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O controle de processos tem, em sua representação matemática tradicional, a

descrição de processos por meio de equações diferenciais ordinárias, EDOs. Uma

alternativa mais geral de representar os processos dinâmicos a serem simulados

e controlados é através de sua modelagem por meio de equações algébrico-

diferenciais, EADs. O controle de processos é classicamente representado por

controladores PIDs (Proporcional, Integral e Derivativo), tendo como camada

superior o controle preditivo baseado em modelo matemático, ou apenas controle

preditivo, MPC (Model Predictive Control). Há uma crescente atividade acadêmica

no desenvolvimento do controle ótimo, uma abordagem de controle também baseada

em modelo, na qual são utilizados algoritmos de otimização. O presente trabalho

utiliza uma técnica de simulação computacional de sistemas de EADs, chamada

inicialização direta, que consiste em inicializar o modelo a partir de uma condição

estacionária e utilizar uma função de regularização para realizar a transição de

uma condição à outra. Essa técnica foi utilizada para identi�cação e controle de

quatro processos descritos por EADs de índice superior. Os processos são descritos

por EADs de índice 2 sendo o modelo benchmark de condensador utilizado por

Pantelides, dois modelos de reatores, um isotérmico e outro não isotérmico, e um

modelo de �ash reativo adimensional. Os processos descritos por modelos foram

identi�cados para funções de transferência e controlados com um controlador MPC

do tipo GPC (Generalized Predictive Control). Ficou evidenciado que a redução

de índice pode levar a comportamentos incoerentes e os modelos identi�cados

lineares, baseados em função de transferência, representaram adequadamente o

comportamento local de modelos EAD de ordem superior.
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Process control has in its traditional mathematical representation the process

description by means of ordinary di�erential equations, ODEs. A more general

alternative for representing the dynamic process to be simulated and controlled is

through its discription in di�erential-algebraic equations, DAEs. The process control

is classically represented by PID controllers (Proportional, Integral and Derivative)

and having in the upper layer the model predictive control strategies, MPC. It

presenting nowadays a growing research activity on the development of optimal

control, a control technique also based on a model, in which optimization techniques

are used. The present work employs a computational simulation technique for DAE

systems, known as direct initialization, which consists of initializing the model from

a stationary condition and using a regularization function to carry out the transition

from one condition to the other. This approach was used to identify and control

four processes described by high-index DAEs. The processes are described by index

2 DAEs being the benchmark model of a condenser used by Pantelides, two models

of reactors, one isothermal and other non-isothermal, and a non-dimensional model

of reactive �ash drum. The processes described by models were identi�ed to transfer

functions and controlled with MPC controller of the GPC (Generalized Predictive

Control) type. It was evidenced that the index reduction can lead to incoherent

behaviors and the identi�ed linear models, based on transfer function, adequately

represented the local behavior of high-index DAE models.
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Chapter 1

Introduction

As a way for clarifying the reader about the thoughts that drove the research on this

dissertation, some information about the subject matter addressed here is presented

and the inspiration behind it is pointed out.

1.1 Motivation

Controlling a process is somehow applying our human knowledge to di�erent types

of equipment and driving the desired variables through a trajectory that please us

under certain criteria. To control a process one needs to know it minimally, such

by describing it through a phenomenological mathematical model or by considering

it as a �black box�, which only looks for the input and output data and design the

controller with an amount of data that gives reasonable results (ROSSITER, 2003).

As the tuning is still a non-intuitive step to have the full control structure running

(WASCHL et al., 2011), the computational simulation is an important key in the

implementation of control strategies.

The development of the MPC (Model Predictive Control) added resources to the

control theory by allowing engineers and researchers to use more complex math-

ematical models to describe the process phenomena and deal with multivariable

systems more easily, without the need to design complex decoupling structures such

those needed for PID (Proportional Integral Derivative) controllers (CAMACHO

and BORDONS, 1999). One of the great advantages of the MPC over traditional

PID is that it foresees the process behavior based on an internal model. How far

in time the model predict the future behavior of the process is called prediction

horizon.

The MPC refers to a philosophy of control, having several di�erent algorithms us-

ing certain common principles. One principle is that predictions are performed using

a predicting model; this model can be any suitable one for the process (ROSSITER,

2003). With this in mind, the model can be obtained from a step response, such as

1



in DMC (Dynamic Matrix Control) (CUTLER and RAMAKER, 1979), or from a

nonlinear model, such as in the case of NMPC (NonLinear Model Predictive Con-

trol) (QIN and BADGWELL, 2000). This freedom in choosing the model used for

prediction step gave rise to the idea of using a model based on DAEs (Di�erential-

Algebraic Equations) in the control area (ROSSITER, 2003). Models based on

DAEs are powerful tools for describing physical problems, where the variables of

interest can be expressed by di�erent equations and constitutive relationships are

easily replaced (BRENAN et al., 1996).

DAE systems are an active research �eld nowadays, being of interest for engineers

in control, chemical, mechanical and electrical process (AZEVEDO-PERDICOÚLIS

and JANK, 2007; BAUM et al., 2017; HACHTEL et al., 2018; HAßKERL et al.,

2017; HÖCKERDAL et al., 2018; LI, 2010; WANG, 2010; YE et al., 2017), with

researchers in diverse �elds making great e�ort to combine the DAE theory to control

strategies, from classical PID to more advanced ones such as MPC or optimal control

(BIEGLER et al., 2012). The need for a more complete and general theory for

DAEs and algorithms that can deal with those systems inspires researchers to follow

di�erent approaches and allows precious contributions from di�erent �elds.

Researchers and students have growing interest on DAE systems as can be seen

in the willingness to improve teaching and presenting this subject even at the level

of undergraduate students (VIANNA JR and NASCIMENTO, 2005). The charac-

teristic of DAE models to represent physical phenomena and its more general aspect

regarding ODEs tend to make researchers investigate their proprieties and intensify

the study on this subject in order to make it more general.

The current developments in DAE simulation and control are frequently based

on avoiding dealing directly with high-index systems, by applying some strategy to

converting then into ODEs or index-1 DAEs. Several solvers for high-index systems

uses some index reduction to convert the system into an index-1 or ODE to solve

it, but they do not compare or solve the original system, which can have a di�erent

behavior when submitted to disturbances.

This dissertation reviews the literature in Section 2.5 on high-index DAE for

simulation and control and shows how to deal directly with high-index systems by

using a solver capable of integrating high-index DAEs in its implicit form, which is

the most generic form that DAEs appears. Rigorous techniques for consistent initial-

ization are in general di�culty to apply and this drives the opportunity of applying

simpler strategies to overcome such di�culties (KRÖNER et al., 1997). The direct

method of initialization has its bene�ts due to the great di�cult of initializing DAE

systems using standard solvers. Finding consistent initial conditions is one of the

hardest tasks when dealing with DAEs, especially those of high index. Additionally,

the performance of a model predictive control strategy in keeping a high-index sys-

2



tem at a stationary point is investigated. The impact of index reduction is analyzed

when performing the identi�cation of the processes to apply the MPC control.

1.2 Objective

The present work applies an approach called direct method of initialization to sim-

ulate computationally DAE systems to complete three main objectives:

i. Identify high-index DAE models to transfer function models, using �black box�

identi�cation;

ii. Apply control strategies to high-index DAE-based processes using the identi-

�ed transfer functions, where the high-index DAE models are used as virtual plants;

iii. Study the impact of index reduction when simulating disturbances in the

DAE models.

The �rst and second objectives are due to the di�culty in simulating high-index

DAEs. The literature provide just a few general technique for solving a generic DAE

system, the mostly techniques presented are usually restricted to DAEs of a certain

structure or require some index reduction to solve the system. The third objective

is a consequence of the �rst two, as the high-index solution is not always known and

the index reduction is the most common approach when dealing with those systems.

Besides the well-known drift-o� e�ect (SOARES and SECCHI, 2005), the impact

of such technique is not usually mentioned, making possible to researchers drawing

conclusions based on incorrect behavior when simulating the reduced systems in

substitution of the original DAE.

1.3 Dissertation Structure

Chapter 1 presents the motivation of this dissertation and the objectives de�ned

to complete it. Chapter 2 provides an overview about important fundamentals re-

garding DAEs and MPC. The speci�c requirements for simulating high-index DAEs

via direct initialization are provided and topics related to e�ects of index reduction

are covered. The MPC section presents a historic review and the speci�c aspects

regarding the MPC algorithm chosen. Chapter 3 explains the methodology applied

to simulate systems described by high-index DAE models in order to control them

with a linear MPC. In Chapter 4 the results of the simulation performed for identi�-

cation and control are presented and the discussion about the e�ects observed. The

conclusion from this study, its results and the methodology proposed are presented

in Chapter 5.
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Chapter 2

Literature Review

This chapter brings relevant information to understand Di�erential-Algebraic Equa-

tions and its current relationship with Model Predictive Control. Information about

important characteristics when numerically simulating DAEs and its di�culties are

presented, as well as the possible bene�ts of working with this type of equation

system. The fundaments of Model Predictive Control are presented in order to

introduce the reader about this advanced control strategy. The last topic in this

chapter describes the research carried out in these two �elds concomitantly, provid-

ing the basis for the development of this work.

2.1 Di�erential-Algebraic Equations (DAEs)

The representation of a DAE system in its fully implicit form is given according to

Equation 2.1:

F (x, x′, z, t) = 0 (2.1)

in which the di�erential variables are x and the algebraic variables are represented

by z. The term x′ represents the derivative of x with respect to t and t is the

independent variable, usually time. These systems occur when there is a coupling

of di�erential equation with algebraic equations, also called constraints. Systems

in the form of DAEs arise naturally in the process of phenomenological modeling

in various engineering �elds (BRENAN et al., 1996). The most common way for

representing and dealing with DAEs is in the semi-explicit by showing, clearly, which

are the di�erential and the algebraic equations, as expressed in Equation 2.2:x′ = F (x, z, t)

0 = G(x, z, t)
(2.2)
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The development of DAE's theory is intimately related to initial value problems.

But the di�erences between the ODEs and DAEs arise when trying to numerically

simulate them as pointed by PETZOLD (1982). DAE systems require that all equa-

tions be solved simultaneously and solvers addressed to solve ODEs are not always

suitable for DAEs depending on its structure. Di�erent types of DAEs are reported

by BRENAN et al. (1996) as linear constant coe�cient, linear time varying, semi-

explicit linear, semi-explicit nonlinear. This work focuses on fully implicit DAEs, as

given in Equation 2.1. The solution of DAEs di�ers from the ODEs by the di�culties

associated with their simulation. The DAE systems require consistent initial condi-

tions to start the simulation while the ODEs can have arbitrary initial conditions.

In order to simulate a DAE systems, one needs to characterize it beforehand, de-

scribing the index and the dynamic degrees of freedom (LEITOLD and GERZSON,

2010).

The solution of DAE systems can be performed by di�erent approaches: the so

called direct or indirect methods (VIEIRA and BISCAIA JR., 2001). There is also

a structural approach proposed by PANTELIDES (1988) in which graph theory is

used to determine the minimum set of equations to be di�erentiated in order to

convert the original system into an equivalent form of explicit ODEs. Several works

applied this technique (COSTA JR., 2003; MURATA, 1996; SOARES and SECCHI,

2005). This approach of reducing DAEs to ODEs requires the symbolic or numerical

evaluation of several derivatives, increasing the size of the problem and inserting new

variables, that usually indicate how much the constraints have been violated. These

drawbacks make attractive using the DAE system on its original form.

Some bene�ts of working directly with DAE systems are: (i) it is not always

possible to reformulate the DAE system to an explicit ODE system, (ii) the variables

keep their original physical interpretation, (iii) it is easier to vary parameters and

relationships with implicit systems, (iv) the algebraic equations typically represent

conservation laws, that should be kept invariant. Others bene�ts can be found in

BIEGLER et al. (2012) and MURATA (1996).

The literature reports that a possible e�ect when working with index reduced

systems is the called �drift o�� e�ect, in which the reduced system presents increas-

ingly integration errors compared to the original system. The e�ect is exempli�ed in

SOARES and SECCHI (2005) for the classical index-3 pendulum system described

in BRENAN et al. (1996). Another di�culty, when working with reduced systems,

is that it accepts more solutions than the original system and the di�erentiation

process may cause eventual loss of process information.
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2.1.1 Index of a DAE System

As discussed above, the solution of DAE systems presents more di�culties compared

to purely di�erential systems. An indication of the di�culty when dealing with DAE

systems is the so called di�erential index, de�ned as the minimum number of times

that all or part of the original system has to be di�erentiated relatively to the

independent variable, usually time, so the system is reduced to a system of ODEs.

According to this de�nition, a system of ODEs is a particular case of DAEs, in this

case of index 0 (BRENAN et al., 1996). This and several other index de�nitions can

be found in SCHULZ (2003). To exemplify the most common index characterization

one may start with an index-1 DAE as presented in Equation 2.3, where all the

algebraic variables are explicit in the algebraic equation, G(x, z, t), and only one

di�erentiation is needed to have an explicit system of ODEs. By di�erentiating

G(x, z, t) with respect to t, it produces an explicit expression representing z′ and z,

characterizing the di�erential equation for z.x′ = F (x, z, t)

0 = G(x, z, t)
(2.3)

When the algebraic variables, z, are not present in the algebraic equations, it can

be seen that the system is of high-index (index 2 or higher), as more than one

di�erentiation will be needed to have an explicit set of ODEs, as exempli�ed in

Equation 2.4.x′ = F (x, z, t)

0 = G(x, t)
(2.4)

In this case, the expression G(x, t) needs to be di�erentiated at least twice to have

an explicit expression for z′ and z, indicating that the index of such system is equal

to or greater than 2. There are cases where more di�erentiations are needed and

the variables present di�erent indices, as exempli�ed with Equation 2.5.
x′ = F (x, y, t)

y′ = K(x, y, z, t)

0 = G(x, t)

(2.5)

The example above is at least an index-3 system, as the algebraic expression G(x, t)

needs to be di�erentiate three times to have an explicit expression for z′ and z. The

variables x and y are di�erential ones and z is the algebraic variable. While reducing

the index of the whole system, 2.5, the index of each variable is determined, for this
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case the indices of x, y and z are at least of index 1, 2, and 3, respectively. More

details about the procedure to determine the index of each variable can be found in

LIOEN et al. (1998).

