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CONTROLE CONSCIENTE DA SAÚDE E PROGNÓSTICO BASEADO EM
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A exploração de campos com alto conteúdo de CO2 é desafiadora, devido ao baixo
valor agregado e ao impacto ambiental associado a este componente. Nesse contexto,
um uso importante para o CO2 gerado é sua reinjeção no reservatório, e a separação
submarina de CO2 resulta em um processamento mais eficiente. O prognóstico é
uma atividade chave nesse processo, devido à necessidade de minimizar intervenções
nos equipamentos. O objetivo principal deste trabalho é investigar aspectos do
controle consciente da saúde de um sistema de separação submarina de CO2. O
modelo do sistema considerado, que consiste em um sistema de equações algébrico-
diferenciais, foi adaptado da literatura. Todas as simulações foram realizadas
utilizando bibliotecas desenvolvidas pelo autor, baseadas nos métodos das bibliotecas
Scipy e Assimulo. Um estado estacionário de referência foi obtido para as condições
de projeto, e as funções de transferência em tempo contínuo foram identificadas a
partir dos dados de resposta ao degrau. Os modelos identificados foram utilizados
em um controlador preditivo, e simulações em malha fechada foram realizadas para
avaliar a sintonia do controlador. No sentido de prognóstico, um modelo estocástico
de degradação de bomba multifásica, sensível às condições de operação do processo,
foi proposto, e um filtro de partículas foi implementado para estimação online do
estado de degradação e predição do tempo de vida útil. Por fim, um controlador
consciente da saúde foi projetado, e foram investigadas algumas dificuldades na
combinação dos objetivos de extensão de vida útil e de controle. Os resultados
obtidos indicam que o tratamento do problema de controle consciente da saúde sob
a teoria de otimização multiobjetivo pode trazer resultados mais satisfatórios, assim
como abordar a extensão de vida útil em uma camada de otimização.
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The exploitation of fields with high CO2 content is challenging, due to the low
economic value and the environmental impact associated with this component.
In this context, a significant use for the generated CO2 is its reinjection into
the reservoir, and subsea CO2 separation allows for more efficient processing.
Prognostics is a key activity in this process, due to the necessity of minimizing
intervention in equipment. The main objective of this work is to investigate the
health-aware control of a subsea CO2 separation system. The considered system
model, which consists of a differential-algebraic equation system, was adapted from
the literature. All simulations were performed using libraries developed by the
author, based on methods from the Scipy and Assimulo libraries. A reference
steady state was obtained for the design conditions, and continuous-time transfer
functions were identified from step response data. The identified models were used
in a predictive controller, and closed-loop simulations were performed to evaluate
the controller tuning. In the sense of prognostics, a stochastic model of multiphase
pump degradation, sensitive to the process operating condition, was proposed, and
a particle filter was implemented to perform online degradation state estimation
and remaining useful lifetime prediction. At last, a health-aware controller was
designed, and some difficulties in combining reference tracking and lifetime extension
objectives were investigated. The obtained results indicate that dealing with the
health-aware control problem through the multiobjective optimization theory and
addressing the useful lifetime extension in an optimization layer may result in more
satisfactory results.

viii



Contents

Agradecimentos iv

Acknowledgements v

List of Figures xi

List of Tables xiv

List of Symbols xv

List of Abbreviations xx

1 Introduction 1
1.1 Contextualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Document structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Literature review 3
2.1 Prognostics and health monitoring . . . . . . . . . . . . . . . . . . . 3
2.2 Bayesian filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Model predictive control . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Health-aware control (HAC) . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Final comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Case study modeling 14
3.1 CO2 separation system . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Flow through valve . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Heat exchanger . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.3 The equation system . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Degradation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Methodology 21
4.1 Model implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 21

ix



4.2 Plant stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Model identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Closed loop simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5 Degradation model implementation . . . . . . . . . . . . . . . . . . . 26
4.6 Crack length estimation . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.7 Health-aware control implementation . . . . . . . . . . . . . . . . . . 28

5 Results and discussion 30
5.1 Model implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Plant stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Model identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Closed loop simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.5 Degradation model implementation . . . . . . . . . . . . . . . . . . . 54
5.6 Crack length estimation . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.7 Health-aware control implementation . . . . . . . . . . . . . . . . . . 62

6 Conclusion 70

Bibliography 72

Appendices 78

A System identification results 78

x



List of Figures

3.1 Process diagram, emphasizing correspondent variables . . . . . . . . . 14
3.2 Heat exchanger scheme, emphasizing model variables . . . . . . . . . 16
3.3 Heat exchanger discretization scheme, emphasizing model variables . 17

5.1 SOUZA (2018) valve model sensitivity analysis - before model correction 30
5.2 Proposed valve model sensitivity analysis - after model correction . . 31
5.3 DAE system sparsity pattern (variables vs. equations in Equation 3.7) 32
5.4 Dynamic simulation of the brute steady state . . . . . . . . . . . . . 34
5.5 Closed-loop dynamic simulation - steady state refinement . . . . . . . 35
5.6 Dynamic simulation of the refined steady state . . . . . . . . . . . . . 35
5.7 Effect of ∆tset in simulation results . . . . . . . . . . . . . . . . . . . 38
5.8 Effect of ∆tset in simulation results - zoomed view . . . . . . . . . . . 39
5.9 Identification results for the pair xv,b x hflash . . . . . . . . . . . . . . 40
5.10 Servo test for stabilized process . . . . . . . . . . . . . . . . . . . . . 41
5.11 Regulatory test for stabilized process . . . . . . . . . . . . . . . . . . 42
5.12 Closed loop simulation - flash pressure setpoint change - base case . . 45
5.13 Closed loop simulation - flash pressure setpoint change - no filter . . . 46
5.14 Closed loop simulation - flash pressure setpoint change - no model

update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.15 Closed loop simulation - flash pressure setpoint change - aggressive

tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.16 Closed loop simulation - flash pressure setpoint change - ∆u constraint 50
5.17 Closed loop simulation - flash pressure setpoint change - xv,t constraint 51
5.18 Closed loop simulation - flash pressure setpoint change - xv constraint 52
5.19 Closed loop simulation - all variables setpoint change - base case . . . 53
5.20 Degradation simulation in nominal condition . . . . . . . . . . . . . . 54
5.21 Degradation simulation in nominal condition . . . . . . . . . . . . . . 55
5.22 Crack length online estimation - SIS filter, a priori distribution (dot

size represent particle weight) . . . . . . . . . . . . . . . . . . . . . . 56
5.23 Crack length online estimation - SIS filter, a posteriori distribution

(dot size represent particle weight) . . . . . . . . . . . . . . . . . . . 57

xi



5.24 Crack length online estimation - SIR filter, a priori distribution (dot
size represent particle weight) . . . . . . . . . . . . . . . . . . . . . . 57

5.25 Crack length online estimation - SIR filter, a posteriori distribution
(dot size represent particle weight) . . . . . . . . . . . . . . . . . . . 58

5.26 RUL prediction - SIS filter (dot size represent probability) . . . . . . 59
5.27 RUL prediction - SIR filter (dot size represent probability) . . . . . . 59
5.28 Crack length online estimation with varying pump power - SIS filter,

a priori distribution (dot size represent particle weight) . . . . . . . . 60
5.29 Crack length online estimation with varying pump power - SIS filter,

a posteriori distribution (dot size represent particle weight) . . . . . . 60
5.30 Crack length online estimation with varying pump power - SIR filter,

a priori distribution (dot size represent particle weight) . . . . . . . . 61
5.31 Crack length online estimation with varying pump power - SIR filter,

a posteriori distribution (dot size represent particle weight) . . . . . . 61
5.32 RUL prediction with varying pump power - SIR filter (dot size rep-

resent probability) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.33 HAC simulation - wHAC = 10, Npart = 3 . . . . . . . . . . . . . . . . 63
5.34 HAC simulation - wHAC = 100, Npart = 3 . . . . . . . . . . . . . . . . 65
5.35 HAC simulation - wHAC = 5, Npart = 3 . . . . . . . . . . . . . . . . . 66
5.36 HAC simulation - wHAC = 10, Npart = 20 . . . . . . . . . . . . . . . . 67
5.37 HAC simulation - wHAC = 10, Npart = 3, fixed quantiles . . . . . . . . 68
5.38 HAC simulation with true model - wHAC = 10, Npart = 3, fixed quantiles 69

