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Recentemente, tecnologias subsea têm se tornado mais con�áveis. Novos projetos

foram elaborados e, nos próximos anos, um grande volume de investimentos é esper-

ado na área. No entanto, instalações subsea têm se tornado cada vez mais complexas

e controladores capazes de tomar decisões de forma inteligente são necessários para

redução de custos e aumento da con�abilidade. No entanto, devido à presença de

incertezas em operações subsea, novos controladores capazes de operar em um ambi-

ente incerto devem ser desenvolvidos. No Mar do Norte, uma tecnologia promissora

de compressão subsea de gás começou recentemente a operar. No campo de Asgard,

o projeto do sistema de compressão foi baseado em instalações topside. Devido

a isso, estratégias anti-surge são necessárias para que o sistema possa operar sem

maiores problemas frente à presença de perturbações e incertezas. Caso a operação

entre em surge, o sistema de compressão pode ser afetado ocasionando a quebra do

compressor. Devido a isso, foram avaliados o desempenho e a robustez de um sis-

tema de compressão subsea quando controlado por um NMPC determinístico, o�ine

min-max e multi-estágio. Indicadores que levam em consideração o desempenho do

controle de set-point, violação de restrições, produção de gás, consumo energético e

e�ciência na produção foram utilizados para avaliação dos controladores. O NMPC

determinístico foi a solução mais e�ciente, no entanto violações nas restrições foram

detectadas. Apesar do controlador min-max conseguir impedir que restrições sejam

violadas, ele teve um desempenho conservativo. Já o controlador NMPC multi-

estágio também conseguiu lidar com a restrição do processo, apresentando um de-

sempenho menos conservativo que a solução NMPC o�ine min-max.

vi



Abstract of Dissertation presented to COPPE/UFRJ as a partial ful�llment of the

requirements for the degree of Master of Science (M.Sc.)

PERFORMANCE ANALYSIS OF DETERMINISTIC, MIN-MAX AND

MULTI-STAGE NMPC APPLIED TO A SUBSEA GAS COMPRESSION

SYSTEM

Otávio Fonseca Ivo

October/2018

Advisors: Argimiro Resende Secchi

Maurício Bezerra de Souza Jr.

Department: Chemical Engineering

In recent years, subsea technologies have become more reliable. New projects

emerged and an increase of investment in the area is expected in the following years.

However, subsea installations are becoming more complex and smart decision mak-

ing controllers are necessary to reduce operational costs and increase process relia-

bility. Besides, the presence of uncertainties makes the development of controllers

that can handle operation in an uncertain environment imperative. A prominent

subsea technology is the subsea compression, which has been recently delivered in

the North Sea. Åsgard �eld compression system design was based on topside design.

Therefore, surge avoidance strategy is necessary in order to operate without major

issues in presence of disturbances and uncertainties. If surge occurs, compression

system operation is strongly a�ected, leading even to compressors breakage. Thus,

in this work, Nonlinear Model Predictive Controls (NMPC), such as deterministic,

o�ine min-max and multi-stage were employed to a subsea compression system to

evaluate controllers performance and closed-loop robustness in an environment with

unknown disturbances a�ecting upstream pressure. For performance assessment,

indicators that consider set-point tracking, constraint violation, gas production, en-

ergy consumption, and production e�ciency were employed. Deterministic NMPC

was the most e�cient controller, but constraint violation was detected. Although

o�ine min-max operation managed to handle constraint violation, it proved to be

overly conservative. Multi-stage NMPC controller was able to also handle constraint

violation, while being less conservative than o�ine min-max NMPC.
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Chapter 1

Introduction

In modern process industries, control and process optimization are key factors for

improving plant performance while meeting productivity, quality, safety and envi-

ronmental objectives. A particular challenging subject is subsea operation as new

�elds are being developed in deep and ultra-deep waters at remote locations with

extreme meteorological and oceanographic (metocean) conditions.

Subsea technologies are becoming increasingly accepted as a solution to acceler-

ate reserves, maximize production and reduce costs. This is indicated by an increase

in the number of subsea processing projects that have been recently considered dur-

ing project development. It is estimated that oil industry will expend more than

5 billion dollars in subsea related projects for the next decade (KONDAPI et al.,

2017).

According to WU et al. (2016), several advantages can be obtained from subsea

processing, such as:

(i) Accelerated production during �eld lifespan;

(ii) Production enabler in previously uneconomical �elds;

(iii) Hydrocarbon processing enabler from �elds with extreme conditions;

(iv) Flow backpressure reduction;

(v) Flow assurance increase.

To deliver all these advantages, subsea installations are becoming more complex with

one to several separation modules, pumping and/or boosting systems. Also, harsh

deepwater environment makes it harder to access and stabilize subsea systems for

repair, increasing intervention duration and, consequently, its cost (FANAILOO &

ANDREASSEN, 2008). Therefore, it is necessary to increase extensively the usage

of advanced control, capable of smart decision making and monitoring solutions.

1



The decision making procedure distinguishes MPC methods from conventional

control strategies. In MPC, an open-loop optimal control problem is solved on-line

for the current process state. As a result, an optimal control sequence is obtained

and the �rst control action is implemented in the plant. This formulation brings

�exibility as it enables explicit process and operational constraints handling (CAMA-

CHO & BORDONS, 2007), which can play a major role for achieving autonomous

operation in subsea environment. In conventional control strategies, a control law

is computed o�ine, which can be di�cult or even impossible to obtain for some

systems (MAYNE & RAWLINGS, 2000).

In process industry, notably in downstream industries (e.g. re�ning and petro-

chemical), MPC technology quickly became popular (QIN & BADGWELL, 1997).

There were several potential reasons for this. The development of identi�cation

technology allowed linear empirical models to be obtained from process test data,

which, if carefully identi�ed, can be su�ciently accurate in the neighbourhood of a

single operating point. MPC techniques using linear models are considered to be

well-established for processes with slow dynamics. Previously, it was believed that

MPC could not handle more complex systems, such as nonlinear, hybrid, or very fast

processes. However, some advancements were made in those �elds (BEMPORAD,

2006).

The term Nonlinear Model Predictive Control (NMPC) is applied to predictive

controllers that use nonlinear dynamic models and/or nonlinear constraints. The

usage of NMPC is justi�ed in those areas where nonlinearities are relevant and

market demands require frequent changes in operation regime. Although the number

of NMPC applications is still limited (QIN & BADGWELL, 2000), it has a great

potential (BINDLISH, 2015; PLUYMERS et al., 2008). By changing the linear

model to a nonlinear model, the optimal control problem changes from a convex

Quadratic Programming (QP) to a non-convex Nonlinear Programming (NLP) .

In a subsea facility, control methods need to deal with uncertainties that may

arise from (KRISHNAMOORTHY et al., 2016):

(i) Structural uncertainty, due to a lack of knowledge or model simpli�cation.

(ii) Parametric uncertainty, due to parameter estimation with old or incomplete

data.

(iii) Measurement uncertainty, due measurement noise, badly calibrated systems or

state estimators.

(iv) Disturbance uncertainty, due to unaccounted disturbances that may occur,

such as slugs.
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Deterministic NMPC can be robustly stable for processes that su�er from small

additive disturbances when certain restrict conditions are met (MARRUEDO et al.,

2002). However, in the presence of uncertainty, stability is not guaranteed. More-

over, process constraints might be violated with severe operational consequences.

Therefore, an NMPC framework which deals with uncertainty must be taken in

consideration.

Robust NMPC is concerned with control of uncertain systems associated with

hard constraints. Its main objective is to obtain a robust solution which guaran-

tees that hard constraints are satis�ed for all uncertainty realizations (BEN-TAL

& NEMIROVSKI, 1999). Most robust approaches are based on min-max schemes,

which have performance issues as optimal solutions may di�er substantially from the

actual system optimal value. One prominent approach, known as multi-stage, has

been recently developed and may improve robust NMPC performance since multi-

objective optimization is used to take into account several scenarios while attaining

hard constraint satisfaction (LUCIA et al., 2013).

Subsea gas compression technology has gained great attention in recent years

from oil and gas industries. In Åsgard, two subsea dry compression trains were

installed with anti-surge control system. Surge must be avoided at all cost since it

can cause damage to compressors. In the present work, deterministic, min-max and

multi-stage NMPC were implemented in a dry gas compression station. The main

objective is to evaluate each controller performance when uncertainty is present.

The main objective is to unravel decision making procedure of these controllers,

while performance evaluation is performed.

This work is structured in the following way: theory and literature review are

covered in Chapter 2. The main topics approached encompass the development of

deterministic NMPC and robust NMPC, with feasibility, stability and performance

discussion. Also, some strategies for centrifugal compressor control are shown. As

for Chapter 3, subsea gas compression is discussed with a focus in single phase

compression. Moreover, it can be found the models that were used to simulate the

virtual plant. In the Chapter 4, the proposed problem is described, with its initial

conditions, and controllers formulation and tuning. Results of the virtual plant open-

loop simulations, controllers predicted trajectories and closed-loop performance are

discussed. Finally, in Chapters 5 the conclusions for this work are summarized, with

future research being suggested in Chapter 6.
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Chapter 2

Theory and Literature Review

In this chapter, a broad review about the topics explored in the present work and

the state-of-art of nonlinear model predictive control are presented. This discussion

mainly focuses on presenting controllers' deterministic and robust formulations; con-

trol feasibility and stability; and numerical implementation of the optimal control

problem.

2.1 Deterministic Nonlinear Model Predictive Con-

trol

In this section, several NMPC formulations for a deterministic problem are pre-

sented. This case is relatively simple as it arises from the fact that dynamic states are

known. Also, no unknown disturbances and model errors are considered, which im-

plies a lack of uncertainty that, in principle, makes feedback unnecessary. Consider

the following class of nonlinear systems, which are described by ordinary di�erential

equations such as Equation 2.1.

ẋ(t) = fc(x(t), u(t)) (2.1)

where fc : Rn × Rm → Rn is the continuous time control system; x ∈ X is the

system state vector; and u ∈ U is the control action vector. Both X and U are

de�ned below.

De�nition 2.1.1 (State and control constraint sets) The state set X is a

closed subset of Rn and the control set U is a compact subset of Rm.

The continuous system in Equation 2.1 can be rewritten as an analogous discrete

system, which follows in Equation 2.2.

x+ = f(x, u) (2.2)
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where f : Rn × Rm → Rn is the discrete time control system; x+ ∈ X is the

system state vector at next time instant. To predict the discrete system behaviour,

Equation 2.2 must be iterated. Therefore, given an initial condition x0 ∈ X obtained

at sampling time t0 and any control sequence u := {uk | k ∈ [0, 1, ..., N − 1]}, one
can calculate the open-loop prediction trajectory, which is given by Equation 2.3.

xu0 (x0) = x0, xuk+1(x0) = f(xuk (x0), uk), ∀k ∈ [0, 1, ..., N − 1] (2.3)

where xu(x0) := {xuk (x0) | k ∈ [0, 1, ..., N − 1]} is the predicted or open-loop trajec-

tory; x0 ∈ X is the initial condition of a trajectory; xuk (x0) ∈ X is the predicted

or open-loop system state vector at stage k; uk ∈ U is the control action vector

at stage k; and N ∈ N+ is the prediction horizon. With a proper model to pre-

dict the system's behaviour, an NMPC algorithm must be formulated to accomplish

several tasks. QIN & BADGWELL (1997) enumerated these objectives in order of

importance:

1. prevent violation of output and input constraints.

2. drive the controlled variables to their reference values.

3. drive the manipulated variables to their reference values using the remaining

degree of freedom.

4. prevent excessive movement of manipulated variables.

5. when signals and actuators fail, control as much of the plant as possible.

For a deterministic open-loop optimal control problem, the �rst objective can

be achieved by introducing state and control constraints sets in the optimal control

problem. The idea behind introducing these sets is to maintain the trajectories

inside the set X and the corresponding control action vector to lie inside the set U.
However, since the system is continuous and is being predicted as a discrete system,

state constraints X can be mildly violated during inter-sampling times, t 6= tk. This

should be taken into account while designing the controller.

The stage cost function is usually crafted to accomplish the second, third and

fourth objectives. In general, it penalizes deviations between open-loop states and

control actions regarding their respective reference values, as well as large changes in

control actions. Considering this, the stage cost function is chosen to be of the form

` : Rn × Rm → R+
0 . A stage cost function commonly used in NMPC literature is

shown in Equation 2.4. According to GRÜNE & PANNEK (2011) large changes in

control actions are not penalized as they are more common in linear MPC literature.

However, for industrial application, control actions should be penalized as major
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changes are undesirable.

`(xuk , uk) = ‖xuk‖x∗
TQW‖xuk‖x∗ + ‖uk‖u∗

TRW‖uk‖u∗ (2.4)

where x∗ is the state at equilibrium or set-point; u∗ is the control action at equilib-

rium; QW is the stage cost state weight positive semide�nite matrix; and RW is the

stage cost input weight positive semide�nite matrix. The notation ‖·‖ is de�ned in

Equation 2.5.

‖x‖x∗ := x− x∗ (2.5)

Given the stage cost in Equation 2.4 and the discrete open-loop model in Equation

2.3, the �rst nominal NMPC formulation is introduced. KEERTHI & GILBERT

(1988) proposed an in�nite horizon optimal control problem (OCP∞) and proved

the closed-loop stability of the discrete non-linear system. The OCP∞ formulation

is posed in Equation 2.6.

V 0
∞(x0) = min

u∞
{V∞(x0,u∞) :=

∞∑
k=0

`(xuk (x0), uk)|u∞ ∈ U∞}

s.t. xuk+1(x0) = f(xuk (x0), uk) (2.6)

xu0 (x0) = x0

uk ∈ U, xuk ∈ X

where V 0
∞(·) : Rn → R+

0 is the in�nite horizon objective function at optimum;

V∞(·) : Rn × Rm → R+
0 is the in�nite horizon objective function; u∞ is the in�nite

control sequence; and U∞ is the set of admissible in�nite horizon control sequences.

Both variables are de�ned in Equations 2.7 and 2.8.

u∞ := {uk | k ∈ N} (2.7)

U∞ := {uk ∈ U, k ∈ N |xuk (x0) ∈ X} (2.8)

When the OCP∞ is solved, one obtains an optimal value function of the form V 0
∞(x0)

and an in�nite optimal control sequence of the form present at Equation 2.9.

u0
∞(x0) :=

{
u0
k(x0) | k ∈ N

}
(2.9)

where u0
∞(x0) is the in�nite optimal control sequence; and u0

k(x0) is the optimal

control action at stage k.

The closed-loop system under the in�nite optimal control sequence is given in

Equation 2.10.

xµ∞k+1(x0) = f(xµ∞k (x0), u0
k(x0)) (2.10)
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where xµ∞(x0) := {xµ∞k (x0) | k ∈ [0, 1, ..., N − 1]} is the in�nite horizon closed-loop

trajectory; xµ∞k (x0) is the in�nite horizon closed-loop state vector at stage k; and

u0
∞,k(x0) ∈ U is the optimal in�nite horizon control action vector at stage k.

It is important to distinguish between open-loop xu(x0) and in�nite horizon

closed-loop xµ∞(x0) trajectories. For the deterministic OCP∞, both predicted and

actual states are exactly the same leading to an optimal control law with excellent

closed-loop properties. However, several impediments arise from the usage of this

approach as feedback is usually necessary due to uncertainty, rather than open-

loop control. The idea of an optimal feedback control, namely a receding horizon

approach, can be found on LEE & MARKUS (1968).

"One technique for obtaining a feedback controller synthesis is to mea-

sure the current control process state and then compute very rapidly

the open-loop control function. The �rst portion of this function is then

used during a short time interval after which a new measurement of the

process state is made and a new open-loop control function is computed

for this new measurement. The procedure is then repeated."

In this observation, an "open-loop control function" must be computed quickly,

which is not possible for the OCP∞. The semi-in�nite time interval present in

Equation 2.6 poses numerical challenges. Therefore, for an on-line implementation,

OCP∞ may be replaced by a similar problem that shares important structural as-

pects while being easier to solve (RAWLINGS & MAYNE, 2015). The modi�ed

optimal open-loop in�nite horizon problem OCP∞ can be posed as a time invariant

open-loop �xed horizon optimal control problem (OCPN) shown in Equation 2.11.

V 0
N(x0) = min

uN
{VN(x0,uN) =

N−1∑
k=0

` (xuk (x0), uk) |uN ∈ UN}

s.t. xuk+1(x0) = f(xuk (x0), uk) (2.11)

xu0 (x0) = x0

uk ∈ U, xuk ∈ X

where V 0
N(·) : Rn → R+

0 is the �nite horizon objective function at optimum; VN(·) :

Rn × Rm → R+
0 is the �nite horizon objective function; uN is the �nite control

sequence; and UN is the set of admissible �nite horizon control sequences. Both

variables are de�ned in Equations 2.12 and 2.13.

uN := {uk | k ∈ [0, 1, ..., N − 1]} (2.12)

UN := {uk ∈ U, k ∈ [0, 1, ..., N − 1] |xuk (x0) ∈ X} (2.13)
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It is relatively easy to obtain a solution for OCPN . Therefore, the receding horizon

strategy employing OCPN is described: during each sampling time, tk, the current

estimated system state vector x(tk) is given as initial condition of a trajectory x0

for OCPN . This yields a solution in the form of a �nite horizon optimal control

sequence u0
N(x0) = {u0

k(x0) | k ∈ [0, 1, ..., N − 1]}. Despite having an optimal

control sequence, only the �rst element of the �nite horizon optimal control action

u0
0 is implemented in the system. For the next sample, the optimal control problem

is solved again with a newly estimated system state vector x(tk+1), leading to an

optimal control sequence u0
N(x0) = {u0

k(x0) | k ∈ [0, 1, ..., N − 1]}. Again, the �rst
element of the �nite horizon optimal control action u0

0 is implemented in the plant.

This procedure is repeated at each sampling time as long as the process is operating.

Receding horizon is of great importance, since it yields a feedback notion based on

current states (MAYNE & MICHALSKA, 1990). This is advantageous, as feedback

can compensate for disturbances, modelling errors, and other forms of uncertainty.

Therefore, by applying only the �rst element of the optimal control sequence to the

system, there is an implicit NMPC feedback law which is shown Equation 2.14.

u0
0(x0) = µN(x0) (2.14)

where µN : Rn → Rm is the �nite horizon feedback law. Usage of the �nite horizon

feedback law to the system results in the �nite horizon closed-loop system as given

in Equation 2.15.

xµNk+1(x0) = f(xµNk (x0), u0
0(x0)) (2.15)

where xµN (x0) := {xµNk (x0) | k ∈ [0, 1, ..., N − 1]} is the �nite horizon closed-loop

trajectory; and xµNk (x0) is the �nite horizon closed-loop state vector at stage k.

For the OPCN , the predicted states may di�er considerably from the actual

states, even for nominal problems due to the usage of a �nite horizon. Depending

on parameters design such as the prediction horizon N , and the weight matrices

QW and RW , the closed-loop trajectory may be unstable (JOHANSEN, 2011). It

is important to highlight that implementation of the NMPC feedback law from

Equation 2.14 does not necessary lead to recursive feasibility and system stability

(MAYNE, 2014).

2.2 Robust Non-linear Model Predictive Control

The deterministic NMPC formulations presented in this work are based in a few

assumptions. First, the controlled system is perfectly modeled. Second, all dis-

turbances that might a�ect the system are known. This is clearly unrealistic in

practical applications as the control law obtained from a deterministic approach ig-
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nores the e�ect of possible future changes in disturbance and model mismatch, which

can lead to a poor closed-loop performance as well as possible constraint violation

(RAWLINGS et al., 1994).

The idea of a robust NMPC is to calculate a solution which is feasible for every

uncertainty realization. Therefore, the optimal control problem is altered to take

uncertainty directly into account. Usually, these formulations are based on a min-

max approach (ALLGÖWER et al., 2004), where the maximized objective function

over all uncertainty is minimized.

Consider a non-linear discrete time system with additive disturbance, such as

Equation 2.16.

x+ = f(x, u, w) (2.16)

where f : Rn × Rm × Rp → Rn is the discrete time control system; x+ ∈ X is the

system state vector at next time instant; x ∈ X is the system state vector; u ∈ U is

the control action vector; and w ∈W is the uncertainty vector.

In general, prior knowledge of uncertainty is limited to a compact convex set W.

