOULOS) ((1985) (correlation)

Therefore, all binary parameters between water and each of these components
were estimated in this work to be applied in the referred simulation. Table

presents the metrics and the calculated parameters for each pair.

Table 5.41: All binary CPA EoS parameters obtained for the 'Set 03’ parameters of
water (‘component i’) with the components present in the simulation of the MEG
unit. All calculations were performed in ThermOpt.

Component j ki Combining Rule A Metric

MEG -0.0221 CR-1 - Bubble Pressure, Eq. (3.36))
Benzene 0.0183 Solvation 0.0797 LLE Compositions, Eq. (3.33))
COq 0.1701 Solvation 0.2093 Water Dew Content, Eq. (3.38
Ny 0.0186 None - Water Dew Content, Eq. (3.38
Methane 0.0449 None - Water Dew Content, Eq. (3.38
Ethane 0.0721 None - Water Dew Content, Eq. (3.38
Propane 0.0661 None - Water Dew Content, Eq. (3.38
n-Butane 0.4522 None - Water Dew Content, Eq. (3.38
n-Pentane 0.0364 None - LLE Compositions, Eq. (3.33
n-Hexane 0.0339 None - LLE Compositions, Eq. (3.33
n-Heptane 0.0258 None - LLE Compositions, Eq. (3.33
n-Octane -0.0051 None - LLE Compositions, Eq. (3.33

5.5.2 The MEG Dehydration Unit

Figure presents the scheme of the unit studied in this work.
The feed stream 'HCO01’ is arbitrated using a standard composition, as well as

various conditions in the simulation. Appendix [A]lists all of them.
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Figure 5.28: Abstract scheme of the dehydration unit studied in the Section [5.5.2]
The inhibitor agent used is ethylene glycol (MEG).

5.5.3 Comparison with Commercial Process Simulators

The simulation, as mentioned before, is based on artificial conditions. Therefore,
a means to validate any modification is comparing them to well known commercial
simulators: HYSYS® (ASPEN), ProMax® (BRE) and Petro-SIM® (KBC).
This unit has also been simulated using the Petrobras’ Simulation Process,
Petrox® (NIEDERBERGER et all [2009), in two situations: using the literature
parameters (SANTOS et all, 2015b) and the ones from this work.

Each of the process simulators used a specific thermodynamic model to perform
the necessary calculations. In the HYSYS® their glycol package, which consists
of the TST (Twu-Sim-Tassone) EoS with the advanced excess Helmholtz mixing
rule (ASPEN), was applied; the ProMax® used a modified Peng-Robinson EoS
with translated volume and an internally implemented mixing rule (BRE]); and
Petro-SIM® and Petrox® used the CPA EoS as presented in this work.

The main variables analysed in this Section were:

e Streams HCO02 (dehydrated gas) and VENT (outlet vapour of the regenerator):

temperature [°C], pressure [kgf/cm?g], flows [kgmol/h] and composition:
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water, benzene, methane and/or Cy;
e Three-phase vessel V-03 temperature [°C] and outlet flows [kgmol/h];
e Reboiler duty (P-02 and P-03) and regenerator condenser duty (P-01) [Gceal/hl;
e Pump B-01 power [HP].

Tables[5.42|to[5.44] present the results from the simulators using own internal EoS
and parameters. Tables to show the explicit comparison when executing
this simulation with Petrox® using its internal parameters (SANTOS et al., [2015b)

and the parameters generated in this work.

Table 5.42: Dehydrated gas ("HCO02’) results for the MEG unit. Simulated at:
Hysys®, Petro-SIM®, ProMax® and Petrox®.

Variable Unit  Hysys® Petro-SIM® ProMax® Petrox®
Molar Flow kgmol/h 7578 7988 7731 7901
Temperature °C 17.53 15.70 18.38 18.97
Water Content ppm 2.08 7.28 3.78 8.33
Benzene Content ppm 0.99 5.16 1.47 4.15

Table 5.43: Regenerator top outlet conditions ("VENT’) results for the MEG unit.
Simulated at: Hysys®, Petro-SIM®, ProMax® and Petrox®.