A.1 Identification results for the pair Fin (kmol/s) x xv,t . . . . . . . . . . 78
A.2 Identification results for the pair Pflash (Pa) x xv,t . . . . . . . . . . . 79
A.3 Identification results for the pair Tflash (K) x xv,t . . . . . . . . . . . 79
A.4 Identification results for the pair T2 (K) x xv,t . . . . . . . . . . . . . 80
A.5 Identification results for the pair Fv (kmol/s) x xv,t . . . . . . . . . . 80
A.6 Identification results for the pair Fl,tot (kmol/s) x xv,t . . . . . . . . . 81
A.7 Identification results for the pair xCO2 x xv,t . . . . . . . . . . . . . . 81
A.8 Identification results for the pair Fin (kmol/s) x xv . . . . . . . . . . 82
A.9 Identification results for the pair Pflash (Pa) x xv . . . . . . . . . . . 82
A.10 Identification results for the pair Tflash (K) x xv . . . . . . . . . . . . 83
A.11 Identification results for the pair T2 (K) x xv . . . . . . . . . . . . . . 83
A.12 Identification results for the pair Fv (kmol/s) x xv . . . . . . . . . . . 84
A.13 Identification results for the pair Fl,tot (kmol/s) x xv . . . . . . . . . . 84
A.14 Identification results for the pair xCO2 x xv . . . . . . . . . . . . . . . 85
A.15 Identification results for the pair Fin (kmol/s) x Qaqu (W) . . . . . . 85
A.16 Identification results for the pair Pflash (Pa) x Qaqu (W) . . . . . . . 86

xii



A.17 Identification results for the pair Tflash (K) x Qaqu (W) . . . . . . . . 86
A.18 Identification results for the pair T2 (K) x Qaqu (W) . . . . . . . . . . 87
A.19 Identification results for the pair Fv (kmol/s) x Qaqu (W) . . . . . . . 87
A.20 Identification results for the pair Fl,tot (kmol/s) x Qaqu (W) . . . . . . 88
A.21 Identification results for the pair xCO2 x Qaqu (W) . . . . . . . . . . . 88
A.22 Identification results for the pair Fin (kmol/s) x Qresf (W) . . . . . . 89
A.23 Identification results for the pair Pflash (Pa) x Qresf (W) . . . . . . . 89
A.24 Identification results for the pair Tflash (K) x Qresf (W) . . . . . . . . 90
A.25 Identification results for the pair T2 (K) x Qresf (W) . . . . . . . . . 90
A.26 Identification results for the pair Fv (kmol/s) x Qresf (W) . . . . . . 91
A.27 Identification results for the pair Fl,tot (kmol/s) x Qresf (W) . . . . . 91
A.28 Identification results for the pair xCO2 x Qresf (W) . . . . . . . . . . 92
A.29 Identification results for the pair Fin (kmol/s) x W (W) . . . . . . . . 92
A.30 Identification results for the pair Pflash (Pa) x W (W) . . . . . . . . . 93
A.31 Identification results for the pair Tflash (K) x W (W) . . . . . . . . . 93
A.32 Identification results for the pair T2 (K) x W (W) . . . . . . . . . . . 94
A.33 Identification results for the pair Fv (kmol/s) x W (W) . . . . . . . . 94
A.34 Identification results for the pair Fl,tot (kmol/s) x W (W) . . . . . . . 95
A.35 Identification results for the pair xCO2 x W (W) . . . . . . . . . . . . 95

xiii



List of Tables

4.1 Parameters used in the simulation . . . . . . . . . . . . . . . . . . . . 22
4.2 Fixed variables used in the simulation . . . . . . . . . . . . . . . . . . 22
4.3 Degradation model parameters . . . . . . . . . . . . . . . . . . . . . . 26

5.1 Steady state valve openings . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Initial guesses for the free variables used in the stationary simulation 33
5.3 Steady state results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 SIMC PID tuning (SKOGESTAD, 2003) . . . . . . . . . . . . . . . . 37
5.5 Controller tuning parameters for the base case (units consistent with

values of Table 4.2 and Table 5.3) . . . . . . . . . . . . . . . . . . . . 44
5.6 Controller tuning parameters for the aggressive tuning (units consis-

tent with values of Table 4.2 and Table 5.3) . . . . . . . . . . . . . . 48

A.1 Identified model parameters . . . . . . . . . . . . . . . . . . . . . . . 96

xiv



List of Symbols

Av,b Bottom stream cross-section area, p. 19

Av,in Inlet stream cross-section area, p. 19

Av,t Top stream cross-section area, p. 18

Ec Heat exchanger cold side energy holdup, as in SOUZA (2018),
p. 16

Eh Heat exchanger hot side energy holdup, as in SOUZA (2018),
p. 16

Ec,k Heat exchanger cold side k-th stage energy holdup, p. 17

Eh,k Heat exchanger hot side k-th stage energy holdup, p. 17

Fc Heat exchanger cold side molar flow, p. 16

Fh Heat exchanger hot side molar flow, p. 16

Fin Flash drum inlet molar flow, p. 18

Fl,tot Flash drum bottom outlet molar flow, p. 19

Fl Flash drum liquid outlet molar flow, p. 18

Fv Flash drum top outlet molar flow, p. 18

Fw Flash drum aqueous outlet molar flow, p. 18

H(·) Molar enthalpy function, p. 18

HF Flash drum inlet molar enthalpy, p. 18

Hc,i Heat exchanger cold side inlet molar enthalpy, p. 16

Hc,o Heat exchanger cold side outlet molar enthalpy, p. 16

Hh,i Heat exchanger hot side inlet molar enthalpy, p. 16

xv



Hh,o Heat exchanger hot side outlet molar enthalpy, p. 16

Hl Flash drum liquid phase molar enthalpy, p. 18

Hv Flash drum top phase molar enthalpy, p. 18

Hw Flash drum aqueous phase molar enthalpy, p. 18

Kv,b Bottom valve constant, p. 19

Kv,in Inlet valve constant, p. 19

Kv,t Top valve constant, p. 19

MM(·) Molecular weight function, p. 18

Nc MPC control horizon, p. 25

Np MPC prediction horizon, p. 25

Ni Flash drum i-th component moles number, p. 14

Npart Number of particles in particle filter, p. 26

Ntot Flash drum total moles number, p. 18

PBL,B Bottoms battery limit pressure, p. 14

PBL,T Top battery limit pressure, p. 14

Pc,i Heat exchanger cold side inlet pressure, p. 14

Pd Multiphase pump discharge pressure, p. 14

Pflash Flash drum pressure, p. 14

Ph,i Heat exchanger hot side inlet pressure, p. 14

Pres Reservoir pressure, p. 14

Qaqu Flash drum heating rate, p. 18

Qresf Condenser cooling rate, p. 18

T1 Heat exchanger cold side inlet temperature, p. 14

T2 Condenser outlet temperature, p. 14

Tbot Bottoms valve outlet temperature, p. 14

xvi



Tc,k Heat exchanger cold side k-th stage temperature, p. 17

Tc,o Heat exchanger cold side outlet temperature, p. 14

Td Multiphase pump discharge temperature, p. 14

Tflash Flash drum temperature, p. 14

Th,i Heat exchanger hot side inlet temperature, p. 14

Th,k Heat exchanger hot side k-th stage temperature, p. 17

Th,o Heat exchanger hot side outlet temperature, p. 14

Tres Reservoir temperature, p. 14

UA Product between overall heat transfer coefficient and heat
transfer surface area of the heat exchanger, p. 16