Just reinforcing the concept, the index determination is performed by di�eren-

tiating the minimum number of equations to have an explicit set of ODEs. As the

index reduction needs to be carried out to determine which is the di�erential index

of the system, the researchers tend to use this technique to solve high-index systems

by reducing the index and solving the reduced system. The solution of high-index

DAE system via index reduction can be done by di�erent ways: (i) direct di�erenti-

ation, which consist on di�erentiating the entire set of equations until it becomes an

explicit set of ODEs; (ii) di�erentiation and substitution, in which some algebraic

constraints are di�erentiated and substituted on the di�erential equations; and (iii)

forming an augmented DAE system with the new equations discovered by the dif-

ferentiation process (SANTAMARÍA and GÓMEZ, 2015). These approaches have

the inconvenience of possible causing loss of information through di�erentiation,

increasing the size of the problem by inserting new variables or violating certain

relationships that should be kept invariant, as already discussed above.

As the DAE systems presents di�erent types of behavior depending on the equa-

tions involved, the index of a system may be hard to �nd and can also �uctuate

depending on the dynamics or the initial condition given (QUINTO, 2010). Also

high-index systems may arise depending on the assumptions adopted such as equi-

librium, incompressibility and fast reaction kinetics among others (KUMAR and

DAOUTIDIS, 1999).

2.2 Direct Method of Initialization

This approach uses the property that a steady state is always a consistent initial

condition, as demonstrated by KRÖNER et al. (1997) and used by VIEIRA (1998).

The dynamic behavior can be interpreted as a disturbance in a steady state, as

reported by VIEIRA and BISCAIA JR. (2001) in several examples.

Another inconvenience when dealing with DAEs is that the methods for integra-

tion are susceptible to discontinuities during the process. If a discontinuity is present

during the integration, the integration process may fail and another set of consistent

initial condition has to be calculated in order to proceed the solution, which is a

characteristic of multi-step methods, such BDF (Backward Di�erentiation Formula).

Abrupt changes in parameters or variables tend to make the integration process fail

and DAE solvers are typically sensitive to sudden changes (VIEIRA, 2001).

As a way of guaranteeing the continuous integration of the systems submitted to

discontinuous disturbances such the step changes, the smoothing of the disturbance
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can be adopted through a regularization function, η(t − ts, ξ), with the charac-

teristic of being continuous and limited between 0 and 1. The argument (t − ts)

represents the time when the transition occurs, growing from 0 to 1 continuously.

The parameter ξ de�nes how close to the ideal step the function behaves (VIEIRA

and BISCAIA JR., 2001). Equation 2.6 follows the formulation used by (QUINTO,

2010). Other works proposed di�erent functions, depending on the system simulated

(VIEIRA, 1998; VIEIRA, 2001):

η =
1 + tanh[ξ(t− ts)]

2
(2.6)

Using this regularization function, perturbations in discrete domain are applied

as described by Equation 2.7. This equations makes the transition between two

conditions in the process, using di�erent inputs, u. Starting the simulation with the

previous input, uk−1, and applying the regularization function, η, to switch from

the previous to the current input, uk. Using the previous input, the integration

starts are under consistent initial conditions and the function 2.6 switches from the

previous to the new condition. The transition behavior depends on parameter ξ and

the time tks, which de�nes the time where the transition will occur.

uk = uk−1 + (uk − uk−1) · η(t− tks, ξ) (2.7)

With this approach, the simulation of the control actions remain connected, guaran-

teeing the progress of the integration method under perturbations applied between

one sampling time and another.

2.3 Process Identi�cation

Process identi�cation is a way of establishing a direct correlation model between

input (manipulated or disturbed) variables and output (controlled or not) variables

of a system, from data showing variations in inputs and their respective impacts on

outputs. The identi�cation process is fundamental to a number of control engineer-

ing practices. The process model provides essential information about the behavior

of the process over time and relevant characteristics for control design.

Process identi�cation emerges when dealing with processes whose governing phe-

nomena are not clearly understood or are too complex or not suitable for the pro-

posed application (OGUNNAIKE and RAY, 1999). There are several forms and

approaches for modeling and identi�cation. In general, real processes are not known

in their ultimate reality, the models are abstract ways for describing the world as

we conceive it. When models based on phenomenological laws are not suitable for
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simulation or are impracticable, the process of identi�cation is conducted on the

basis of available information, usually through the use of input and output data.

The so-called "black box" methods only take process data for parameters estima-

tion and are not necessarily valid throughout the whole operational range, while

"gray box" methods use some phenomenological or empirical information about the

process together with available process data (OGUNNAIKE and RAY, 1999).

The identi�cation of linear models takes advantage of the characteristic that even

non-linear processes can be represented by a linear model in many cases, if su�-

ciently close to the collection of process data used for identi�cation. MATLAB
TM

environment has a tool with several possibilities for process identi�cation, namely,

the System Identi�cation Toolbox
TM

, which uses several internal tools to identify

linear and non-linear models, using techniques such as maximum likelihood, pre-

diction error minimization, Hammerstein-Wiener modeling, ARX (AutoRegressive

eXogenous) models among others (MATHWORKS, 2018b).

2.4 Model Predictive Control

Philosophically, MPC can be interpreted as re�ecting the human behavior regard-

ing the control strategy (ROSSITER, 2003). This feature presents the relatively

intuitive way in which the algorithms that follow this strategy can be developed,

since our behavior in control situations can be exempli�ed according to the con-

cepts used in the various algorithms covered by the MPC strategy. The historical

determination of the beginning of MPC is di�cult to do, since these techniques

have been developed and applied over several years by the industry until its pre-

sentation through academic research (MACIEJOWSKI, 2002). The basic concepts

date back to the 1960s, with the concept of receding horizon by PROPOI (1963)

(OGUNNAIKE and RAY, 1999). The academic development of this type of strat-

egy began in the late 1970s, with the development of the algorithms MAC (Model

Algorithmic Control) by RICHALET et al. (1978), better known by the name of the

software in which it was implemented, IDCOM (OGUNNAIKE and RAY, 1999),

and the widely di�used DMC (Dynamic Matrix Control), recognized as one of the

most popular predictive control algorithms, published by CUTLER and RAMAKER

(1979). Over the years, improvements have been proposed based on the DMC, such

as the QDMC (Quadratic Programming Solution of Dynamic Matrix Control) by

(GARCIA and MORSHEDI, 1986).

In 1987, the algorithm named GPC (Generalized Precitive Control) by

(CLARKE et al., 1987a,b) was published mentioning that the new algorithm would

incorporate the family of long-range predictive controllers, being suitable for systems

di�cult to control before, such the ones with multiple dead times, non-minimal phase
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and even open-loop unstable systems (CLARKE et al., 1987a). The original GPC

algorithm has several vulnerabilities, such as a lack of stability and robustness, noise

susceptibility among others, but several proposals were presented and the robust-

ness of the GPC controller could be improved according to certain modi�cations

(ROSSITER, 2003). The use of low-pass �lters, such as the T �lter, and the appli-

cation of the Internal Model Control (IMC) paradigm, proposed by GARCIA and

MORARI (1982), have improved the performance and enabled a better understand-

ing of the stability, robustness and performance of MPC proposals (OGUNNAIKE

and RAY, 1999). The GPC was originally proposed with the CARIMA (Controlled

Auto-Regressive Integrated Moving Average) model for prediction, but its formula-

tion may be adequate for state space representation or following the internal model

proposal (ALBERTOS and ORTEGA, 1989; ROSSITER, 2003).

The MPC approach has some basic fundamentals which makes possible to adapt

the control to the most varied processes. The design and implementation of a MPC

strategy, according to any algorithm, can be done in an intuitive and properly way

(ROSSITER, 2003). To exemplify how the MPC performs the control action, with

the predictive aspects, the following analogy with human behavior is presented. As

stated earlier, human action, when facing control situations, tends to contain certain

characteristics in common with MPCs. The prediction horizon can be interpreted as

how far in the future one makes predictions. For humans, it would be how long are

the forecasts about future events. As in human experience, the predictions on MPC

are performed every moment, at each sampling time the controller foresees how the

plant will behave based on its internal model. Another characteristic is the control

horizon, which can be linked to the amount of actions that will be taken in order to

drive the plant from one situation to the desired trajectory. The control horizon is

the number of actions calculated, which is the degrees of freedom of the system and

is usually chosen to be smaller than prediction horizon. The optimization is the step

where the best control actions are chosen in order to achieve the desired objective. As

the concept of optimality is relative, the optimization evaluates the performance with

an objective function, considering the factors that the controller designer understand

to be better to describe the problem. A scheme illustrating a generic MPC strategy

is presented in Figure 2.1 (CARVALHO, 2015; OGUNNAIKE and RAY, 1999).

Normally the control horizon is smaller than the prediction horizon, which allows

to reduce the number of calculations made by assuming the control actions after

the control horizon will remain constant. This concept was implemented in DMC

and used on GPC (CLARKE et al., 1987a). The whole process of predicting future

behavior based on a model and determining the next control actions is carried out

at every sampling time, just like humans do, by constantly making new projections

based on obtained information and the results generated. This characteristic of
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Figure 2.1: Generic scheme of a MPC strategy.

constant updating the predictions refers to the concept of receding horizon. These

concepts can be visualized in Figure 2.2.

Figure 2.2: Diagram of prediction and control horizon on MPC strategy.

Figure 2.2 schematically represents how MPC sees the events in a SISO (Single

Input, Single Output) application, k is the sampling time, uk is the control action,

yk is the plant behavior. Np and Nu are the prediction and control horizons,

respectively. At every sampling time, indicated in Figure 2.2 as k, the whole process

to determine what will be the next sequence of Nu actions is performed, but only
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the �rst action is e�ectively implemented. For the GPC algorithm, the prediction

starts from a minimum horizon, N1, and extends through Np sampling times until

N2 = Np + N1, this allows dealing directly with systems with dead time. The

approach in DMC starts from the �rst sampling time, making predictions from over

the entire prediction horizon which can be a waste of computational time in cases

of long dead time.

2.4.1 CARIMA Model

The acronym for Controlled Auto-Regressive Integrated Moving Average, CARIMA,

is a popular model for representing transfer functions in the Z-domain with the

inclusion of a stochastic term,
T (z)νk

∆
. Its standard form is (ROSSITER, 2003):

a(z)yk = b(z)uk +
T (z)νk

∆
(2.8)

The terms a(z) and b(z) are polynomials of z-domain containing the parameters of

the model, the denominator and numerator of a transfer function, respectively. The

term T (z) is usually considered as a control design function, which can act as a

low pass �lter in a closed loop performance. The term νk and ∆ are a zero mean

noise and the discrete delay operator (1 − z−1), respectively. By incorporating a

stochastic term into the model, the CARIMA model intrinsically incorporates the

possibility of rejecting small disturbances in the controlled variables (CAMACHO

and BORDONS, 1999). The common use of the CARIMA model is according to

Equation 2.9, with the term a(z)∆ grouped as A(z) (ROSSITER, 2003):

A(z)yk = b(z)∆uk + T (z)νk (2.9)

The CARIMA model inside GPC allows the control to reject low frequency dis-

turbances in the process by internally incorporating the term
T (z)νk

∆
, which can be

understood as a representation of disturbances, making it possible to control process

even in cases of uncertainty of parameters or mismatch between model and plant

(ROSSITER, 2003). The term T (z) usually assumes the value of 1, but other poly-

nomials can be proposed to improve the disturbance rejection in di�erent frequencies

(ROSSITER, 2003).

2.4.2 Generalized Predictive Control (GPC)

The formulation of GPC proposed by CLARKE et al. (1987a) uses the CARIMA

model to predict the plant behavior and a polynomial division technique for cal-

culating future responses. Predictions are made for the entire prediction horizon
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using complicated algebra with the Diophantine equation. However, other methods

can be implemented in order to make the algebra for the predictions calculation

simpler and clearer, as proposed in ALBERTOS and ORTEGA (1989), which uses

the characteristic of the CARIMA model to predict one step ahead and organizes

the prediction matrix using recursion through a Toeplitz-type matrix, according to

the matrix H below, which is well conditioned and of simple inversion (ROSSITER,

2003). The terms hi are the impulse response coe�cients obtained from the transfer

function models which gives the prediction N steps ahead.

H =


h1 0 0 0

h2 h1 0 0
...

. . . h1 0

hN hN−1 · · · h1

 ∈ R
NxN

(2.10)

The objective function used in the GPC is posed according to Equation 2.11, in

which the process response, yk+j, is compared with the reference trajectory, yref , and

the increment of control actions, ∆uk+j−1, are accounted for and weighted by the

factors, δ(j) and λ(j), respectively. The weighting factors can be used to compensate

the scales of the variables, if nondimensionalization is not performed a priori.

Fobj =

N2∑
j=N1

{
δ(j) [yk+j − yref ]

2
}

+

Nu∑
j=1

{
λ(j) [∆uk+j−1]

2
}

(2.11)

The optimizer will minimize the objective function in the interval between 1 and

N2 relative to control actions, ∆u. After the control horizon, the control increments

are set to zero in order to reduce the computational e�ort. Originally, the GPC was

proposed without restrictions, however, the structure of the GPC and of the MPCs

in general allows the inclusion of restrictions during the optimization process. This

makes the solution di�cult, but it is a great advantage of the MPC over classical

control, as well as easily dealing with MIMO (Multi-Input Multi-Output) systems

in a simple and direct way (OGUNNAIKE and RAY, 1999).