Variable Unit  Hysys® Petro-SIM® ProMax® Petrox®
Molar Flow kgmol/h  25.26 24.70 24.43 24.87
Temperature °C 102.0 101.0 101.0 101.0

Benzene Content ppm 87.10 590.8 130.4 55.95
C; Content % 0.07 0.43 0.34 1.66
C,, Content % 3.55 1.14 0.05 0.67

5.5.4 Discussion of the Results

There are few reliable experimental data available in the literature for the unit
studied. For the standard feed current characterized in Table[A Tl and the conditions
in Tables to[A.5] the dehydrated stream was expected to contain up to 10 ppm
of water and 5 ppm of benzene, at a temperature between 15 to 20°C, based on
engineering expertise. Also, the vessel V-03 is expected to be around -25°C and the
difference between the duties of the regenerator reboiler and condenser at roughly
0.5 Geal/h. There is no detailed data on the real conditions of the VENT stream,
but due to environmental restrictions the benzene content ought to be the lowest

achievable.
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Table 5.44: General results for the the MEG unit equipments. Simulated at:
Hysys®, Petro-SIM®, ProMax® and Petrox®.

Variable Unit Hysys® Petro-SIM® ProMax® Petrox®
Vessel V-03

Temperature °C -26.76 -23.24 -24.93 -21.40
Vapour Flow kgmol/h 167.8 354.3 158.8 370.8
Condensate Flow  kgmol/h 1584 987.1 1441 1059
G21 Flow kgmol/h 170.5 170.7 170.0 170.1
Duties [Gcal/h]

Regenerator Condenser (P-01)  0.131 0.065 0.239 0.073
Regenerator Reboiler (P-02) 0.704 0.568 0.742 0.563
Regenerator Reboiler (P-03) 0.348 0.399 0.213 0.314
Pump B-01 Power HP 22.23 22.11 16.78 26.06

Table 5.45: Dehydrated gas ("HC02’) results for the MEG unit. Executed by the
Petrox® process simulator.

Variable Unit  [SANTOS et al.| (2015b) This Work’s Parameters
Molar Flow kgmol/h 7901 7892
Temperature °C 18.97 18.84

Water Content ppm 8.33 9.96
Benzene Content ppm 4.15 4.11

Table 5.46: Regenerator top outlet conditions ("VENT?) results for the MEG unit.
Executed by the Petrox® process simulator.

Variable Unit  SANTOS et al|(2015b) This Work’s Parameters
Molar Flow kgmol/h 24.87 24.93
Temperature °C 101.0 101.0

Benzene Content ppm 55.95 98.91
C; Content % 1.66 1.83
Cay Content % 0.67 0.74

According to Tables to it can be inferred that all process simulators
analysed generated similar results, considering the complexity level of the model
(high number of recycles, a vessel with vapour-liquid-liquid equilibrium, among
others). It is important to inform that each of them used their own calculation
methods, then it is natural to expect discrepancies up to a certain level among
them.

Nevertheless, all of them attained the expected values for the dehydrated gas
stream and the equipments. The only major difference lied on the VENT stream,
whose hydrocarbons’ contents (including the benzene) varied considerably. For

instance, the benzene content in this stream went from 56 ppm (Petrox®) to 591
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Table 5.47: General results for the the MEG unit equipments. Executed by the
Petrox® process simulator.

Variable Unit SANTOS et al| (2015b) This Work’s Parameters
Vessel V-03

Temperature °C -21.40 -21.53
Vapour Flow kgmol/h 370.8 373.4
Condensate Flow  kgmol/h 1059 1064
G21 Flow kgmol/h 170.1 170.1
Duties [Gcal/h]

Regenerator Condenser (P-01) 0.073 0.055
Regenerator Reboiler (P-02) 0.563 0.534
Regenerator Reboiler (P-03) 0.314 0.327
Pump B-01 Power HP 26.06 25.98

ppm (Petro-SIM®), resuming what was discussed in the Section [2.1.2]

As the Petrox® process simulator predicted the lowest benzene content in the
VENT, it can be assumed that its simulation is properly modelled, being selected
for the comparison with the CPA EoS parameters estimated in this work, presented
in the Tables to[5.47 In this case, as the entire simulation was set up in the
exact same way, except changing the CPA parameters described previously, it is
expected that all divergences in the results come from these parameters.

Therefore, when changing the water parameters published by SANTOS et al.
(2015b)) to the ’Set 03’ obtained in this work, the only notable difference between
the respective results lied on the benzene content of the VENT stream, which rose
to almost 100 ppm, but still lower than most of the analysed commercial simulators.