U e Flash drum extensive internal energy, p. 14

Vc Heat exchanger cold side volume, p. 16

Vh Heat exchanger hot side volume, p. 16

Vflash Flash drum total volume, p. 18

W Multiphase pump power, p. 18

∆Pc Heat exchanger cold side pressure drop, p. 19

∆Ph Heat exchanger hot side pressure drop, p. 19

∆Tlm Heat exchanger logarithmic mean of temperature difference, p.
16

∆f Multiphase pump degradation rate parameter, p. 20

V̄ (·) Molar volume function, p. 18

V̄d Multiphase pump discharge molar volume, p. 18

V̄s Multiphase pump suction molar volume, p. 18

V̄l Flash drum liquid phase molar volume, p. 18

V̄v Flash drum top phase molar volume, p. 18

V̄w Flash drum aqueous phase molar volume, p. 18

xvii



βα Flash drum liquid phase molar fraction, p. 18

βγ Flash drum aqueous phase molar fraction, p. 18

βν Flash drum top phase molar fraction, p. 18

α Flash drum liquid phase composition vector, p. 18

γ Flash drum aqueous phase composition vector, p. 18

ν Flash drum top phase composition vector, p. 18

l Flash drum bottom outlet composition vector, p. 18

u Dynamic system input vector, p. 18

x Dynamic system state vector, p. 18

y Dynamic system output vector, p. 19

zres Reservoir composition vector, p. 14

η Multiphase pump degradation observation, p. 20

λ Multiphase pump degradation state, p. 20

λlim Degradation state threshold value, p. 28

ρm(·) Mass density function, p. 19

ρc,i Heat exchanger cold side inlet molar density, p. 16

ρc,k Heat exchanger cold side k-th stage molar density, p. 17

ρc,o Heat exchanger cold side outlet molar density, p. 16

ρh,i Heat exchanger hot side inlet molar density, p. 16

ρh,k Heat exchanger hot side k-th stage molar density, p. 17

ρh,o Heat exchanger hot side outlet molar density, p. 16

hflash Flash drum liquid volumetric fraction, p. 19

n Multiphase pump degradation power parameter, p. 20

nc Number of components, p. 18

nst Heat exchanger number of discretized stages, p. 17

xviii



qi MPC i-th controlled variable weight, p. 25

q
(i)
k Quantile associated with the k-th evolution of the i-th particle,

p. 28

si MPC i-th manipulated variable weight, p. 25

wHAC Health-aware control weight, p. 28

xv,b Bottom valve opening, p. 19

xv,t Top valve opening, p. 19

xv Inlet valve opening, p. 19

xix



List of Abbreviations

AI Artificial Intelligence, p. 4

AR Auto-Regressive, p. 4

CBM Condition-based Maintenance, p. 3

DAE Differential-Algebraic Equations, p. 11

DMC Dynamic Matrix Control, p. 10

EKF Extended Kalman Filter, p. 8

HAC Health-Aware Control, p. 2

HMM Hidden Markov Model, p. 5

KF Kalman Filter, p. 8

LQR Linear Quadratic Regulator, p. 10

MIMO multiple-input multiple-output, p. 10

MPC Model Predictive Control(ler), p. 10

PF Particle Filter, p. 9

PSE Process Systems Engineering, p. 1

QP Quadratic Programming, p. 11

RUL Remaining Useful Lifetime, p. 2

SIR Sequential Importance Resampling, p. 9

SIS Sequential Importance Sampling, p. 9

UKF Unscented Kalman Filter, p. 8

c.d.f. cumulative distribution function, p. 28

p.d.f. probability distribution function, p. 4

xx



Chapter 1

Introduction

1.1 Contextualization

In the context of process systems engineering (PSE), process control and optimiza-
tion are very important study fields, allowing not only safe and predictable operation,
but also maximal improvement of process performance based on metrics of choice.
Plant automatization extends control possibilities, and allows operation in places
virtually inaccessible to humans, such as subsea environments.

Processes operated in the subsea environment nowadays are mostly related to oil
& gas exploitation at deep and ultra-deep waters. Apart from the obvious necessity
of reaching those oil reservoirs, subsea technologies are being developed to revitalize
mature fields, in which water content is high and production flow rates are dropping
(KUCHPIL et al., 2013). More recently, attention has been drawn to subsea CO2

separation (PASSARELLI, 2017; SOUZA, 2018; SOUZA et al., 2019).
Fields with high CO2 content represent over 10% of world proven fields. The

exploitation of these fields generates major CO2 quantities, which have low economic
value and are an environmental burden, but must be processed in order to recover
the main products with required specification. In this context, a significant use for
CO2 is the reinjection into the reservoir, in order to maintain well pressure and thus
oil production for longer times (DE MEDEIROS et al., 2018).

Thus, the early separation of CO2 from oil stream is beneficial, because down-
stream equipments can be sized to lesser flow rates and produced CO2 can be read-
ily reinjected into the reservoir. This strategy was addressed by Petrobras. PAS-
SARELLI (2017) proposed a subsea CO2 separation process that took advantage
of mixture thermodynamic properties at well conditions to ensure phase separation
and acceptable recoveries. SOUZA (2018) and SOUZA et al. (2019) analyzed the
feasibility of this process and developed a model inspired on it.

CO2 reinjection requires the use of a multiphase pump able to promote con-
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siderable pressure rise. Therefore, being the equipment under the most operation
stress, it is reasonable to assume that process failure is most likely to happen in this
equipment, and degradation modeling efforts shall be directed to it.

In the context of subsea processing, reliability analysis and health monitoring
play a major role in the sense that process interventions and production stops must
be minimized at all costs. Understanding the degradation process of an equipment is
fundamental for predicting its maintenance time. Additionally, the comprehension of
how the operating point affects degradation patterns is necessary for implementing
health-aware process control and optimization.

1.2 Objectives

The general objective of this work is to investigate the main aspects on the devel-
opment of a Health-Aware Control (HAC) tool, which performs control, prognostics
and optimization, applied to a subsea CO2 separation system model. More specif-
ically, this work aims to assess process control and prognostics, and how they can
be combined.

For this goal to be attained the following specific objectives were specified:

• Study the modeling of a subsea CO2 separation system;

• Identify linear models based on simulated data from the considered system
model;

• Apply advanced control techniques to this process, using the identified linear
models;

• Propose a degradation model to the multiphase pump, sensitive to operating
conditions;

• Design a prognostics tool which predicts the remaining useful lifetime (RUL)
of equipment, based on the proposed degradation model;

• Integrate process control and prognostics into an unified automatic framework.

1.3 Document structure

This document is structured as follows. Chapter 2 covers the literature review,
highlighting important aspects that support this work. Chapter 3 presents aspects
of the models used in this dissertation. Chapter 4 describes the methodology used
to obtain the results presented and discussed in Chapter 5. This document is closed
with the conclusion and final remarks in Chapter 6.
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Chapter 2

Literature review

In this chapter, theoretical aspects and recent developments regarding the main
subjects involved in this dissertation are described.

2.1 Prognostics and health monitoring

System reliability is fundamental information in the field of process systems engi-
neering. Casualties are more likely to happen when system parts are deteriorated,
and, in this context, reliability analysis aims to quantify rate or probability of casu-
alties, in order to aid in the decision-making process (RAUSAND and HØYLAND,
2004).

Maintenance planning is an example of these decisions. In the early indus-
trial periods, maintenance was made only at the process breakdown ("run-to-failure
maintenance"). This behavior often leads to major financial losses, so this kind of
maintenance has mostly given way to preventive maintenance, in which parts are
repaired or replaced based on events historical data (HENG et al., 2009).