2.5 Simulation and Control of DAEs

Researchers and engineers from di�erent �elds faced high-index DAE systems as

a challenge for several years. The simulation of such systems began with simple

cases and research studies started to recognize that DAE systems di�er from ODEs,

but have an intrinsic relationship with sti� ODEs. PETZOLD (1982) published

an article explaining the di�erences between these two types of mathematical mod-

els. An active area of research is the simulation of process models that are typi-
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cally described by high-index models, like the reactive �ash and reactive distillation

(BONILLA et al., 2012; COSTA JR., 2003; GONÇALVES et al., 2007; HARNEY

et al., 2013; SANTAMARÍA and GÓMEZ, 2015).

Regarding simulation of DAE systems, the �rst time a direct method was used

to the consistent initialization of a DAE model appears to be in the work of CUILLE

and REKLAITIS (1986), where a cubic polynomial is used to reinitialize the deriva-

tives and physical information is used to give consistent initial conditions, starting

from a stationary state. The most famous code for integration of DAEs is the

DASSL code (Di�erential Algebraic System Solver), suitable for index-1 systems

and published by PETZOLD (1989).

LEIMKUHLER et al. (1991) used forward �nite di�erences to approximate high-

order derivatives and employed user information to de�ne consistent initial condition

to solve index-1 and semi-explicit index-2 DAE systems.

ALBET et al. (1994) proposed a modi�ed Euler method to calculate the deriva-

tives after suddens changes, such as step inputs, by dropping the error control of

the integration method.

CAMPBELL and MOORE (1994) proposed the solution of high-index DAEs by

iterative minimum squares using a derivative array, solving the augmented system

composed of the original equations plus the derivatives of the algebraic equations.

The method was not suitable for control studies because it was computationally

demanding due to decomposition of the Jacobian matrix in singular values.

GOPAL and BIEGLER (1998) applied a linear programming approach to �nd

consistent initial conditions to reinitialize the integration after discontinuities. MU-

RATA (1996) and COSTA JR. (2003) applied automatic di�erentiation to create the

augmented system in order to solve high-index systems for the Pantelides condenser,

distillation column and pendulum.

VIEIRA (1998); VIEIRA (2001) used the direct method of initialization to sim-

ulate DAE systems with di�erent regularization functions.

SOARES and SECCHI (2005) proposed a direct method of initialization based

on a new algorithm for index reduction that proved to be more robust than the

classical codes.

GERDIN (2006) used the MODELICA language to simulate DAEs by applying

the Pantelides method for index reduction.

GONÇALVES et al. (2007) used the MATLAB
TM

solver for sti� ODEs, namely,

ODE15s, to solve a reduced system describing a �ash drum.

SOARES (2007) developed a simulation environment capable to solve high-index

DAEs by applying an improved version of Pantelides algorithm for index reduction.

The simulation of an index-2 system describing a �ash separation process is

presented by LIMA et al. (2008), the authors used PSIDE, the high-index solver
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suitable for systems up to index 3 (SOARES and SECCHI, 2005).

LI (2010) used the MODELICA language to simulate centrifugal chillers by ap-

plying the direct method of initialization in di�erent conditions of operation and

control.

BONILLA et al. (2012) simulated a distillation process in packed columns by

reducing the model from index 2 to index 1. A structural analysis was performed by

MCKENZIE et al. (2015) in order to reduce DAEs to index 1 or 0 using MODELICA

language.

The control studies focusing on DAE approach seems to start with MCLELLAN

(1994) who applied a DAE perspective on nonlinear control, by solving the whole

control problem as a DAE system, but the process was described by a set of ODEs.

KUMAR and DAOUTIDIS (1995a,b, 1996, 1999) explored the control of DAE

systems of indices 1 and 2 with feedback regularization and applied the di�erentia-

tion of the whole system to convert the DAEs into ODEs. They also used algebraic

manipulation of the constraints in order to insert the algebraic variables into the

ODE equations.

The development of control and DAE focused on optimal control simulation in

this new millennium, presenting several works dealing with optimal control, but usu-

ally separating the process from the constraints. The whole problem is characterized

as an DAE, but the processes are usually described by ODEs.

CONTOU-CARRERE and DAOUTIDIS (2005) developed a method to represent

DAEs in state space form for feedback control by changing variables in order to

remove the control variables from hidden constraints.

SANTAMARÍA and GÓMEZ (2015) created a hybrid index DAE model for a

NMPC, using the reduced index-1 model to compute the consistent initial conditions

and them switched to the index-2 model in order to reduce the computational e�ort

and the size of the system solved.

UPPAL et al. (2017) used the DAE approach to simulate the optimal control of

an aerial problem. The process itself is a system of ODEs and the constraints char-

acterize the DAE system. The �nal model is discretized with the control variables

and the alpha method is used to integrate the system (CAMPBELL, 1995; PARIDA

and RAHA, 2009).

2.6 Remarks on the Review

The information presented above aims at providing the reader with the basic con-

cepts and ideas about DAEs and MPC. The main point about these two subjects

together is that the research on simulating and controlling those types of models

is still under development and the MPC strategy has been improved by dealing di-
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rectly with DAEs due to its generic aspect in modeling and optimization. It was

found that the common practice when facing high-index DAE models is to apply

some strategy to reduce the index and solve the reduced order system by the most

common solvers.

The simulation of high-index DAE models has been proved to be useful to im-

prove the understanding of diverse processes and the DAE formulation allows the

researcher to test di�erent constitutive relationships, as well as to test di�erent

correlations between variables and parameters in the models. It was found that

researchers tend to avoid dealing directly with high-index DAE models in control

studies, when these types of models appear, the most common practice is to reduce

the index.

This work deals with this type of models directly, with no algebraic manipula-

tion or index reduction approach applied in order to solve the resulting system. The

applied approach was directed to GPC algorithm, which is a control technique that

deals with wide classes of systems described by the CARIMA model. More detailed

information about DAE can be found on (BIEGLER et al., 2012; BRENAN et al.,

1996; GERDIN, 2006; SCHULZ, 2003) and for a detailed explanation on MPC the

following references are recommend (CAMACHO and BORDONS, 1999; OGUN-

NAIKE and RAY, 1999; ROSSITER, 2003).
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Chapter 3

Methodology

The following information is a description of what was performed in order to simulate

and control process systems described by high-index DAEs models. A �owchart

illustrating the sequence of each stage is presented in the beginning of the chapter

and the case studies are described next. An example of index characterization

is presented for an index-2 model describing an isothermal CSTR. The steps for

numerical simulation are presented focusing on the direct method of initialization

and the process identi�cation procedure is presented as performed in industry for

cases where no phenomenological information is used, only time data from input

and output disturbances. The last topic explains how the control is implemented

by tuning the design parameters based on process dynamics.

3.1 Methodology Flowchart

The �owchart of this dissertation methodology is presented in Figure 3.1. The �rst

step of this work is to decide on how to control a chemical process governed by

di�erential-algebraic equations. Among the available control theories, it was de-

cided to use MPC strategy. The algorithm chosen was the GPC due to its �exibility

to handling di�erent types of models. The predictive model used, CARIMA, is

an input-output model that has internally a representation of low frequency noise.

The processes chosen are described in KUMAR and DAOUTIDIS (1999), HARNEY

et al. (2013) and PANTELIDES (1988). The GPC, as most MPC algorithms, uses

discrete control actions to control the plant, which can be a real or a virtual process.

As the control algorithm applies discrete actions, as discussed in the previous chap-

ter, this causes di�culties to the integration process. Many DAE solvers, such as

DASSLC (Di�erential Algebraic System Solver in C) are sensitive to step changes

during the integration process (VIEIRA and BISCAIA JR., 2001), which requires

the application of direct initialization methods also in the control algorithm. A

simple regularization function was used to enable the simulation of the model: the
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Figure 3.1: Methodology �owchart.

tangent hyperbolic function, that simulates the transition process from zero to one

continuously during the integration procedure, thus converting the discrete signal

into a continuous one (QUINTO, 2010).

The continuous control action is used inside the models to allow the transition

from one state to another during the integration process. The direct method of ini-

tialization set the initial condition as a stationary state, by setting all derivatives to

zero and �nding the solution by means of the FSOLVE tool in MATLAB's
TM

envi-

ronment. FSOLVE was used to �nd the stationary point and uses the "trust-region-

dogleg" optimization algorithm to solve the nonlinear equations, F (x, x′, z, 0) = 0,

with the standard parameters of each model. It is a nonlinear algebraic system

solver, which is used once, to determine the condition where the simulation will

start.

The next two tasks of this dissertation work are then performed: process identi-

�cation and control tuning. To perform the process identi�cation, the output data

obtained from the simulation, y(t), is stored together with the step changes applied

and inserted in the System Identi�cation Toolbox
TM

of MATLAB
TM

, a toolbox that

performs the process identi�cation by means of di�erent strategies on parameter es-

timation. With the time data from the simulation, the response from DAE models

is represented by transfer functions and used in the GPC algorithm to control the

process in the form of a CARIMA model. The last step in the dissertation process

is to tune the GPC controller after analyzing the simulation, trying di�erent pa-

rameters for tuning following some heuristics rules based on the open loop dynamic

behavior of the models simulated (ROSSITER, 2003).
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The index reduction is performed only for analyze the impact of reduction when

simulating disturbances on the models. The identi�cation and control were per-

formed only for the index-2 models.

3.2 Case Studies of High-Index DAE Models

Four index-2 DAE models were chosen for simulation and control. The choice for

these models was based on their chemical engineering relevance and suitability for

the methodology presented here. The �rst case study is the Pantelides condenser,

which appears in several studies regarding DAE systems. The model is an index-

2 DAE and is used because its relevance and possibility of comparison with other

works. The second and third case studies are systems presented by KUMAR and

DAOUTIDIS (1999) for which control studies were performed and the DAE models

were obtained from quasi-equilibrium assumptions which enables the comparison

between the purely di�erential and the DAE responses. The fourth case study

is a intrinsically high-index DAE model (ANDRADE NETO, 2018), presented in

dimensionless form to enable better correlation between variables and parameters.

3.2.1 Case 1: Pantelides' Condenser

The �rst case is the condenser model presented by PANTELIDES (1988), illustrated

in Figure 3.2, which can be considered as a benchmack on the DAE literature. The

Figure 3.2: Ilustration of Pantelides condenser.

model is not phenomenologically consistent, as it does not cover all phenomena

presented in this type of process, such as mass transfer between phases. However it
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Table 3.1: Parameters used for the Pantelides' condenser simulation.

Parameter Description (unit) Value
Tin Vapor temperature on feed (K) 373
V Condenser volume (m3) 1
UA Global coe�cient and heat exchange e�ective area (J/mol) 104

TC Cooling �uid temperature (K) 283
cp Heat capacity at constant pressure (J/molK) 33.5

∆H Heat of vaporization (W/m2) 4.5 · 104

R Universal gas constant (J/molK) 8.314
A Antoine constant A 1.2 · 1010

B Antoine constant B 3816
C Antoine constant C -46
F Molar feed �ow rate (mol/s) 50

serves as a reference to test the approach of direct initialization and is a benchmark

for the DAE literature. The index-2 model is presented in Equations 3.1a to 3.1d.

0 =
dN

dt
− F + L (3.1a)

0 = Ncp
dT

dt
− Fcp (Tin − T )− L∆H − UA (Tc − T ) (3.1b)

0 = PV −NRT (3.1c)

0 = P − Ae

−
B

T + C


(3.1d)

Equation 3.1a refers to the global molar balance, with N being the total molar

holdup and F and L, the inlet and outlet �ow rates, respectively. Equation 3.1b

is the energy balance and Equations 3.1c and 3.1d are the algebraic constraints,

referring to the ideal gas assumption and the Antoine relationship for the saturation

pressure. In this model the di�erential variables are N and T and the algebraic

variables are L and P . The parameters used to simulate the Pantelides condenser

are presented in Table 3.1. The chosen control con�guration is for a SISO case,

using F as manipulated variable and L as controlled variable.

3.2.2 Case 2: Isothermal CSTR

The second simulated model is the isothermal CSTR (Continuous Stirred Tank

Reactor) where two reactions occur in series, A ↔ B → C, with the �rst being

faster than the second. The process is illustrated in Figure 3.3 and the model is

presented in Equations 3.2a to 3.2e. The parameters used for the simulation are
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Table 3.2: Parameters used for the isothermal CSTR simulation.

Parameter Description (unit) Value
CA0 Initial concentration of A (mol/L) 10
V Reactor volume (L) 10
k1 Reaction rate A→ B (min−1) 50
k2 Reaction rate B → C (min−1) 2
Keq Equilibrium constant for the �rst reaction 2.25
F Molar feed �ow rate (L/min) 4

listed in Table 3.2.

Figure 3.3: Illustration of isothermal CSTR with two reactions in series.

dCA

dt
=
F

V
(CA0 − CA)−R1 (3.2a)

dCB

dt
= −F

V
CB +R1 −R2 (3.2b)

dCC

dt
= −F

V
CC +R2 (3.2c)

0 = CA −
CB

Keq

(3.2d)

0 = R2 − k2CB (3.2e)

The di�erential variables are CA, CB and CC and the algebraic variables are R1

and R2. The algebraic constrains, Equations 3.2d and 3.2e, refer to the reaction

rates, R1 and R2, with the assumption that the �rst reaction is much faster than

the second. This makes the species A and B remain in equilibrium, de�ned by the
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equilibrium constant, Keq. The isothermal CSTR model has a representation in

ODE form by not taking into account the fast kinetics of the �rst reaction, what

changes the model by replacing the Equation 3.2d by Equation 3.3.

0 = R1 − k1(CA −
CB

Keq

) (3.3)

3.2.3 Case 3: CSTR with a Heating Jacket

The third case is also a process that could be described by an explicit set of ODEs,

but, due to the equilibrium assumption, the model is represented by a DAE system.