This discrepancy in the benzene composition is one of the major obstacles in
modelling an industrial unit that should meet its environmental restrictions. Because
of that, it was decided to carry out one more analysis using the Petrox® (CPA
parameters from this work): the effect of withdrawing the solvation effect of benzene
with water and MEG in this simulation. The corresponding binary parameters k;;
were re-estimated: Kpenzene—water = —0.0229 (ANDERSON and PRAUSNITZ, |1986)
and Kpenzene— e = 0.0181 (FOLAS et al. 2006b).

The resulting simulation proved to be practically the same as the original, except
of the benzene content in the VENT, which rose from 98.9 ppm to 133.8 ppm. As
a consequence, it can be assumed that the solvation effect plays an essential role to
lower the contents predicted, approaching the required values. The fact that this
solvation effect is supported by the literature (KONTOGEORGIS et al., 2006a,b))
corroborates the results obtained.

In addition to that, one of the issues regarding the lack of experimental data on
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benzene content in solutions containing MEG is the high toxicity of this solvent,
hindering possible experimental analyses with them. Thus, an alternative solvent
with potential dehydrating effects would be preferable. For example, the propylene
glycol (PG) isomers are widely used in the food and drug industries and are much
more harmless than the former glycol (CSEM| 2007)). Therefore, PG was also briefly
analysed in this work. Unfortunately, the experimental data for binary mixtures with
PG available in the literature is also scarce. The data found for mixtures contain:
1,2-PG with n-heptane and 1,2-PG with water, as shown in Table [5.48|

Table 5.48: Binary parameters obtained (1,2-propylene glycol: component i). All
calculations were performed in ThermOpt.

Component j ki; cross g% | R K] Metric

i i
n-Heptane®  0.0320 - - LLE Compositions (Eq. (3.33))
Water® -0.1806  0.0307 2021.15 Bubble Pressure (Eq. (3.36)))

“Experimental data: [DERAWTI et al.| (2002)
bExperimental data: LANCIA et al| (1996)

Due to the notorious importance of the benzene effect in the simulation, it
was necessary to estimate the parameters of the binary mixture PG-benzene even
without available experimental data. To perform such evaluation, two assumptions

were made:

e The propylene glycol has a larger structure than the ethylene glycol (MEG)
but smaller than the tri-ethylene glycol (TEG). Therefore, the k;; value of the
binary PG + benzene was arbitrated in the mean value of the k;; of the other
glycols + benzene: kpg_penzene = (0.048 + 0.036) /2 = 0.042.

e It is expected a solvation effect between PG and benzene. It is assumed, then,
that 557°% = Bpg = 0.019.

ij

Even though that specific studies should have been carried out to decide the
optimal conditions of the new simulations, they were kept the same for this
preliminary analysis in order to evaluate the effect of changing the solvents in
the dehydration results. Therefore, the main goal of this analysis is to check the
dehydration potential of PG, as presented by Table [5.49]

According to the results presented in the Table [5.49, the change of solvents
impacted slightly the water content in the simulation output, demonstrating a
potential of using this solvent in the industry. Hence, another suggestion for future

works is to model a PG dehydration unit as follows:

e Generate experimental data for binary mixtures in LLE with PG and

hydrocarbons from C to at least (g, specially benzene and toluene.
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Table 5.49: Dehydrated gas ("THC02’) results for the MEG unit. Executed by the
Petrox® process simulator using MEG and PG as solvents, respectively. All pure
components’ parameters were taken from the literature (SANTOS et al., 2015Db).

Variable Unit MEG Solvent PG Solvent
HCO02

Molar Flow kgmol/h 7901 7895
Temperature °C 18.97 18.92
Water Content ppm 8.33 8.42
Benzene Content ppm 4.15 4.07

e Use ThermOpt to properly estimate the corresponding binary parameters.

e Analyse the expected behaviour of solutions containing water, PG and

hydrocarbons in the possible vent conditions.

e Study thoroughly the optimal conditions using PG, varying particularly the
duties of the heat exchangers and the regeneration tower conditions in order
to attain similar results to the dehydration unit when using MEG for other
streams such as "'VENT".
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Chapter 6
Conclusions

The tool developed here, named ThermOpt, presents good potential to be a
tool for estimating the equation of state (EoS) parameters for several processes,
with applications to chemical processes such as the natural gas production and
processing. This work succeeded in proposing two new methodologies for parameter
estimation in a systematic way: one based on pure (VLE) and LLE properties
and the other based on water content in dew point conditions, based on the work
of SHIGUEMATSU] (2014)).