But, as competition in the industries became tighter, the time between repairs
became a critical decision variable. If this time interval is too high, chances of
a process breakdown rise. If it is too low, maintenance costs become unfeasible.
Traditional reliability-based preventive maintenance focused on the equipment pop-
ulational data, not on specific units with specific operational routines (HENG et al.,
2009). To assess these issues, the condition-based maintenance (CBM), a new
paradigm of process maintenance, arises: interventions are made only when nec-
essary, and equipment conditions are monitored in order to define if a maintenance
is necessary or not (JARDINE et al., 2006).

In the stabilished CBM philosophy, the analyst essentially aims to estimate the
remaining useful lifetime (RUL) of equipments. To attain this, health indicators
are constructed from available system data, and, with predefined degradation stages
and failure thresholds, the indicators are projected into a time horizon (LEI et al.,
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2018). The RUL of a given equipment is defined as the time instant in which the
respective health indicator exceed its failure threshold, and prognostics is defined as
the prediction of this RUL given process data (ROEMER et al., 2011).

This definition is well-behaved in deterministic frameworks. But, as the relia-
bility analysis deals with stochastic events, reliability metrics such as RUL are best
described by probability distribution functions (p.d.f.) (BANJEVIC, 2009). There-
fore, the analyst should be aware that health monitoring information is inherently
linked to a confidence level, and inappropriate confidence level selection can lead to
false-positive or false-negative results.

There is extensive literature regarding equipment prognostics. LEI et al. (2018)
published recently a comprehensive review of all technical activities of prognostics,
namely: data acquisition; health indicator construction; health stages division and
RUL estimation.

Modeling time evolution of health indicators has been done in the literature by
different methods. LEI et al. (2018) reports that most works accomplish that by
using empirical dynamic models, such as auto-regressive (AR) models, with sta-
tistical treatment, or artificial intelligence (AI) methods, such as neural networks.
Models with physical meaning, which attempt to explain phenomenologically the
degradation process, are the minority in this field, which suggests that knowledge
about degradation processes is still small.

One of the most used phenomenological models is the Paris law (PARIS and
ERDOGAN, 1963; SUN et al., 2014), which describes crack propagation in systems
subject to stress. According to it, the crack length growth rate can be modeled by
a power law:

da

dN
= ξ1a

ξ2 (2.1)

where:

• a represents crack length;

• N is the number of loading cycles;

• ξ1 and ξ2 are empirical parameters, dependent on the component and the crack
geometry.

This model simplicity and generality points again to little knowledge about the
physical principles of crack growth. VIRKLER et al. (1979) conducted experiments
to define the behavior of da

dN
, which presented considerable variability even in highly

controlled environments. For these reasons, data-driven models, whether AI or
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statistical-based, represent the majority of works in literature, since they are able
to use individual past realizations of the health indicator to give information about
degradation evolution (HENG et al., 2009; LEI et al., 2018).

Statistical-based prognostics methods are based mainly on empirical knowledge
with random coefficients and stochastic process models, fitting measurements to the
considered model. Among these models, the most prominent are: Wiener process,
Gamma process, Hidden Markov Models (HMMs), and Proportional Hazards (SI
et al., 2011).

The Wiener process formulation is extensively used in degradation studies, due
to its easy mathematic tractability. Its mathematical representation, in the integral
form, is given by (WANG et al., 2014):

X(t) = at+ σB(t) (2.2)

in which X is the health indicator, a and σ are the linear drift and infinitesimal
variance parameters respectively, and B(t) represents a standard Brownian motion.
It can also be represented in the differential form (given X(0) = 0):

dX = adt+ σdW, dW ∼ N (0, dt) (2.3)

It has been shown that a Wiener process with linear drift presents a RUL p.d.f.
corresponding to an inverse Gaussian distribution (CHHIKARA, 1988), and gener-
alizations were made regarding drift behavior (WANG et al., 2014).

Gamma processes are based on the assumption that health indicator increments
are independent and have p.d.f. equal to a gamma distribution (VAN NOORTWIJK,
2009). Given a non-decreasing function v(t) with v(0) = 0, which gives the shape
information, and a constant scale parameter u, the Gamma process has the following
simple differential form:

dX ∼ Gamma(
dv

dt

∣∣∣∣
t

dt, u) (2.4)

The integration of this equation is also simple, due to the properties of Gamma
distributions. Given N independent random variables Xi ∼ Gamma(ki, θ), then the
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distribution of the sum of these variables is given by:

N∑
i=1

Xi ∼ Gamma(
N∑
i=1

ki, θ) (2.5)

As such, integrating Equation 2.4 yields to:

X(t) ∼ Gamma(v(t), u) (2.6)

While Wiener processes describe non-monotonic behaviors, Gamma pro-
cesses focus on incremental degradation behavior, such as equipment wear
(VAN NOORTWIJK, 2009). Nonetheless, both of these formulations need an a
priori knowledge of the expected behavior as a function of time.

A HMM, essentially, is composed of a discrete number of states, a state transition
probability matrix, an observation model and an initial state probability distribu-
tion. The transition matrix is responsible for the temporal evolution of the system,
and can be interpreted as (BARUAH and CHINNAM, 2005):

Ai,j = P (Xt = j, |Xt−1 = i) (2.7)

These models predict transition probability with exponential behavior, which
may not be accurate in real-life processes, and some variations of HMMs may have
an advantage in this matter (DONG and HE, 2007).

The Proportional Hazards Model approach elects covariates among process vari-
ables and states that hazard changes proportionally with these covariates (HENG
et al., 2009). This approach is mainly empirical, and with low statistical basis, but
covariates construction can be made to consider phenomenological and empirical
knowledge in the analysis, thus being capable of good description of observations
(LEI et al., 2018).

LEI et al. (2018) also emphasized that Bayesian filtering algorithms are useful
tools for characterizing uncertainty in estimated health status and predicted RUL,
being applicable in many prognostics strategies. However, Bayesian filtering needs
to be used in tandem with a dynamic model, in order to propagate the current
estimated state until system critical state (JOUIN et al., 2016).

Particle filtering applied to prognostics is a recent trend in literature.
KOTHAMASU et al. (2006) did a prognostics and health monitoring review, and
particle filter uses were not reported. Later, JOUIN et al. (2016) reported ap-
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plications of particle filters in prognostics and health monitoring, highlighting its
generality in face of non-linear dynamic models and non-Gaussian probability dis-
tributions. In this context, some theoretical aspects regarding Bayesian filtering
algorithms must be explored.

2.2 Bayesian filtering

Bayesian filtering methods, in the engineering context, are used to estimate states
of dynamic systems subject to model and measurement uncertainties. For this, a
dynamic model of the system and statistical tools for recursive state estimation
are needed. In this context, Bayesian filtering methods use the well-known Bayes
theorem to update previous information of system state face to new observations
(SIMON, 2006).

For a discrete-time evolution-observation model ({Xk}, {Yk}), in which Xk is
the state vector and Yk is the observation vector, Bayesian filtering methods are
comprised of two steps: time evolution updating, in which current state p.d.f. is
projected into the future, generating an a priori state p.d.f., and observation up-
dating, in which the a priori state p.d.f. is updated to an a posteriori state p.d.f.
by incorporating observation information (KAIPIO and SOMERSALO, 2005).

The time evolution updating formula can be written as:

π(xk+1|y0, · · · yk) =

∫
π(xk+1|xk)π(xk|y0, · · · yk)dxk (2.8)

and the observation updating formula can be written as:

π(xk+1|y0, · · · yk+1) =
π(xk+1|y0, · · · yk)π(yk+1|xk+1)

π(yk+1|y0, · · · yk)
(2.9)

in which π(·) represents the p.d.f. and:

π(yk+1|y0, · · · yk) =

∫
π(yk+1|xk+1)π(xk+1|y0, · · · yk)dxk+1 (2.10)

In this context, π(xk|y0, · · · yk−1) represents an a priori p.d.f., and π(xk|y0, · · · yk)
represents an a posteriori p.d.f. with relation to the observation Yk. Also, π(xk+1|xk)
represents the considered dynamic model, known as the Markov transition kernel,
and π(yk+1|xk+1) represents the relationship within the observed vector and the
current state, known as the likelihood function. Deterministic processes might also
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be added to the formulation without loss of validity, to account for process inputs.
In this context, they can be treated like parameters, as they do not have associated
uncertainties.