This means that an in�nite number of uncertainty realizations must be taken into

account at the optimal control problem, leading to an in�nite dimension optimiza-

tion. Implementation of this approach seems only practical if the uncertainty set

is discretized into a number of �nite realizations. Therefore, the ensemble of each

uncertainty realization vector is de�ned in Equation 2.17.

wW = {w∆ |∆ ∈ W} (2.17)

where wW is the uncertainty ensemble; w∆ is the uncertainty vector associated with

realization ∆; W = [1, 2, ..., N∆] is the realization set; and N∆ is the total amount

of realizations. Given initial conditions( x0 ∈ X) obtained at sampling time tk, the

uncertainty vector associated with realization ∆ (w∆) and a control sequence (u), it

is possible to predict the open-loop trajectory associated with realization ∆, which

is given in Equation 2.18.

xuk+1(x0) = f∆(xuk (x0), uk), ∀k ∈ [0, 1, ..., N − 1] ,

xu0 (x0) = x0

(2.18)

where f∆ : Rn × Rm → Rn is the discrete time control system associated with

realization ∆; xu
∆(x0) := {xuk (x0) | k ∈ [0, 1, ..., N − 1]} is the predicted or open-loop

trajectory associated with realization ∆; xuk (x0) ∈ X is the predicted or open-loop

system state vector at stage k; x0 ∈ X is the initial condition of a trajectory; uk ∈ U
is the control action vector at stage k; and N ∈ N+ is the prediction horizon.

The traditional min-max optimal control problem (OCP∆) is posed in Equation

9



2.19.

φ0
N(x0) = min

u
max
∆∈W
{φN(x0,u) =

N−1∑
k=0

` (xuk (x0), uk) |u ∈ U∆}

s.t. xuk+1(x0) = f∆(xuk (x0), uk),

xu0 (x0) = x0,

xuk ∈ X,

uk ∈ U

(2.19)

where φ0
N(·) : Rn → R+

0 is the min-max objective function at optimum; φN(·) :

Rn × Rm → R+
0 is the min-max objective function; u is the control sequence; and

U∆ is the set of admissible min-max control sequences.

The closed-loop implementation of the optimal control problem shown in Equa-

tion 2.19 provides good performance for the worst-case scenario. However, as a

single control pro�le is optimized over all possible uncertainty realizations it has a

major �aw due to the lack of feedback. This leads OCP∆ formulation to perform

poorly by being unnecessarily conservative and even infeasible for more common

scenarios, such as the nominal (ALLGÖWER et al., 2004). Hence, there is a price

of robustness which must be payed. Several authors proposed di�erent approaches

to deal with these issues (BEN-TAL & NEMIROVSKI, 1999; BERTSIMAS & SIM,

2004; DARLINGTON et al., 2000).

SCOKAERT & MAYNE (1998) introduced the notion of feedback inside the

min-max formulation by allowing a di�erent control sequence for each extreme re-

alization of the uncertainty. This partially solves the problems of conservativeness

and feasibility because feedback notion is also considered inside the optimization

problem and not only by the receding horizon approach. The feedback min-max

optimal control problem (OCPΦ) is stated on Equation 2.20.

Φ0
N(x0) = min

uΦ

max
∆∈W
{ΦN(x0,uΦ) =

N−1∑
k=0

`
(
xu∆,k(x0), uδ,k

)
|uΦ ∈ UΦ}

s.t. xu∆,k+1(x0) = f(xu∆,k(x0), u∆,k, w∆,k), ∀∆ ∈ W ,

xu∆,0(x0) = x0, ∀∆ ∈ W ,

xu∆,k ∈ X, ∀∆ ∈ W , (2.20)

u∆,k ∈ U, ∀∆ ∈ W ,

xu∆1,k
= xu∆2,k

⇒ u∆1,k = u∆2,k, ∀∆1,∆2 ∈ W ;

where Φ0
N(·) : Rn → R+

0 is the feedback min-max objective function at optimum;

ΦN(·) : Rn → R+
0 is the feedback min-max objective function; xu∆,k(x0) ∈ X is the
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predicted or open-loop system state vector at stage k associated with realization

∆; u∆,k ∈ U is the control action vector at stage k associated with realization ∆;

wu
∆,k ∈ U is the open-loop uncertainty vector at stage k associated with realization

∆; uΦ is the feedback min-max control sequences; and UΦ is the set of admissible

feedback min-max control sequences. Both variables are de�ned in Equations 2.21

and 2.22.

uΦ := {u∆,k | ∆ ∈ W , k ∈ N} (2.21)

UΦ := {u∆,k ∈ U,∆ ∈ W , k ∈ [0, 1, ..., N − 1] |xu∆,k(x0) ∈ X} (2.22)

When a di�erent control sequence for each extreme realization of the uncertainty

is considered, the freedom of control sequences must be restricted. Therefore, the

constraint xu∆1,k
= xu∆2,k

⇒ u∆1,k = u∆2,k was added to enforce a single control

action for each state. Because feedback is taken into account inside OCPΦ, this for-

mulation can be classi�ed as a closed-loop approach. It is known that robust closed-

loop approaches reduces the controller conservativeness (SCOKAERT & MAYNE,

1998). Also, in a closed-loop framework, a solution is less likely to be infeasible than

in an open-loop framework (SCOKAERT & MAYNE, 1998). Therefore, feedback

min-max is capable of reducing conservativeness while increasing feasibility and ro-

bustness. Despite having these qualities, feedback min-max approach needs a high

computational e�ort, which is a hindrance. The main reason is that the number of

extreme realizations grows combinatorially with the prediction horizon. Therefore,

this method is only recommended for small horizons.

A multi-stage NMPC approach has been proposed in LUCIA et al. (2013). In-

stead of considering only extreme realizations of the uncertainty, it is assumed that

a tree of discrete scenarios, such as the one in Figure 2.1, represents the dynamic

state behaviour under uncertainty in�uence. For simplicity, an uniform scenario

tree will be considered for the rest of this section, i.e., all nodes generate the same

number of branches.

This scenario tree representation is a well-known approach used in the �eld of

stochastic programming. The branching starts from the initial condition x0 of the

controlled system, referenced as root, continuing until the end of the prediction

horizon, known as leafs. Each root-leaf path is called a scenario. The s-th scenario

is comprised of the root node x0, and several other states xjk, control actions u
j
k and

uncertainty realizations w∆(j)
k . For a particular prediction horizon and an uniform

scenario tree, the total number of scenarios can be calculated by Equation 2.23.

St = Nw
N (2.23)
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Figure 2.1: Uniform scenario tree representation for a multi-stage NMPC with pre-
diction horizon set to 3 and 3 uncertainty combinations, leading to 27 scenarios.
Adapted from LUCIA et al. (2013).

where St is the total amount of scenarios; and N is the prediction horizon.

Similarly to feedback min-max, multi-stage NMPC also takes explicitly feedback

notion inside the optimal control problem. Due to that, optimized control actions at

later stages can be regarded as recourse decision variables, as each future decisions

can compensate for bad e�ects that might advent from previous decisions made at

early stages (LUCIA et al., 2013). In Equation 2.24, the mathematical formulation

of an open-loop scenario tree is represented for a discrete time non-linear system.

xu,jk+1(x0) = f(x
u,p(j)
k (x0), ujk, w

r(j)
k ), ∀k ∈ {0, 1, ..., N − 1}

xu,j0 (x0) = x0

(2.24)

where xu,jk+1(x0) ∈ X is the predicted or open-loop state vector at position j at stage

k+1; xu,p(j)k (x0) ∈ X is the predicted or open-loop state vector that parents xu,jk+1(x0);

ujk ∈ U is the control action vector at stage k, position j; w∆(j) is the uncertainty

vector associated with realization ∆(j) at stage k; and N ∈ N+ is the prediction

horizon. As an example, the predicted open-loop state at position 5 and stage 2

(xu,52 (x0)) shown in Figure 2.1 is given in Equation 2.25.

xu,52 (x0) = f(xu,21 (x0), u5
1, w

2
1) (2.25)

To avoid exponential growth of the scenario tree LUCIA et al. (2013) suggest that
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the far future does not need to be rigorously represented as the near future. Also,

due to receding horizon implementation, new information are obtained from the

controlled process, while control actions are recalculated. Therefore, tree branching

may be interrupted after a certain number of stages NR < N , which is called robust

horizon. The number of scenarios is now calculated as Equation 2.26

St = Nw
NR (2.26)

where NR is the robust horizon.

The multi-stage optimal control problem (OCPS) optimizes over all scenarios.

To simplify the notation adopted by LUCIA et al. (2013), it is considered that each

particular scenario s ∈ S = {1, 2, ..., St} is comprised by an uncertainty trajectory,

which is introduced in Equation 2.27

wSs = {w∆(k,s) | ∀k ∈ [0, 1, ..., N − 1]},∀s ∈ S (2.27)

wherewSs is the uncertainty trajectory of the scenario s; and w∆(k,s) is the open-loop

uncertainty vector associated with realization ∆(k, s).

With the introduced notation, an open-loop trajectory and an illustration for

the scenario tree with a robust horizon is shown in Equation 2.28 and Figure 2.2,

respectively.

xuk+1,s(x0) = f(xuk,s(x0), uk,s, w
u
∆(s,k)), ∀k ∈ {0, 1, ..., N − 1},∀s ∈ S

xu0,s(x0) = x0, ∀s ∈ S
(2.28)

where xuk,s(x0) is the predicted or open-loop system state vector at stage k, scenario

s; and uk,s is the control action vector at stage k, scenario s. With the ability

of predicting each scenario behavior, it is possible to tune the con�dence on each

particular scenario by the introduction of weights. Therefore, the optimal control

problem (OCPS) is posed in Equation 2.29.

V 0
S (x0) = min

u
{VS(x0,u) =

St∑
s=1

[
N−1∑
k=0

ωs`s
(
xuk,s(x0), uk,s

)]
|u ∈ US}

s.t. xuk+1,s(x0) = f(xuk,s(x0), uk,s, w∆(k,s)),

xu0,s(x0) = x0, (2.29)

xuk,s ∈ X,

uk,s ∈ U,

xuk,s1 = xuk,s2 ⇒ uk,s1 = uk,s2

where V 0
S (·) : Rn → R+

0 is the multi-stage objective function at optimum; VS(·) :
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Figure 2.2: Uniform scenario tree representation for a multi-stage NMPC with robust
horizon set to 2, prediction horizon set to 4, and 3 uncertainty combinations, leading
to 9 scenarios. Adapted from LUCIA et al. (2014b).

Rn → R+
0 is the multi-stage objective function; ωs is the weight associated with each

scenario or scenario likelihood; `s(·) : Rn × Rm → R+
0 is the stage cost of the s-th

scenario; and US is the set of admissible multi-stage control sequences.
Non-anticipative constraints are present in the multi-stage optimal control prob-

lem. They are used to enforce a single control action if di�erent scenarios has the

same state at stage k. Therefore, using Figure 2.2 as a reference, non-anticipative

constraints at stage k = 1 would behave as show in Equation 2.30

xu1,4 = xu1,5 = xu1,6 ⇒ u1,4 = u1,5 = u1,6 (2.30)

Some works have been recently developed to explore multi-stage optimization. A

theoretical study was published by LUCIA et al. (2014a), where a batch polymeriza-

tion reactor was optimized with a multi-stage economic NMPC that used a model

provided by BASF SE. In KRISHNAMOORTHY et al. (2016), multi-stage NMPC

was applied to a daily production optimization problem involving a two-well gas-lift

system. As for VERHEYLEWEGHEN & JÄSCHKE (2016), a multi-stage NMPC

was used to increase remaining useful life of a subsea gas compressor by inserting

an equipment degradation model in the NMPC framework. An interesting work by

TOMASGARD et al. (2016) applied multi-stage optimization in the energy market

to cope with short-term and long-term decision making when market uncertainties
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are present.

2.3 Feasibility, Stability and Performance

According to MORARI & H. LEE (1999), there are three issues that need to be ad-

dressed for a NMPC. First, when is the optimal control problem feasible? Second,

when does the implemented control actions lead to a system which is closed-loop

stable? Third, what closed-loop performance results from repeated solution of the

speci�ed open-loop optimal control problem? Constraints play a major role in prob-

lem feasibility. For the controlled system, input saturation constraints cannot be

exceeded, while constraints involving states can be violated. Nevertheless, the vio-

lation of states constraints will have undesirable consequences for the process.

In an optimal control problem, state constraints are characterized as hard con-

straints. Disturbances in the controlled system may occur leading to a violation

of the open-loop trajectory. A consequence is that the optimal control solution is

infeasible. Slack variables may be introduced to soften hard constraints by adding

a penalty term in the objective function (VADA et al., 1999; ZHENG & MORARI,

1995). Another issue may arise if the periodic solution of the optimal control problem

inadvertently drives the closed-loop system out of the feasible region. Therefore, the

designed control needs to be robust in the sense of performance when uncertainties

are present.

Receding horizon approach uses the recent state information and solves peri-

odically an open-loop optimization problem. By applying only the �rst optimal

control action in the controlled system, closed-loop instability might occur. To deal

with that, some ingredients should be added to the optimal control problem. Since

non-linear models are used in the formulation, Lyapunov stability theory is needed.

Several proposals in the literature were made to modify the open-loop optimal con-

trol problem in order to stabilize the closed-loop system (MAYNE & RAWLINGS,

2000). For simplicity it will be assumed that the NMPC objective is to achieve the

set-point x∗ = 0. Some of these approaches are mentioned below.

Terminal equality constraints. KEERTHI & GILBERT (1988) proposed the

addition of the following ingredients:

Xf = {0} , (2.31a)

Vf (0) = 0. (2.31b)

This choice leads to stability of the deterministic closed-loop if the optimal con-

trol problem has a solution at the �rst sampling time t0 (KEERTHI & GILBERT,

1988). However, the usage of these constraints has some issues as the open-loop

15



optimization is forced to reach the origin in a �nite time. This may result in feasi-

bility problems for a short prediction horizon N . Terminal constraints can increase

the optimization computational cost, which may lead to an optimal control problem

that takes more than one sample period to be solved (ALLGÖWER et al., 2004).

In Figure 2.3, two feasible and one infeasible open-loop trajectories predicted by a

NMPC with terminal equality constraints are shown.

Figure 2.3: An illustration of possible open-loop predicted trajectories under NMPC
formulated with terminal equality constraint for a feasible (solid) and an infeasible
(dotted) optimal control problem.

Terminal cost. Another proposal was made by BITMEAD et al. (1990) with the

addition of a terminal cost function. Nevertheless, these changes will only lead to

a stable closed-loop if the prediction horizon is considered su�ciently large. The

ingredient required for this formulation can be seen below:

Xf = X ⊆ Rn, (2.32a)

Vf (0) =
1

2
‖x‖2PW . (2.32b)

where Equation 2.32b is the terminal cost. It is also possible to see in Equation

2.32a that the terminal constraint is not used. According to MAYNE & RAWL-

INGS (2000), it is generally necessary to have a terminal constraint if a non-linear

optimal controller is employed. Possible open-loop predicted trajectories for ob-

tained by a NMPC formulated with terminal cost are shown in Figure 2.4.

Terminal constraint set. This concept was introduced by MICHALSKA &

MAYNE (1993) for a MPC with variable horizon N . Later, �xed horizon ver-

sions were studied by CHISCI et al. (1996) and SCOKAERT et al. (1999). In this

methodology, a terminal set region Xf is considered. The objective of the optimal

control problem is to drive the states close enough to its set-point, entering the

region Xf . Once the states are inside Xf , a local stabilizing controller is used to

ensure that the states never leave it and eventually goes asymptotically to the set-

point. Due to the usage of a local stabilizing controller, this approach is sometimes
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Figure 2.4: An illustration of possible open-loop predicted trajectories under NMPC
formulated with terminal cost.

called the dual-mode MPC. Ingredients for the terminal constraint set approach are

highlighted below:

Xf ⊂ X ⊆ Rn. (2.33a)

ũ = κ(x̃). (2.33b)

where the terminal constraint set is represented by Equation 2.33a and Equation

2.33b is a local stabilizing controller. Figure 2.5 shows possible open-loop predicted

trajectories by a NMPC with terminal constraint region and local stabilizing con-

troller.

Terminal cost and constraint set. This version employs both a terminal cost

Vf (·) and a terminal constraint set Xf in its formulation. It is considered to have a su-

perior performance when compared with terminal constraint and terminal constraint

set strategies. Moreover, this approach handles a much wider range of problems than

terminal cost MPC.

Figure 2.5: An illustration of possible open-loop predicted trajectories under NMPC
formulated with a terminal constraint region and a local stabilizing controller.

17



2.4 Methods for Optimal Control

The NMPC optimization problem must be solved by using numerical methods based

on NLP solvers. These methods can be separated into two groups, known as the

sequential and the simultaneous strategies (BIEGLER, 2012).

In sequential methods only the control variables are discretized and the result-

ing NLP is solved with Control Vector Parameterization (CVP) methods. This ap-

proach undergoes the necessity of repeating Di�erential-Algebraic Equations (DAEs)

numerical integration and are not guaranteed to handle open loop unstable systems.

It became quite popular after the development of good NLP solvers based on the

Sequential Quadratic Programming (SQP) (SPANGELO & EGELAND, 1994).

Optimization with multiple shooting is an intermediate approach that connects

sequential and simultaneous methods. In this method, the time domain is par-

titioned into smaller time elements or intervals [tk, tk+1, tk+2, ..., tk+N−1]. For each

interval, the DAE system is numerically integrated, which means that it is integrated

from tk to tk+1, from tk+1 to tk+2, and so on. Equality constraints are added in the

NLP formulation to bridge two consecutive time intervals, guaranteeing continuity.

The simultaneous approach has similarities with the method previously discussed

in the sense that time domain is partitioned into smaller time domains. However,

the DAE system is discretized using collocation method, each interval has a number

of collocation points so that:

x̃ = {x̃k,c | k ∈ K, c ∈ C} , (2.34a)

z̃ = {z̃k,c | k ∈ K, c ∈ C6=0} , (2.34b)

ũ = {ũk | k ∈ K\N} (2.34c)

where K = [0, 1, ..., N ] is the stage set; C = [0, 1, ..., Nd] is the number of collocation

points set; ũ is the discretized control action vector; K, C and ũ are piecewise

constant; z̃ is the discretized algebraic variable vector; and x̃ is the discretized state

vector. The vectors can be represented as follows:

x̃ =
[
x̃T0,0 x̃T0,1 ... x̃Tk,d−1 x̃Tk,d x̃Tk,0 ... x̃TN,d

]T
, (2.35a)

z̃ =
[
z̃T0,1 z̃T0,2 ... z̃Tk,d−1 z̃Tk,d z̃Tk,1 ... z̃TN,d

]T
, (2.35b)

ũ =
[
ũT0 ũT1 ũT2 ... ũTN−1

]T
. (2.35c)

To ensure continuity of the states between two consecutive time intervals, equal-
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ity constraints (shooting gap) must be added to the NLP formulation.

x̃k,d = x̃k+1,0 ∀k ∈ K\N (2.36)

The simultaneous approach procedure results into a large-scale NLP without the

need for numerical integration and must be addressed by large-scale NLP solvers.

For a better understanding, Figure 2.6 displays a schematic representation of a third

order collocation using Radau scheme.

Figure 2.6: Schematic representation of a third order direct collocation using Radau
scheme showing the polynomial approximation of a dynamic state, an algebraic
variable and an input in the interval [k, k + 1]. The control input u is piecewise
constant over the interval [k, k + 1]. Adapted from KRISHNAMOORTHY et al.
(2016).
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2.5 Centrifugal Compressor Control System

FERGUSON (1963) describes compressors as machines that raise the pressure of a

speci�ed mass �ow of gas by a prescribed amount using the minimal power input. To

achieve that, a centrifugal compressor adds kinetic energy to the �uid by accelerating

it. Afterwards, a di�user decelerates the �uid converting its kinetic energy into

potential energy and, consequently, raising its pressure (GRAVDAHL & EGELAND,

1999b).

Useful operational range of a centrifugal compressor is limited. Chocking may

occur for high mass �ow rate as sonic velocity is achieved by the �uid. Whereas,

for low mass �ow rate, surge and rotation stall destabilize compressor operation.

Despite surge and rotation stall being two distinctive phenomena, there is a relation

between them.

Surge is a highly unwanted phenomena characterized by a limit cycle in the

compressor characteristic causing �uid pressure to rise and �ow to undergo through

severe amplitude oscillations. It a�ects the system by introducing thermal and

mechanical loads, oscillations, and reduced pressure ratio and e�ciency, leading to

poor performance or even compressor damage (YOON et al., 2013). Rotating stall

is a �ow regime in which one or more stall cells are located between the compressor

blades. These cells can cover small parts of a span and some blades. In a more

severe situation, it can cover the full span and extend to more than 180 degrees

of the compressor annulus. A�ected blades are considered to be severely stalled,

meaning that �uid rotational speed is lower than rotor speed. Also, in these locations

there is negligible net through-�ow, with some areas containing local reverse �ow

(GREITZER, 1980). Therefore, for the overall compressor system, rotating stall can

be considered a local instability, while surge a more global.