Firstly, in Section the calculation speed of the program was evaluated.
Considering the complexity of solving the CPA EoS (MICHELSEN, [2006), the
results presented were promising, enabling long calculations such as penalization
analyses or the VLE-LLE Methodology to be executed in a relatively short time.

Section[5.2) presented an example of penalization analysis using the SRK equation
of state, showing that high weights lead to solutions close to the original one, with ag
and b calculated using critical properties by Equations and (2.5)), and ¢; defined
by the Kabadi-Danner modification. Thus, it can be considered that ThermOpt is
well validated, once the results presented by the Table tended to the analytical
solution to the Equation with this EoS. Also, the CPA EoS was used to estimate
the parameters of several polar substances by saturation pressure and liquid density,
comparing to available literature data.

Thereon, in the Section the VLE-LLE Methodology proposed in this work
was applied for 4 different glycols, comparing the calculated sets to the literature
parameters, showing good agreement using predetermined criteria. After that, the
same evaluation was performed for water, selecting among the possible sets one with
the parameter ¢/R relatively close to the hydrogen bond energy for water (KOH
et al., (1993).

Section applied the proposed methodology for parameter estimation by water
content in dew point condition to several aqueous mixtures, from binaries with

COgq, HsS or light alkanes to multicomponent natural gas mixtures. The results
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obtained indicated smaller deviations than the ones calculated by the literature
parameters reported by TSIVINTZELIS et al| (2012)(Tables |5.35, [5.36] [5.39|
and [5.40]). Consequently, the metric proposed in this work, based on water content

calculation, can enable further evaluations at extreme conditions such as high

pressures, which is limited in the metric based on bubble or dew pressure.

Finally, Section[5.5)shows an industrial application of all the previous procedures,
simulating a part of a dehydration unit using MEG as inhibitor. Comparisons
were conducted among various commercial process simulators, pointing out their
similarities and limits. Afterwards, the analysis was focused on the Petrox® Process
Simulator, by testing the effect of the water parameters obtained in this work. It
was shown that the only visible difference was in the benzene content of the VENT
stream. The new set of parameters reported higher values for this content, but still
at the same level of most of the other simulator’s results. Moreover, the utilisation
of 1,2-propylene glycol instead of MEG was briefly studied and it was found out
that its dehydration potential is similar as the ethylene glycol, needing a thorough
study to reach more detailed outcomes.

In addition to the conclusions and contributions highlighted in this work, there

are numerous possible paths and challenges suggested as future works, such as:

e Implement parallelism calculations (MORAES et al.,2015)). As the optimizing
procedures require a vast quantity of independent calculations of the objective
function, this implementation will increase the speed of the thermodynamic

calculations inside ThermOpt, enabling even more complex analysis.

e [Implement flexible FEoS based on the separate Helmholtz energy terms.
Currently the EoS options in ThermOpt are considered as independent models.
An idea to loosen the limits of the program would be to implement the
EoS as Helmholtz energy terms selected by the user in the interface. For
example, there would be a term related to a cubic EoS (Peng-Robinson or
SRK), an association term (as in the CPA), and other types of terms, such
as the Born-Solvation Contribution, the Debye-Huckel expression or the Mean
Spherical Approximation (MSA) term. The work of MYERS| (2005) shows

how these terms can be connected to a single thermodynamic model.

e (Generate detailed PSO histograms in order to select its best internal
parameters. Essentially all of the PSO calculations performed in this work
used the same values of internal parameters (cognition parameter c¢;, social
parameter ¢z, and the inertial weights wy and wys). In thermodynamic
calculations, there is a high level of dependency among the manipulated

variables, and not all sets of them lead to converged solutions. Therefore,
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the right selection of these PSO parameters is important to effectively guide
the ’particles’ to the global minimum area. Chapter [ briefly describes the
execution of hundreds of PSO calculations in a row in ThermOpt, storing each
result, generating a histogram-type chart. If the PSO parameters are well
chosen, the majority of the solutions attained will be in the region of the
global minimum. Thus, the recommended study is to perform this analysis for
a multitude of combinations of these parameters, using a specific component
and the CPA EoS, until an optimal set is found, which the histogram region

would be the narrowest.