The original model was proposed by KUMAR and DAOUTIDIS (1999), describing

a CSTR with a heating jacket, illustrated in Figure 3.4, in which the heat transfer

is so e�cient that the heating jacket is assumed to be in thermal equilibrium with

the reactor, generating the equilibrium constraint T = Tj. In the process CA and

CB are the molar concentration of components A and B in the reactor, T is the

reactor temperature and Tj is the heating jacket temperature. The ODE model

can be obtained from Equations 3.4a to 3.4e, but its representation after thermal

equilibrium assumption is presented by Equations 3.5a to 3.5e. The di�erential

variables are CA, CB, T and Tj and the algebraic variable is Q. The �uid parameters

in reactor and heating jacket are assumed to be the same, i.e., ρh = ρ and cph = cp.

The remaining parameters are listed in Table 3.3. This process is con�gured for a

MIMO case, with manipulated variables F and Fh and controlled variables CB and

T .

Figure 3.4: Illustration of reactor with heating jacket.
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Table 3.3: Parameters used for the simulation of reactor with heating jacket.

Parameter Description (unit) Value
CA0 Initial concentration of A (mol/L) 5
V Reactor volume (L) 10
Vh Heating jacket volume (L) 0.1
cp Heat capacity at constant pressure (J/gK) 6
E Activation energy of Arrhenius equation (J/molK) 5 · 104

k0 Pre-exponential factor of Arrhenius equation (L/molmin) 1e9
TA Feed �ow rate temperature (K) 300
Th Heating �uid temperature (K) 375

∆Hr Heat of reaction (J/mol) 2 · 104

ρ Molar density of liquid (g/L) 600
F Inlet feed �ow rate (L/min) 3
Fh Heating �uid �ow rate (L/min) 0.1

dCA

dt
=
F

V
(CA0 − CA)− k0e

−E
RT


CA (3.4a)

dCB

dt
=
F

V
CB + k0e

−E
RT


CA (3.4b)

dT

dt
=
F

V
(TA − T )− ∆Hr

ρcp
k0e

−E
RT


CA +

Q

ρV cp
(3.4c)

dTj
dt

=
Fh

Vh
(Th − Tj)−

Q

ρhVhcph
(3.4d)

0 = Q− UA (Tj − T ) (3.4e)

dCA

dt
=
F

V
(CA0 − CA)− k0e

−E
RT


CA (3.5a)

dCB

dt
=
F

V
CB + k0e

−E
RT


CA (3.5b)

dT

dt
=
F

V
(TA − T )− ∆Hr

ρcp
k0e

−E
RT


CA +

Q

ρV cp
(3.5c)

dTj
dt

=
Fh

Vh
(Th − Tj)−

Q

ρhVhcph
(3.5d)

0 = Tj − T (3.5e)
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3.2.4 Case 4: Reactive Flash Drum

The fourth DAE model describes a reactive �ash drum written in dimensionless

form. The model was proposed by ANDRADE NETO (2018) and is similar to the

one presented by HARNEY et al. (2013) but, instead of four components, the model

studied here accounts for only three; A, B and C. The model considers two reactions

in series, A → B → C. The model here has a di�erent energy balance from the

one presented by HARNEY et al. (2013), as it uses the dimensionless temperature

instead of the heats. The time is rewritten in dimensionless form using the mean

residence time, as described in Appendix A. The number of variables is reduced

to four, being three di�erentials, xA, xB and θ, and one algebraic, φ. The process

is illustrated in Figure 3.5. In this model, components, A and B, fractions in the

feed stream are given by xAF and xBF , respectively. The process model is given in

Equation 3.6a to 3.6d and parameters used for the reactive �ash drum simulation

are presented in Table 3.4.

Constants KA, KB and KC refer to the equilibrium of the components between

the liquid and vapor phases. The variable φ is the �ow rate fraction that leaves the

vessel in vapor phase. The parameters DaA and DaB are the Damköhler numbers

regarding the reactions, involving species A and B, respectively. The parameters

B1 and B2 are related to the heats of reaction, γA and γB are the dimensionless

activation energies for each reaction and λ is the dimensionless heat of vaporization.

The term Q is the dimensionless heat added to the vessel and θ is the dimensionless

temperature de�ned by θ =
T − Tref
Tref

. Equation 3.6d is the algebraic constraint,

coming from the equilibrium assumption between the components in liquid and

vapor phases. The molar fractions of the vapor phase, yi, are related to the molar

fractions of the liquid phase, xi, by the relationship yi = Kixi.

dxA
dt

= xAF − (1− φ)xA − φKAxA −DaAxAe

 γA
θ + 1


(3.6a)

dxB
dt

= xBF − (1− φ)xB − φKBxB −DaBxBe

 γB
θ + 1


+DaAxAe

 γA
θ + 1



(3.6b)

dθ

dt
= 1− θ − λφ+Q+B1DaAxAe

 γA
θ + 1


+B2DaBxBe

 γB
θ + 1


(3.6c)

0 = KAxA +KBxB +KC (1− xA − xB)− 1 (3.6d)

The equilibrium constants, Ki, are assumed to be related to the total and saturation

pressures, i.e. Ki =
P sat
i

P
. The saturation pressure is calculated using the Antoine

equation, conform Equation 3.7a to 3.7c. The total pressure, P , is assumed to
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Figure 3.5: Illustration of vessel for reactive �ash.

be in the vessel and was used as a manipulated variable, after testing the process

response to variations in Q and DaA. The process is con�gured as SISO, with

manipulated variable P and controlled variable xB. P was chosen as manipulated

variable due to the high sensitivity of the system regarding this parameter. The

model nondimensionalization procedure is presented in Apendix A.

P
sat

A = exp

[
21.3066− 2428.2

Tref (θ + 1)− 35.388

]
(3.7a)

P
sat

B = exp

[
25.1431− 6022.18

Tref (θ + 1)− 28.25

]
(3.7b)

P
sat

C = exp

[
23.8578− 6085.25

Tref (θ + 1)− 26.15

]
(3.7c)

3.3 Index Characterization

The DAE literature reports several index concepts (SCHULZ, 2003), but the one

used to characterize the DAE systems studied here is the di�erentiation index, here-

after called only index. As stated in the previous chapter, the index is de�ned as

the minimum number of times that part or all equations should be di�erentiated

to obtain a system of explicit set of ODEs (BRENAN et al., 1996). This de�nition
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Table 3.4: Parameters used on reactive �ash drum simulation.

Parameter Description (unit) Value
xAF Molar fraction of component A in feed stream 0.8
xBF Molar fraction of component B in feed stream 0.2
DaA Damköhler number of reaction A→B 0.01
DaB Damköhler number of reaction B→C 0.02
γA Adimensional activation energy of reaction A→B 6.7821
γB Adimensional activation energy of reaction B→C 3.8784
λ Adimensional heat of vaporization 15.521
Q Adimensional heat added 1.3430
B1 Adimensional heat of reaction A→B 35.9778
B2 Adimensional heat of reaction B→C 99.8517
Tref Reference temperature (K) 298
P Total pressure (Pa) 101325

shows the intrinsic relationship between DAEs and ODEs, being the DAEs a general

case of ODEs, where the last can be understood as an index zero DAE system.

The representation of DAE in this work follows the acronym DAE plus the

index, for instance, DAE2, refering to an index 2 DAE system. In some cases where

the DAE model is simulated together with its reduced versions, the models will

be named with the same standard, changing only the index value, such as DAE2,

DAE1 and DAE0 represent the system of index-2 DAE and its reduced versions

to index 1 and 0, respectively. The DAE0 is the fully reduced DAE model to an

explicit ODE. In cases where the DAE model is obtained from an explicit ODE

from equilibrium assumptions, such as the models from KUMAR and DAOUTIDIS

(1999), i.e. Cases 2 and 3 described previously, the original model will be identi�ed

by the ODE acronym.

To exemplify the previous paragraph, Figure 3.6 shows a simulation of Case 3,

the CSTR with heating jacket, represented both as ODE and the DAE models. The

DAE system is simulated as the index 2 and the reduced versions of index 1 and

index 0, DAE2, DAE1 and DAE0, respectively. The model with no equilibrium

assumption is designated as ODE, the index 2 DAE model is obtained by supposing

thermal equilibrium between the heating jacket and the reactor.

The simulation using the reduced index models was performed to check the

consistency of the models with the index reduction approach. A numerical problem

reported when reducing high index DAE systems is the so called �drift o�� e�ect,

where the solution of the reduced DAE di�ers from the original model, as exempli�ed

for the classical index-3 mechanical Pendulum model (SOARES and SECCHI, 2005).

The �drift o�� e�ects occur due to the index reduction method applied, where only
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Figure 3.6: Example of an index-2 DAE model simulated together with its index
reduced equivalents and the original ODE model without the assumption of thermal
equilibrium.

the di�erentiated equations remains in the model and the solution drift o� the

correct one after longer integration time, as can be seen in Figure 3.7.

Figure 3.7: Example of �drift o�� e�ect on solution of a reduced index 0 from the
index-3 pendulum model presented in BRENAN et al. (1996).

As the DASSLC and other high index solvers use the index of each variable to

solve high-index DAE systems, the index reduction will be exampli�ed for case 2,

the isothermal CSTR model, in which two reactions in series occur, A ↔ B → C,
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with the �rst reaction considered faster. This leads to the assumption of equilibrium

of the intermediate product, B, giving rise to an index-2 DAE system.

The phenomenological model consists of the component molar balances and the

kinetic equations, which are usually inserted in the di�erential equations, as the

reader can see in Equations 3.8a to 3.8e. To determine the index of each variable

one needs to carry out the di�erentiation without algebraic substitution, in order

to check the higher order derivative of each variable, as explained in more detail in

(LIOEN et al., 1998). In this model the di�erential variables are CA, CB and CC

and the algebraic variables are R1 and R2.

dCA

dt
=
F

V
(CA0 − CA)−R1 (3.8a)

dCB

dt
= −F

V
CB +R1 −R2 (3.8b)

dCC

dt
= −F

V
CC +R2 (3.8c)

0 = R1 − k1(CA −
CB

Keq

) (3.8d)

0 = R2 − k2CB (3.8e)

With the equilibrium assumption of the intermediate product, B, the model becomes

an index-2 DAE where the algebraic variable R1 is not present in the constraints

anymore, as illustrated in Equations 3.9a to 3.9e:

dCA

dt
=
F

V
(CA0 − CA)−R1 (3.9a)

dCB

dt
= −F

V
CB +R1 −R2 (3.9b)

dCC

dt
= −F

V
CC +R2 (3.9c)

0 = CA −
CB

Keq

(3.9d)

0 = R2 − k2CB (3.9e)

To exemplify the procedure of index reduction and the determination of the index

of each variable, the reduction of the index-2 DAE model in Equation 3.9 will be

described by the following operations. First, the algebraic constraints, Equations

3.9d and 3.9e, are di�erentiated with respect to time, producing Equations 3.10a to

3.10b:

0 =
dCA

dt
−K−1

eq

dCB

dt
(3.10a)

0 =
dR2

dt
− k2

dCB

dt
(3.10b)
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After substitution of Equations 3.9a and 3.9b in Equation 3.10, a new algebraic

constraint, Equation 3.11a, and a new di�erential equation, Equation 3.11b, are

obtained:

0 =
F

V
(CA0 − CA +K

−1

eq CB)−R1(1 +K
−1

eq ) +K
−1

eq R2 (3.11a)

0 =
dR2

dt
− k2(−

F

V
CB −R1 −R2) (3.11b)

The algebraic Equation 3.11a is known as a hidden constraint, and also needs to

be satis�ed at the initial condition and during the integration process. As another

di�erentiation is needed to transform it into a di�erential equation, the DAE model

has index 2. To have the DAE model fully reduced to an explicit set of ODEs, repre-

sented in this work like DAE0, the Equations 3.10a or 3.11a need to be di�erentiated

once again. This may cause loss of constants and/or information, making the index

reduction a hard, tedious, error risking and messy algebraic manipulation. Taking

the derivative of Equation 3.11a means a second derivative of Equation 3.10a. As

some DAE solvers are not suitable for implicit integration, the full substitution of

derivatives would be required. As a second derivative of the �rst algebraic constraint

is needed, the higher order of derivatives for CA and CB is 2, as seen in Equation

3.12:

0 =
d

2
CA

dt2
−K−1

eq

d
2

CB

dt2
(3.12)

Performing the necessary di�erentiation and substitutions in the Equation 3.12,

assuming Keq, F and V constants, an explicit di�erential expression is obtained for

R1, as seen in Equation 3.13. Depending on what solver is used to integrate the

system, further substitution needs to be carried out, as not all solvers can deal with

implicit systems.

dR1

dt
=

(
Keq + 1

Keq

)[
F

V
(−dCA

dt
+K

−1

eq

dCB

dt
) +K

−1

eq

dR2

dt

]
(3.13)

After this procedure, the index 2 DAE model can be represented by its reduced index

1 and index 0, DAE1 and DAE0, respectively, as expressed by Equations 3.14a to
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3.14e and 3.15a to 3.15e, as follows:

dCA

dt
=
F

V
(CA0 − CA)−R1 (3.14a)

dCB

dt
= −F

V
CB +R1 −R2 (3.14b)

dCC

dt
= −F

V
CC +R2 (3.14c)

0 =
F

V
(CA0 − CA +K

−1

eq CB)−R1(1 +K
−1

eq ) +K
−1

eq R2 (3.14d)

dR2

dt
= k2(−

F

V
CB −R1 −R2) (3.14e)

dCA

dt
=
F

V
(CA0 − CA)−R1 (3.15a)

dCB

dt
= −F

V
CB +R1 −R2 (3.15b)

dCC

dt
= −F

V
CC +R2 (3.15c)

dR1

dt
=

(
Keq + 1

Keq

)[
F

V
(−dCA

dt
−K−1

eq

dCB

dt
) +

F '
V

(
CA0 − CA +K

−1

eq · CB

)
+K

−1

eq

dR2

dt

]
(3.15d)

dR2

dt
= k2(−

F

V
CB +R1 −R2) (3.15e)

The term F ′ is the derivative of manipulated variable, which is the derivative of the

regularization function used in this work, as appears on Equation 3.16.