Exact location where change of stability properties occur in centrifugal com-

pressor is unknown. However, based on the compressor characteristic curve, it is

known that surge transition starts near local maximum of pressure ratio versus

mass/volumetric �ow, with a certain positive slope (GRAVDAHL & EGELAND,

1999b).

In Figure 2.7 a compressor map is shown. A region, referred as operation zone,

is located at the right side of the surge line. If the compressor is operating at this

part of the map, �ow is nominally steady and axisymmetric, apart from the blade to

blade pressure variations and small scale unsteadiness associated with the moving

pressure and velocity �eld of the impellers. Another region, referred as surge zone, is

located at the left side of the surge line. Operation in this particular region implies

unstable �ow, which may be caused due to surge, rotating stall or a combination of

both (GREITZER, 1980).
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Figure 2.7: Compressor characteristic curve with a surge line delimiting transition
between a stable and an unstable region. Adapted from GRAVDAHL & EGELAND
(1999b)

One may think that it is desired to operate as far from the surge line as possible,

due to risks associated with surge (GRAVDAHL & EGELAND, 1999b). However,

high compressor performance and e�ciency are obtained near surge line. One control

strategy that is usually employed in industry is known as surge-avoidance (BUDINIS

& THORNHILL, 2016). In this strategy, it is common to use a parallel safe surge

line, which is draw in Figure 2.7.

PLUCENIO et al. (2016a) proposed in their work a surge indicator to monitor

where the compressor is operating in relation to the surge line based on compressor

and surge line volumetric �ow rates. The surge index is de�ned in Equation 2.37.

Is =
qsl
qcoin

(2.37)

where Is is the surge index; qsl is the volumetric �ow at the surge line; and qcoin is the

volumetric �ow at the compressor inlet. Surge occurs when qcoin is smaller than qsl,

the volumetric �ow at the safe surge line. Therefore, change of compressor stability

occurs when Is = 1. If Is < 1, the compressor is operating normally. If Is > 1, it

entered into surge.

Volumetric �ow at the safe surge line and at surge line are correlated as stated
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in Equation 2.38.

qssl =
qsl
δssl

(2.38)

where qssl is the volumetric �ow at the safe surge line; qsl is the volumetric �ow at

the surge line; and δssl is the safe surge line margin. Consequently, when Is = δssl,

the compressor is operating in the safe surge line. If Is < δssl, the compressor is

operating under the safe surge line; and if Is > δssl, it has passed through the safe

surge line.

An alternative to surge avoidance has been investigated by several authors (EP-

STEIN et al., 1989; EVEKER & NETT, 1993; GRAVDAHL et al., 2002). Active

surge control is inherently di�erent from surge avoidance. Instead of avoiding surge,

active control seeks to stabilize the unstable equilibrium by actively suppressing

surge with control actions. This technique broaden compressor's operation region

and higher compression e�ciency can be achieved, as the once before unstable be-

haviour can now stabilized GRAVDAHL & EGELAND (1999a). However, safety

is a major concern as active surge control pushes operation towards an open-loop

unstable region, which can lead to surge if any failure in such control occurs. This

technique has been mainly implemented in university laboratories and has not yet

found wide spread use in industry due to lack of reliability (UDDIN & GRAVDAHL,

2012a). Therefore, for surge prevention, this work mainly focuses on surge avoidance

using deterministic and robust NMPC.
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Chapter 3

Surge Avoidance in a Gas

Compression System

3.1 Subsea Gas Compression

Seabed gas compression is a fast evolving technology that is used for boosting pro-

duction. It can improve recovery and production rates from the reservoir by reducing

backpressure on wells. Furthermore, it provides advantages in �ow assurance risk

management, such as slugging, to ensure that production can be maintained to

deliver the full reservoir potential (KONDAPI et al., 2017).

The pro�le production of a typical natural gas �eld is shown in Figure 3.1.

After start up, production achieves its natural plateau (1-2). During this phase, the

reservoir has high energy and its pressure is su�cient to drive the �ow. Production

rate is limited by topside or downstream processing facilities. Thus, production rate

is almost constant during this period. With the reservoir depletion, natural pressure

starts to decrease (2-3). This has an impact on production rate, as the reservoir

does not have enough energy to drive the �ow as before. At a certain point (3),

economical aspects or physical limitations may force production to stop.

The bene�t of boosting a natural gas �eld production is also shown in Figure 3.1.

Subsea compression can keep �eld production rate for a longer time (2-2') by com-

pensating for its natural pressure decrease. However, even with added compression

power, production plateau can not be maintained due to �eld depletion (2'-3'). Pro-

duction is �nally abandoned (3') as exploration stopped to be economically viable

or compressor cannot deliver the pressure increase needed.

Subsea compression technology has gained great attention from oil and gas in-

dustry. In 2015, Equinor, former Statoil, started-up two subsea compression systems

developed to create value for Åsgard and Gullfaks brown �elds (VINTERSTØ et al.,

2016). Based on these successful experiences, subsea gas compression technology can
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Figure 3.1: Production pro�le of a natural gas �eld with natural production and
under boosting. Adapted from DETTWYLER et al. (2016).

be classi�ed in two main concepts (TØNNESSEN et al., 2017).

In single phase compression, gas/liquid separation is performed upstream the

compressor to reduce Liquid Volume Fraction (LVF) in gas stream. This enables

gas to be boosted by a "traditional" dry compressor, while the liquid is boosted by

a pump. The term "traditional" is used in the sense that it has adopted some com-

mon principles and requirements from topside compression industry. This system

is known for its high performance, e�ciency and �exibility. However, it has some

drawbacks related with utility supply for pump and compressor, and intervention

cost due to its heavy structure.

In well-stream compression, well-stream is boosted directly through the multi-

phase wet compressor. Therefore, there is no need for a separation process upstream.

Depending on the compressor type and �ow characteristics, there might be needed a

slug damper upstream the wet compressor. This system is attractive due to signi�-

cant savings on cost, size and weight by avoiding separation and pumping. However,

it cannot deliver comparable performance or operating envelop. According to GI-

LARRANZ R. et al. (2010), available test data indicates that the power required to

boost wet gas through a centrifugal compressor is higher than boosting liquid and

gas separately. Also, there are some issues in predicting accurately the compressor

performance under wet gas conditions, which has the potential to cause premature

degradation of the machine components.

3.2 Åsgard Field

Åsgard production complex is located approximately 200 km west of the coast of

mid Norway. It is being operated by Equinor Energy AS, former Statoil Petroleum
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AS, in partnership with ENI Norge AS, ExxonMobil Exploration and Production

Norway AS, Petoro AS and Total E&P Norge AS (STORSTENVIK, 2016).

Equinor started oil production during 1999 with the Floating Production Stor-

age and O�oading (FPSO) Åsgard A. Meanwhile, gas production was initiated in

later 2000 with the semi-submersible platform Åsgard B, where treatment of gas

and stabilization of oil and condensates occur, and the storage ship for condensate

Åsgard C. By that time, it was of knowledge from Equinor and its partners that

production from Mikkel and Midgard �elds would decrease with time, due to de-

clining pressure. Therefore, to extend the life-time of both �elds and increase gas

recovery, additional compression would be needed (BECKMAN, 2015). However,

lack of available space in Åsgard B posed a challenge, as a new compression system

was needed. An obvious solution would be to construct a dedicated compression

platform but it would be costly. Therefore, subsea compressions was recognized as

a cost-e�ective alternative (VINTERSTØ et al., 2016). Åsgard subsea compression

project has started to be developed in 2005 to be the world's �rst subsea compres-

sion station (STORSTENVIK, 2016). Due to the large size of the �eld and great

step-out distance from Mikkel and Midgard, single phase compression technology

was selected for greater pressure boost (VINTERSTØ et al., 2016).

The subsea compression station is installed at a water depth of 270 m and is

comprised of two identical compressor trains that, at full production, produces a

total of 21 MSm3/d. Currently, it is one of the biggest subsea compression stations

in the world, where each compressor has a total duty of 11.5 MW . Start-up occurred

in 2015 and it is expected to secure production until 2032 with estimated recovery

of further 306 million barrels of oil equivalent (VINTERSTØ et al., 2016). Some

technical aspects of Åsgard �eld are summarized in Table 3.1.
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Table 3.1: Technical data for Åsgard (VINTERSTØ et al., 2016).

Field Åsgard

Start-up 16 September 2015

Design lifetime 30 years

Water depth 250-325 m

Gas Volume Fraction 97 vol %

Compression system structure size 75 x 45 x 20 m (LxWxH)

Compression system weights 4800 tonnes

Design gas �ow rate 21 MSm3/d

Pressure boost (dP ) 50 bar

Design pressure 210 bar

Liquids (max) into station 3 vol %

Max liquids into compressor 0.46 vol %

Step out 40 km

Additional gas recovery 306 million barrels of oil equivalent

Recovery increase from 67 to 87% (Midgard)

and 59 to 84% (Mikkel)

Power 2 x 11.5 MW centrifugal compressors

(with upstream gas scrubbing)

3.2.1 Process and Control System

The main objective of the compression station process system is to rise the pressure

of wellhead �uid to accelerate production and increase recovery while operating

at a reduced wellhead pressure (STORSTENVIK, 2016). The compression station

is comprised of two identical and independent compressor trains. Each train is

composed of several modules, such as an inlet cooler module, separator module,

pump module, compressor-module, discharge cooler module, transformer module

and other smaller modules (KLEYNHANS et al., 2016). In Figure 3.2 a simpli�ed

process �ow diagram of one compression train is presented.
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Figure 3.2: Representation of Åsgard dry gas compression system. Based in
(STORSTENVIK, 2016).

The incoming well-�uid is cooled to achieve a desired process temperature. This

is important, since compressor's e�ciency may be a�ected by temperature changes

(ALBUSAIDI & PILIDIS, 2015). Afterwards, the �uid is separated by a scrubber

into gas and liquid stream to reduce liquid carry over through the gas phase. Then,

the separated gas is pressurized by the centrifugal compressor while the separated

liquid is compressed by a centrifugal pump. Before both phases are recombined, the

compressed gas phase is cooled to avoid pipeline degradation, as maximum design

temperature is lower in the pipelines than in compressor discharge. Finally, both

phases are recombined and �ow to topside as a multiphase stream (STORSTENVIK,

2016).

The newly developed centrifugal gas compressor is used for boosting the gas

phase. Despite being a single phase compression, it must have certain liquid tol-

erance as the scrubber does not guarantee a perfect separation. Gas phase might

contain liquid droplets, which a�ect compressor performance. Thus, an extensive

technology quali�cation program was developed in which the centrifugal compres-

sor has been quali�ed, designed and tested to operate with gas containing presence

of free liquids such as water, hydrocarbon condensate and glycol. Its performance

was monitored with gas containing from 0% to 30% of Liquid Mass Fraction (LMF)

(KLEYNHANS et al., 2016).

The subsea control system is entirely electrical-powered. It is based on a redun-

dant con�guration where systems A and B operate simultaneously. If a malfunction

occurs in one of these systems, the other will continue to operate and the compressor

system will not su�er any non-programmed stop. Three control valves are present in

27



the subsea process system, two of them are used to maintain the pump �ow between

a minimum and a maximum �ow, while the other one is an anti-surge valve which

is used to avoid surge operation, this strategy is known as surge avoidance. Most of

these control logics are maintained in the topside process control system at Åsgard

B. However, some close-loop systems need fast response. Therefore. anti-surge and

magnetic bearing control loop are contained in the subsea system (KLEYNHANS

et al., 2016).

3.3 Compression System Case-Study

One of the most important aspects of subsea process installations is reliability. In

compression systems, surge may reduce compressor's life-time or even damage the

equipment, which may force unscheduled maintenance. To carry out major repairs

in deep-water it is necessary to mobilize Remotely Operated Vehicles (ROV) from a

�oating deep-water drilling rig. Cost of subsea intervention in deep-water wells were

estimated to be over $200,000 per day in the past years, as rig services are leased at

daily rates (FANAILOO & ANDREASSEN, 2008). Therefore, a compression sys-

tem case-study has been developed to analyse how deterministic and robust NMPC

perform in a surge avoidance strategy.

For an online implementation of a NMPC, it is desired to solve the optimal con-

trol problem in a reasonable time. Therefore, simpli�ed models must be developed.

For that reason, the virtual plant model was based on PLUCENIO et al. (2016b).

The process �ow diagram can be seen in Figure 3.3. The subsea module consists of

Figure 3.3: Process �ow diagram of the case-study based on Åsgard dry compression
system.

one source control valve, one inlet cooler, one anti-surge control valve, one compres-

sor and one sink control valve. The general assumptions of this model are presented
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as follows:

Assumption 1. Ideal gas behaviour is considered to be followed by the �uid, with

deviations being corrected by introducing a given compressibility factor (Z)

(black-oil);

Assumption 2. Valve formulation considers a compressible �ow;

Assumption 3. Gas condensation does not occur after cooling;

Assumption 4. There is no mass exchange between gas and liquid phase in the

scrubber;

Assumption 5. The plenum represents a hypothetical volume that comprehends

compressor discharge and pipeline;

Assumption 6. Speci�c heat capacity (cp, cv) does not change with temperature;

Assumption 7. Gas compressibility (Z) does not change with pressure and tem-

perature;

Assumption 8. The system is thermally isolated from the seawater and heat loss

is not considered.

In the next sections, models for each system building-block are discussed. Also,

for a better reading experience, several units were omitted. It is important to

highlight that, for the system model, all variables and equations are in terms of the

International System of Units (SI). However, for some �gures present in this work,

pressure conversion from pascal to bar was employed.

3.3.1 Control Valve

Control valves are automatic devices that modify �uid �ow rate by changing its

opening based on control decisions (EDGAR et al., 2008). For topside applications,

control valve technology is considered to be very mature. This is not the case for

subsea control valve despite its evolution in recent years. Several subsea separation

projects have decided to use pumps with Variable Speed Driver (VSD) as a �nal

control element for level control, due to a lack of high capacity fast acting �ow

control valves, e.g. Troll/2001, Tordis/2007, BC-10/2009, Perdido/2010 (HAHEIM

& GAILLARD, 2009). In 2011 Paz�or project it was decided to use topside control

valves, whereas in 2013 Marlin project choke valves and pumps for level control

were adopted. Recently, due to 2011 Ormen Lange and to 2015 Åsgard projects,

it is believed that control valves have become su�ciently mature to be applied in

subsea systems.
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There are still some concerns regarding subsea control valves reliability and re-

sponse time. However, it is feasible to assume that a commercial 15 second full-stroke

time will be readily available in the near future (LI et al., 2014). Therefore, for this

case-study, a maximum change in valve opening was considered. The model for a

control valve is shown in Equations 3.1a-3.1e (ISA, 2007). The superscript v is a

reference to valve.

mv
in = mv

out (3.1a)

mv
out = Kv

vφ
vP v

inY
v

√(
P v
in − P v

out

P v
in

)(
Mw

T vinZ

)
(3.1b)

Y v = 1−
(

1

3F v
γ x

v
T

)(
P v
in − P v

out

P v
in

)
(3.1c)

F v
γ =

γ

1.40
(3.1d)

T vin = T vout (3.1e)

where mv
in is the inlet mass �ow rate; mv

out is outlet mass �ow rate; Kv
v is the �ow

coe�cient; φv is the valve opening percentage; P v
in is the inlet pressure; Y v is the

expansion factor; xvT is the pressure di�erential ratio factor;Mw is the �uid molecular

weight; T vin is the inlet temperature; Z is the compressibility factor; T vout is the outlet

temperature; F v
γ is the speci�c heat ratio factor; γ is the adiabatic index or speci�c

heat ratio factor; and P v
out is the out�ow pressure.

3.3.2 Flow Mixer

The �ow mixer has a simple model based on mass, energy balance and pressure

equality. For the �ow mixer present in the case-study, there are two inlets and one

outlet streams. Therefore, the mixer model is given by Equations 3.2a-3.2c.The

superscripts mix is a reference to mixer.

mmix
out = mmix

in,1 +mmix
in,2 (3.2a)

Tmixout =
mmix
in,1 T

mix
in,1 +mmix

in,2 T
mix
in,2

mmix
out

(3.2b)

Pmix
in,1 = Pmix

in,2 = Pmix
out (3.2c)

where mmix
in,1 and mmix

in,2 are the inlet �uid mass �ow rate; mmix
out is the outlet mass

�ow rate; Tmixin,1 and Tmixin,2 are the inlet �uid temperature; Tmixout is the outlet �uid

temperature; Pmix
in,1 and Pmix

in,2 are the inlet �uid pressure; and Pmix
out is the outlet �uid

pressure.
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3.3.3 Cooler

For the inlet cooler model, the process �uid heat loss was simpli�ed. Only the

process �uid mass balance and energy balance were considered, and the pressure

drop through the cooler was neglected. Therefore, its model can be represented by

Equations 3.3a-3.3c. The superscript hx is a reference to cooler.

mhx
in = mhx

out (3.3a)

Qhx = mhx
in cp (T hxin − T hxout) (3.3b)

P hx
in = P hx

out (3.3c)

where mhx
in is the inlet �uid mass �ow rate; mhx

out is the outlet mass �ow rate; Qhx

is the heat rate removed from the inlet �uid; cp is the speci�c heat capacity of the

�uid at constant pressure; T hxin is the inlet �uid temperature; T hxout is the outlet �uid

temperature; P hx
in is the inlet �uid pressure; and P hx

out is the outlet �uid pressure.

3.3.4 Scrubber

The scrubber is a vertical gas-liquid separator used to protect rotating equipments

(e.g. centrifugal compressor). To perform that, it is usually required that scrubbers

have di�erent separation internals installed in series. In this way, scrubbers can have

very high demisting e�ciency and can deal with very small liquid droplets contained

in a gas �ow; consequently reducing carry over by the process gas (AUSTRHEIM,

2006).

Simpli�cations made due to Assumption 4 led the scrubber to be modelled

similarly to a vertical vessel in terms of mass and energy balance. Its model is

described in Equations 3.4a-3.4d. The superscript sc is a reference to scrubber.

dP sc

dt
=
RZ T scout
Mw V sc

(msc
in −msc

out) (3.4a)

dT sc

dt
=
RZ T scout
Mw V sc

msc
out

P sc
out

(T scin − T scout) (3.4b)

P sc
out = P sc (3.4c)

T scout = T sc (3.4d)

where P sc is the pressure in the scrubber; R is the ideal gas constant; Z is the

compressibility factor; Mw is the molecular weight; V sc is the scrubber volume; msc
in

is the inlet �uid mass �ow rate; msc
out is the outlet �uid mass �ow rate; T scin is the

inlet �uid temperature; T scout is the outlet �uid temperature; T sc is the temperature

in the scrubber; and P sc
out is the outlet �uid pressure.
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3.3.5 Centrifugal Compressor

For this work, the centrifugal compressor was modelled through a hybrid approach

with the usage of �rst principle models, polytropic equations and compressor char-

acteristic curves obtained from manufacturer data.

One of the major works regarding compressor models was developed by GRE-

ITZER (1976). In his work, a theoretical �rst principle was developed for an ax-

ial compressor. His lumped dynamic model was later shown to give a reasonable

agreement between experimental and simulation results for a centrifugal compressor

(HANSEN et al., 1981). Greitzer-type models were further developed with slightly

modi�cations, such as the ones by MACDOUGAL & ELDER (1983), GRAVDAHL

& EGELAND (1999a) and BOINOV et al. (2006). A one-stage compressor with

recycle is shown in Figure 3.4.

Figure 3.4: One-stage compression system with recycle line. Adapted from UDDIN
& GRAVDAHL (2012b).