Note that, besides the assumption of an evolution–observation model, no restric-
tions are made on shape of p.d.f.s or process linearity, at the cost of working with
the original functions. From these formulas, assuming a linear Gaussian problem,
with uncorrelated noise processes, yields to the discrete-time Kalman Filter (KF)
(KAIPIO and SOMERSALO, 2005; SIMON, 2006).

The main advantage of the Kalman filter is that updating equations turn into
matricial operations. By modeling the process as (SIMON, 2006):



xk+1 = Fkxk +Gkuk + wk

yk = Hkxk + vk

E(wkw
T
j ) = Qkδk−j

E(vkv
T
j ) = Rkδk−j

E(wkv
T
j ) = 0

(2.11)

the equations for the discrete-time Kalman filter can be written as:

{
P−
k = Fk−1P

+
k−1F

T
k−1 +Qk−1

x̂−k = Fk−1x̂
+
k−1 +Gk−1uk−1

(2.12)

for the time evolution update and:


Kk = P−

k H
T
k (HkP

−
k H

T
k +Rk)

−1

P+
k = (I −KkHk)P

−
k

x̂+
k = x̂−k +Kk(yk −Hkx̂

−
k )

(2.13)

for the observation update. In this notation, superscript "−" represents a priori
estimates, superscript "+" represents a posteriori estimates, and Pk denotes the
covariance of the estimate x̂k.

This solution, although simple, relies on strong assumptions regarding process
model, so other approaches to the Bayesian filtering problem are needed. The Ex-
tended Kalman Filter (EKF) is the closest to the Kalman filter in terms of compu-
tational effort. The EKF algorithm is based on local linearization of the dynamic
model, which allows for dealing with mildly nonlinear systems, but is still bound to
the assumption of a Gaussian distribution (SIMON, 2006).

The Unscented Kalman Filter (UKF) allows for a higher-order approximation
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for states estimate and covariance based on sampling, using a set of points given by
the unscented transformation. Nonlinearity of noises can be incorporated into the
formulation by defining an augmented state vector, thus estimating states and noise
processes mean and covariance (SIMON, 2006).

The Particle Filter (PF) tackles the Bayesian filtering problem entirely by Monte
Carlo sampling, using directly the assumed Markov transition kernel and likelihood
function. This algorithm generates a cloud of points, from which state p.d.f.s can be
constructed. Some important PF algorithms are the Sequential Importance Sam-
pling (SIS) and Sequential Importance Resampling (SIR) particle filter, which differ
on the presence of a resampling step (KAIPIO and SOMERSALO, 2005).

PF algorithms tend to utilize trial distributions, in order to direct state transition
calculations to the most important transitions. This strategy is known as impor-
tance sampling (SPEEKENBRINK, 2016), which originates the name of this class
of filters. These trial distributions are used for state sampling, and these sampled
particles are then reweighted using the target distribution. Then, after obtaining the
measurement, all particles are reweighted using the likelihood function, as described
in Equation 2.9, accruing more knowledge into the particles set.

As particles are reweighted using both the likelihood function and transition ker-
nel, most of them are multiplied by a small probability. This behavior is intensified
with the successive multiplications, so that most particles weights tend to zero, and
one particle (or a very small group of particles) carries the highest weight, degener-
ating the distribution which would be reconstructed by the samples. Also, as there
is a finite number of particles, there is no guarantee that the surviving particle rep-
resents the most representative state among all possible states. This phenomenon
is known as weight degeneracy, and it can be observed in most straightforward PF
implementations, such as SIS (SPEEKENBRINK, 2016).

To counteract this, a step of resampling is generally used, generating the class
of SIR filters. Resampling consists in the obtainment of a representative set of
particles, in the sense that it preserves the statistical properties of the population,
but with equal weights. This is done generally by replicating particles with high
weights at the expense of neglecting the ones with low weights, which can lead to
a phenomenon called sample impoverishment. Sample impoverishment is generally
important in the construction of smoothing distributions, and there are ways to
avoid this issue, see SPEEKENBRINK (2016).

The main advantage of PF over UKF is the possibility of naturally constructing
non-Gaussian distributions by sampling. UKF deals with nonlinear distributions by
picking representative points in order to correctly estimate states mean and covari-
ance, but the true probability distribution is not directly addressed. In problems
such as RUL estimation, it is imperative that p.d.f.s are properly characterized, so
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that the percentiles are properly estimated and, thus, confidence regions truly reflect
available information.

2.3 Model predictive control

In the context of mutivariable control techniques, some control strategies have been
developed, with the objective of solving multiple-input multiple-output (MIMO)
control problems with significant process interactions. A popular class of con-
trol strategies in the academy is the optimal control, which comprehends Linear
Quadratic Regulator (LQG) control. Essentially, these optimal control problems
are solved offline considering a linear model as representative of the system and do
not consider process constraints (SKOGESTAD and POSTLETHWAITE, 2007).

While important in the academy, optimal control techniques were not well-
accepted on the industry, mainly due to not being able to deal with constraints
and being regarded as impractical by the industrial process control community. In-
stead, the industrial community started developing Model Predictive Control (MPC)
algorithms, such as the Dynamic Matrix Control (DMC), which grew to be the most
popular multivariable process control technique (QIN and BADGWELL, 2003).

The main idea behind any MPC algorithm is to solve a constrained optimization
problem at each time interval, in which the objective function to be minimized
measures the proximity of controlled variables to their reference trajectories, the
manipulation effort and the proximity of manipulated variables to their reference
trajectories, according to (QIN and BADGWELL, 1997):

min
∆u

J =

Np∑
j=1

||yk+j − yspk+j||
2
Qj

+
Nc−1∑
j=0

||∆uk+j||2Sj +
Nc−1∑
j=0

||uk+j − uspk+j||
2
Rj

subject to: ymink+j ≤ yk+j ≤ ymaxk+j , j = 1, · · · , Np

umink+j ≤ uk+j ≤ umaxk+j , j = 0, · · · , Nc − 1

∆umink+j ≤ ∆uk+j ≤ ∆umaxk+j , j = 0, · · · , Nc − 1

xk+j = f(xk+j−1, uk+j−1), j = 1, · · · , Np

yk+j = g(xk+j, uk+j), j = 1, · · · , Np

(2.14)

In this approach, Nc control actions are calculated at each time step, and the
first control action is implemented. As soon as another measurement is available,
the initial condition of the model is updated and a new sequence of control actions
is calculated. This strategy is called receding horizon, and allows for accounting
unmeasured disturbances and modeling errors (BORDONS and CAMACHO, 2007).
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The main advantage of MPC in comparison to classical optimal control strate-
gies for linear systems, as already said, is the capability of dealing with process con-
straints. This comes at the expense of solving an optimization problem at each time
interval (SKOGESTAD and POSTLETHWAITE, 2007). While this was a limitant
in the development of such techniques, there are now well-established optimization
algorithms, optimized routines regarding receding horizon strategies and processors
powerful enough to deal with the needed computational effort (BADGWELL and
QIN, 2015).

While in Equation 2.14 the model equations f(·) and g(·) are not specified,
they play important role in the computational efficiency of the MPC algorithm.
If the models are linear, model equality constraints can be incorporated into the
objective function and constraints, and the control problem can be rearranged into a
quadratic programming (QP) optimization problem (QIN and BADGWELL, 1997).
A classical solution of this kind is the QDMC algorithm (GARCIA and MORSHEDI,
1986), in which the model is treated in its step-response form.