F ′ =
1

2
{sech [ξ (t− ts)]}

2

· F (3.16)

The solution of the numerical integration of these models using the solver

DASSLC are presented in Figure 3.8 and 3.9. The models were submitted to step

changes in di�erent directions and magnitudes of manipulated variable F . The

models integration starts with the same initial condition. The models DAE2 and

DAE1 present the same solution, the model ODE, which is the purely di�erential,

behaves closely to the DAE2 and DAE1 but presenting a small shift. The fully

reduced model, DAE0, presents a completely di�erent behavior, becoming unstable.

The Figure 3.9 shows a local zoom in the models' response in order to clarify the

behavior of each model when perturbations on the manipulated variable is present.

The higher orders of the derivatives and the indices of each variable for the
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Figure 3.8: Isothermal CSTR A ↔ B → C simulated with di�erent models with
respect to the di�erential index.
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Figure 3.9: Zoom on the simulation results for the di�erent models of isothermal
CSTR.

isothermal CSTR are presented in Table 3.5. In order to perform the simulation

with DASSLC, the vector of indices of the variables needs to be provided. It is

formed by the index of each dependent variable, νi, determined by Equation 3.17

(LIOEN et al., 1998), making the relationship of the di�erential index, ν, and the

31



Table 3.5: Higher order derivatives and indices of each dependent variable.

CA CB CC R1 R2

Oi 2 2 1 1 1
νi 1 1 2 2 2

higher order of derivatives, Oi, found during the index reduction procedure.

νi = 1 + ν −Oi (3.17)

3.4 Numerical Simulation

For DAE systems up to index-1, several integrators are available, consisting in

some cases of modi�ed ODE solvers, whereas solvers for DAE systems of index

greater than 1 usually require some strategy of index reduction or the systems to

be expressed in a speci�c structure, such as the semi-implicit or Hessenberg form

(VIEIRA and BISCAIA JR., 2001). MATLAB
TM

environment itself has only one

embedded integration routine capable of integrating implicit DAE systems, ODE15i,

applicable only for DAEs of index up to 1 (MATHWORKS, 2018a). The software

MATHEMATICA
TM

also has an embedded solver for ODEs and DAEs, but is lim-

ited to index-1 too, when high index systems are presented an index reduction needs

to be de�ned and applied to the system (WOLFRAM, 2018). The brazilian soft-

ware for process simulation, EMSO (Environment for Modeling, Simulation, and

Optimization) is an equation-oriented process simulator that has high-index DAE

solvers for index up to 3 (PSIDE and MEDBF) and higher (DASSLC).

One situation in which DAEs may appear is when dealing with system of ODEs

with time scales so apart from each other that some equations become algebraic re-

lationships. This is sometimes referred as quasi-equilibrium assumptions, a powerful

approach to solve complex systems of ODEs, by converting them into algebraic sys-

tems. Researchers when facing sti� systems may use these equilibrium assumptions

to solve their equations, such as in KUMAR and DAOUTIDIS (1997). The sti�ness

of a system was once de�ned as a measurement of the diversity of time scales, mean-

ing that the same system possesses very fast and very low process simultaneously

(SHAFIE, 2013). Another way to understand sti�ness is the magnitude di�erence

between the module of the real part of the largest and smallest characteristic values

of the Jacobian matrix of the system (DA SILVA, 2013); this understanding implies

that high-index DAE systems have in�nit sti�ness, as they have at least one char-
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acteristic value equal to zero. One practical way for understanding sti�ness related

to numerical solutions of ODEs and DAEs is that the step size required by the inte-

gration method to keep it stable is smaller than the step required for describing the

solution. The concept of sti�ness is important for DAEs solution as the methods

applied for those systems are usually adequate to solve sti� systems (GONÇALVES

et al., 2007; MATHWORKS, 2018a; WOLFRAM, 2018).

Only a few solvers are able to simulate high index DAE systems in the fully im-

plicit form, as examples of those are the PSIDE (Parallel Software for Implicit Di�er-

ential Equation) (LIOEN et al., 1998) and MEBDFI (Modi�ed Extended Backward

Di�erentiation Formula Implicit) (ABDULLA and CASH) that deal with implicit

systems of index up to 3. The DASSLC routine is able to solve implicit systems

of any index, when provided with the vector of di�erential index of the variables

(SECCHI, 2007). The �rst research on DAEs performed at PEQ/COPPE/UFRJ

(Chemical Engineering Program of COPPE/UFRJ) is due to SECCHI (1992), who

developed the solver DAWRS (Di�erential-Algebraic Waveform Relaxation Solver)

for solution of DAE systems by the waveform relaxation method using parallel com-

putation.

DASSLC version 3.8 was chosen for this work due to its capability to integrate

fully implicit systems of any index, as discussed above, having as outputs both the

values of the variables and their derivatives. It allows the obtaining of consistent

initial conditions to both the variables and the derivatives, eliminating the need

of the integrator itself to use an internal routine to determine the derivatives at

the initial point (SECCHI, 2007). The direct method of initialization of DAE sys-

tems is applied due to the complexity involving the rigorous methods, especially for

high-index DAEs. The rigorous methods usually apply the index reduction and/or

structural analysis to DAE systems in order to determine the dynamic degrees of

freedom and the hidden constraints.

A stationary condition is found to be a consistent initial condition for any index

system, but may not work for all situations (KRÖNER et al., 1997). In the present

work, the stationary condition is used as initial condition by setting all derivatives

to zero and using the nonlinear algebraic system solver, FSOLVE, of MATLAB
TM

,

to solve the non-linear system. VIEIRA and BISCAIA JR. (2001) use the assump-

tion that a dynamic process can be interpreted as a perturbation applied to steady

state conditions. This assumption is useful to overcome the reinitialization di�culty,

which is a major drawback when working with high index DAE systems. The reini-

tialization step is done by converting the discontinuous step changes into continuous

input through regularization functions that remove the discontinuities from sudden

changes, making smooth transitions, as discussed in the previous chapter. There are

several proposed functions in literature, but only one was used for identi�cation and
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control. The direct method applied in this work consists on starting the simulation

from a stationary point found initially and then making all transitions using the

sigmoid function, represented in Figure 3.10 for di�erent values of ξ. The regular-

ization parameter used here is ξ = 50 due to results on simulating the models for

di�erent values of this parameter.

t
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Figure 3.10: Regularization function simulated with di�erent values of ξ.

3.5 Process Identi�cation Procedure

The identi�cation procedure performed to represent the DAE models as transfer

functions is based on what is called �black box� identi�cation. The DAE models

were assumed to represent real processes and were used as virtual plant. The �black

box" procedure treats the process as a black box in which no phenomenological

information about the internal process is available, but only input and output data.

This procedure is used where no information is available about the process or the

process description is too complex to be simulated or would be too time consuming.

In the present work the identi�cation is performed by applying step changes on

manipulated variables and collecting the response data in the output of the process,

as illustrated in Figure 3.11.

De�ning the step changes that will be applied to the process, the signal is passed

internally to the models to make the transition between the two states. The identi-
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Figure 3.11: Illustration of black box identi�cation process.

�cation process was performed using MATLAB
TM

and the models were integrated

with DASSLC. In order to compute the responses to the disturbances, the simula-

tion starts from a stationary condition and the regularization function is used to

make the transition from one state to another. The regularization function is placed

inside the model to make the transition as smooth as possible.

With the consistent initial condition taken as a steady state, the DASSLC so-

lution for the process with no disturbance is a straight line, as shown in Figure

3.12
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Figure 3.12: Simulation of a stationary condition for all models of Case 3 with no
disturbances, solution for T .

In Cases 1, 2 and 3, the reduced forms of index-1 present the same solution

of index-2 as will be shown in Chapter 4. The original model of Case 2 and 3,

which are purely di�erential, without the equilibrium assumptions di�ers slightly

from the DAEs solution of index 1 and 2. With the stationary condition stored, the

simulation of the step changes can be carried out for identi�cation. The algorithm

simulates up to four pulses, behaving as a sequence of eight steps. The simulations
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of the DAE models with step changes of di�erent directions and magnitudes were

performed to evaluate process non-linearities. The steps were simulated for changes

of ±1, ±5 and ±10% in the manipulated variables. The inputs and the outputs were

transformed in deviation variables, by subtracting the steady state value from the

respective variable. A simulation of Case 3 for steps of ±1 and ±5% is presented in

Figure 3.13, for the sake of illustration.

After applying the steps, the deviation variables are transferred to System Iden-

ti�cation Toolbox
TM

of MATLAB
TM

where parameter estimation will be performed

to obtain transfer functions from the responses. The system requires the user to

de�ne what type of transfer function will be estimated, by providing the number

of poles and zeros. The estimation process was performed for �rst or second order

transfer functions, as it is a common practice in process identi�cation to postulate

transfer functions with few parameters as �rst order plus dead time, FODT, or sec-

ond order plus dead time, SODT, as candidate models. The MATLAB
TM

toolbox

gives the results of the identi�ed model. In the following, the simulation of the

transfer functions is performed and compared with the with DASSLC results.

While performing the identi�cation, information regarding control design can

be obtained,e.g. response time. The prediction horizon is an important designing

parameter and is closely related to the dynamics behavior of the process. The

prediction horizon was chosen to be long enough to encompass the entire dynamics

of the identi�ed processes, which is the number of sampling times required to cover

the whole transient process.

3.6 GPC Tuning

MPC tuning is an active research area and is still most of the times based on heuris-

tic rules regarding process dynamics and robustness (ROSSITER, 2003; WASCHL

et al., 2011). The tuning procedure was performed here by trial and error. The

prediction horizon was set su�ciently high to cover the process dynamics. The

sampling time was de�ned to be around 1/10 of total dynamic response time. The

control horizon was set to low values, keeping all the other parameters �xed, the

control horizon was tested ranging from 2 to 5 of sampling times, as the prediction

horizons did not exceed 10 sampling times. The models were simulated as described

by the case studies in Section 3.2, with no scaling necessary on manipulated or con-

trolled variables. The weight matrices were kept as identities during the horizons

tuning, the weights were changed to do the �nal adjustments, when no improvement

was seen from the horizons changing. The GPC used is supplied with the identi�ed

transfer functions in continuous time and performs the discretization according to

the sampling time de�ned for the process. The algorithm used is based on the origi-
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Figure 3.13: Solution for CB and T when applying steps of ±1 and ±5% in F for
Case 3.

nal GPC, but with constraints implemented inside the optimization stage. The GPC

MATLAB
TM

code was provided by GIRALDO (2018) and adapted with DASSLC

to simulate the DAE models as the virtual plant, as one may see in Figure 3.14.
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Figure 3.14: Illustration of GPC scheme used with CARIMA model and DAEs as
virtual plant.

3.7 Remarks on the Methodology

This chapter detailed the steps of the methodology proposed in this dissertation,

which aims performing the control of models represented by high-index DAE sys-

tems. In order to study the control characteristics in a particular process, the

simulation gives important insights about what mostly a�ects the process and what

are the best tuning parameters for the controller. Even in processes where the phys-

ical phenomena are well known but traditional phenomenological modeling becomes

complex or very computationally demanding, black box identi�ed linear models are

a well suitable alternative to characterize the input/output relationships. By study-

ing the behavior of processes as they are described by the modeling engineers, one

may have better results and improve the relationship between the modeling and

control research. The most important aspect of this dissertation is its generic char-

acteristic regarding what type of mathematical model is simulated, as if considering

a generic implicit high-index DAE model, a whole family of other models can be

simulated using the same approach. Another generic aspect is the GPC algorithm,

which enables the control engineer to handle several di�erent processes described

by transfer functions, what di�ers from another common MPC algorithm used, the

DMC, which requires the process to be described by a step response matrix, called

dynamic matrix. The main contribution of this work is in the identi�cation process

and control using the DAE models without index reduction. By using the high-index

DAE models as they are originally presented by the whole set of equations, without
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using any index reduction technique, this work di�ers from the others by applying

the simulation technique to the MPC control strategy and solving the DAE mod-

els as they are produced. The process identi�cation converting high-index DAEs

to transfer functions gives only a localized representation of the DAE models, but

seems to be su�cient if the control is de�ned to operate close to the stationary point.
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Chapter 4

Results and Discussion

This chapter compiles the results obtained during the identi�cation and control

of the high-index DAE systems studied in this work. The results are presented

in three di�erent categories: the impact of the regularization function when using

the direct method of initialization; those obtained during the process identi�cation

stage; and those regarding the process control.

4.1 Selection of the Regularization Parameter

First, as pointed by VIEIRA (1998), the regularization function used can modify

the model behavior depending on its formulation. To evaluate the impact of the

regularization parameter, ξ, simulation with di�erent values of this parameter were

carried out for the index-2 DAE models of the case studies presented in Chapter 3.

To exemplify, the results of Case 2 are presented in Figure 4.1, where no di�erence on

the behavior of the process can be seen for ξ bigger than 1. For values of ξ below 1,

the regularization parameter interferes on the dynamic solution of the DAE models,

so this can be used by the researcher to describe the dynamics of the actuator, that

can be, for example, a valve that will a�ect the process. Simulations for the other

case studies are presented in Appendix B.

Based on the results for di�erent ξ, the value of ξ = 50 was found to be close

enough to an ideal step, with no interference on the DAE solution, and the identi�-

cation stage of this work was performed with this value. The results point out that

the shape of the regularization function interfere with the simulation results, being

important for the control engineer to check what is the dynamics of the equipment

used as input, in order to simulate as close as possible to the real situation.
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Figure 4.1: Simulation model DAE2 of Case 2 with di�erent values of ξ.

4.2 Process Identi�cation Results

As discussed previously, the identi�cation of the processes studied here was per-

formed by applying step changes with the aid of the regularization function to ob-

tain the processes responses. The steps are grouped in two sets of 4 steps. The �rst

set is performed with steps of ±1 and ±5% and the second set with steps of ±5 and

±10%. Another set of steps, of magnitude of +1, +5, +10 and +20% is applied to

check the consistency of the transfer functions identi�ed compared to the DASSLC

integrated responses.