The �rst principle model is expressed as an algebraic di�erential system given by

a plenum mass and energy balance, and a duct momentum balance. This model is

represented in Equations 3.5a-3.5f. The superscripts co, p, rev and siv are references
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to compressor, plenum, recycle valve and sink valve, respectively.

dP p

dt
=
RZ T p

Mw V p
(mco

in −m
p
out,1 −m

p
out,2) (3.5a)

dT p

dt
=
RZ T p

Mw V p

(
mp
out,1 +mp

out,2

P p

)
(T cod − T p) (3.5b)

dmco
in

dt
=
Aco

Lco
(P co

d − P p) (3.5c)

Ψco(rco, qcoin) =
P co
d

P co
in

(3.5d)

qcoin =
mco
in

ρcoin
(3.5e)

ρcoin =
P co
inMw

RZ T coin
(3.5f)

P p
out,1 = P p

out,2 = P p (3.5g)

T pout,1 = T pout,2 = T p (3.5h)

where P p is the plenum pressure; R is the ideal gas constant; Z is the gas compress-

ibility factor; T p is the plenum temperature; Mw is the �uid molecular weight; V p

is the plenum volume; mco
in is the compressor inlet mass �ow rate; mp

out,1 and m
p
out,2

are the plenum outlet mass �ow rate; Aco is the compressor duct cross sectional

area; Lco is the duct length; T cod is the discharge temperature; P co
d is the discharge

pressure; Ψc(·) is the compressor characteristic; rco is the compressor angular speed
or rotation; qcoin is the compressor inlet volumetric �ow rate; P co

in is the compressor

inlet pressure; ρcoin is the compressor inlet density; T coin is the compressor inlet tem-

perature; P p
out,1 and P p

out,2 are the plenum outlet pressure; and T pout,1 and T pout,2 are

the plenum outlet temperature.

SCHULTZ (1962) developed a polytropic model to predict the compressor perfor-

mance based on real and ideal gas. In his analysis, a polytropic process is commonly

de�ned by the path shown in Equation 3.6.

PV β = constant (3.6)

where β is the polytropic volume exponent; P is the pressure; and V is the volume.

For a more fundamental de�nition, Equation 3.7 is shown.

V
dP
dh

= ηp. (3.7)

where h is the enthalpy; and ηp is the polytropic e�ciency.

As the polytropic path shown by Equation 3.6 is constant, one may obtain Equa-
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tion 3.8.

Pin(Vin)β = Pout(Vout)
β (3.8)

where Pin is the inlet pressure; Vin is the inlet volume; Pout is the outlet pressure;

and Vout is the outlet volume.

To accommodate for non-ideal behaviour, Equation 3.9 is used.

Z ≡ PV

RT
Mw (3.9)

where Z is the compressibility factor.

Equation 3.10 is obtained by merging Equation 3.9 with Equation 3.8 using

Assumption 7.
Tin
Tout

=

(
Pin
Pout

)(β−1
β )

(3.10)

It is possible to correlate a polytropic process with an isentropic process. An isen-

tropic analysis follows the path de�ned by Equation 3.11.

PV γ = constant (3.11)

where γ is the speci�c heat ratio given in Equation 3.12.

γ =
cp
cv

(3.12)

where cp is the speci�c heat capacity at constant pressure; and cv is the speci�c heat

capacity at constant volume.

One can merge Equation 3.11 and 3.9 using Assumption 8, obtaining Equation

3.13.
Tin
Tout

=

(
Pin
Pout

)( γ−1
γ )

(3.13)

It is possible to see that Equations 3.6 and 3.11 are similar. A process needs to

be reversible in order to be considered isentropic. In other words, in an isentropic

process, the work done by compressing a gas can be completely recovered when

decompression occurs. Although a compressor system realizes work in a �uid, it is

not an isentropic process, as the �uid su�ers from energy losses due to shock and

friction (FERGUSON, 1963). Therefore, if β = γ a polytropic process achieves its

maximum e�ciency. Therefore, polytropic e�ciency can be written on the form of

Equation 3.14.
β

β − 1
= ηp

γ

γ − 1
(3.14)

The energy per mass of �uid given to the system during a polytropic compression is

termed as polytropic head. In Equation 3.15, a representation in terms of polytropic
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volume exponent is shown.

Hp =
β

β − 1

ZRTin
Mw

[(
Pout
Pin

)β−1
β

− 1

]
(3.15)

where Hp is the polytropic head.

If β from Equation 3.14 is substituted in Equation 3.15, a representation in terms

of polytropic e�ciency (Equation 3.16) is obtained.

Hp = ηp
γ

γ − 1

ZRTin
Mw

[(
Pout
Pin

) γ−1
ηpγ

− 1

]
(3.16)

The system actual head and the power applied to the �uid by the compressor can

be calculated, respectively, from Equation 3.17 and Equation 3.18.

H =
Hp

ηp
(3.17)

W = Hmin (3.18)

where H is the actual head; W is the power; and min is the inlet mass �ow rate.

Therefore, for the system shown in Figure 3.4, Equations 3.19a-3.19d were applied.

T cod = T coin

(
P co
d

P co
in

)( γ−1
γ )

(3.19a)

Hco
p = ηcop

γ

γ − 1

ZRT coin
Mw

[(
P co
d

P co
in

) γ−1
ηcop γ

− 1

]
(3.19b)

Hco =
Hco
p

ηcop
(3.19c)

W co = Hcomco
in (3.19d)

Where Hco
p is the compressor polytropic head; ηcop is the compressor polytropic

e�ciency; Hco is the compressor actual head; and W co is the compressor power.

The compressor's characteristic are usually provided by the manufacturers as

curves of pressure ratio, compressor head and polytropic e�ciency generally repre-

sented as a function of the compressor angular speed and mass �ow rate or volumetric

�ow rate. From manufacturer data sheet, obtained experimentally in a controlled

environment test rig, it is possible to derive polynomial correlations for these curves.

A generic representation used by THOMAZ (2017) was employed for the pressure

ratio, Ψco and polytropic e�ciency, ηcop . Nevertheless, a constant value of 60 was

added to convert the inlet �uid volumetric �ow rate unit from m3/s to m3/min.
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Therefore, the generic representations are introduced in Equation 3.20a-3.20b.

Ψco(rcop , q
co
in) = a0 + a1

(
60 qcoin
rcop

)
+ a2r

co
p + a3

(
60 qcoin
rcop

)2

+ a4 (60 qcoin) + a5(rcop )2,

(3.20a)

(3.20b)ηcop (rcop , q
co
in) = b0 + b1

(
60 qcoin
rcop

)
+ b2r

co
p + b3

(
60 qcoin
rcop

)2

+ b4 (60 qcoin) + b5(rcop )2,

where rcop is the compressor rotation percentage; and qcoin is the inlet �uid volumetric

�ow rate.

The surge line can be obtained from applying dΨco

dqcoin
= 0 and is shown in Equation

3.21.

qcosl =
1

60

(
− a1

2a3

rcop +
a4

2a3

rcop
2

)
(3.21)

where the coe�cients a and b are shown in Table 3.2.

Table 3.2: Pressure ratio and polytropic e�ciency coe�cients obtained for the poly-
nomial approximation (THOMAZ, 2017).

Coe�cients Values Coe�cients Values
a0 -5,297 b0 0.4146
a1 0.2509 b1 0..009058
a2 -21.68 b2 -0.09977
a3 -0.0013 b3 -0.0001147
a4 -0.00723 b4 0.01962
a5 24.005 b5 -1.310

The last part of the compressor model is the surge index, and a relation between

the surge line and safe surge line volumetric �ow rates. Both formulations have been

discussed in a previous section, nevertheless they are shown in Equations 3.22-3.23.

Icos =
qcosl
qcoin

(3.22)

qcossl =
qcosl
δcossl

(3.23)

where Icos is the surge index; qcossl is the volumetric �ow rate at the safe surge line;

and δcossl is the safe surge line margin.
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Chapter 4

Results and Discussion

4.1 Problem Description

The virtual plant model is de�ned as a semi-explicit index-1 di�erential-algebraic

system, which is shown in Equations 4.1a-4.1b.

ẋ = fc(x, z,u,w) (4.1a)

0 = gc(x, z,u,w) (4.1b)

Where x is the virtual plant state vector; fc is the continuous di�erential equation

vector; z is the virtual plant algebraic variable vector; u is the virtual plant control

action vector; w is the virtual plant uncertainty vector; and gc is the continuous

algebraic equation vector. Figure 4.1 is used as reference to visually represent the

relationship between functions and equipment.

Figure 4.1: Virtual plant detailed functions, where P so, T so and P si are the source
pressure, source temperature and sink pressure, respectively. The superscripts sov,
mix, hx, sc, rev, co, p, siv are reference to source valve, mixer, cooler, scrubber,
compressor, plenum and sink valve, respectively.

The set of di�erential and algebraic equations are given by Equations 4.2a and
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4.2b, respectively.

f(·) =
[
f sc(·)T f co(·)T fp(·)T

]T
(4.2a)

g(·) =
[
gsov(·)T gmix(·)T ghx(·)T gsc(·)T gco(·)T grev(·)T gsiv(·)T

]T
(4.2b)

Where f sc(·) is the set of di�erential equations for the scrubber; f co(·) is the set of
di�erential equations for the compressor; fp(·) is the set of di�erential equations for
the plenum; gsov(·) is the set of algebraic equations for the source valve; gmix(·) is
the set of algebraic equations for the mixer; ghx(·) is the set of algebraic equations
for the cooler; gsc(·) is the set of algebraic equations for the scrubber; gco(·) is the set
of algebraic equations for the compressor; grev(·) is the set of algebraic equations for
the recycle valve; gsiv(·) is the set of algebraic equations for the sink valve. Table 4.1
displays which set of di�erential and algebraic equations are part of each equipment

model.

Table 4.1: Model equations used for each equipment in the virtual plant.

Equipment Superscript f(x, z,u,p,w) g(x, z,u,p,w)
Source valve sov - 3.1a; 3.1b; 3.1c; 3.1d; 3.1e
Mixer mix - 3.2a; 3.2b; 3.2c
Cooler hx - 3.3a; 3.3b 3.3c
Scrubber sc 3.4a; 3.4b 3.4c; 3.4d

Compressor co 3.5c
3.5d; 3.5e; 3.5f; 3.19a; 3.19b; 3.19c;
3.19d; 3.20a 3.20b; 3.21; 3.22; 3.23

Plenum p 3.5a; 3.5b 3.5g; 3.5h
Recycle valve rev - 3.1a; 3.1b; 3.1c; 3.1d; 3.1e
Sink valve siv - 3.1a; 3.1b; 3.1c; 3.1d; 3.1e

The virtual plant states x, algebraic variables z and control actions u are given
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in Equations 4.3a-4.3k.

x =
[
P sc T sc mco

in P p T p
]T

(4.3a)

z =
[
zsovT zmix

T
zhx

T
zscT zcoT zpT zrevT zsiv

T
]

(4.3b)

zsov =
[
msov
in msov

out P sov
in P sov

out T sovin T sovout Y sov F sov
γ xsovT

]T
(4.3c)

zmix =
[
mmix
in,1 mmix

in,2 mmix
out Tmixin,1 Tmixin,2 Tmixout Pmix

in,1 Pmix
in,2 Pmix

out

]T
(4.3d)

zhx =
[
mhx
in mhx

out T hxin T hxout P hx
in P hx

out Qhx
]T

(4.3e)

zsc =
[
msc
in msc

out T scin T scout P sc
in P sc

out

]T
(4.3f)

zco =
[
mco
in qcoin P co

in T coin ρcoin P co
d T cod Hco

p Hco W co ηcop Ψco

qcosl qcossl Icos

]T (4.3g)

zp =
[
mp
out,1 mp

out,2 P p
out,1 P p

out,2 T pout,1 T pout,2

]T
(4.3h)

zrev =
[
mrev
in mrev

out P rev
in P rev

out T revin T revout Y rev F rev
γ xrevT

]T
(4.3i)

zsiv =
[
msiv
in msiv

out P siv
in P siv

out T sivin T sivout Y siv F siv
γ xsivT

]T
(4.3j)

u =
[
φrev rcop

]T
(4.3k)

Table 4.2 displays the parameter values used to simulate this system. These

parameters were chosen based on technical data available from Åsgard subsea com-

pression system presented in Table 3.1 and from STORSTENVIK (2016).

For this system, the uncertainty set is shown in Equation 4.4.

W = E(P so)± σP so (4.4)

where W is the uncertainty set; E(P so) is the expected value of the source pressure;

and σP so is the standard deviation of the source pressure.

The objective of this work was to evaluate closed-loop behaviour of a subsea

compression system controlled by three distinct NMPC strategies, namely determin-

istic, o�ine min-max and multi-stage NMPC. Therefore, this chapter was divided

into four parts. In the �rst study, open-loop simulations where step disturbances

and changes in manipulation variable were performed with the intent to gather in-

formation about the system dynamics. For the second study, an oscillatory unknown

disturbance was applied to the system and closed-loop behaviour was analysed. On

the third study, open-loop predicted trajectories of the controllers at speci�c time

samples were examined closely. For the last study, closed-loop controlled system

performance was measured and evaluated by using indicators related with set-point
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Table 4.2: Parameter values used in simulation.

Parameter Units Value Comments

T so [K] 303.15 Source temperature
P si [bar] 125 Sink pressure
Ksov
v [kg/s] 0.007 Source valve constant

φsov [dimensionless] 0.5 Source valve opening
xsovT [dimensionless] 0.7 Source valve pressure di�erential ratio factor
V sc [m3] 4 Scrubber volume
V p [m3] 1.5 Plenum volume
Krv
v [kg/s] 0.001 Recycle valve constant

xrvT [dimensionless] 0.7 Recycle valve pressure di�erential ratio factor
Ksiv
v [kg/s] 0.007 Sink valve constant

φsiv [dimensionless] 0.5 Sink valve opening
xsivT [dimensionless] 0.7 Sink valve pressure di�erential ratio factor
Mw [kg/mol] 0.023 Fluid molecular weight
Z [dimensionless] 0.95 Compressibility factor
γ [dimensionless] 1.24 Adiabatic index
R [J/mol.K] 8.31451 Gas constant

tracking, constraint handling, mass �ow production, system power consumption and

e�cient production.

The NMPC formulations were expanded with the addition of stage di�erence

cost, constraints for control input, stability ingredients, soft constraints and system

discretization. For the deterministic approach, Equations 4.5a-4.5i display the opti-

mal control problem based on OCPN . The objective function is shown in Equation

4.5a, with its cost function present in Equation 4.6. As for the equality constraints

in Equation 4.5b, they comprehend a discrete form of the model shown in Equations

4.1a and 4.1b. Recycle valve opening limitation during normal operation was added

by the addition of a soft constraint in Equation 4.5c, where ak is the slack variable

and αW , present in the cost function, is the slack variable weight. The lower and

upper bound of states, inputs and inputs stage di�erence are shown in Equations

4.5d, 4.5e and 4.5f, respectively. Due to the usage of direct transcript, shooting gaps
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constraints are added in Equation 4.5h. The initial state is given by Equation 4.5i.

min
u,a

{VN(x0,u, a)} (4.5a)

s.t. 0 = F
(
x̃u
k,c, z̃

u
k,c, ũk, w̃

u
E
)
, ∀k ∈ K,∀c ∈ C, (4.5b)

φrevk ≤ ak ∀k ∈ K\N, (4.5c)

xu
lb ≤ x̃u

k,c ≤ xu
ub, ∀k ∈ K,∀c ∈ C, (4.5d)

zulb ≤ z̃uk,c ≤ zuub, ∀k ∈ K,∀c ∈ C6=0, (4.5e)

ulb ≤ ũk ≤ uub, ∀k ∈ K, (4.5f)

∆ulb ≤ ∆ũk ≤ ∆uub, ∀k ∈ K, (4.5g)

x̃u
k,d = x̃u

k+1,0, ∀k ∈ K\N, (4.5h)

x̃u
0,0 = x0, (4.5i)

With,

VN(x0,u, a) =
N−1∑
k=0

[
d∑
c=1

(Ak,c−1) +Bk

]
+ C

Ak,c−1 = ‖x̃k,c−1‖x∗TQW‖x̃k,c−1‖x∗

Bk = ‖ũk‖u∗TRW‖ũk‖u∗+∆ũk
TWW∆ũk + αWak

C = ‖x̃N,0‖x∗TPW‖x̃N,0‖x∗

(4.6)

where VN(·) is the �nite horizon objective function; F is the discretized system; ũ is

the control action sequence; x̃u
k,c is the predicted or open-loop state vector at stage

k, collocation c; z̃uk,c is the predicted or open-loop algebraic variable vector at stage

k, collocation c; ũk is the control action vector at stage k; w̃u
E is the open-loop

uncertainty vector associated with the expected realization; φrevk is the recycle valve

opening at stage k; ak is the slack variable at stage k; subscripts lb and ub represent

the lower and upper bounds for x̃u
k,c, z̃

u
k,c, ũk and ∆ũk; ∆ũk is the control action

changes vector at stage k; QW is the stage cost sate weight matrix; αW is the slack

variable weight; RW is the stage cost input weight matrix; WW is the stage cost

input weight matrix; and PW is the terminal cost weight matrix.

The o�ine min-max approach is based on OCP∆. However, since in this work

it was considered that only the source pressure had uncertainty, the solution to its

max counterpart can be known through simulations, thus o�ine. Consequently, the

o�ine min-max is posed as Equations 4.5a-4.5i considering the open-loop uncertainty

vector associated with the worst realization ∆0 instead of the nominal realization.

Therefore, Equation 4.5b is changed to Equation 4.7.

0 = F
(
x̃u
k,c, z̃

u
k,c, ũk, w̃

u
∆0

)
, ∀k ∈ K, c ∈ C (4.7)
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where wu
∆0 is the open-loop uncertainty vector associated with the worst realization

∆0.

For the multi-stage NMPC, the OCPS is used as a basis. The optimal control

problem is posed in Equations 4.8a-4.8j.

min
u,a

{VS(x0,u, a)} (4.8a)

s.t. 0 = F
(
x̃u
k,c,s, z̃

u
k,c,s, ũk,s, w̃∆(k,s)

)
, ∀k ∈ K,∀c ∈ C,∀s ∈ S, (4.8b)

φrevk,s ≤ ak,s ∀k ∈ K,∀s ∈ S, (4.8c)

xu
lb ≤ x̃u

k,c,s ≤ xu
ub, ∀k ∈ K,∀c ∈ C,∀s ∈ S, (4.8d)

zulb ≤ z̃uk,c,s ≤ zuub, ∀k ∈ K,∀c ∈ C6=0, ∀s ∈ S, (4.8e)

ulb ≤ ũk,s ≤ uub, ∀k ∈ K,∀s ∈ S, (4.8f)

∆ulb ≤ ∆ũk,s ≤ ∆uub, ∀k ∈ K,∀s ∈ S, (4.8g)

x̃u
k,d,s = x̃u

k+1,0,s ∀k ∈ K\N,∀s ∈ S, (4.8h)

x̃u
k,0,s1

= x̃u
k,0,s2

⇒ ũk,s1 = ũk,s2 ∀k ∈ K,∀s1, s2 ∈ S (4.8i)

x̃u
0,0,s = x0, ∀s ∈ S (4.8j)

With,

VS(x0,u, a) =
St∑
s=1

ωsVNs(x0,u, a) (4.9)

Where ωs is the weight associated with each scenario or scenario likelihood; and VNs
is the �nite horizon objective function of scenario s.

The constraint added in Equation 4.8i is known as a non-anticipative constraint.

It states that, for each stage, if two di�erent scenarios have the same state, both

control actions must be the same as a decision must be made before knowing the

outcome. To illustrate this, consider a case with two uncertainty realizations and two

robust horizon, which gives a total number of four scenarios. The initial condition

is the same for all scenarios as it was stated in Equation 4.8j. Therefore, the control

action at stage k = 0 must be the same for all scenarios as shown in Equation 4.10.

x̃0,0,1 = x̃0,0,2 = x̃0,0,3 = x̃0,0,4 = x0 ⇒ ũ0,1 = ũ0,2 = ũ0,3 = ũ0,4 (4.10)

The scenario tree branching starts and, as two uncertainty realizations were consid-

ered, two states are obtained at stage k = 1. Due to branching, at stage k = 1, one

state is the same for the �rst and second scenario, while the other is equal for the

third and fourth scenario. Once again, as it was stated the non-anticipative con-

straint, the same control action must be employed for all scenarios with the same
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state at a particular stage, which is evidenced in Equation 4.11.

x̃1,0,1 = x̃1,0,2 ⇒ ũ1,1 = ũ1,2

x̃1,0,3 = x̃1,0,4 ⇒ u1,3 = ũ1,4

(4.11)

Another branching occurs due to uncertainty realization, giving four possible states

at stage k = 2. Now, each scenario has as a di�erent state and the criteria for

employing non-anticipative constraint is not met. Therefore, each scenario has its

own control action and no further branching occurs for k ≥ NR. Considering this

example, open-loop state trajectory and control action are illustrated in Figure 4.2.

For clarity, collocation points were suppressed.

Figure 4.2: States and control actions when uncertainty realization and robust sce-
nario are both equal to two.