Although these simple solutions are available, the models which describe the sys-
tem can be as complex as differential-algebraic equation (DAE) systems, generating
possibly non-convex optimization problems in which finding the optimal solution is
not guaranteed and online implementation might not be feasible due to computa-
tional effort. The controller designer shall make a compromise between descriptive
capability of the model and complexity of the optimization problem.

2.4 Health-aware control (HAC)

The term "health-aware control" is used to define control strategies that consider
prognostics into the control structure. Using health status as a key information to
operation planning is the main idea of the prognostics field, but using this infor-
mation into an automatic control framework remains little explored, besides being
potentially beneficial to several systems subject to degradation.

The first known appearance of the term “health-aware control” is found on ES-
COBET et al. (2012), in which the objective was to extend the lifetime of a conveyor
belt. To achieve this, a prognostics module dictates velocity set-points to a PID con-
troller. This is an example of a structure that does not rely on advanced control
techniques. In spite of this, the majority of the following health-aware control case
studies rely on MPC controllers, mostly due to its versatility.

Before this, PEREIRA et al. (2010) already implemented what can be considered
a health-aware control strategy, without explicitly using the term. In this work, an
MPC controller was used, with constraints regarding system degradation, i.e., the
system health indicator is not allowed to rise above the failure threshold in the
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predicted horizon. With this setup, the controller’s role was to prevent failure upon
the considered operational window, until preventive maintenance is done.

SANCHEZ et al. (2015) applied a health-aware control technique to a system of
wind turbines, with the objective of minimizing equipment damage and keeping it
under normal operation. In this case, an MPC with a damage term added to the
controller objective function was used. The authors reported a trade-off between
process performance and accrued equipment damage by changing the damage term
weight. This was to be expected, if one interprets this formulation as a weighted-sum
approach to a multi-objective optimization problem.

GROSSO et al. (2016) applied an Economic MPC to a model of the drinking
water network of Barcelona. In this work, the same degradation index as PEREIRA
et al. (2010) was used, also considering system health as a constraint for the MPC.
This work was treated in a simplified fashion by SALAZAR et al. (2016), in which
health was measured by reliability indexes allied to Bayesian Networks. SALAZAR
et al. (2016) reported that focusing on components reliability may not lead to overall
system reliability.

Using a somewhat unusual approach, CHOO et al. (2016) studied a smart man-
ufacturing system, modeling subsystems degradation by a Markov Decision Process.
States from subsystems were lumped in order to lower the number of states of the
system. In a later work, CHOO et al. (2017) used this model in a reinforcement
learning control framework, a growing concept in process control.

Using a robust MPC approach, VERHEYLEWEGHEN and JÄSCHKE (2017)
studied the health-aware control of a subsea compression system subject to degrada-
tion at ball bearings. In the work, the Paris law was used to predict the degradation
pattern, with an online parameter estimation to correct the model using previous
observations. The covariance matrix from this estimation result was used to infer
the predicted crack length standard deviation.

The control algorithm used in the work of VERHEYLEWEGHEN and
JÄSCHKE (2017) was the scenario-based control (LUCIA et al., 2013), in which
uncertainties are explicitly taken into account by considering a set of the uncertain
variables realizations. At each calculation of control actions, the controller must
find a solution for all system realizations at once, by weighting each realization by
its probability of occurring. This probability was obtained from the estimated crack
length standard deviation. In this control approach, health condition is considered
as a constraint, meaning that the system is prevented from breaking down in the
prediction horizon.

Using a hierarchized control framework, POUR et al. (2018) studied the control
of a pasteurization plant. The control framework comprises an optimization upper
layer, in which economic objectives and health condition are dealt, and a regulatory
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lower layer, which focused on dealing with process dynamics by tracking the reference
signals. This work also compared multilayer and single layer health-aware control
structures, and the results showed the advantages of a multilayer framework.

VERHEYLEWEGHEN et al. (2018) also used a hierarchized control framework,
but to study a subsea compression system, in which the compressor is subject to
degradation. The hierarchy designed was composed of a regulatory layer with PID
controllers, responsible for process stabilization, a supervisory layer, which deals
with compression efficiency and surge avoidance, and an economic optimization
layer, which considers maximum degradation as a constraint. In this work, health
conditions were considered to be measured with perfect accuracy, and a fixed main-
tenance time was assumed, i.e., the main concern of the higher layer is to prevent
system breakdown in the operation horizon.

2.5 Final comments

Based on the health-aware control approaches presented on the literature, a hierar-
chized approach might be beneficial to system performance. This might be due to
the necessity of not only attaining different goals at the same time but to the dif-
ference of timescales of the involved phenomena (process dynamics and equipment
degradation).

A remarkable characteristic of these works is that none assessed the issue of main-
tenance decision-making based on prognostic information. This is a vital activity in
process management, and can be done based on an estimated RUL p.d.f. considering
a confidence level. The classical control constrained by breakdown prevention should
also be kept in the formulation, which means that the different control hierarchies
shall act in different aspects of health management.

In terms of RUL p.d.f. estimation, particle filter is an adequate tool to account
for inherent uncertainties of nonlinear systems in a generic framework. Thus, it will
be the tool of choice in this work, allied to the degradation model.

This literature review has covered all theoretical aspects indispensable to this
work development, and now we can proceed to the case study modeling.
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Chapter 3

Case study modeling

In this chapter, the system model, along with the multiphase pump degradation
model, is described.

3.1 CO2 separation system

The system studied in this work is based on a process conception analyzed by
SOUZA (2018). The model used to describe the system was adapted from the
original author.

The process diagram considered in this work is reproduced in Figure 3.1, in which
some variables of the process model are also indicated.

Tbot

T2

Th,i        Ph,i

Pflash
 

Tc,o

Pc,i 

T1 

Pres, Tres, 
zi,res 

PBL,B

Pflash, Tflash,
Ni, Ue

Pd
 

Td

Th,o

PBL,T

Figure 3.1: Process diagram, emphasizing correspondent variables

Process description can be summarized as follows. The crude oil in reservoir
conditions is submitted to heat exchange with a hot stream from the process, which
provides part of the heat necessary for separation. This stream is then sent to a
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separator drum, in which the remaining heat necessary for separation is provided.
The CO2 rich stream, withdrawn at the top outlet, is cooled, elevating its density so
that it becomes adequate for pump operation. The pump elevates the fluid pressure,
allowing its reinjection, but it also raises significatively the fluid temperature. This
temperature elevation enables heat integration between this stream and crude oil
extracted from the reservoir. After heat integration, the CO2 rich stream is sent
to reinjection section. The separation drum bottom outlet stream is then sent to
topside processing. The interested reader is encouraged to consult SOUZA (2018)
and SOUZA et al. (2019) for a more detailed description of the considered process.

In order to increase model capability to describe the system, changes were made
in the valves and heat exchanger models. These changes are described in the fol-
lowing subsections.

3.1.1 Flow through valve

The model proposed by SOUZA (2018) is described by:

F =
A

MM
Kvxv

−
∫ 2

1

ρmdP

ln
ρm,1
ρm,2


1/2

(3.1)

in which F represents molar flow, A represents valve cross-section area, MM repre-
sents molecular weight, Kv represents valve constant, xv represents valve opening,
ρm represents mass density, and 1 and 2 represents inlet and outlet conditions,
respectively. This model, while trying to account for compressibility effects, is in-
determinate for incompressible fluids. A more traditional approach, followed in this
work, is to describe the molar flow through the valve by:

F =
A

MM
Kvxvρ̄m

√
∆P

ρ̄m
(3.2)

Comparing this to Equation 3.1, the logarithmic term is omitted and the average
density ρ̄m may be calculated by:

ρ̄m =
−1

∆P

∫ 2

1

ρmdP (3.3)
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3.1.2 Heat exchanger

SOUZA (2018) models a counter-current heat exchanger, schematized in Figure 3.2,
using an approximate stationary solution, adding an estimate of the thermal holdup
of the system, as described in eqs. (3.4a) to (3.4d) Equation 3.4.