4.2.1 Identi�cation for Case 1 - Pantelides Condenser

The �rst case study of this dissertation, the Pantelides condenser, was simulated

with di�erent step magnitudes, �rst with steps of ±1 and ±5%. The data obtained

from this simulation was introduced into the System Identi�cation Toolbox
TM

and

the parameters of the transfer function were estimated. The simulation results for

the output CB using the original index-2 DAE model and its reduced form to index-1

and index-0 are presented in Figure 4.2. The simulation shows the same response

for both models DAE2 and DAE1 systematically. For this example no di�erence

was observed when the index reduction is applied once but the second reduction,

to represent the DAE0 model could not be simulated, this can be understood as a
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di�culty of applying index reduction techniques.
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Figure 4.2: Simulation results of Case 1 for step of ±1 and ±5% on F .

With the input and output data into the System Identi�cation Toolbox
TM

, the

�rst order transfer function described by Equation 4.1 was obtained from time data

with the DAE2 model with 97.37% of �t to estimation data and MSE (Mean Square

Error) of 5.687 · 10−4:

G(s) =
0.9939

34.09s+ 1
(4.1)

Di�erent steps were simulated to check if the transfer function response follows

the model. Figure 4.3 show the index-2 DAE and the identi�ed transfer function

responses to di�erent step changes. In the �gures the DASSLC response is plotted

with the transfer function response for the same inputs. As can be seen, even in

case of extrapolation, i.e. input of 20%, the transfer function represents very well

the DAE model.

4.2.2 Identi�cation for Case 2 - Isothermal CSTR

The second case study is simulated with four di�erent models. The rate based

model consisting purely of ODEs and the DAE models: the index-2 obtained from

the equilibrium assumption and its reduced forms to index 1 and 0. Figure 4.4

shows the simulation results for step changes of ±1 and ±5% on input F . This

case study has all models available and integrated by DASSLC. At the beginning

of the simulation, the ODE model di�ers slightly from DAE models, including the
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Figure 4.3: Comparison between transfer function and DAE response of Case 1 for
steps of ±5 and ±10% on F .
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Figure 4.4: Simulation results of Case 2 for step of ±1 and ±5% on F .

reduced ones, except for index-0. The DAE models, DAE2, DAE1 and DAE0 present

the same response when simulated from the same condition, as can be seen in the

beginning of the simulation in Figure 4.4. The little gap between the results of DAE

and ODE is expected as they are di�erent models, as the equilibrium assumption

introduces some deviation. But when the steps are applied, the index-0 DAE behaves

completely di�erent from the other models, DAE or not. The index-2 and index-1

DAE models present the same response to the step changes. The �rst order transfer
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function identi�ed with �t of 89.11% and MSE of 6.333·10−6 with the simulated time

data is described by Equation 4.2. The comparative results between DASSLC and

the transfer function are presented in Figures 4.5 and 4.6. The comparison between

DAE2 and transfer function responses shows a high accuracy of the identi�ed model,

even in case of extrapolation which is shown in Figure 4.6, where steps of higher

magnitude, 10 and 20%, also presented similar responses.

G(s) =
0.3017

0.0358s+ 1
(4.2)

The di�erence between the transfer function and the DASSLC results are in part due
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Figure 4.5: Comparison between transfer function and DAE response of Case 2 for
steps of ±1 and ±5% on F .

to the localy linearized aspect and the discretization of transfer function performed

by MATLAB
TM

to compare the two simulations, but there is a di�erence in the gain,

as showed in Figure 4.7. This is expected due to linearization forced by identi�cation

in a LTI (Linear Time Invariant) form, which is only a localized representation.

Di�erently from Case 1, when steps of magnitude larger than the ones used on

process identi�cation were applied, the di�erence in the models appeared slightly in

the gain of each model, which is the situation of steps of 10 and 20% in Figures 4.6

and 4.7. The cumulative shift to the right is due to numerical simulation used.

4.2.3 Identi�cation for Case 3 - CSTR with a Heating Jacket

The third case also could be simulated with all models, the purely di�erential and

the DAE-based. The models present the same characteristic of Case 2, with the

ODE model behaving similar to the DAEs, except for the little gap introduced
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Figure 4.6: Comparison between transfer function and DAE response of Case 2 for
steps of +1, +5, +10 and +20% on F .
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Figure 4.7: Comparison between transfer function and DAE response of Case 2 for
steps in reverse order of Figure 4.6.

by the quasi-equilibrium assumption. The same behavior is presented when the

simulation starts from stationary condition, all the DAE models behave the same

and the ODE model presents a small shift. But the fully reduced index-0 DAE

presents an unstable behavior when the inputs are applied. As this model was

presented for MIMO control, the inputs F and Fh and outputs CB and T simulated

for identi�cation are presented in Figures 4.8 and 4.9.

The identi�ed transfer functions are presented in Equation 4.3. The comparative
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Figure 4.8: Simulation results of Case 3 for output CB and steps of ±1 and ±5% on
F and Fh.

simulation between the transfer functions and DASSLC responses is presented in

Figures 4.10 and 4.11. A comparison for steps varying from 20% to 1% is also

presented in Figures 4.12 and 4.13. The System Identi�cation Toolbox
TM

reports the

statistical information for each identi�ed model. All the identi�ed transfer functions

are �rst order ones, except G(2, 1) that is a second order with a negative zero. The
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Figure 4.9: Simulation results of Case 3 for output T and steps of ±5 and ±1% on
F and Fh.

�t of G(1, 1) was 91.65% and MSE of 2.094 ·10−6, for G(1, 2) the �t was 98.67% and

MSE of 1.434 · 10−9, for G(2, 1) the �t was 88.83% and MSE of 2.297 · 10−5 and for

G(2, 2) the �t was 93.94% and MSE of 4.657 · 10−6.

G(s) =


−0.2905

0.2468s+ 1

1.6707

3.802s+ 1

26.97s+ 5.797

s2 + 22.36s+ 8.505

19.9418

2.5304s+ 1

 (4.3)
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Figure 4.10: Comparison between transfer function and DAE response of Case 3 for
output CB and steps of ±10 and ±5% on F and Fh.

4.2.4 Identi�cation for Case 4 - Reactive Flash Drum

The fourth case analyzed here is the reactive �ash drum model, with the assump-

tion that the reference temperature, Tref , is equal to the feed temperature, TF . The

model is a dimensionless representation of a reactive �ash process, in which the

vapor phase fraction, φ, is the only �ow explicitly de�ned in the model. The liquid
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Figure 4.11: Comparison between transfer function and DAE response of Case 3 for
output T and steps of ±10 and ±5% on F and Fh.

phase fraction, l, is described by the following relationship, φ+ l = 1. The pressure,

P , was chosen as input to control the liquid fraction of B, xB, after analyzing the

process sensitivity to this parameter. Also, the heat added to the system, Q, was

investigated, but its in�uence in the output variable was smaller if compared to the

pressure. As in the Case 1, only two models were successfully simulated: the index-2

and its reduced form to index-1. The fully reduced index-0 DAE was not simulated

due to persistent error during integration, probably because inconsistency in the
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Figure 4.12: Comparison between transfer function and DAE response of Case 3 for
output CB and steps of +20, +10, +5 and +1% on F and Fh.

initial condition as the DASSLC failed to proceed. This case presented a di�erent

behavior between index-2 and index-1 models, the responses were completely dif-

ferent, as can be seen in Figure 4.14. With only one index reduction, the response

to disturbance gives completely di�erent results, making the index reduction an ap-

proach that needs extra care when used, specially for complex systems, such as the

reactive �ash drum. To illustrate the di�erence between the disturbances applied on

P and Q, Figure 4.15 shows the response of xB when applied a step change of ±10%
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Figure 4.13: Comparison between transfer function and DAE response of Case 3 for
output T and steps of +20, +10, +5 and +1% on F and Fh.

on P and Q, respectively. The disturbance applied on P a�ects directly the algebraic

constraint, as the liquid-vapor equilibrium constant, Ki, depends on it through the

relationship Ki =
P sat
i

P
. The disturbance applied on Q did not cause any di�erence

between the models responses, but the disturbance applied on P causes the reduced

index-1 model to behave di�erently from the index-2 model.

The comparison between the DASSLC and transfer function was simulated for

di�erent step changes - +20, +10, +5 and +1% - and is presented in Figure 4.16.
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Figure 4.14: Simulation results of Case 4 for step of ±5 and ±1% on P .
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Figure 4.15: Simulation results of Case 4 for step of ±10% on P , interval I, and
±10% on Q, interval II.

A di�erence in the gain is observed for steps larger than 10%, but the control

algorithm chosen is expected to handle such discrepancy in the predicting model, as

long as the direction is the same as the process (please refer to Section 4.3 for this

investigation). The �rst order identi�ed transfer function is described by Equation

4.4. The simulation �t for the transfer function was 96.37% and MSE of 9.587·10−10.

G(s) =
0.0423

0.8453s+ 1
(4.4)
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Figure 4.16: Comparison between transfer function and DAE response of case 4 for
output xB and steps of +20, +10, +5 and +1% on P .

4.3 Control Results

After representing the DAE models with transfer functions, those functions are

supplied to the GPC and are discretized using the de�ned sampling time. Firstly

the prediction horizon is �xed to cover the main dynamics of the process and then

the control horizon is changed to improve performance. The weight matrices are

adjusted in the �nal tuning. The control simulation consists in setpoint changes and

disturbances in controlled variables. The results of the control problems treated here

show the strong capability of the MPC strategy to deal with a complex process even

when the predicting model is not completely accurate. The disturbance simulated

are of constant changes, such as +10% on the measurement of controlled variable.

Some problems using Gaussian noise show the high sensitivity of the GPC to high

frequency noise, but performs reasonably well to rejecting low frequency noise, as

well as the constant change applied.

Case 1 uses the inlet �ow rate as manipulated variable, F , to control the liquid

�ow rate, L, as illustrated in Figure 4.17. The disturbance in the controlled variable

is an increase of 10% on the output L between the period of 800 to 900 seconds.

The setpoint changes were simulated with changes ranging between 10 and 20% in

L in the period from 0 to 700s. It can be seen that the controller exhibited a good

servo and regulatory behavior.

For Case 2 in Figure 4.18, the control simulation is for input F and output CB.

Di�erent setpoint changes were applied from 0 to 300s and one disturbance rejection

was investigated, when an increase of 10% was applied on CB. The setpoint changes
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Figure 4.17: Control simulation of Case 1 for di�erent setpoint changes and distur-
bance of +10% on controlled variable L.

range from 5 to 15% of CB in the period from 0 to 300s. The disturbance simulated

on CB is of 10% from 350-400s. Again, it can be noticed that the controller followed

the set-point changes and rejected the disturbance.

Case 3 is a MIMO system with inputs F and Fh and outputs CB and T , with

results in Figure 4.19. The setpoint change for CB is implemented during the period

of the simulation designated by the interval I and the change in setpoint of T is

indicated in interval II. The disturbances on measurements of CB and T are indicated

in intervals III and IV, respectively.

In Case 4 the total pressure, P , is used as manipulated variable and the controlled

variable is xB. Di�erent setpoint changes were simulated in the period of 0-300s and

disturbances were of two di�erent kinds: the �rst one was to simulate a disturbance

in xB of +10% in the period 350-400s and a second one simulating random noise

from 0 to 10%, in the interval 450-500s. The disturbance rejection considering the

deterministic disturbance is well performed, but the GPC seems to be too sensitive

to white noise in the outputs, making the manipulate variable oscillate in the same

frequency. To improve disturbance rejection in GPC, the internal model can be

modi�ed with an inclusion of other polynomial as proposed by DE SOUZA (1989),

this was left for future work as the rejection of disturbances is related to o�set free

behavior. The control results using P as manipulated variable are shown in Figure

4.20.

The control parameters used on the case studies analyzed here are listed in Table

54



t (min)
0 50 100 150 200 250 300 350 400 450

O
ut

pu
t

1

1.5

2

C
B ref

C
B
 (mol/L)

t (min)
0 50 100 150 200 250 300 350 400 450

In
pu

t

2

4

6
F (L/min)

I II

Figure 4.18: Control simulation of Case 2 for di�erent setpoint changes, interval I,
and disturbance of +10% on controlled variable CB, interval II.

4.1. The Case 3 present two values of weights of objective function, δ and λ, one for

each input and output variables. The parameter δ weights the o�set di�erence and

the parameter λ weights the control action variance.

Table 4.1: Parameters used in the control problems addressed in the work

Case 1 Case 2 Case 3 Case 4
Np 5 5 10 10
Nu 3 2 5 5
δ 1 1 CB: 1 | T : 0.1 70
λ 1 1 F : 1 | Fh: 1 1

ts(s) 2 60 60 1

An alternative manipulated variable for the reactive �ash drum problem is the

heat added to the system, Q, which was varied when changes were applied in the

setpoint by ±5, ±10 and ±15% in the controlled variable, xB. The control could

not achieve setpoints higher than +5% for xB, but could follow decreasing setpoints

of the value of xB and reject disturbance of 10% in xB, as shown in Figure 4.21.
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Figure 4.19: Control simulation of Case 3 for setpoint changes in CB, interval I, and
T , interval II. Disturbances of 10% on CB, interval III, and 1% on T , interval IV.
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Figure 4.20: Control simulation of Case 4 using P as manipulated variable for
di�erent setpoint changes, interval I. Disturbances of +10%, interval II, and random
noise of 0− 10%, interval III, on controlled variable xB.

4.4 Remarks on the Results

The results presented above showed the convenience of using the direct method of

initialization to simulate and control of the high-index DAE systems. The responses

for open loop dynamic simulations found for the reduced index systems were shown

to be spurious because they may di�er from the response of the original models, the

DAE or ODE. The control simulation bene�ted by the direct method by removing

discontinuities inherent to control actions and the use of regularization function

appears to be another convenient technique to simulate systems sensitive to abrupt

changes on variables or parameters.