The problem was implemented in CasADi Matlab Front-end. CasADi is a sym-

bolic framework for algorithmic and numerical optimization. It was developed with

the interest for dynamic optimization (ANDERSSON et al., 2012). The system was

scaled to adjust variables that were in di�erent scales. IDAs algorithm was used to

integrate the virtual plant, while IPOPT was employed to solve the large-scale NLP.

4.2 Open-loop Simulations Results

For each NMPC formulation it is important to tune some controller parameters, such

as the sampling interval ∆t, the prediction horizon N and the weights QW , RW ,WW

and αW . According to HENSON (1998), the e�ect of these parameters in closed-loop

performance is di�cult to predict a priori. It is known that the sampling interval and

prediction horizon have a great impact in computational e�ort and in the NMPC
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performance. By decreasing the sampling interval, it is possible to obtain more

details about faster dynamic behaviours due to an increase in the number of �nite

elements. However, in this case, it is also necessary to increase the prediction horizon

to capture the full dynamic length. A few simulations were made to understand the

virtual plant dynamic behaviour for better tuning.

The initial conditions for states, control inputs and uncertainty realization for

the simulations are shown in Equation 4.12.

x0 =


65.0 bar

288.15K

79.52 kg/s

130.80 bar

339.23K

u0 =

[
0.0

0.6892

]
w0 =

[
75.0 bar

]
(4.12)

Where x0 is the virtual plant initial state vector; m0 is the virtual plant initial

control action vector; and w0 is the virtual plant initial uncertainty vector.

4.2.1 Open-loop response for a source pressure disturbance

For the �rst test, disturbances were applied to the source pressure, P so. From the

initial conditions of 75 bar, a pulse with 8% magnitude, i.e. 6 bar, and duration

of 30 seconds was applied to the system. After 70 seconds of simulation, a second

pulse, now with a -8% magnitude, i.e. -6 bar, was applied to the system and was

hold for 30 seconds. The disturbance pro�le is shown in Figure 4.3.

Figure 4.3: Disturbances applied to the source pressure (P so) for dynamic behaviour
study.

For the scrubber, the dynamic state response for such disturbance can be seen

in Figures 4.4a and 4.4b. It can be observed that the scrubber pressure took ap-

proximately 5 seconds to achieve new steady states after disturbances were applied.
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(a) (b)

Figure 4.4: Response of the scrubber states due to disturbances in the source pres-
sure where: (a) is the scrubber pressure (P sc); and (b) is the scrubber temperature
(T sc).

A slower dynamic can be seen for scrubber temperature. It took, approximately, 15

seconds for the steady states to be fully developed. Also, for the positive step dis-

turbance, the new steady state was reached with scrubber pressure and temperature

at 69.65 bar and 289.55 K, respectively. A negative step of 6 bar has reduced the

scrubber pressure and temperature to 60.63 bar and 286.18 K, respectively. When

comparing the achieved steady states, a slight disparity was detected for the scrub-

ber pressure steady states gains, which represents a relative di�erence of 7.02%.

As for the scrubber temperature, non-linearity was more accentuated as the steady

state gain di�er by 40.71%.

Disturbances to the source pressure have a direct impact in the mass �ow rate

entering the compressor, as is shown in Figure 4.5a. For the positive step distur-

(a) (b)

Figure 4.5: Response of the compressor state and surge index due to disturbances
in the source pressure where: (a) is the compressor inlet mass �ow rate (mco

in); and
(b) is the surge index (Icos ).

bance, the compressor mass �ow rate increased from 79.518 kg/s to 87.691 kg/s,

representing an 8.173 kg/s increase in the mass �ow rate. For the negative step

disturbance, mass �ow rate was reduced from its initial value by 9.266 kg/s, reach-

ing 70.252 kg/s. As for non-linearity, a relative di�erence between the steady state

gains of 9.266% was obtained. In Figure 4.5b, the surge index trajectory started
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by increasing the distance from surge region, going from 0.8975 to 0.8680. For the

negative 6 bar step disturbance, the surge index increased from its initial value to

0.9539, indicating that operation almost reached surge. Also, steady state gains

di�er by 52.3%, representing the variable with the highest non-linearity for this par-

ticular disturbance. Both variables took approximately 5 seconds to reach steady

state and their trajectories are shown in Figures 4.5a and 4.5b.

In Figures 4.6a and 4.6b, the plenum pressure and temperature responses are

shown. For each state, a new steady state was reached in approximately 5 and

(a) (b)

Figure 4.6: Response of the plenum states due to disturbances in the source pressure
where: (a) is the plenum pressure (P p); and (b) is the plenum temperature (T p).

15 seconds, respectively. For the positive step, the plenum pressure went from its

initial value of 130.8 bar to 132.0 bar, representing an increase of 1.5 bar. After

returning to its initial value, the negative step was responsible for decreasing the

plenum pressure by 1.25 bar, reaching 129.55 bar. In addition, the relative di�erence

between the steady states gains is 20.00% for the plenum pressure. A small overshoot

can be seen in the plenum temperature response during its trajectory to reach steady

state. For the same source disturbance, a initial temperature of 339.23 K reached

steady state at 336.57 K and returned to its initial value afterwards. When the

second disturbance occurred, a new steady state was obtained at 341.26 K. It can be

observed that the steady state gains for the plenum temperature di�ers by 31.03%.

4.2.2 Open-loop response for a recycle valve manipulation

For the second test, recycle valve opening (φrev) was manipulated with the intent

of analysing the system dynamic behaviour. After 10 seconds from the simulation

beginning, a pulse was introduced in the recycle valve opening changing it from

completely closed to fully opened. The pulse was hold for 30 seconds until resulting

in completely closure of the recycle valve afterwards. This manipulation scheme is

shown in Figure 4.7.

The scrubber dynamic states response can be seen in Figures 4.8a and 4.8b. Since
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Figure 4.7: Recycle valve opening (φrev) pulse manipulation for dynamic behaviour
study.

(a) (b)

Figure 4.8: Response of the scrubber states due to a pulse in the recycle valve open-
ing where: (a) is the scrubber pressure (P sc); and (b) is the scrubber temperature
(T sc).
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the recycle valve was fully opened in simulation, new steady state for scrubber's

pressure and temperature were achieved after approximately 20 and 25 seconds,

respectively. The scrubber's pressure value started at 65 bar rising to 68.23 bar,

which represents growth of 3.25 bar. As for the temperature, it went from 288.15 K

to 297.32 K, which represents an increase of 9.17 K.

The main intent of opening the recycle valve is to increase compressor's inlet

mass �ow rate to steer away from surge region. It is possible to observe in Figure

4.9a that the inlet mass �ow rate, which began at 79.52 kg/s, had a slight overshoot

after the recycle valve was fully opened. Then, after 20 seconds, the steady state

of 83.68 kg/s was achieved. As for the surge index shown in Figure 4.9b, its initial

value decreased by 0.0298 reaching the steady state of 0.8677 after 20 seconds,

approximately.

(a) (b)

Figure 4.9: Response of the compressor state and surge index due to a pulse in the
recycle valve opening where: (a) is the compressor inlet mass �ow rate (mco

in); and
(b) is the compressor surge index (Icos ).

The plenum pressure and temperature also su�ered changes when this test was

applied. As it can been seen in Figure 4.10a, the plenum pressure decreased from

its initial value of 130.80 bar as the recycle valve was opened. A slight overshoot

occurred before the new steady state of 129.20 bar was reached after 5 seconds of

transient operation. In Figure 4.10b, inverse response can be seen when changes

occurred in the recycle valve opening. For the positive change, the plenum temper-

ature decreased during a short time and, afterwards, increased from 339.23 K to

345.53 K, reaching this steady state after 30 seconds.

4.2.3 Open-loop response for compressor rotation manipula-

tion

Compressor rotation is one of the process manipulated variables. Therefore, it is

important to analyse how the compression system will behave when changes occur.

The simulation started with a compressor rotation percentage equal to 68.92%. After

10 seconds, a pulse with 2% amplitude was introduced and hold for 30 seconds. At
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(a) (b)

Figure 4.10: Response of the plenum states due to a pulse in the recycle valve
opening where: (a) is the plenum pressure (P p); and (b) is the plenum temperature
(T p).

simulation time equal to 70 seconds, another pulse was applied to the compressor

rotation. However, this time, the pulse had a -2% amplitude and was held for 30

seconds. Changes executed in the compressor rotation percentage can be seen in

Figure 4.11.

Figure 4.11: Compressor rotation percentage (rcop ) pulse manipulation for dynamic
behaviour study.

The in�uence on scrubber pressure and temperature due to changes in the com-

pressor rotation percentage is shown in Figures 4.12a and 4.12b. Simulation started

with scrubber pressure and temperature at its initial value, 65.0 bar and 288.15 K,

respectively. As soon as the �rst pulse was introduced in the compressor rotation

percentage, it took less than 5 and 15 seconds for the scrubber pressure and temper-

ature to reach a new steady state with 64.32 bar and 288.55 K, respectively. For the

scrubber pressure, an almost unnoticeable overshoot was detected. Afterwards, the

system returned to its initial value and, due to another impulse manipulation in the

compressor rotation percentage, a steady state was reached with scrubber pressure

and temperature equal to 65.74 bar and 287.66 K. Regarding system dynamics, it

seems that scrubber pressure and temperature behaves similar to a �rst-order sys-
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(a) (b)

Figure 4.12: Response of the scrubber states due to pulses in the compressor rota-
tion percentage where: (a) is the scrubber pressure (P sc); and (b) is the scrubber
temperature (T sc).

tem For both variables, the relative di�erence between their steady state gains were

calculated and their values are 8.82% for the scrubber pressure and 18.37% for the

scrubber temperature.

Compressor inlet mass �ow rate and surge index transient behaviour can be

observed in Figures 4.13a and 4.13b. For both variables, it was possible to notice

(a) (b)

Figure 4.13: Response of the compressor states and surge index due to pulses in the
compressor rotation percentage where: (a) is the inlet mass �ow rate (mco

in); and (b)
is the surge index (Icos ).

that changes in compressor rotation percentage led to a quick overshoot that took

less than 1 second to be fully developed. Also, it took approximately 4 seconds for

the compressor inlet mass �ow rate and surge index to reach a new steady state.

The simulation started with an initial value of 79.52 kg/s for the compressor inlet

mass �ow rate and a surge index of 0.8975. From there, the �rst manipulation of

compressor rotation percentage led those variables to a new steady state of 81.71

kg/s and 0.8755 surge index. After returning the system variables to its initial

value, another change in the compressor inlet mass �ow rate occurred. This time,

both compressor inlet mass �ow rate and surge index reached a steady state of

76.99 kg/s and 0.9256. Regarding non-linearities, the compressor inlet mass �ow

rate has a relative di�erence of 14.9% between its steady state gains. As for the
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surge index its relative di�erence was 27.73%, which represents the highest value of

relative di�erence due to compressor rotation manipulation. In Figures 4.14a and

4.14b it is possible to see the plenum pressure and temperature dynamic behaviour.

Simulation started with an initial value of 130.80 bar and 339.23 K. Due to an

(a) (b)

Figure 4.14: Response of the plenum states due to pulses in the compressor rotation
percentage where: (a) is the pressure (P p); and (b) is the temperature (T p).

increase in compressor percentage rotation velocity, a new steady state for plenum

pressure and temperature at 131.15 bar and 340.94 K was reached. This steady state

was kept until the compressor rotation percentage returned to its initial value and,

consequently, both plenum pressure and temperature reached its initial value too.

Afterwards, compressor rotation percentage was changed again. As a result, plenum

temperature and pressure evolved towards steady state values equal to 130.41 bar

and 337.38 K, until another change occurred and they returned to its initial value.

For the plenum pressure, it was possible to perceive a slight overshoot that quickly

disappeared, taking less than 5 seconds for a new steady state to be achieved. As for

the plenum temperature, there was no sign of overshoot and it took approximately

15 seconds for another steady state to be reached. For both the plenum pressure

and temperature, it was obtained a relative di�erence of 10.26% and 8.19% between

its steady state gains, respectively.

4.2.4 Open-loop simulations remarks

A few observations are made regarding the results obtained until this point. It was

seen from simulation that the surge index is highly sensitive to manipulation in the

compressor rotation percentage and that some overshoots took less than 2 seconds

to achieve its peak. Depending on the sampling time chosen for the NMPC, it is

possible to predict the system behaviour without taking into account overshoots

that occur in surge index due to changes in compressor rotation. This is highly

undesirable, as the NMPC optimal solution may lead the virtual plant into surge.

Therefore, to enable the NMPC to perceive this system behaviour, a small sampling
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interval was chosen and is shown in Equation 4.13.

∆t = 1 s (4.13)

Where ∆t is the sampling interval in seconds.

When the simulation dynamics of all process variable were compared, it can be

observed that some took at most 30 seconds until a new steady state was reached.

In this way, the formulated NMPCs were tuned to predict no less than 30 seconds of

simulation. Therefore, it is presented in Equation 4.14 the prediction horizon used

in the NMPC formulations applied to this system.

N = 40 (4.14)

Where N is the prediction horizon.

In the simulation results obtained from disturbances to the process source pres-

sure, it is possible to infer which uncertainty value may eventually lead the system

to violate its surge index boundary. In conclusion, the open-loop uncertainty vector

associated with the worst realization ∆0 is displayed in Equation 4.15.

wu
∆0 = 69 bar (4.15)

4.3 Closed-loop Simulations Results

Considering the compression system process, it is known that scrubber pressure and

temperature are basically the same as those for compressor suction. The compressor

performance map is obtained in a controlled environment, where suction temper-

ature and pressure are �xed. Therefore, it is highly desirable to maintain these

variables close to their set-point, as con�dence in the map is reduced if the compres-

sion system operation deviates from it. For this work, it was considered that the

scrubber temperature was perfectly controlled by a hierarchically lower control layer,

such as a PI. Therefore, the NMPCs were designed to accomplish several objectives

that are listed below in priority order:

1. Safety surge line constraint must be satis�ed.

2. Scrubber pressure should stay as close as possible to its set-point.

3. Recycle valve should be closed during normal operation.

4. Changes in compressor rotation percentage should be penalized.
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To ful�l these priorities, the regulatory control objectives and associated weights are

introduced in Equations 4.16 and 4.17, respectively.

x∗ =


65 bar

288.15K

79.52 kg/s

130.80 bar

339.23K

 u∗ =

[
0.0

0.6892

]
(4.16)

QW =


1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

PW =


1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

RW =

[
0 0

0 0

]
WW =

[
0 0

0 10

]

(4.17)

Where x∗ is the state at set-point; u∗ is the control value at set-point; QW is the

stage cost state weight matrix; RW is the stage cost input weight matrix; PW is the

terminal cost weight matrix; and WW is the stage cost input change weight matrix.

Equation 4.18 sets the slack variable weight (αW ) that is associated with surge

avoidance strategy implemented in the NMPC formulations.

αW = 1 (4.18)

Regarding states, algebraic variables and input constraints, some observations are

made. Almost all variables must have positive values and do not have an upper

bound constraint. A few exceptions exist and are enlisted from Equation 4.19a to

Equation 4.19e.

0 ≤ Icos ≤ δcossl = 0.92 (4.19a)

1.0 ≤ Ψco (4.19b)

0 ≤ φrev ≤ a (4.19c)

0 ≤ rcop ≤ 1.0 (4.19d)

∆φrev ≤ 1

15
(4.19e)

Where the surge line constraint is shown in Equation 4.19a; compressor pressure

ratio lower bound is present in Equation 4.19b; recycle valve opening constraint

associated with the slack variable (a) is seen in Equation 4.19c; compressor rotation

percentage constraint is shown in Equation 4.19d; and, due to speed limitations of

the control valve, Equation 4.19e is used to limit its opening rate at each stage.
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The initial conditions for states, control inputs and uncertainty realization for

the closed-loop simulation are shown in Equation 4.12.

To simulate an unknown disturbance in the closed-loop system, a �uctuation was

introduced in the source pressure as a periodic function, which is shown in Equation

4.20.

P so
k = P so

0

[
1 + θ(k − 5)0.08 sin

(
k − 5

4

)]
, ∀k ≥ 1 (4.20)

With the heaviside function given by Equation 4.21,

θ(k − 5) =

0 k < 5

1 k ≥ 5
(4.21)

Where θ(·) is the heaviside function.
The virtual plant uncertainty realization remained in its expected value of 75

bar during the �rst 5 seconds of simulation. Afterwards, a periodic oscillation is

introduced with a time period of 25.13 seconds with maximum and minimum values

of 81 bar and 69 bar, respectively. In Figure 4.15, the source pressure behaviour is

shown for this study.

Figure 4.15: Oscillatory disturbance applied to the source pressure for unknown
disturbance study.

As each controller deals with uncertainty di�erently, open-loop uncertainty real-

ization are introduced in Equation 4.22.

wu
E =

[
75 bar

]
wu

∆0 =
[
69 bar

]
(4.22)

wu
S =

[
69 bar 75 bar 81 bar

]T
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Where w̃u
E is the open-loop uncertainty vector associated with the expected realiza-

tion; wu
∆ is the open-loop uncertainty vector associated with the worst realization

∆0; and wu
S is the multi-stage open-loop uncertainty vector. Robust horizon was set

toNR = 1 and the uncertainty set (W) was discretized in three values (N∆ = 3), con-

sequently the multi-stage NMPC tracks three di�erent scenarios. The uncertainty

trajectory of each scenario is shown in Equation 4.23.

w̃u
S1

=

69 bar

69 bar

69 bar

 w̃u
S2

=

75 bar

75 bar

75 bar

 w̃u
S3

=

81 bar

81 bar

81 bar

 (4.23)

For the multi-stage NMPC formulation, it was considered a lack of information

regarding likelihood of uncertainty. Therefore, scenario likelihood was set according

to Equation 4.24.

ωs =
[
1 1 1

]T
(4.24)

where ωs is the weight associated with each scenario or scenario likelihood.

4.3.1 Virtual plant closed-loop behaviour

One of the controlling objectives is to keep the scrubber pressure at its set-point.

Therefore, the closed-loop behaviour of the scrubber pressure is shown in Figure

4.16. In the �rst 5 seconds of simulation, it is possible to observe that the scrubber

Figure 4.16: Closed-loop trajectory of the scrubber pressure (P sc) considering an
unknown oscillatory disturbance to the source pressure.

pressure was perfectly controlled by the deterministic NMPC as the system was not

a�ected by any disturbances and the deterministic model matched exactly the virtual

plant. During this time, a slight deviation can be seen when multi-stage NMPC was

controlling the system. As for the o�ine min-max NMPC, a great deviation from
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the set-point occurred in the �rst 5 seconds of simulation due to model mismatch.

Afterwards, the periodic disturbance was introduced in the virtual plant and the

three closed-loop trajectories of the scrubber pressure started to oscillate. Almost

no di�erence can be perceived between the deterministic and multi-stage case. As

for the o�ine min-max closed-loop trajectory, its is possible to observe that the

scrubber pressure deviated less from its set-point when the virtual plant uncertainty

assumed its lowest value, i.e., its worst value, while a higher deviation was seen

when the uncertainty assumed its highest value.

Another control objective is to keep the operation running without any surge

line violation. Therefore, the closed-loop trajectory of the compressor surge index

is shown in Figure 4.17. During the �rst 5 seconds of simulation it is possible

Figure 4.17: Closed-loop trajectory of the surge index (Icos ) considering an unknown
oscillatory disturbance to the source pressure.

to observe that all three controllers were capable of maintaining the closed-loop

surge index below the safe surge line. However, as the source pressure started to

oscillate, the deterministic NMPC led the actual system to violate the safe surge

line constraint. The �rst violation occurred after 7.01 seconds of simulation and

continued for 15.69 seconds. As for the second constraint violation, it occurred

after 32.01 seconds of simulation and continued for 40.82 seconds. Finally, the third

constraint violation was observed after 57.22 seconds had elapsed and continued

until the end of simulation. Therefore, considering only the 50 seconds of simulation

where source pressure oscillated, it can be concluded that deterministic NMPC

maintained the safe surge line restriction satis�ed during 59.48% of the time. This

contrasts with both o�ine min-max and multi-stage NMPC, which were capable of

maintaining the surge index closed-loop trajectory below safe surge line.

To achieve control objectives, anti-surge valve and compressor rotation were

manipulated. The results can be observed in Figures 4.18 and 4.19. For the

deterministic NMPC, the simulation began with the recycle valve closed and a steady
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Figure 4.18: Anti-surge valve manipulation in a compression system under an un-
known oscillatory disturbance to the source pressure. φrev is the recycle valve open-
ing percentage.