FExecute the penalization analysis using the CPA equation of state for polar
compounds. As explained in Section [5.2] one of the downsides of the
CPA equation of state for pure components is its lower accuracy in the
critical region, because its association term violate the restrictions imposed
in Equation . On the other hand, the penalization analysis tool may
allow the program to find a different set of parameters which results in lower
deviations in this region, even at a cost of an increase of the overall deviation,
as in a ’short blanket’. The challenge of this study is to find out how far this

improvement in the critical region would be worth the global loss of accuracy.

Execute the VLE-LLE Methodology with other hydrocarbons as auziliary
compounds. Section [5.3| studied this approach using the same alkanes as the
respective authors used in their works in order to validate this procedure.
However, an interesting analysis would be redoing the VLE-LLE Methodology
to polar compounds in LLE with other hydrocarbons, including benzene, and
drawing for each case an own optimal parameter search space. Eventually, all
of these regions would be compared to each other to narrow them until a single
set of parameters is found. For example, one would apply this methodology
to water 4+ n-pentane, n-heptane, n-octane, n-decane, benzene and toluene.
From each case there would be a region of optimal sets, as they are Pareto
analyses. The intersection of all these regions would provide a narrower region,

facilitating the selection of the optimal parameters.

Study the use of propylene glycol isomers as hydrate inhibitors instead of MEG
or TEG. As discussed in Section[5.5) MEG, DEG and TEG are compounds that
are toxic to humans, which makes it difficult to carry out experimental analyses
of mixtures containing these glycols. On the other hand, the propylene glycol
- PG - is practically harmless to the human being (CSEM| 2007), being
more appropriate if its dehydration potential would be similar to the previous
glycols. In this work it was shown that there is actually such potential, but the

process unit was originally modelled to use the MEG as the inhibitor. Besides,

122



the lack of experimental data for binaries with PG is another obstacle to this
current study. Therefore, the last suggestion to future works is to perform this

investigation, following the steps detailed in the end of the Section |5.5|

Hence, it can be concluded that there are a variety of research possibilities
beyond the contributions described in this dissertation, from the development of
ThermOpt. With its further implementing and future availability to the academic
community, there will be a tool that shows numerous paths, enabling the user to
select the equation of state and calculate the best parameter sets for modelling

complex mixtures according to specific applications.
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Appendix A

The MEG Dehydration Unit

In this Appendix, the main variables of the MEG dehydration unit studied in
this work are summarized.

Table presents the condition and composition of the feed stream "HCO1’.
Tables to present the remaining conditions adopted in this system. Also, it

is important to inform that the pump efficiency was set to 75%.
Table A.1: Condition of the fictitious feed stream of the MEG unit, labelled as
"HCO1".

Variable Unit Value

Molar Flow  kgmol/h 9355
Pressure  kgf/cm?g 78
Temperature °C 37

Molar Composition

Benzene ppm 80
H,0O % 0.26
CO, % 0.02

Nso % 0.59

Methane % 80.82

Ethane % 9.25
Propane % 5.94
i-Butane % 0.84
n-Butane % 1.43
i-Pentane % 0.24
n-Pentane % 0.30
n-Hexane % 0.11
n-Heptane % 0.03
n-Octane % 0.01
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Table A.2: Conditions of the vessels in the MEG unit simulated in this work.

Variable Unit Value

Pressure in V-06 kgf/cm?g 9
Pressure in V-03 kgf/cm?g 55

Table A.3: Conditions of the Regenerator in the MEG unit simulated in this work.

Variable Unit Value
Temperature of feed stream G22 °C 72

Top tray pressure kgf/cm?g  0.040

AP in the column kgf/cm?  0.035
Bottom temperature Celsius 127

Table A.4: Conditions of the glycol injection points in the MEG unit simulated in
this work.

Variable Unit Value

Flow of G16 kgmol/h 27
Flow of G17 kgmol/h 27
Flow of G18 kgmol/h 27
Flow of G19 kgmol/h 36
Flow of G20 kgmol/h 27

Table A.5: Conditions of the heat exchangers in the MEG unit simulated in this
work.

Variable Unit Value

Duty of P-04  Gcal/h  2.33
Duty of P-05  Gcal/h  1.77
Duty of P-06  Gcal/h  2.72
Duty of P-07  Gcal/h  3.65
Pressure Drops kgf/cm?  0.30
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