Fc 
 

Tc,o, Hc,oFh 
 

Th,o, Hh,o

Fc 
 

Tc,i, Hc,i 

Fh 
 

Th,i, Hh,i

Figure 3.2: Heat exchanger scheme, emphasizing model variables



dEc
dt

= Fc(Hc,i −Hc,o) + UA∆Tlm

dEh
dt

= Fh(Hh,i −Hh,o)− UA∆Tlm

Ec = Vc
ρc,i + ρc,o

2

Hc,i +Hc,o

2

Eh = Vh
ρh,i + ρh,o

2

Hh,i +Hh,o

2

(3.4a)

(3.4b)

(3.4c)

(3.4d)

The stationary solution is valid under the assumption that fluid properties do
not change significantly with temperature (INCROPERA, 2006). From this solution
arises the logarithmic mean of temperature difference, ∆Tlm, defined for a counter-
current exchanger as:

∆Tlm =
∆T2 −∆T1

ln(∆T2/∆T1)
,

{
∆T1 = Th,o − Tc,i
∆T2 = Th,i − Tc,o

(3.5)

While this solution is valid at process design, some flaws are concerning. The
heat transfer rate, modeled as Q = UA∆Tlm, is only valid at the stationary case.
In case of temperature change at one of the inlets, for example, this rate would
not have precise physical meaning until a new steady state is established. This

16



behavior is further aggravated in a temperature flip, in which outlet and inlet tem-
perature differences have opposite signals, and the logarithmic mean cannot even be
computed.

In order to evade these issues, the model proposed in this work consists of dis-
cretizing the heat exchanger in theoretical stages, as depicted in Figure 3.3.

Fc 
 

Tc,o, Hc,o

Fh 
 

Th,o, Hh,o

Fc 
 

Tc,i, Hc,i 

Fh 
 

Th,i, Hh,i

Vc,1

Vh,1

Vc,2

Vh,2

...

...

Vc,n

Vh,n

Figure 3.3: Heat exchanger discretization scheme, emphasizing model variables

By performing energy balances at each theoretical stage, the following equations
apply:



dEc,k
dt

= Fc(Hc,k−1 −Hc,k) + UAk(Th,k − Tc,k)

dEh,k
dt

= Fh(Hh,k+1 −Hh,k)− UAk(Th,k − Tc,k)

Ec,k = Vc,kρc,kHc,k

Eh,k = Vh,kρh,kHh,k

, k = 1, · · · , nst

(3.6a)

(3.6b)

(3.6c)

(3.6d)

with nst being the number of theoretical stages after discretization. The boundary
conditions, respecting discretization indices, are Tc,i = Tc,0, Tc,o = Tc,n, Th,i = Th,n+1

and Th,o = Th,1.
By joining these changes with the equations proposed by SOUZA (2018), the

complete process model can be obtained. The complete equation system, along
with the numerical strategy to solve it, is described in the next subsection.

3.1.3 The equation system

System modeling results in a DAE system. Many algebraic constraints are explicit
in some variable, so the resulting system was written in a way that minimizes the
number of state variables.

The resulting system is written as:

dEc,k
dt

= Fin(Hc,k−1 −Hc,k) + UAk(Th,k − Tc,k), k = 1, · · · , nst (3.7a)
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dEh,k
dt

= Fv(Hh,k+1 −Hh,k)− UAk(Th,k − Tc,k), k = 1, · · · , nst (3.7b)

Ec,k = Vc,kρc,kHc,k, k = 1, · · · , nst (3.7c)

Eh,k = Vh,kρh,kHh,k, k = 1, · · · , nst (3.7d)

dNi

dt
= Finzi,res − Fvνi − Flαi − Fwγi, i = 1, · · · , nc (3.7e)

dU e

dt
= FinHF − FvHv − FlHl − FwHw +Qaqu (3.7f)

U e + PflashVflash
Ntot

= βνHv + βαHl + βγHw (3.7g)

Vflash
Ntot

= βνV̄v + βαV̄l + βγV̄w (3.7h)

H(T1, Pc,i, zres) = H(Tres, Pres, zres) (3.7i)

H(Td, Pd,ν)−H(T2, Pflash,ν) =

∫ Pd

Pflash

V̄ dP (3.7j)

W = Fv

{
MM(ν)

[(
FvV̄d
Av,t

)2

−
(
FvV̄s
Av,t

)2
]

+

∫ Pd

Pflash

V̄ dP

}
(3.7k)

H(Th,i, Ph,i,ν) = H(Td, Pd,ν) (3.7l)

Qresf = Fv [H(T2, Pflash,ν)−H(Tflash, Pflash,ν)] (3.7m)

H(Tbot, PBL,B, l) = H(Tflash, Pflash, l) (3.7n)

with the state vector being x = [Ec, Eh, Tc, Th, N, U, Tflash, Pflash, T1, Pd, T2, Td, Th,i, Tbot],
and input vector being u = [xv,t, xv,b, xv, Qaqu, Qresf ,W ].

Other variables presented in the equations are calculated directly as function of
states and inputs, according to the following equations:

[βν , βα, βγ,ν,α,γ] = Flash3P(Tflash, Pflash, z), zi =
Ni

Ntot

, Ntot =
nc∑
i=1

Ni

li =
βααi + βγγi
βα + βγ

, Fl =
βαFl,tot
βα + βγ

, Fw = Fl,tot − Fl, HF = H(Tc,o, Pflash, zres)
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Hv = H(Tflash, Pflash,ν), Hl = H(Tflash, Pflash,α), Hw = H(Tflash, Pflash,γ)

V̄v = V̄ (Tflash, Pflash,ν), V̄l = V̄ (Tflash, Pflash,α), V̄w = V̄ (Tflash, Pflash,γ)

Ph,i = ∆Ph + PBL,T , Pc,i = ∆Pc + Pflash

Ph,k = Ph,i +

(
k − 1

2

nst

)
∆Ph, Pc,k = Pc,i +

(
nst − k + 1

2

nst

)
∆Pc, k = 1, · · · , nst

Hh,k = H(Th,k, Ph,k,ν), Hc,k = H(Tc,k, Pc,k, zres), k = 1, · · · , nst

ρh,k =
1

V̄ (Th,k, Ph,k,ν)
, ρc,k =

1

V̄ (Tc,k, Pc,k, zres)
, k = 1, · · · , nst

Tc,0 = T1, Th,n+1 = Th,i, Tc,o = Tc,n

V̄d = V̄ (Td, Pd,ν), V̄s = V̄ (T2, Pflash,ν), ρm(T, P, ξ) =
MM(ξ)

V̄ (T, P, ξ)

Fin =
Av,in

MM(zres)
Kv,inxv

[
−
∫ Pc,i,T1

Pres,Tres

ρmdP

]1/2

Fv =
Av,t

MM(ν)
Kv,txv,t

[
−
∫ Ph,i,Th,i

Pd,Td

ρmdP

]1/2

Fl,tot =
Av,b

MM(l)
Kv,bxv,b

[
−
∫ PBL,B ,Tbot

Pflash,Tflash

ρmdP

]1/2

All integrals were evaluated by the trapezoidal rule, for simplicity. Flash cal-
culations were performed using the "Flash3P" algorithm, available in CO2Therm
package. Thermodynamic properties (molar enthalpy H and molar volume V̄ ) were
evaluated as the weighted sum of the respective properties at each existing phase.
Thus, it is required to perform a flash calculation at each thermodynamic property
evaluation. Details of the thermodynamic package can be found at SOUZA (2018).