In regard to the simulation and control results, the use of DAE models as they

are proposed (without index order reduction) is of great importance. There are

cases where only one di�erentiation of the algebraic constraint could cause spurious

results compared with the original DAE, as described in Case 4. Cases 1, 2 and 3

presented the same responses to disturbances for the DAE2 and DAE1 models but

presented a completely di�erent response for DAE0 model. These results show that

index reduction, generically speaking, is not a convenient approach to simulate DAE

systems and needs extra care when applied. The understanding of the process, as

well as the expected responses, need to be compared, if possible, with the original
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Figure 4.21: Control simulation of Case 4 using Q as manipulated variable for
positive and negative setpoint changes, interval I and II, respectively. Disturbance
of +10%, interval III, on controlled variable xB.

model.

In regard to the regularization function, one needs to select carefully the regular-

ization parameter and how the input will be applied, if a more realistic description

of the behavior of the actuator is wanted. The process identi�cation needs to be

carefully studied if the index reduced DAE system is chosen. The di�erent behavior

when reduced systems are disturbed creates a warning to the application of this

technique. The identi�ed transfer functions showed a very good correlation to the

DAE models, but with some deviations in few situations, but, for control proposes,

the identi�cation gives useful data, as one may see in the high value of �t and in

the small MSE for the identi�ed models.
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Chapter 5

Conclusions

An exploratory study about the simulation and control of processes described by

Di�erential-Algebraic Equations was carried out in this work. The large amount

of information needed to understand reasonably well the intrinsic characteristics

of DAE systems and their peculiarities regarding dynamic simulation and control

application worth the time dedicated to study it.

The results presented here show that dealing directly with high-index DAE sys-

tems as they are described may be a better approach due to di�erent behavior

introduced by the index reduction technique. In simple systems, as described by

Cases 1, 2 and 3, the index reduction shows di�erent conclusions when compared to

the fully reduced system of index-0. The Cases 1 and 4 could not even be simulated

for index-0. In a little more complex case, such as Case 4, the result of index reduced

system is somewhat worrisome, as the system with only one step of index reduction

gives completely di�erent results, if this possibility of spurious results is dismissed,

wrong conclusions may be drawn based on results masked by index reduction tech-

nique. In Cases 2 and 3, where the the systems are integrated with the DAE models,

the behavior of the DAEs agrees with those from the ODE system associated, but

the index 0 di�ers from all when submitted to step changes. This also indicates the

bene�t of using the system in its original form, without index reduction or algebraic

manipulation.

Regarding the direct method of initialization, it proved to be a convenient ap-

proach when dealing with high-index DAE systems, but it is still limited to the stage

of �nding consistent initial conditions. The use of stationary point for consistent

initialization proved to be convenient. To overcome such di�culties, one may need

to compare the parameters and the scales of variables in order to give the integration

method the best numerical condition to successfully integrate such systems.

Regarding the MPC strategy chosen, the GPC proved to be of great e�ciency

for tracking setpoint changes and rejecting low frequency disturbances, but lacks of

robustness when white frequency noise is present in the measured variables. This is
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reported to be improved by designing low pass �lters using the T (z) parameter on

CARIMA model with a polynomial that rejects noise based on poles (DE SOUZA,

1989; ROSSITER, 2003). The GPC also proved to be a convenient controller when

working with model mismatch between the predicting and the plant model. The

main contribution of this work is at last to show how index reduction technique can

interfere in the results when studying simulation and control of systems described

by high-index DAE models and how to apply the current techniques on simulating

such class of systems.

5.1 Recommendations for Future Work

The developed approach used the GPC algorithm, which is a control technique that

deals with ample classes of systems described by CARIMA model. In future studies

another control technique can be addressed, the NMPC, by using as the internal

model a DAE system describing the process. A comparison with other solvers can

be studied in other to check consistency of the results. Di�erent regularization

functions can be tested to study its impact and di�erent index reduction procedures.

60



Bibliography

ABDULLA, T., CASH, J., �5 Solver MEBDFI�, .

ALBERTOS, P., ORTEGA, R., 1989, �On generalized predictive control: Two

alternative formulations�, Automatica, v. 25, n. 5, pp. 753�755.

ALBET, J., LE LANN, J., JOULIA, X., et al., 1994, �Operational policies for the

start-up of batch reactive distillation column�. In: Institution of Chemi-

cal Engineers Symposium Series, v. 133, pp. 63�63. HEMSPHERE PUB-

LISHING CORPORATION.

ANDRADE NETO, A. S., 2018, �Modelo adimensional de �ash reativo algébrico-

diferencial de índice 2�, Quali�cation exam - Programa de Engenharia

Química-COPPE-UFRJ.

AZEVEDO-PERDICOÚLIS, T.-P., JANK, G., 2007, �A 2-DAE system gas network

model in view to optimisation as a dynamic game�. In: Multidimensional

(nD) Systems, 2007 International Workshop on, pp. 57�64. IEEE.

BAUM, A.-K., KOLMBAUER, M., OFFNER, G., 2017, �Topological solvability

and DAE-index conditions for mass �ow controlled pumps in liquid �ow

networks�, Electronic Transactions on Numerical Analysis, v. 46, pp. 394�

423.

BIEGLER, L. T., CAMPBELL, S. L., MEHRMANN, V., 2012, Control and opti-

mization with di�erential-algebraic constraints. SIAM.

BONILLA, J., LOGIST, F., DEGRÈVE, J., et al., 2012, �A reduced order rate

based model for distillation in packed columns: Dynamic simulation and

the di�erentiation index problem�, Chemical Engineering Science, v. 68,

n. 1, pp. 401�412.

BRENAN, K. E., CAMPBELL, S. L., PETZOLD, L. R., 1996, Numerical solution

of initial-value problems in di�erential-algebraic equations, v. 14. Siam.

CAMACHO, E., BORDONS, C., 1999, Model predictive control. Springer Verlag.

61



CAMPBELL, S. L., 1995, �High-index di�erential algebraic equations�, Journal of

Structural Mechanics, v. 23, n. 2, pp. 199�222.

CAMPBELL, S. L., MOORE, E., 1994, �Progress on a general numerical method

for nonlinear higher index DAEs II�, Circuits, Systems and Signal Pro-

cessing, v. 13, n. 2-3, pp. 123�138.

CARVALHO, D. F., 2015, �Controlador Preditivo Otimizado Aplicado ao Cont-

role de Velocidade de Motor CC�, XII Congresso de Pesquisa, Ensino e

Extensão da UFG.

CLARKE, D. W., MOHTADI, C., TUFFS, P., 1987a, �Generalized predictive con-

trol�Part I. The basic algorithm�, Automatica, v. 23, n. 2, pp. 137�148.

CLARKE, D., MOHTADI, C., TUFFS, P., 1987b, �Generalized predictive con-

trol�part II. Extension and Interpretations�, Automatica, v. 23, n. 2,

pp. 149�160.

CONTOU-CARRERE, M.-N., DAOUTIDIS, P., 2005, �An output feedback pre-

compensator for nonlinear DAE systems with control-dependent state-

space�, IEEE transactions on automatic control, v. 50, n. 11, pp. 1831�

1835.

COSTA JR., E. F. D., 2003, Resolução automática de equações algébrico-

diferenciais de índice superior. Ph.D. Thesis, Programa de Engenharia

Química-COPPE-UFRJ (In Portuguese).

CUILLE, P., REKLAITIS, G., 1986, �Dynamic simulation of multicomponent batch

recti�cation with chemical reactions�, Computers & chemical engineering,

v. 10, n. 4, pp. 389�398.

CUTLER, C., RAMAKER, B., 1979, �Aiche national meeting�, Houston, USA,

WP5-B.

DA SILVA, D. V. A., 2013, Aprimoramento de métodos numéricos para a integração

numérica de sistemas algébrico-diferenciais. Master Thesis, Programa de

Engenharia Química-COPPE-UFRJ (In Portuguese).

DE SOUZA, J., 1989, MB Controle Preditivo de Longo Alcance: Uma Investigação.

Ph.D. Thesis, Dissertação de mestrado, COPPE, UFRJ. Rio de Janeiro.

GARCIA, C. E., MORARI, M., 1982, �Internal model control. A unifying review

and some new results�, Industrial & Engineering Chemistry Process De-

sign and Development, v. 21, n. 2, pp. 308�323.

62



GARCIA, C. E., MORSHEDI, A., 1986, �Quadratic programming solution of dy-

namic matrix control (QDMC)�, Chemical Engineering Communications,

v. 46, n. 1-3, pp. 73�87.

GERDIN, M., 2006, Identi�cation and estimation for models described by

di�erential-algebraic equations. Ph.D. Thesis, Institutionen för sys-

temteknik.

GIRALDO, S. A. C., 2018, �Control GPC�,

https://controlautomaticoeducacion.com /control-predictivo/control-gpc/,

(dez.).

GONÇALVES, F., CASTIER, M., ARAÚJO, O., 2007, �Dynamic simulation of

�ash drums using rigorous physical property calculations�, Brazilian Jour-

nal of Chemical Engineering, v. 24, n. 2, pp. 277�286.

GOPAL, V., BIEGLER, L. T., 1998, �A successive linear programming approach

for initialization and reinitialization after discontinuities of di�erential-

algebraic equations�, SIAM Journal on Scienti�c Computing, v. 20, n. 2,

pp. 447�467.

HACHTEL, C., KERLER-BACK, J., BARTEL, A., et al., 2018, �Multirate

DAE/ODE-Simulation and Model Order Reduction for Coupled Field-

Circuit Systems�. In: Scienti�c Computing in Electrical Engineering:

SCEE 2016, St. Wolfgang, Austria, October 2016, pp. 91�100. Springer.

HARNEY, D. A., MILLS, T. K., BOOK, N. L., 2013, �Numerical evaluation of the

stability of stationary points of index-2 di�erential-algebraic equations:

Applications to reactive �ash and reactive distillation systems�, Comput-

ers and Chemical Engineering, v. 49, pp. 61�69.

HAßKERL, D., SUBRAMANIAN, S., HASHEMI, R., et al., 2017, �State esti-

mation using a multi-rate particle �lter for a reactive distillation column

described by a DAE model�. In: Control and Automation (MED), 2017

25th Mediterranean Conference on, pp. 876�881. IEEE.

HÖCKERDAL, E., FRISK, E., ERIKSSON, L., 2018, �Real-time performance of

DAE and ODE based estimators evaluated on a diesel engine�, Science

China Information Sciences, v. 61, n. 7, pp. 70202.

KRÖNER, A., MARQUARDT, W., GILLES, E., 1997, �Getting around consis-

tent initialization of DAE systems?� Computers & Chemical Engineering,

v. 21, n. 2, pp. 145�158.

63



KUMAR, A., DAOUTIDIS, P., 1995a, �Control of nonlinear di�erential-algebraic-

equation systems with disturbances�, Industrial & engineering chemistry

research, v. 34, n. 6, pp. 2060�2076.

KUMAR, A., DAOUTIDIS, P., 1995b, �A DAE framework for modeling and control

of reactive distillation columns�. In: Dynamics and Control of Chemical

Reactors, Distillation Columns and Batch Processes (Dycord'95), Elsevier,

pp. 99�104, b.

KUMAR, A., DAOUTIDIS, P., 1996, �Feedback regularization and control of non-

linear di�erential-algebraic-equation systems�, AIChE journal, v. 42, n. 8,

pp. 2175�2198.

KUMAR, A., DAOUTIDIS, P., 1997, �High-index dae systems in modeling and

control of chemical processes�, IFAC Proceedings Volumes, v. 30, n. 6,

pp. 393�398.

KUMAR, A., DAOUTIDIS, P., 1999, Control of nonlinear di�erential algebraic

equation systems with applications to chemical processes, v. 397. CRC

Press.

LEIMKUHLER, B., PETZOLD, L. R., GEAR, C. W., 1991, �Approximation meth-

ods for the consistent initialization of di�erential-algebraic equations�,

SIAM Journal on Numerical Analysis, v. 28, n. 1, pp. 205�226.

LEITOLD, A., GERZSON, M., 2010, �Structural decomposition of process mod-

els described by higher index DAE systems�, Computer Aided Chemical

Engineering, v. 28, pp. 385�390.

LI, PENGFEI; LI, Y. S. J. E., 2010, �Consistent initialization of system of

di�erential-algebraic equations for dynamic simulation of centrifugal

chillers�, Journal of Building Performance Simulation, v. 5, n. 2, pp. 115�

139.

LIMA, E. R., CASTIER, M., BISCAIA, E. C., 2008, �Di�erential-algebraic ap-

proach to dynamic simulations of �ash drums with rigorous evaluation of

physical properties�, Oil & Gas Science and Technology-Revue de l'IFP,

v. 63, n. 5, pp. 677�686.

LIOEN, W. M., DE SWART, J. J., VAN DER VEEN, W. A., 1998, Speci�cation

of PSIDE. Stichting Mathematisch Centrum.

MACIEJOWSKI, J. M., 2002, Predictive control: with constraints. Pearson educa-

tion.

64



MATHWORKS, R., 2018a, �Solve Di�erential Algebraic Equations (DAEs)�,

https://www.mathworks.com/help/matlab/math/solve-di�erential-

algebraic-equations-daes.html, (dez.).

MATHWORKS, R., 2018b, �Create linear and nonlinear dy-

namic system models from measured input-output data�,

https://www.mathworks.com/products/sysid.html, (dez.).

MCKENZIE, R., PRYCE, J., NEDIALKOV, N., et al., 2015, �Regularization

of nonlinear DAEs based on Structural Analysis�, IFAC-PapersOnLine,

v. 48, n. 1, pp. 298�299.

MCLELLAN, P., 1994, �A di�erential-algebraic perspective on nonlinear con-

troller design methodologies�, Chemical engineering science, v. 49, n. 10,

pp. 1663�1679.