Figure 4.19: Compressor rotation percentage (rcop ) manipulation in a compression
system under an unknown oscillatory disturbance to the source pressure.
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compressor rotation percentage. As source pressure decreased below its expected

value, deterministic NMPC opened the recycle valve and performed small changes

to the compressor rotation percentage. This behaviour occurred twice during the

simulation window. Full valve closure can be seen when source pressure increased

to a value above the expected. Moreover, compressor rotation percentage increased,

adding more energy to the �uid and, consequently, increasing its volumetric �ow

rate as can be seen in Figure 4.20.

Figure 4.20: Closed-loop trajectory of the compressor inlet volumetric �ow rate
(Qco

in) considering an unknown oscillatory disturbance to the source pressure.

For the o�ine min-max NMPC, the recycle valve was quickly opened during the

initial part of simulation. Also, it was detected that when source pressure was lower

than its expected value, recycle valve opening increased.

The multi-stage NMPC presented characteristics of both deterministic and of-

�ine min-max NMPC when manipulated variables were analysed. Despite keeping

the recycle valve opened during the entire simulation, multi-stage NMPC opening

percentage was usually 3 times less than o�ine min-max NMPC. Regarding com-

pressor rotation percentage, a similar pro�le can be seen between deterministic and

multi-stage NMPC after 8 seconds of simulation. However, multi-stage NMPC em-

ploys a higher rotation speed to the compressor.

For a better understanding of the decision making procedure taken by determin-

istic, o�ine min-max and multi-stage NMPC, some open-loop trajectories obtained

at sampling times tk =
[
0 11 23

]
seconds will be analysed in the next subsections.

In Figure 4.21, the sampling times were highlighted to cover expected, low and high

uncertainty realizations of the source pressure, respectively.
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Figure 4.21: Oscillatory disturbance applied to the source pressure (P so) for an
unknown disturbance study with sampling times highlighted.

4.3.2 Deterministic NMPC open-loop decision making

Deterministic NMPC considered that source pressure assumes the expected value

of 75 bar. Therefore, despite disturbances, the only information that controller had

from the virtual plant was its current states.

Deterministic NMPC with sampling time tk = 0 seconds was considered. Pre-

dicted trajectory for the scrubber pressure was kept in its set-point during the whole

prediction horizon, as it can be seen in Figure 4.22. As for the surge line, the deter-

Figure 4.22: Predicted scrubber pressure (P sc) for the deterministic NMPC at sam-
pling time tk = 0 seconds.

ministic prediction was far from violating this constraint, which can be observed in

Figure 4.23. Therefore, no changes in the manipulated variable were necessary, as

all objectives were accomplished and no model mismatch existed. In Figures 4.24

and 4.25, both the recycle valve opening and the compressor rotation percentage

can be seen. In conclusion, as the source pressure of the virtual plant assumed its

expected value, deterministic NMPC did not have any unexpected behaviour due
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Figure 4.23: Predicted surge index (Icos ) for the deterministic NMPC at sampling
time tk = 0 seconds.

Figure 4.24: Optimal control sequence for the recycle valve opening (φrev) obtained
by the deterministic NMPC at sampling time tk = 0 seconds.

Figure 4.25: Optimal control sequence for the compressor rotation percentage (rcop )
obtained by the deterministic NMPC at sampling time tk = 0 seconds.

60



to a perfect match between the open-loop model considered in the NMPC and the

virtual plant model.

The deterministic NMPC prediction at sampling time tk = 11 seconds was also

considered. It can be observerd in Figure 4.26 that the current initial state of the

scrubber pressure is below its set-point. Also, deterministic NMPC predicted a tra-

Figure 4.26: Predicted scrubber pressure (P sc) for the deterministic NMPC sampling
time tk = 11 seconds.

jectory that reached the desired set-point in less than k = 5 stages. To perform

that, deterministic NMPC computed an optimal control sequence for the recycle

valve opening and the compressor rotation percentage. From the optimal control se-

quence shown in Figure 4.27, it can be observed that deterministic NMPC calculated

a control sequence where the recycle valve was opened during the �rst stages and

was closed thereafter. As for the compressor rotation percentage control sequence

Figure 4.27: Optimal control sequence for the recycle valve opening (φrev) obtained
by the deterministic NMPC at sampling time tk = 11 seconds.

obtained by the deterministic NMPC, minor changes occurred until the scrubber

pressure set-point was reached in the predicted trajectory and no further change in
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rotation was needed. The control sequence for compressor rotation percentage can

be seen in Figure 4.28.

Figure 4.28: Optimal control sequence for the compressor rotation percentage (rcop )
obtained by the deterministic NMPC at sampling time tk = 11 seconds.

Through surge index behaviour in Figure 4.29, it is possible to comprehend the

reason why the recycle valve was opened by deterministic NMPC. Violation of the

Figure 4.29: Predicted surge index (Icon )for the deterministic NMPC at sampling
time tk = 11 seconds.

safe surge constraint occurred in the virtual plant, which means that surge index

must be reduced for the current control inputs and initial dynamic states. During

deterministic prediction, surge index decreased at the �rst stages until scrubber

pressure prediction reached its set-point and no further control action was taken.

Finally, deterministic NMPC with sampling time tk = 23 seconds was considered.

The scrubber pressure prediction by the deterministic NMPC is shown in Figure

4.30. From this, it is possible to observe that scrubber pressure initial state was

above the desired set-point. Despite that, deterministic NMPC prediction shows

that it would be possible to achieve a scrubber pressure set-point in k = 4 stages.
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Figure 4.30: Predicted scrubber pressure (P sc) for the deterministic NMPC at sam-
pling time tk = 23 seconds.

As for the surge index, Figure 4.31 shows that virtual plant surge index was below

the safe surge constraint and, consequently, the constraint was satis�ed for the entire

prediction horizon.

Figure 4.31: Predicted surge index (Icos ) for the deterministic NMPC at sampling
time tk = 23 seconds.

No control action was performed to open the recycle valve as risk of constraint

violation was not detected in deterministic NMPC open-loop prediction. Therefore,

recycle valve was kept closed as shown in the control sequence present in Figure

4.32. Since the recycle valve was kept closed for the entire prediction horizon,

changes in compressor rotation percentage were performed to reach the scrubber

pressure set-point. Figure 4.33 displays the control sequence of the compressor

rotation percentage.
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Figure 4.32: Optimal control sequence for the recycle valve opening (φrev) obtained
by the deterministic NMPC at sampling time tk = 23 seconds.

Figure 4.33: Optimal control sequence for the compressor rotation percentage (rcop )
obtained by the deterministic NMPC at sampling time tk = 23 seconds.
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4.3.3 O�ine min-max NMPC open-loop decision making

O�ine min-max NMPC considered that source pressure assumed its lowest or worst

value at 69 bar. Therefore, despite disturbances, the only information that the

controller had from the virtual plant was its current states.

O�ine min-max NMPC prediction at sampling time tk = 0 seconds was consid-

ered. Figure 4.34 shows that the initial state of the scrubber pressure has the same

value as the desired set-point and one would expect that o�ine min-max prediction

trajectory would stay at the set-point. However, the scrubber pressure trajectory

predicted by o�ine min-max NMPC was not asymptotically stable.

Figure 4.34: Predicted scrubber pressure (P sc) for the o�ine min-max NMPC at
sampling time tk = 0 seconds.

To further investigate this behaviour, o�ine min-max predicted surge index tra-

jectory was introduced in Figure 4.35. Controller prediction shows that the safe

Figure 4.35: Predicted surge index (Icos ) for the o�ine min-max NMPC at sampling
time tk = 0 seconds.

surge line constraint was active during a signi�cant period of the prediction horizon.
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This reduced the amount of degrees of freedom available to steer the scrubber pres-

sure to its set-point. Optimal control sequence in Figure 4.36 shows that the recycle

valve should be opened to avoid constraint violation by open-loop surge index. As

Figure 4.36: Optimal control sequence for the recycle valve opening (φrev) obtained
by the o�ine min-max NMPC at sampling time tk = 0 seconds.

changes in the compressor rotation may cause constraint violation, it is possible to

observe in Figure 4.37 that after k = 5 stages, the compressor rotation percentage

was kept constant.

Figure 4.37: Optimal control sequence for the compressor rotation percentage (rcop )
obtained by the o�ine min-max NMPC at sampling time tk = 0 seconds.

The o�ine min-max NMPC at sampling time tk = 11 seconds is also considered.

For this case, source pressure assumes the lowest value of the uncertainty. Therefore,

there was no mismatch between o�ine min-max open-loop model and virtual plant

model. Figure 4.38 introduces the predicted trajectory for the scrubber pressure.

Open-loop scrubber pressure stayed at the vicinity of its initial state value during

the whole predicted trajectory, which is unfortunate since the desired set-point was

not reached.
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Figure 4.38: Predicted scrubber pressure (P sc) for the o�ine min-max NMPC at
sampling time tk = 11 seconds.

O�ine min-max prediction trajectory of the surge index is shown in Figure 4.39,

where it can be seen that safe surge line was active in the current state of the virtual

plant. Constraint activation was also perceived for the o�ine min-max prediction

trajectory. To avoid constraint violation, an optimal control sequence where the

recycle valve was maintained opened is shown in Figure 4.40.

Figure 4.39: Predicted surge index for the o�ine min-max NMPC at sampling time
tk = 11 seconds.

For the compressor rotation percentage shown in Figure 4.41, it is possible to

observe that almost no changes in rotation occurred in the predicted o�ine min-

max optimal control sequence. Therefore, o�ine min-max NMPC showed that surge

avoidance was handled by the recycle valve when it was mainly used to control surge

index, while compressor rotation was maintained near its current value.

O�ine min-max NMPC at sampling time tk = 23 seconds is considered. In

Figure 4.42 introduces the predicted trajectory of scrubber pressure by the o�ine

min-max NMPC. Initial state of the open-loop trajectory presented a higher value
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Figure 4.40: Optimal control sequence for the recycle valve opening (φrev) obtained
by the o�ine min-max NMPC at sampling time tk = 11 seconds.

Figure 4.41: Optimal control sequence for the surge index (Icos ) by the o�ine min-
max NMPC at sampling time tk = 11 seconds.

Figure 4.42: Predicted scrubber pressure (P sc) for the o�ine min-max NMPC at
sampling time tk = 23 seconds.
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than desired set-point, which indicates that scrubber pressure should be reduced

to accomplish one of the controller objectives. Despite that, what was seen in

the prediction trajectory was that the scrubber pressure crossed the set-point and

steered away from it afterwards. In conclusion, o�ine min-max NMPC could not

obtain optimal input values for the recycle valve opening and compressor rotation

percentage, which led to an unful�lled set-point tracking objective. Surge index

predicted trajectory is shown in Figure 4.43. It can be seen that after a few stages

safe surge line constraint became active, which means o�ine min-max NMPC took

control decisions to avoid constraint violation.

Figure 4.43: Predicted surge index (Icos ) for the o�ine min-max NMPC at sampling
time tk = 23 seconds.

In Figures 4.44 and 4.45, both recycle valve and compressor rotation percentage

optimal input values are shown. Recycle valve is maintained opened due to the risk

of constraint violation detected by o�ine min-max NMPC. As for compressor rota-

tion percentage, positive changes would decrease scrubber pressure, thus increasing

distance from the set-point. On the other hand, negative changes would cause safe

surge line constraint violation. Therefore, input values were kept constant for most

part of the compressor percentage optimal control sequence.

4.3.4 Multi-stage NMPC open-loop decision making

Discretization of the uncertainty led multi-stage NMPC to consider three scenarios

for the source pressure: high, expected and low realizations of 81, 75.0 and 69 bar,

respectively. In this way, three distinct trajectories were predicted by the controller

with the non-anticipative constraints being the common factor. Multi-stage NMPC

formulation with robust horizon NR = 1 implies that, due to the presence of non-

anticipative constraints in the controller formulation, the �rst control action must

be the same for all scenarios. Despite disturbances, the only information that the
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Figure 4.44: Optimal control sequence for the recycle valve opening (φrev) obtained
by the o�ine min-max NMPC at sampling time tk = 23 seconds.

Figure 4.45: Optimal control sequence for the compressor rotation percentage (rcop )
obtained by the o�ine min-max NMPC at sampling time tk = 23 seconds.
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controller had from the virtual plant was its current states.

NMPC prediction at sampling time tk = 0 seconds is considered. Set-point track-

ing was one of the controller objectives. Hence, multi-stage NMPC prediction for

the scrubber pressure is shown in Figure 4.46. During the initial stages, scrubber

Figure 4.46: Predicted scrubber pressure (P sc) for the multi-stage NMPC at sam-
pling time tk = 0 seconds.

pressure steered away from the desired set-point for both high and low uncertainty

realizations, while for the expected source pressure value it was kept close to the

set-point. From the three trajectories, both high and expected uncertainty realiza-

tions reached the desired set-point at a later stage. The sudden shift in the high

uncertainty realization trajectory behaviour may be explained by the decreasing in-

�uence of non-anticipative constraints as stages move away from k = 0. For the low

uncertainty realization, an o�set was present.

Figure 4.47: Predicted surge index (Icos ) for the multi-stage NMPC at sampling time
tk = 0 seconds.

Surge index prediction trajectories can be seen in Figure 4.47. During the initial

stages, surge index decreased for all uncertainty realizations and, consequently, safe
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surge line constraint was inactive. However, as stages moved forward, constraint

activation occurred only for the low uncertainty realization. Therefore, in order to

satisfy the safe surge line constraint, a set-point of the pressure scrubber for low

uncertainty realization was not reached.

In Figures 4.48 and 4.49, non-anticipative constraint as well as recycle valve

opening and compressor rotation percentage optimal control sequences are shown.

Analysing from the �nal stage to the �rst stage, multi-stage NMPC computed tra-

jectories where the recycle valve stayed opened for the low uncertainty realization

since a safe surge constraint violation was a concern for this particular scenario. For

high and expected source pressures, recycle valve optimal control sequences were

very similar, with full valve closure being considered. Despite having this similarity,

the same cannot be said about compressor rotation percentage, as both high and

expected uncertainty realization control sequences di�er highly.

Figure 4.48: Optimal control sequences for the recycle valve opening (φrev) obtained
by the multi-stage NMPC at sampling time tk = 0 seconds.

Figure 4.49: Optimal control sequences for the compressor rotation percentage (rcop )
obtained by the multi-stage NMPC at sampling time tk = 0 seconds.
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Multi-stage NMPC prediction at sampling time tk = 11 seconds is considered.

One of the controller objectives is to reach pressure scrubber set-point. Figure

4.50 illustrate the open-loop trajectory obtained for each uncertainty realization.

The scrubber pressure initial state is located below the desired set-point. From

Figure 4.50: Predicted scrubber pressure (P sc) for the multi-stage NMPC at sam-
pling time tk = 11 seconds.

the low uncertainty realization trajectory, there was a set-point o�set that could

not be reduced during the entire prediction horizon. In both high and expected

uncertainty realization trajectories, set-point tracking objective was accomplished

even if set-point deviation increased for high source pressure at the beginning of the

predicted trajectory.

Multi-stage NMPC prediction trajectories are shown in Figure 4.51. All surge

Figure 4.51: Predicted surge index (Icos ) for the multi-stage NMPC at sampling time
tk = 11 seconds.

index trajectories started with the safe surge line constraint active. However, due

to the decision making procedure, high and low uncertainty realization started to

back-o� from the constraint. As for the low uncertainty realization prediction, safe
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surge constraint was kept active during the whole prediction horizon. Anti-surge

valve optimal control sequences are shown in Figure 4.52, while compressor rotation

percentage are present in Figure 4.53.

Figure 4.52: Optimal control sequences for the recycle valve opening (φrev) obtained
by the multi-stage NMPC at sampling time tk = 11 seconds.

Figure 4.53: Optimal control sequences for the compressor rotation percentage (rcop )
obtained by the multi-stage NMPC at sampling time tk = 11 seconds.

At stage k = 0, non-anticipative constraint guarantees that the �rst control

action will not lead to constraint violation considering all instances of uncertainty

realizations. Therefore, the recycle valve must be opened due to a risk of constraint

violation in the low uncertainty realization scenario. Thereafter, each multi-stage

optimal control decision was chosen to accomplish their objectives. For the low un-

certainty realization, recycle valve opening was increased, while compressor rotation

percentage was slightly modi�ed. In both high and expected uncertainty realiza-

tions, optimal control sequences showcased that recycle valve should be closed and

maintained at this position after a few stages of the prediction horizon. As for

the compressor rotation percentage, in order to accomplish each scenario objective,
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multi-stage NMPC optimal control solution di�ers considerable for the high and

expected uncertainty realizations.

Multi-stage NMPC prediction at sampling time tk = 23 seconds is considered.

From the scrubber pressure open-loop trajectories shown in Figure 4.54 it is possible

to observe that the virtual plant current state is higher than the desired set-point.

For both high and expected uncertainty realizations, predicted trajectories reached

Figure 4.54: Predicted scrubber pressure (P sc) for the multi-stage NMPC at sam-
pling time tk = 23 seconds.

the desired set-point after a few stages; whereas trajectory set-point was not achieved

for the low uncertainty realization.

The surge index prediction is presented in Figure 4.55. Virtual plant surge index

Figure 4.55: Predicted surge index (Icos )for the multi-stage NMPC at sampling time
tk = 23 seconds.

trajectory shows that surge avoidance strategy has been successful in preventing

safe surge line constraint violation. Also, current surge index evidenced how far the

actual system is from constraint violation. At stage k = 1, a slight increase in the

surge index for both low and expected uncertainty realizations occurred. On the
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other hand, the surge index slightly decreased for high source pressure. Considering

later stages of the prediction horizon, low uncertainty realization safe surge line was

active, while this constraint remained inactive for both high and expected source

pressure. For optimal control sequences of recycle valve opening and compressor

rotation percentage, Figures 4.56 and 4.57 are referenced.

Figure 4.56: Optimal control sequences for the recycle valve opening (φrev) obtained
by the multi-stage NMPC at sampling time tk = 23 seconds.

Figure 4.57: Optimal control sequences for the compressor rotation percentage (rcop )
obtained by the multi-stage NMPC at sampling time tk = 23 seconds.

The tendency for maintaining the recycle valve with the same opening value

was con�rmed by the control input at stage k = 0. Similarly to the other sam-

pling times analysed previously, recycle valve was kept closed at later stages of high

and expected uncertainty realizations. For the low value of source pressure, recycle

valve was maintained opened for the entire optimal control sequence. Considering

the compressor rotation percentage, the implemented control actions have been in-

creasing from the moment the scrubber pressure values were higher than the desired

set-point. This was an e�ort to reduce scrubber pressure as higher rotational speed
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decreases compressor suction pressure. For later stages, optimal control sequences

behaved di�erently, according to each scenario. Considering the high uncertainty re-

alization optimal control sequence, compressor rotation percentage increased, which

was necessary to achieve control objectives of the analysed scenario. As for expected

and low uncertainty realizations, compressor rotation percentage was reduced with

the intent to ful�l scenario objectives.

4.3.5 NMPC strategies evaluation

In order to estimate the closed-loop performance of deterministic, o�ine min-max

and multi-stage NMPC, some performance indicators have been employed. The main

aspects considered were set-point tracking, constraint violation, production, power

consumption and e�cient production. From the closed-loop simulations analysed,

tf = 60 seconds.

A performance indicator based on set-point tracking is de�ned. It was employed

the integral square of the error as performance index to evaluate scrubber pressure

set-point tracking. In Equation 4.25, the performance indicator is introduced.

ISEp =

∫ tf

0

(P sc(t)− P sc
∗ )2 dt (4.25)

where ISEp is the integral square of the scrubber pressure error; tf is the �nal

time of simulation; P sc is the scrubber pressure; and P sc
∗ is the scrubber pressure

set-point.

To evaluate if the controllers were capable of maintaining the closed-loop safe

surge line constraint satis�ed, the integral of the error between surge index and

safe surge line was used. However, instead of considering the whole length of the

simulation, this indicator only takes into account periods of time where constraint

violation occurred. Values equal to 0 indicates that closed-loop safe surge line con-

straint was satis�ed during the whole simulation. Whereas, positive values indicate

that constraint violation occurred. Also, by using this index, the severity of con-

straint violation between controllers can be compared, with higher values indicating

a worse performance. The integral of the surge index error can be seen in Equation

4.26.

IEs =

∫ tf

0

θ (Is(t)− δcossl) (Is(t)− δcossl) dt (4.26)

With the heaviside function given by Equation 4.27.