MURATA, V., 1996, Caracterização simbólica de equações algébrico diferenciais

por um sistema de álgebra computacional com aplicações na engenharia

química. Ph.D. Thesis, Programa de Engenharia Química-COPPE-UFRJ

(In Portuguese).

OGUNNAIKE, B. A., RAY, W. H., 1999, Process dynamics, modeling, and control,

v. 1. Oxford University Press New York.

PANTELIDES, C. C., 1988, �The consistent initialization of di�erential-algebraic

systems�, SIAM Journal on Scienti�c and Statistical Computing, v. 9,

n. 2, pp. 213�231.

PARIDA, N. C., RAHA, S., 2009, �The α-method direct transcription in path con-

strained dynamic optimization�, SIAM Journal on Scienti�c Computing,

v. 31, n. 3, pp. 2386�2417.

PETZOLD, L., 1982, �Di�erential/algebraic equations are not ODEs�, SIAM Jour-

nal on Scienti�c and Statistical Computing, v. 3, n. 3, pp. 367�384.

PETZOLD, L., 1989, �DASSL Code (Di�erential Algebraic System Solver)�, Com-

puting and Mathematics Research Division, Lawrence Livermore National

Laboratory, Livermore, CA, USA.

QIN, S. J., BADGWELL, T. A., 2000, �An overview of nonlinear model predictive

control applications�. In: Nonlinear model predictive control, Springer, pp.

369�392.

65



QUINTO, T., 2010, Abordagem Algébrico-Diferencial da Otimização Dinâmica de

Processos com Índice Flutuante. Ph.D. Thesis, Programa de Engenharia

Química-COPPE-UFRJ (In Portuguese).

RICHALET, J., RAULT, A., TESTUD, J., et al., 1978, �Model predictive heuristic

control�, Automatica (Journal of IFAC), v. 14, n. 5, pp. 413�428.

ROSSITER, J. A., 2003, Model-based predictive control: a practical approach. CRC

press.

SANTAMARÍA, F. L., GÓMEZ, J. M., 2015, �Index hybrid di�erential�Algebraic

equations model based on fundamental principles for nonlinear model

predictive control of a �ash separation drum�, Industrial & Engineering

Chemistry Research, v. 54, n. 7, pp. 2145�2155.

SCHULZ, S., 2003, Four lectures on di�erential-algebraic equations. Relatório

técnico, Department of Mathematics, The University of Auckland, New

Zealand.

SECCHI, A., 1992, Simulação dinâmica de processos químicos pelo método da re-

laxação em forma de onda em computadores paralelos. Ph.D. Thesis,

Programa de Engenharia Química-COPPE-UFRJ (In Portuguese).

SECCHI, A. R., 2007, DASSLC User's Manual Version 3.2. Relatório técnico.

SHAFIE, S., 2013, �Implementation of Modi�ed SIRK Method on Solving Sti�

Ordinary Di�erential Equations�, Int. J. Human. Manage. Sci, v. 1, n. 1,

pp. 8�12.

SOARES, R. D. P., SECCHI, A. R., 2005, �Direct initialisation and solution of

high-index DAE systems�. In: European Symposium on Computer-Aided

Process Engineering-15, 38th European Symposium of the Working Party

on Computer Aided Process Engineering, v. 20, pp. 157�162.

SOARES, R. P., 2007, Depuração para simuladores de processos baseados em

equações. Ph.D. Thesis, Departamento de Engenharia Química-UFRGS

(In Portuguese).

UPPAL, T., RAHA, S., SRIVASTAVA, S., 2017, �Trajectory feasibility evaluation

using path prescribed control of unmanned aerial vehicle in di�erential

algebraic equations framework�, The Aeronautical Journal, v. 121, n. 1240,

pp. 770�789.

66



VIANNA JR, A. D. S., NASCIMENTO, M. L. D., 2005, �Equações algébrico difer-

enciais para ensino em engenharia química�, Congresso Brasileiro de En-

sino de Engenharia.

VIEIRA, R., 1998, Metodos Diretos Para Iniciaçáo de Sistemas Algebrico�

Diferenciais. Master Thesis, M. Sc. Dissertation, PEQ/COPPE/UFRJ

(In Portuguese).

VIEIRA, R., 2001, �Técnicas de Inicialização de Sistemas Algébrico-Diferenciais�,

Doctor on Science Thesis, Universidade Federal do Rio de Janeiro, Rio

de Janeiro, RJ, Brasil.

VIEIRA, R., BISCAIA JR., E., 2001, �Direct methods for consistent initialization

of DAE systems�, Computers & Chemical Engineering, v. 25, n. 9-10,

pp. 1299�1311.

WANG, H.-S., 2010, �Derivation of the optimal guidance law for space vehicle based

on a DAE approach�. In: System Science and Engineering (ICSSE), 2010

International Conference on, pp. 407�412. IEEE.

WASCHL, H., ALBERER, D., DEL RE, L., 2011, �Automatic tuning methods for

MPC environments�. In: International Conference on Computer Aided

Systems Theory, pp. 41�48. Springer.

WOLFRAM, A., 2018, �Numerical Solution of Di�erential-Algebraic Equations�,

https://reference.wolfram.com/ language/tutorial/NDSolveDAE.html,

(dez.).

YE, Y., RUAN, J., LU, Z., et al., 2017, �Transient stability modes of DFIG in large

disturbance based on reduced-order DAE models�. In: Power & Energy

Society General Meeting, 2017 IEEE, pp. 1�5. IEEE.

67



Appendix A

Dimensional and Dimensionless

Models of the Reactive Flash Drum

The nondimensionalization of the reactive �ash drum model explained by (AN-

DRADE NETO, 2018) is shown here. The model is based on two reaction in series

A→ B → C, considering the total molar holdup, N , constant and assuming energy

dynamics much faster in vapor than in liquid. First the global molar balance is pre-

sented according to Equation A.1. With N constant, the derivative is null,
dN

dt
= 0.

The term ∆νj =
∑Ncomp

i=1 νi,j is the component i stoichiometric balance for reaction j

and rj is the reaction rate using Arrhenius equation, rj = k0je

−Ej

RT


Cj. The term

VL is the liquid volume. It is assumed that the reactions occur only in liquid phase.

The term ∆νj = 0 is null due to the stoichiometric balance for reactions in series,

as no molar variation is supposed. With those conditions, the global molar balance

reduces to the expression in Equation A.2., where F is the feed molar �ow rate, and

L and V are the liquid and vapor outlet, respectively.

dN

dt
= F − L− V +

Nreac∑
j=1

∆νjrjVL (A.1)

0 = F − L− V (A.2)

The component molar balance is presented in Equation A.3, with Ri =∑Nreac

j=1 νi,jrj. Using the assumption of N constant, the equation becomes equation

A.4

d (Nxi)

dt
= Fxi − Lxi − V xi +RiVL (A.3)

dxi
dt

=
F

N
xiF −

L

N
xi −

V

N
yi +

RiVL
N

(A.4)

68



The component balances for two reactions are presented for the components A and

B, equation A.5. The component C is obtained through the summation relationship,

xA + xB + xC = 1.

dxA
dt

=
F

N
xAF −

L

N
xA −

V

N
yA +

k0Ae

−EA

RT


CAVL

N
(A.5a)

dxB
dt

=
F

N
xBF −

L

N
xB −

V

N
yB +

k0Be

−EB

RT


CBVL

N
(A.5b)

Using the relationship CiVL = Ni and
Ni

N
= xi, the equation A.5 becomes equation

A.6.

dxA
dt

=
F

N
xAF −

L

N
xA −

V

N
yA + k0Ae

−EA

RT


xA (A.6a)

dxB
dt

=
F

N
xBF −

L

N
xB −

V

N
yB + k0Be

−EB

RT


xB (A.6b)

The energy balance is based on the total enthalpy, H t, which is composed by the

liquid and vapor enthalpies, HL and HV , through H t = HL + HV . By assuming

negligible vapor holdup, the liquid enthalpy becomes greater than vapor enthalpy,

HV << HL, by assuming the dynamics of vapor enthalpy much faster that of the

liquid,
dHV

dt
<<

dHL

dt
, the following relationship is produced,

dH t

dt
=
dHL

dt
. Using

the speci�c enthalpy expressions; HL = NhL, dhL = cpdT , cp =
∑Ncomp

i=1 xicpi, the

total enthalpy can be expressed as
dH t

dt
= Ncp

dT

dt
. The total energy balance using

the previous relationships is expressed in equation A.7.

Ncp
dT

dt
= FhF − LhL − V hV + q̇ −

Nreac∑
i=1

∆HrRiVL (A.7)

Reorganizing the expression and opening the summation we have equation A.8

dT

dt
=
FhF
Ncp
−LhL
Ncp
−V hV
Ncp

+
q̇

Ncp
−∆H

AB

r k0Ae

−EA

RT


CAVL

Ncp
+

∆H
BC

r k0Be

−EB

RT


CBVL

Ncp
(A.8)

By substituting
CiVL
Ncp

= xi and the expression for enthalpy; hF = href +
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cp (TF − Tref ), hL = href + cp (T − Tref ), hV = hL + ∆vap, with href = 0, we have

the following expression, equation A.9.

dT

dt
=
F (TF − Tref )

N
− L (T − Tref )

N
− V [∆Hvap + cp (T − Tref )]

Ncp
+

q̇

Ncp
− ∆H

AB

r k0Ae

−EA

RT


xA

cp
+

∆H
BC

r k0Be

−EB

RT


xB

cp

(A.9)

Further nondimensionalization is performed on temperature, T , and time, t, using

the following expressions, equation A.10.

θ =
T − Tref
Tref

(A.10a)

τ =
t

N/F
(A.10b)

Applying equation A.10 on energy and component balances we have the following

system, equation A.11.

dxA
dτ

= xAF −
LxA
F
− V yA

F
− Nk0Ae

 −EA

RTref (θ + 1)


xA

F
(A.11a)

dxB
dτ

= xBF −
LxB
F
− V yB

F
− Nk0Be

 −EB

RTref (θ + 1)


xB

F
+
Nk0Ae

 −EA

RTref (θ + 1)


xA

F
(A.11b)

dθ

dτ
= θF −

L

F
θ − V∆Hvap

FcpTref
− V

F
θ +

q̇

cpTrefF
− ∆H

ÂB

r

cpTref

Nk0Ae

 −EA

RTref (θ + 1)


xA

F

−∆H
BC

r

cpTref

Nk0Be

 −EB

RTref (θ + 1)


xB

F

(A.11c)

Based on equation A.11, the nondimensionalization is performed applying the ex-

pressions of Equation A.12 and A.13, producing the �nal model used on simulation,
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Equation A.14.

l =
L

F
(A.12a)

φ =
V

F
(A.12b)

DaA =
Nk0A
F

(A.12c)

DaB =
Nk0B
F

(A.12d)

γA =
−EA

RTref
(A.12e)

γB =
−EB

RTref
(A.12f)

λ =
∆Hvap

cpTref
(A.12g)

B1 =
∆HAB

r

cpTref
(A.12h)

B2 =
∆HBC

r

cpTref
(A.12i)

Q =
q̇

cpTrefF
(A.13a)

xC = 1− xA − xB (A.13b)

yi = Kixi (A.13c)

0 = yA + yB + yC − 1 (A.13d)

0 = KAxA +KBxB +KC (1− xA − xB)− 1 (A.13e)

dxA
dt

= xAF − (1− φ)xA − φKAxA −DaAxAe

 γA
θ + 1


(A.14a)

dxB
dt

= xBF − (1− φ)xB − φKBxB −DaBxBe

 γB
θ + 1


+DaAxAe

 γA
θ + 1



(A.14b)

dθ

dt
= 1− θ − λφ+Q+B1DaAxAe

 γA
θ + 1


+B2DaBxBe

 γB
θ + 1


(A.14c)

0 = KAxA +KBxB +KC (1− xA − xB)− 1 (A.14d)
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Appendix B

Simulation of Di�erent

Regularization Parameters

The impact of the regularization parameter for Cases 1, 3 and 4 is presented in

Figures B.3, , B.1, B.2 and B.4. The simulations were performed for the index-

2 DAE models using the manipulated and controlled variables applied on control

study. The simulation of Case 2 is presented in Section 4.1. In Case 4 the value

of ξ = 0.01 is not simulated because the solver could not integrate the system for

this condition. Case 1 is the one that shows the smaller impact of the regularization

parameter, as can be seen in Figure B.3, with a small smoothing of the responses.

Case 3, Figures B.1 and B.2, is the one mostly impacted with the regularization

parameter, presenting large di�erences in the responses for di�erent values of ξ.

Case 4 is the only that could not be simulated for the chosen values of ξ, but also

present a small impact, such as Case 1, in the responses for the values simulated.
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Cb for ξ=0.01
Cb for ξ=0.1
Cb for ξ=0.5
Cb for ξ=1
Cb for ξ=5
Cb for ξ=10
Cb for ξ=50
Cb for ξ=100

(a) Input=F and output=CB
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Cb for ξ=0.01
Cb for ξ=0.1
Cb for ξ=0.5
Cb for ξ=1
Cb for ξ=5
Cb for ξ=10
Cb for ξ=50
Cb for ξ=100

(b) Input=Fh and output=CB

Figure B.1: Simulation of Case 3 with di�erent values of ξ. Results for output CB

with disturbances in F and Fh.

73



t [min]
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T
 [K

]
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T for ξ=100

(a) Input=F and output=T
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T
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T for ξ=0.1
T for ξ=0.5
T for ξ=1
T for ξ=5
T for ξ=10
T for ξ=50
T for ξ=100

(b) Input=Fh and output=T

Figure B.2: Simulation of Case 3 with di�erent values of ξ. Results for output T
with disturbances on F and Fh
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Figure B.3: Simulation of Case 1 with di�erent values of ξ. Results for output L
and disturbances in F
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xB for ξ=100

Figure B.4: Simulation of Case 4 with di�erent values of ξ. Results for output xB
and disturbances in P
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