θ (Is(t)− δcossl) =

0 Is(t) < δcossl

1 Is(t) ≥ δcossl

(4.27)
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where IEs is the integral of the surge index error; Is is the surge index; δcossl is the

compressor safe surge margin; and θ(·) is the heaviside step function.

Compression system production was evaluated in terms of a scaled mass �ow,

which calculates the amount of gas that passes through source valve over a time

period divided by the steady state source mass �ow considering a source pressure

equal to its expected value of 75 bar. This index is introduced in Equation 4.28.

MFP =

1
tf

∫ tf
0
msov
out(t) dt

ssm
sov
out

(4.28)

where MFP is the mass �ow production index; msov
out is the source valve outlet mass

�ow rate; and ssm
sov
out is the source valve outlet mass �ow rate at steady state.

Compression system power consumption is an important matter when evaluating

surge avoidance strategies. Therefore, a scaled index was considered comprising the

work done by the compressor and heat rate exchanged by the cooler during a time

period, which is divided by the steady-state compressor work and cooler removed

heat rate.

CSPC =

1
tf

∫ tf
0

[
W co(t)−Qhx(t)

]
dt

ssW
co − ssQ

hx
(4.29)

where CSPC is the compression system power consumption index; W co is the com-

pressor work; Qhx is the cooler heat rate removed; ssW
co is the compressor work at

steady state; and ssQ
hx is the cooler heat rate at steady state.

It was possible to evaluate how e�cient system production was in relation with

its energy consumption. To perform that, an indicator based on the ratio between

MFP and CSPC was used. Thus, e�cient production index is introduced in Equa-

tion 4.30.

EP =
MFP

CSPC
(4.30)

where EP is the e�cient production index.

The results were summarised in Table 4.3, where performance indicators ISEp,

CV, MFP, CSPC and EP are shown for each NMPC strategy employed. From

Table 4.3: Performance indicators of the closed-loop system controlled by di�erent
NMPC strategies.

NMPC ISEp (bar2s) IEs MFP CSPC EP

Deterministic 362.31 0.6225 0.9937 1.0161 0.9779
O�ine min-max 709.48 0 0.8997 1.0594 0.8493
Multi-stage 363.93 0 0.9911 1.0854 0.9131

the scrubber pressure set-point performance, i.e. ISEp, o�ine min-max NMPC

has obtained the worst performance regarding set-point control objective. It was
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seen previously from o�ine min-max open loop results that surge line constraint

was always becoming active, independently of virtual plant uncertainty realization.

Therefore, the main concern of o�ine min-max NMPC was to avoid constraint viola-

tion, which had a great impact in its set-point tracking performance. Deterministic

and multi-stage NMPC had a similar ISEp score with deterministic being slightly

better.

Violation of safe surge line may be dangerous for operation, as the exact loca-

tion where surge phenomena occurs is inaccurate. Changes in gas properties such

as compressibility factor, molecular weight and/or heat ratio, or operational con-

ditions like compressor inlet pressure and temperature may a�ect surge detection.

Considering closed-loop simulation results, safe surge line violation only occurred

during deterministic NMPC simulation as it can be seen by IEs index. For the other

controllers, i.e. o�ine min-max and multi-stage, safe surge line constraint has been

satis�ed during the whole simulation.

The compression system was designed to operate with a certain production or

mass �ow rate of gas. The MFP index compares production of each closed-loop

trajectory with the designed one. Therefore, the closer it is to 1.0, the more similar

production is with the designed value. Deterministic NMPC showed the highest

MFP value, with a 0.63% loss of production, followed by multi-stage NMPC and

o�ine min-max NMPC with a 0.89% and 1.03% loss of production, respectively.

CSPC index is related with power used for cooling and compression. In a com-

pression system, the combination of a high compressor rotation with recycle valve

usage has a great in�uence in energy consumption. From closed-loop simulation

results, one may observe that multi-stage NMPC operated with higher values of

nominal rotation manipulation when compared with other controllers. Also, by op-

erating with an open recycle valve, recycled gas had to be cooled and boosted again.

Due to these factors, multi-stage NMPC obtained the highest score of CSPC, spend-

ing 8.54 % more energy than designed operation. O�ine min-max NMPC operates

with a high value of recycle opening when compared with other controllers. However,

when the same comparison is made regarding compressor rotation, o�ine min-max

NMPC operated with the lowest value of compressor rotation. Therefore, it has ex-

pended 5.94% more energy than designed operation. The most economical in terms

of power usage was the deterministic NMPC by expending 1.61% more energy than

normal operation. This was due to the lack of recycle valve usage in comparison

with other controllers. However, this behaviour led the closed-loop system to violate

safe surge line constraint, which is a huge drawback.

The EP index is based on a ratio between MFP and CSPC. Therefore, it shows

the mass production per system power consumption. A value o 1.0 for this indicator

means that the relation between production and energy consumption is equal to
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the designed compressor system, while lower values translates to a less e�cient

operation. O�ine min-max closed-loop operation has attained the worst value with

a decrease of 15.07% of EP in relation with the designed operation. This shows that,

despite consuming less energy than multi-stage NMPC during operation, o�ine min-

max NMPC has a worst performance when production is also taken into account.

Therefore, multi-stage NMPC can be considered less conservative than o�ine min-

max NMPC.When comparing EP index for the multi-stage NMPC and deterministic

NMPC strategies, one may notice that multi-stage has an indicator which is 8.69%

lower than designed operation, while deterministic attained a score of 2.21% lower

than normal operation. Thus, deterministic NMPC can be considered a better

solution. However, it is important to point out that this mark was only achieved

in the expense of constraint violation. This in turn, shows that there exist a cost

associated with robustness that must be paid to guarantee constraint satisfaction.
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Chapter 5

Conclusions

In the present work, three NMPC strategies were implemented successfully in

CasADi Matlab front-end to control a subsea compression system while accomplish-

ing surge avoidance and set-point tracking. Due to measurement issues present in a

subsea operation, disturbance was considered unknown. Indicators were developed

and used to assess important aspects of closed-loop operation, which made possible

to compare the performance of di�erent control strategies.

Deterministic NMPC had the best results regarding set-point tracking objective

and operational e�ciency. However, constraint violation occurred during closed-loop

simulations. This indicates the lack of robustness regarding constraints handling by

deterministic NMPC strategy. For subsea systems, constraint robustness is a major

aspect to consider when designing controllers speci�cally suited to operate in such

environment, as constraint violation may lead to operation degradation, equipment

failures or other catastrophic situation.

In the extreme opposite is o�ine min-max NMPC that showed the necessary

capabilities to handle closed-loop constraint satisfaction. However, the cost of ro-

bustness was quite high as this solution decreased system e�ciency by 15.07%, which

is 6.82 times worst than deterministic NMPC with a decrease of 2.21% in e�ciency.

With the development of new green�elds in extreme locations and conditions, as

well as brown�eld revitalization, operational costs is a major concern. An ine�cient

operation may compromise a new �eld viability or a revitalization project.

Closed-loop system under multi-stage NMPC control did not violate any hard

constraint during operation. This shows that, as o�ine min-max NMPC, Multi-

stage strategy has the same advantage regarding constraint handling capabilities.

However, closed-loop robustness has a cost associated with performance and com-

putational burden. Multi-stage NMPC proved to be a less conservative solution,

which is an improvement compared with o�ine min-max NMPC. As expected from

a robust approach, the 8,69% decrease in performance for multi-stage NMPC was

still 3.93 times worse than the 2,21% obtained from deterministic NMPC approach.
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Chapter 6

Recommendation for Future

Research

Multi-stage NMPC is a recent technology that has not been fully explored. There-

fore, suggestions of future work are made bellow:

Likelihood of scenarios could be updated on-line. To do that, data acquired

through plant measurement could be used to estimate likelihood weights, which

would have an impact in scenario importance and improved closed-loop performance.

Asymptotically stability of multi-stage NMPC could be explored with newly de-

veloped ingredients or by adapting the ones that have been already used for nominal

NMPC stability. Contribution for asymptotically stability under uncertainty may

be found in GONÇALVES (2017).

Computational e�ort is an issue that needs to be solved. The time necessary

to obtain a solution for multi-stage optimal control problem increases exponentially

with the number of uncertainty realizations. This, in turn, limits implementation

of this technology for bigger systems. A contribution for this area can be found in

KRISHNAMOORTHY et al. (2018).

It is possible that deterministic NMPC could be more costly Measurement of

compressor's degradation would provide valuable performance information as deter-

ministic NMPC could potentially increase the risk of breakage. In this scenario,

emergence maintenance would be needed and the cost associated with this strategy

would increase. Therefore, development of tools to evaluate the impact of multi-

stage NMPC in compressor's degradation considering a long term horizon should be

investigated.

82



Bibliography

ALBUSAIDI, W., PILIDIS, P., 2015, �An iterative method to derive the equivalent

centrifugal compressor performance at various operating conditions: Part

I: Modelling of suction parameters impact�, Energies, v. 8, n. 8, pp. 8497�

8515. ISSN: 19961073. doi: 10.3390/en8088497.

ALLGÖWER, F., FINDEISEN, R., NAGY, Z. K., 2004, �Nonlinear model

predictive control: From theory to application�, Journal of the Chi-

nese Institute of Chemical Engineers, v. 35, n. 3, pp. 299�315. ISSN:

03681653. Available at: <http://www.scopus.com/inward/record.

url?eid=2-s2.0-3543101406{&}partnerID=tZOtx3y1>.

ANDERSSON, J., ÅKESSON, J., DIEHL, M., 2012, �CasADi: A symbolic pack-

age for automatic di�erentiation and optimal control�. In: Lecture Notes

in Computational Science and Engineering, v. 87 LNCSE, pp. 297�307.

ISBN: 9783642300226. doi: 10.1007/978-3-642-30023-3_27.

AUSTRHEIM, T., 2006, Experimental Characterization of High-Pressure Natural

Gas Scrubbers. Tese de Doutorado, University of Bergen.

BECKMAN, J., 2015, �Subsea compression prolongs gas pro-

duction at Åsgard o�shore Norway�, O�shore, p. 1.

Available at: <https://www.offshore-mag.com/

articles/print/volume-75/issue-12/top-5-projects/

subsea-compression-prolongs-gas-production-at-asgard-offshore-norway.

html>.

BEMPORAD, A., 2006, �Model Predictive Control Design: New Trends and Tools�,

Proceedings of the 45th IEEE Conference on Decision and Control, , n. 1,

pp. 6678�6683. ISSN: 0191-2216. doi: 10.1109/CDC.2006.377490. Avail-

able at: <http://ieeexplore.ieee.org/document/4178103/>.

BEN-TAL, A., NEMIROVSKI, A., 1999, �Robust solutions of uncertain linear

programs�, Operations Research Letters, v. 25, n. 1, pp. 1�13. ISSN:

01676377. doi: 10.1016/S0167-6377(99)00016-4.

83

http://www.scopus.com/inward/record.url?eid=2-s2.0-3543101406{&}partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-3543101406{&}partnerID=tZOtx3y1
https://www.offshore-mag.com/articles/print/volume-75/issue-12/top-5-projects/subsea-compression-prolongs-gas-production-at-asgard-offshore-norway.html
https://www.offshore-mag.com/articles/print/volume-75/issue-12/top-5-projects/subsea-compression-prolongs-gas-production-at-asgard-offshore-norway.html
https://www.offshore-mag.com/articles/print/volume-75/issue-12/top-5-projects/subsea-compression-prolongs-gas-production-at-asgard-offshore-norway.html
https://www.offshore-mag.com/articles/print/volume-75/issue-12/top-5-projects/subsea-compression-prolongs-gas-production-at-asgard-offshore-norway.html
http://ieeexplore.ieee.org/document/4178103/


BERTSIMAS, D., SIM, M., 2004, �The Price of Robustness�, Operations Re-

search, v. 52, n. 1, pp. 35�53. ISSN: 0030-364X. doi: 10.1287/opre.

1030.0065. Available at: <http://pubsonline.informs.org/doi/abs/

10.1287/opre.1030.0065>.

BIEGLER, L. T., 2012, Nonlinear programming:concepts,algorithms,and appli-

cations to chemical processes, v. XXXIII. ISBN: 9780874216561. doi:

10.1007/s13398-014-0173-7.2. Available at: <http://www.ncbi.nlm.

nih.gov/pubmed/15003161{%}5Cnhttp://cid.oxfordjournals.org/

lookup/doi/10.1093/cid/cir991{%}5Cnhttp://www.scielo.cl/pdf/

udecada/v15n26/art06.pdf{%}5Cnhttp://www.scopus.com/inward/

record.url?eid=2-s2.0-84861150233{&}partnerID=tZOtx3y1>.

BINDLISH, R., 2015, �Nonlinear model predictive control of an industrial

polymerization process�, Computers & Chemical Engineering, v. 73,

pp. 43�48. ISSN: 00981354. doi: 10.1016/j.compchemeng.2014.

11.001. Available at: <http://www.sciencedirect.com/science/

article/pii/S0098135414003056>.

BITMEAD, R. R., GEVERS, M., WERTZ, V., et al., 1990, Adaptive optimal

control - The thinking's man GPC. N. January. ISBN: 0130132772. doi:

10.1016/0005-1098(93)90079-9.

BOINOV, K. O., LOMONOVA, E. A., VANDENPUT, A. J. A., et al., 2006, �Surge

control of the electrically driven centrifugal compressor�, IEEE Transac-

tions on Industry Applications, v. 42, n. 6, pp. 1523�1531. ISSN: 00939994.

doi: 10.1109/TIA.2006.882683.

BUDINIS, S., THORNHILL, N. F., 2016, �Supercritical �uid recycle for surge

control of CO2 centrifugal compressors�, Computers and Chemical En-

gineering, v. 91, pp. 329�342. ISSN: 00981354. doi: 10.1016/j.

compchemeng.2016.03.012. Available at: <http://dx.doi.org/10.

1016/j.compchemeng.2016.03.012>.

CAMACHO, E. F., BORDONS, C., 2007, �Nonlinear Model Predictive Con-

trol: An Introductory Review�. In: Assessment and Future Directions

of Nonlinear Model Predictive Control, v. 358, pp. 1�16. ISBN: 978-3-

540-72698-2. doi: 10.1007/978-3-540-72699-9_1. Available at: <http:

//www.springerlink.com/content/q76n6x44r7327218>.

CHISCI, L., LOMBARDI, A., MOSCA, E., 1996, �Dual-receding horizon control

of constrained discrete time systems�, European Journal of Control, v. 2,

n. 4, pp. 278�285. ISSN: 09473580. doi: 10.1016/S0947-3580(96)70052-3.

84

http://pubsonline.informs.org/doi/abs/10.1287/opre.1030.0065
http://pubsonline.informs.org/doi/abs/10.1287/opre.1030.0065
http://www.ncbi.nlm.nih.gov/pubmed/15003161{%}5Cnhttp://cid.oxfordjournals.org/lookup/doi/10.1093/cid/cir991{%}5Cnhttp://www.scielo.cl/pdf/udecada/v15n26/art06.pdf{%}5Cnhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84861150233{&}partnerID=tZOtx3y1
http://www.ncbi.nlm.nih.gov/pubmed/15003161{%}5Cnhttp://cid.oxfordjournals.org/lookup/doi/10.1093/cid/cir991{%}5Cnhttp://www.scielo.cl/pdf/udecada/v15n26/art06.pdf{%}5Cnhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84861150233{&}partnerID=tZOtx3y1
http://www.ncbi.nlm.nih.gov/pubmed/15003161{%}5Cnhttp://cid.oxfordjournals.org/lookup/doi/10.1093/cid/cir991{%}5Cnhttp://www.scielo.cl/pdf/udecada/v15n26/art06.pdf{%}5Cnhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84861150233{&}partnerID=tZOtx3y1
http://www.ncbi.nlm.nih.gov/pubmed/15003161{%}5Cnhttp://cid.oxfordjournals.org/lookup/doi/10.1093/cid/cir991{%}5Cnhttp://www.scielo.cl/pdf/udecada/v15n26/art06.pdf{%}5Cnhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84861150233{&}partnerID=tZOtx3y1
http://www.ncbi.nlm.nih.gov/pubmed/15003161{%}5Cnhttp://cid.oxfordjournals.org/lookup/doi/10.1093/cid/cir991{%}5Cnhttp://www.scielo.cl/pdf/udecada/v15n26/art06.pdf{%}5Cnhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84861150233{&}partnerID=tZOtx3y1
http://www.sciencedirect.com/science/article/pii/S0098135414003056
http://www.sciencedirect.com/science/article/pii/S0098135414003056
http://dx.doi.org/10.1016/j.compchemeng.2016.03.012
http://dx.doi.org/10.1016/j.compchemeng.2016.03.012
http://www.springerlink.com/content/q76n6x44r7327218
http://www.springerlink.com/content/q76n6x44r7327218


DARLINGTON, J., PANTELIDES, C. C., RUSTEM, B., et al., 2000, �Decreasing

the sensitivity of open-loop optimal solutions in decision making under

uncertainty�, European Journal of Operational Research, v. 121, n. 2,

pp. 343�362. ISSN: 03772217. doi: 10.1016/S0377-2217(99)00034-X.

DETTWYLER, M., BÜCHE, D., BAUMANN, U., 2016, �Subsea Compression �

Current Technology and its Use to Maximize Late Life Production�, 45th

Turbomachinery & 32nd Pump Symposia, pp. 1�17. doi: https://doi.

org/10.21423/R1Z593. Available at: <http://hdl.handle.net/1969.

1/159799>.

EDGAR, T. F., SMITH, C. L., SHINSKEY, F. G., et al., 2008, Process Control.

ISBN: 0071542159. doi: 10.1036/0071511318.

EPSTEIN, A. H., FFOWCS WILLIAMS, J. E., GREITZER, E. M., 1989, �Active

suppression of aerodynamic instabilities in turbomachines�, Journal of

Propulsion and Power. ISSN: 0748-4658. doi: 10.2514/3.23137.

EVEKER, K. M., NETT, C. N., 1993, �Control of Compression System Surge

and Rotating Stall: A Laboratory-Based "Hands-On" Introduction�, 1993

American Control Conference.

FANAILOO, P., ANDREASSEN, G., 2008, �Improving Reliability and Reduc-

ing Intervention Costs of Ultradeep Subsea Technology at the Design

Stage�. In: O�shore Technology Conference, pp. 1�9. O�shore Technol-

ogy Conference, apr. doi: 10.4043/19539-MS. Available at: <http:

//www.onepetro.org/doi/10.4043/19539-MS>.

FERGUSON, T., 1963, The centrifugal compressor stage. London : Butterworths.

doi: https://doi.org/10.1017/S0001924000061431. Available at: <http:

//books.google.com/books?id=k{_}JSAAAAMAAJ.>.

GILARRANZ R., J. L., KIDD, H. A., CHOCHUA, G., et al., 2010, �An

Approach to Compact, Wet Gas Compression�. In: Volume 5: In-

dustrial and Cogeneration; Microturbines and Small Turbomachinery;

Oil and Gas Applications; Wind Turbine Technology, pp. 765�776.

ASME. ISBN: 978-0-7918-4400-7. doi: 10.1115/GT2010-23447. Avail-

able at: <http://proceedings.asmedigitalcollection.asme.org/

proceeding.aspx?articleid=1609263>.

GONÇALVES, G. A. D. A., 2017, On-line process model update in discrete-time

predictive controllers: a Robust approach. Tese de Doutorado, Universi-

dade Federal do Rio de Janeiro.

85

http://hdl.handle.net/1969.1/159799
http://hdl.handle.net/1969.1/159799
http://www.onepetro.org/doi/10.4043/19539-MS
http://www.onepetro.org/doi/10.4043/19539-MS
http://books.google.com/books?id=k{_}JSAAAAMAAJ.
http://books.google.com/books?id=k{_}JSAAAAMAAJ.
http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1609263
http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1609263


GRAVDAHL, J. T., EGELAND, O., 1999a, �Centrifugal compressor surge and

speed control�, IEEE Transactions on Control Systems Technology, v. 7,

n. 5, pp. 567�579. ISSN: 10636536. doi: 10.1109/87.784420.

GRAVDAHL, J. T., EGELAND, O., 1999b, Compressor Surge and Rotating

Stall. Advances in Industrial Control. London, Springer London.

ISBN: 978-1-4471-1211-2. doi: 10.1007/978-1-4471-0827-6. Avail-

able at: <http://scholar.google.com/scholar?hl=en{&}btnG=

Search{&}q=intitle:Advances+in+Industrial+Control{#}0http:

//link.springer.com/10.1007/978-1-4471-0827-6>.

GRAVDAHL, J. T., EGELAND, O., VATLAND, S. O., 2002, �Drive torque ac-

tuation in active surge control of centrifugal compressors�, Automatica,

v. 38, n. 11, pp. 1881�1893. ISSN: 00051098. doi: 10.1016/S0005-1098(02)

00113-9.

GREITZER, E. M., 1980, �Review - Axial compressor stall phenomena�, Journal

of Fluids Engineering, v. 102, n. 2, pp. 134�151. ISSN: 00982202. doi:

10.1115/1.3240634.

GREITZER, E. M., 1976, �Surge and Rotating Stall in Axial Flow Compres-

sors�Part I: Theoretical Compression System Model�, Journal of En-

gineering for Power, v. 98, n. 2, pp. 190. ISSN: 00220825. doi:

10.1115/1.3446138.

GRÜNE, L., PANNEK, J., 2011, Nonlinear Model Predictive Control, v. 152.

ISBN: 9783319460239. doi: 10.1007/978-0-85729-501-9_3. Available

at: <http://digital-library.theiet.org/content/journals/10.

1049/ip-cta{_}20059060{%}0Ahttp://link.springer.com/10.1007/

978-0-85729-501-9{_}3>.

HAHEIM, S., GAILLARD, X., 2009, �A Simpli�ed Subsea Separation and

Pumping System�. In: SPE Annual Technical Conference and Ex-

hibition, n. October, pp. 4�7. Society of Petroleum Engineers,

apr. ISBN: 9781555632632. doi: 10.2118/124560-MS. Available at:

<http://www.onepetro.org/mslib/app/Preview.do?paperNumber=

SPE-124560-MS{&}societyCode=SPEhttp://www.onepetro.org/doi/

10.2118/124560-MS>.

HANSEN, K. E., JØRGENSEN, P., LARSEN, P. S., 1981, �Experimental and

Theoretical Study of Surge in a Small Centrifugal Compressor�, Jour-

nal of Fluids Engineering, v. 103, n. 3, pp. 391�395. ISSN: 0098-2202.

86

http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Advances+in+Industrial+Control{#}0 http://link.springer.com/10.1007/978-1-4471-0827-6
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Advances+in+Industrial+Control{#}0 http://link.springer.com/10.1007/978-1-4471-0827-6
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Advances+in+Industrial+Control{#}0 http://link.springer.com/10.1007/978-1-4471-0827-6
http://digital-library.theiet.org/content/journals/10.1049/ip-cta{_}20059060{%}0Ahttp://link.springer.com/10.1007/978-0-85729-501-9{_}3
http://digital-library.theiet.org/content/journals/10.1049/ip-cta{_}20059060{%}0Ahttp://link.springer.com/10.1007/978-0-85729-501-9{_}3
http://digital-library.theiet.org/content/journals/10.1049/ip-cta{_}20059060{%}0Ahttp://link.springer.com/10.1007/978-0-85729-501-9{_}3
http://www.onepetro.org/mslib/app/Preview.do?paperNumber=SPE-124560-MS{&}societyCode=SPE http://www.onepetro.org/doi/10.2118/124560-MS
http://www.onepetro.org/mslib/app/Preview.do?paperNumber=SPE-124560-MS{&}societyCode=SPE http://www.onepetro.org/doi/10.2118/124560-MS
http://www.onepetro.org/mslib/app/Preview.do?paperNumber=SPE-124560-MS{&}societyCode=SPE http://www.onepetro.org/doi/10.2118/124560-MS


doi: 10.1115/1.3240796. Available at: <http://dx.doi.org/10.1115/

1.3240796>.

HENSON, M. A., 1998, �Nonlinear model predictive control: current sta-

tus and future directions�, Computers & Chemical Engineering, v. 23,

n. 2, pp. 187�202. ISSN: 00981354. doi: 10.1016/S0098-1354(98)

00260-9. Available at: <http://linkinghub.elsevier.com/retrieve/

pii/S0098135498002609>.

ISA, 2007, Flow Equations for Sizing Control Valves, v. ISA-75.01. International

Society for Automation. ISBN: 0876648995. Available at: <https://

www.isa.org/pdfs/microsites121/isa-750101-spbd/>.

JOHANSEN, T. A., 2011, �Introduction to nonlinear model predictive control and

moving horizon estimation�, . . . Topics on Constrained and Nonlinear

Control, , n. 1, pp. 1�53. Available at: <https://iam.chtf.stuba.sk/

{~}fikar/nil11/nil-tbook-p.pdf{#}page=201>.

KEERTHI, S. S., GILBERT, E. G., 1988, �Optimal in�nite-horizon feedback

laws for a general class of constrained discrete-time systems: Stabil-

ity and moving-horizon approximations�, Journal of Optimization The-

ory and Applications, v. 57, n. 2, pp. 265�293. ISSN: 00223239. doi:

10.1007/BF00938540.

KLEYNHANS, G., BRENNE, L., KIBSGAARD, S., et al., 2016, �Development and

Quali�cation of a Subsea Compressor�, O�shore Technology Conference.

ISSN: 01603663. doi: 10.4043/27160-MS. Available at: <http://www.

onepetro.org/doi/10.4043/27160-MS>.

KONDAPI, P. B., CHIN, D., SRIVASTAVA, A., et al., 2017, �How Will Subsea

Processing and Pumping Technologies Enable Future Deepwater Field

Developments?� O�shore Techonolgy coference. ISSN: 01603663.

KRISHNAMOORTHY, D., FOSS, B., SKOGESTAD, S., 2016, �Real-Time Op-

timization under Uncertainty Applied to a Gas Lifted Well Network�,

Processes, v. 4, n. 4, pp. 52. ISSN: 2227-9717. doi: 10.3390/pr4040052.

Available at: <http://www.mdpi.com/2227-9717/4/4/52>.

KRISHNAMOORTHY, D., SUWARTADI, E., FOSS, B., et al., 2018, �Improving

Scenario Decomposition for Multistage MPC Using a Sensitivity-Based

Path-Following Algorithm�, IEEE Control Systems Letters, v. 2, n. 4,

pp. 581�586. ISSN: 2475-1456. doi: 10.1109/LCSYS.2018.2845108. Avail-

able at: <https://ieeexplore.ieee.org/document/8374815/>.

87

http://dx.doi.org/10.1115/1.3240796
http://dx.doi.org/10.1115/1.3240796
http://linkinghub.elsevier.com/retrieve/pii/S0098135498002609
http://linkinghub.elsevier.com/retrieve/pii/S0098135498002609
https://www.isa.org/pdfs/microsites121/isa-750101-spbd/
https://www.isa.org/pdfs/microsites121/isa-750101-spbd/
https://iam.chtf.stuba.sk/{~}fikar/nil11/nil-tbook-p.pdf{#}page=201
https://iam.chtf.stuba.sk/{~}fikar/nil11/nil-tbook-p.pdf{#}page=201
http://www.onepetro.org/doi/10.4043/27160-MS
http://www.onepetro.org/doi/10.4043/27160-MS
http://www.mdpi.com/2227-9717/4/4/52
https://ieeexplore.ieee.org/document/8374815/


LEE, E. B., MARKUS, L., 1968, {F}oundations of {O}ptimal {C}ontrol {T}heory.

New York, John Wiley & Sons, Ltd.

LI, Z., OLSON, M., RAYACHOTI, V., et al., 2014, �Subsea Compact Separation:

Control System Design�. In: O�shore Technology Conference, n. May, pp.

5�8. O�shore Technology Conference, may. ISBN: 9781632665287. doi:

10.4043/25299-MS. Available at: <http://www.onepetro.org/doi/10.

4043/25299-MS>.

LUCIA, S., FINKLER, T., ENGELL, S., 2013, �Multi-stage nonlinear model

predictive control applied to a semi-batch polymerization reactor un-

der uncertainty�, Journal of Process Control, v. 23, n. 9, pp. 1306�

1319. ISSN: 09591524. doi: 10.1016/j.jprocont.2013.08.008. Available

at: <http://dx.doi.org/10.1016/j.jprocont.2013.08.008>.

LUCIA, S., ANDERSSON, J. A., BRANDT, H., et al., 2014a, �Handling un-

certainty in economic nonlinear model predictive control: A compar-

ative case study�, Journal of Process Control, v. 24, n. 8, pp. 1247�

1259. ISSN: 09591524. doi: 10.1016/j.jprocont.2014.05.008. Available

at: <http://dx.doi.org/10.1016/j.jprocont.2014.05.008>.

LUCIA, S., PAULEN, R., ENGELL, S., 2014b, �Multi-stage Nonlinear Model Pre-

dictive Control with veri�ed robust constraint satisfaction�. In: 53rd IEEE

Conference on Decision and Control, v. 23, pp. 2816�2821. IEEE, decb.

ISBN: 978-1-4673-6090-6. doi: 10.1109/CDC.2014.7039821. Available at:

<http://ieeexplore.ieee.org/document/7039821/>.

MACDOUGAL, I., ELDER, R. L., 1983, �Simulation of centrifugal compressor

transient performance for process plant applications�, Journal of Engi-

neering for Power OCTOBER, v. 105, n. October 1983, pp. 885.

MARRUEDO, D., ALAMO, T., CAMACHO, E., 2002, �Input-to-state stable MPC

for constrained discrete-time nonlinear systems with bounded additive

uncertainties�, Proceedings of the 41st IEEE Conference on Decision and

Control, 2002., v. 4, n. December, pp. 4619�4624. ISSN: 0191-2216. doi:

10.1109/CDC.2002.1185106. Available at: <http://ieeexplore.ieee.

org/document/1185106/>.

MAYNE, D. Q., RAWLINGS, J., 2000, �Constrained model predictive control:

stability and optimality�, Automatica, v. 36, n. 6, pp. 789�814.

MAYNE, D. Q., 2014, �Model predictive control: Recent developments and future

promise�, Automatica, v. 50, n. 12, pp. 2967�2986. ISSN: 00051098. doi:

88

http://www.onepetro.org/doi/10.4043/25299-MS
http://www.onepetro.org/doi/10.4043/25299-MS
http://dx.doi.org/10.1016/j.jprocont.2013.08.008
http://dx.doi.org/10.1016/j.jprocont.2014.05.008
http://ieeexplore.ieee.org/document/7039821/
http://ieeexplore.ieee.org/document/1185106/
http://ieeexplore.ieee.org/document/1185106/


10.1016/j.automatica.2014.10.128. Available at: <http://dx.doi.org/

10.1016/j.automatica.2014.10.128>.

MAYNE, D., MICHALSKA, H., 1990, �Receding horizon control of nonlinear sys-

tems�, IEEE Transactions on Automatic Control, v. 35, n. 7, pp. 814 �

824. ISSN: 0018-9286. doi: 10.1109/9.57020.

MICHALSKA, H., MAYNE, D. Q., 1993, �Robust Receding Horizon Control of

Constrained Nonlinear-Systems�, Ieee Transactions on Automatic Control,

v. 38, n. 11, pp. 1623�1633. ISSN: 0018-9286. doi: Doi10.1109/9.262032.

MORARI, M., H. LEE, J., 1999, �Model predictive control: past, present and

future�, Computers & Chemical Engineering, v. 23, n. 4, pp. 667�682.

ISSN: 00981354. doi: 10.1016/S0098-1354(98)00301-9.

PLUCENIO, A., VETTORAZZO, C., CAMPOS, M., et al., 2016a, �ADVANCED

CONTROL APPLIED TO A GAS COMPRESSION STATION OF A

PRODUCTION PLATFORM�, CBA, , n. October.

PLUCENIO, A., VETTORAZZO, C., PICON YANG, B. B., et al., 2016b, �Mod-

eling and Control of an Oil Platform Gas Compression Station�, Cba, ,

n. 2, pp. 304�307.

PLUYMERS, B., LUDLAGE, J., ARIAANS, L., et al., 2008, �An industrial imple-

mentation of a generic NMPC controller with application to a batch pro-

cess�. In: IFAC Proceedings Volumes (IFAC-PapersOnline), v. 17. ISBN:

9783902661005. doi: 10.3182/20080706-5-KR-1001.3842.

QIN, S. J., BADGWELL, T. A., 1997, �An overview of industrial model predictive

control technology�, Automatica, v. 93, n. 316, pp. 232�256. doi: 10.

1.1.52.8909. Available at: <http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.52.8909>.

QIN, S. J., BADGWELL, T. A., 2000, �An Overview of Nonlinear Model

Predictive Control Applications�. In: Nonlinear Model Predictive Con-

trol, Birkhäuser Basel, pp. 369�392, Basel. ISBN: 3-7643-6297-9. doi:

10.1007/978-3-0348-8407-5_21. Available at: <http://link.springer.

com/10.1007/978-3-0348-8407-5{_}21>.

RAWLINGS, J. B., MAYNE, D. Q., 2015, Model Predictive Control: Theory and

Design. ISBN: 9780975937709. doi: 10.1109/TBME.2009.2039571.

RAWLINGS, J., MEADOWS, E., MUSKE, K., 1994, �Nonlinear Model Predictive

Control: A Tutorial and Survey�, IFAC Proceedings Volumes, v. 27, n. 2,

89

http://dx.doi.org/10.1016/j.automatica.2014.10.128
http://dx.doi.org/10.1016/j.automatica.2014.10.128
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.8909
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.8909
http://link.springer.com/10.1007/978-3-0348-8407-5{_}21
http://link.springer.com/10.1007/978-3-0348-8407-5{_}21


pp. 185�197. ISSN: 14746670. doi: 10.1016/S1474-6670(17)48151-1. Avail-

able at: <http://dx.doi.org/10.1016/S1474-6670(17)48151-1http:

//linkinghub.elsevier.com/retrieve/pii/S1474667017481511>.

SCHULTZ, J. M., 1962, �The Polytropic Analysis of Centrifugal�, Journal of

Engineering for Power, v. 84, n. 1, pp. 69�82. ISSN: 00220825. doi:

10.1115/1.3673381.

SCOKAERT, P. O. M., MAYNE, D. Q., RAWLINGS, J. B., 1999, �Suboptimal

model predictive control (feasibility implies stability)�, IEEE Transactions

on Automatic Control, v. 44, n. 3, pp. 648�654. ISSN: 00189286. doi:

10.1109/9.751369.

SCOKAERT, P., MAYNE, D., 1998, �Min-max feedback model predictive control

for constrained linear systems�, IEEE Transactions on Automatic Con-

trol, v. 43, n. 8, pp. 1136�1142. ISSN: 00189286. doi: 10.1109/9.704989.

Available at: <http://ieeexplore.ieee.org/document/704989/>.

SPANGELO, I., EGELAND, O., 1994, �Trajectory Planning and Collision Avoid-

ance for Underwater Vehicles Using Optimal Control�, IEEE Journal of

Oceanic Engineering, v. 19, n. 4, pp. 502�511. ISSN: 15581691. doi:

10.1109/48.338386.

STORSTENVIK, A., 2016, �Subsea Compression - Designing and Building a

Subsea Compressor Station�. In: O�shore Technology Conference. O�-

shore Technology Conference, may. ISBN: 9781510824294. doi: 10.4043/

27197-MS. Available at: <http://www.onepetro.org/doi/10.4043/

27197-MS>.

THOMAZ, D. M., 2017, Estratégia de controle preditivo multivariável para um sis-

tema de compressão de gás de plataforma do pré-sal. Tese de Doutorado,

Universidade Federal do Rio de Janeiro.

TOMASGARD, A., SU, Z., EGGING, R., et al., 2016, A multi-stage multi-

horizon stochastic equilibrium model of multi-fuel energy markets. ISBN:

9788293198154.

TØNNESSEN, L. A., KONGSBERG, F. M. C., AS, S., et al., 2017, �Future Subsea

Compression�, .

UDDIN, N., GRAVDAHL, J. T., 2012a, �Introducing back-up to active compressor

surge control system�, IFAC Proceedings Volumes (IFAC-PapersOnline),

v. 1, n. PART 1, pp. 263�268. ISSN: 14746670. doi: 10.3182/

20120531-2-NO-4020.00053.

90

http://dx.doi.org/10.1016/S1474-6670(17)48151-1 http://linkinghub.elsevier.com/retrieve/pii/S1474667017481511
http://dx.doi.org/10.1016/S1474-6670(17)48151-1 http://linkinghub.elsevier.com/retrieve/pii/S1474667017481511
http://ieeexplore.ieee.org/document/704989/
http://www.onepetro.org/doi/10.4043/27197-MS
http://www.onepetro.org/doi/10.4043/27197-MS


UDDIN, N., GRAVDAHL, J. T., 2012b, �A Compressor Surge Control System:

Combination Active Surge Control System and Surge Avoidance System�,

ISUAAAT Scienti�c Committee with JSASS Publication. doi: https://

doi.org/10.3182/20120531-2-NO-4020.00053.

VADA, J., SLUPPHAUG, O., FOSS, B. A., 1999, �Infeasibility handling

in linear MPC subject to prioritized constraints�, IFAC Proceed-

ings Volumes, v. 32, n. 2 (jul), pp. 6763�6768. ISSN: 14746670.

doi: 10.1016/S1474-6670(17)57155-4. Available at: <http://www.

itk.ntnu.no/databaser/artikler/vedlegg/189{_}pdf.pdfhttp:

//linkinghub.elsevier.com/retrieve/pii/S1474667017571554>.

VERHEYLEWEGHEN, A., JÄSCHKE, J., 2016, �Health-aware operation of sub-

sea gas compression system under uncertainty�, NTNU publication.

VINTERSTØ, T., BIRKELAND, B., RAMBERG, R. M., et al., 2016, �Subsea

Compression � Project Overview�, O�shore Technology Conference, , n.

May, pp. 2�5. ISSN: 01603663.

WU, X., BABATOLA, F., JIANG, L., et al., 2016, �Applying Subsea Fluid-

Processing Technologies for Deepwater Operations�, Oil and Gas Facil-

ities, v. 5, n. 04, pp. 1�10. ISSN: 2224-4514. doi: 10.2118/181749-PA.

Available at: <http://www.onepetro.org/doi/10.2118/181749-PA>.

YOON, S. Y., LIN, Z., ALLAIRE, P. E., 2013, Control of Surge in Centrifu-

gal Compressors by Active Magnetic Bearings. ISBN: 978-1-4471-4239-3.

doi: 10.1007/978-1-4471-4240-9. Available at: <http://link.springer.

com/10.1007/978-1-4471-4240-9>.

ZHENG, A., MORARI, M., 1995, �Stability of model predictive control with mixed

constraints�, Automatic Control, IEEE Transactions on, v. 40, n. 10,

pp. 1818�1823. ISSN: 0018-9286. Available at: <http://ieeexplore.

ieee.org/xpls/abs{_}all.jsp?arnumber=467664>.

91

http://www.itk.ntnu.no/databaser/artikler/vedlegg/189{_}pdf.pdf http://linkinghub.elsevier.com/retrieve/pii/S1474667017571554
http://www.itk.ntnu.no/databaser/artikler/vedlegg/189{_}pdf.pdf http://linkinghub.elsevier.com/retrieve/pii/S1474667017571554
http://www.itk.ntnu.no/databaser/artikler/vedlegg/189{_}pdf.pdf http://linkinghub.elsevier.com/retrieve/pii/S1474667017571554
http://www.onepetro.org/doi/10.2118/181749-PA
http://link.springer.com/10.1007/978-1-4471-4240-9
http://link.springer.com/10.1007/978-1-4471-4240-9
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=467664
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=467664

	List of Figures
	List of Tables
	List of Symbols
	List of Abbreviations
	List of Subscripts and Superscripts
	Introduction
	Theory and Literature Review
	Deterministic Nonlinear Model Predictive Control
	Robust Non-linear Model Predictive Control
	Feasibility, Stability and Performance
	Methods for Optimal Control
	Centrifugal Compressor Control System

	Surge Avoidance in a Gas Compression System
	Subsea Gas Compression
	Åsgard Field
	Process and Control System

	Compression System Case-Study
	Control Valve
	Flow Mixer
	Cooler
	Scrubber
	Centrifugal Compressor


	Results and Discussion
	Problem Description
	Open-loop Simulations Results
	Open-loop response for a source pressure disturbance
	Open-loop response for a recycle valve manipulation
	Open-loop response for compressor rotation manipulation
	Open-loop simulations remarks

	Closed-loop Simulations Results
	Virtual plant closed-loop behaviour
	Deterministic NMPC open-loop decision making
	Offline min-max NMPC open-loop decision making
	Multi-stage NMPC open-loop decision making
	NMPC strategies evaluation


	Conclusions
	Recommendation for Future Research
	Bibliography