Output variables from the model were selected as y =

[Fin, Pflash, Tflash, T2, Fv, Fl,tot, xCO2 , hflash], in which hflash is the flash drum
liquid volumetric fraction, calculated by:

hflash =
(βαV̄l + βγV̄w)Ntot

Vflash
(3.8)
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3.2 Degradation model

To describe multiphase pump wear, a novel discrete-time stochastic model was pro-
posed:

λk+1 = λk + ∆fk λ
n
k , ∆fk ∼ Gamma(θ1Wk∆t, θ2) (3.9)

with the p.d.f. corresponding to a Gamma(k, θ) distribution being defined by:

f(x|k, θ) =
xk−1

Γ(k)θk
e
−
x

θ (3.10)

In this model, λk represents the degradation state at time k. The proposed
degradation model is based on the Paris law for crack growth and Gamma processes.
The parameter ∆fk, which represents crack growth rate in Paris law, is modelled
as a Gamma-distributed random variable, with its shape parameter proportional to
pump power.

Although being based on the Paris law, the state λ aims to describe the overall
equipment degradation, lumping all possible degradation processes into one model.
With this, it is possible to ally the simplicity and versatility of Paris law with the
stochastic nature of Gamma processes.

Also, to simulate noise in the measurements, the observed variable is the equip-
ment wear corrupted by white noise, according to:

ηk = λk + εk, εk ∼ N (0, σ2) (3.11)
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Chapter 4

Methodology

All simulations developed in the course of this work were carried out in Python.
While numerical packages from the Scipy (JONES et al., 2001) and Assimulo (AN-
DERSSON et al., 2015) libraries were used, the formulation of control and state
estimation problems was made by the author, generating the packages control_tools
and PF_tools. The control_tools package features classes for building dynamic
models, controllers and state estimators. The PF_tools package features the parti-
cle filter implementation described in Section 4.6.

4.1 Model implementation

Model implementation was carried out in Python. The CO2Therm package devel-
oped by SOUZA (2018) was interfaced to Python using the Boost:Python library.
DAE integration was performed using IDA algorithm from Assimulo package. Sam-
pling time for the simulation was chosen as 1 second.

Equipments were first simulated separately, in order to obtain accurate values
for temperatures and densities. Equations used were Equation 3.7i, Equation 3.7j,
Equation 3.7l and Equation 3.7n. Valve openings were then determined a priori,
based on the obtained temperatures and the flash results for reservoir composition
and drum conditions, thus solving mass balance equations and drum volume alge-
braic constraint. For this, entrance valve opening was specified as xv = 0.5.

Then, a reference steady state was determined by solving the remaining
system equations, with variables normalized by their initial guess, using the
scipy.optimize.least_squares algorithm (tolerance xtol = 5×10−6), with parameters
and fixed variables given by Table 4.1 and Table 4.2, respectively. The free variables
wereDoF = [Ec, Eh, Tc, Th, U

e, T1, Td, Th,i, Tbot,W,Qaqu, Qresf ]. Heat exchanger vol-
umes were estimated considering flows from SOUZA (2018) and a residence time of
6 seconds on both sides.
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To avoid divergences, constraints were imposed on the optimization problem. All
variables were allowed to vary 20% of their initial guess.

Table 4.1: Parameters used in the simulation

Parameter Value Unit Description

nst 3 - Number of heat exchanger theoretical stages
Kv,in 0.0982 - Inlet valve constant
Kv,t 0.0564 - Top valve constant
Kv,b 0.1589 - Bottom valve constant
∆Ph 0 MPa Pressure drop of hot fluid (top stream)
∆Pc 0 MPa Pressure drop of cold fluid (inlet stream)
UA 0.153 MW/K Overall heat transfer coefficient
Vflash 31.8086 m3 Flash drum volume
Vc 1.806 m3 Heat exchanger cold side volume
Vh 0.387 m3 Heat exchanger hot side volume

Table 4.2: Fixed variables used in the simulation

Parameter Value Unit Description

H2O 0.0100 -
CO2 0.7500 -
CH4 0.0480 -

zres F1 0.0543 - Reservoir composition
F2 0.0443 -
F3 0.0520 -
F4 0.0413 -

Tres 313.15 K Reservoir temperature
Pres 15 MPa Reservoir pressure
PBL,B 9 MPa Pressure at bottom-side battery limit
PBL,T 59 MPa Pressure at top-side battery limit
Tflash 330.25 K Flash drum temperature
Pflash 10 MPa Flash drum pressure
Pd 60 MPa Pump discharge pressure
T2 303.65 K Condenser output temperature

To refine the previous solution with relation to the integrator characteristic at the
flash drum level, bottom valve opening xv,b was coupled to the output hflash with
a proportional controller, aiming to stabilize the system. A closed-loop dynamic
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simulation was then performed, and the obtained ending value of xv,b is the value
corresponding to the true steady state. Controller gain used was −10 (dimension-
less), and the system was simulated until 5000 s. Open-loop dynamic simulations
were then made to confirm that a steady state was obtained.

In order to implement step disturbances into the system, a regularization function
was used. The function used to approximate the Heaviside function (also known as
the unit step function) is given by:

Hap(t) =

1 + tanh

[
R

(
2

t

∆tset
− 1

)]
2

(4.1)

in which ∆tset is the settling time of the approximate step, and R is its regularization

factor. This function was designed to be valued
1− tanhR

2
when the approximate

step begins (t = 0) and valued
1 + tanhR

2
when the approximate step is established

(t = ∆tset). The value of R was set to make
1− tanhR

2
= 10−4.

4.2 Plant stabilization

In order to stabilize plant dynamic behavior, a PI controller for the pair xv,b x hflash
was implemented together with the process model. The transfer function for this
input-output pair was estimated from step disturbances of ±1% and ±5% of the
steady-state xv,b value. The controller was then tuned using SIMC rules (SKOGES-
TAD, 2003), due to its superiority in disturbance rejection, with τc = 10 seconds.
With this, the input vector was changed to u = [xv,t, hsp, xv, Qaqu, Qresf ,W ], a new
state Ψ representing the integral term was introduced, and xv,b became calculated
by the explicit control law:


xv,b = kc

[
(hsp − hflash) +

Ψ

τI

]
dΨ

dt
= hsp − hflash, Ψ(0) =

xsteadyv,b τI

kc

(4.2)

in which xsteadyv,b is the value for xv,b calculated in the last section and kc and τI are
PI controller parameters.
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4.3 Model identification

Considering the stabilized plant and its output variables, from the reference steady
state, the system was identified using positive and negative steps of 1% and 5%
of the nominal input values, except for the input hsp, which was not considered
as a manipulated variable for the predictive controller, and the output variable
hflash, which is already controlled. From these responses, continuous-time transfer
functions were fitted to the data. Parameter estimation was performed using the
scipy.optimize.least_squares algorithm (tolerance xtol = 10−8), with continuous-
time transfer function responses being evaluated by the scipy.signal.lsim algorithm.
Identified transfer functions were of the “zpk ” form:

G(s) = k

∏
i

(s− zi)∏
i

(s− pi)
(4.3)

The number of poles and zeros was determined by inspection of step response
behavior, admitting the minimal number which could explain the dynamic behavior.

4.4 Closed loop simulation

The identified model was transformed to a continuous state-space realization, using
a diagonal canonical form (OGATA, 2010), which was then discretized (SIMON,
2006) to a sampling time of 10 seconds, generating the following dynamic model:

{
xk = Fxk−1 +Guk−1

yk = Cxk +Duk

(4.4)

This discrete model was then used as the internal model to a MPC controller.
To compensate for the model-plant mismatch, a Kalman Filter was used to estimate
the state bias, w, which was used to correct current state estimate and all states in
the prediction horizon.
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The MPC optimization problem was formulated as:

min
∆uk+j

J =

Ny∑
i=1

Np∑
j=1

qi
2(yi,k+j − yspi,k+j)

2 +
Nu∑
i=1

Nc−1∑
j=0

si
2(∆ui,k+j)

2

subject to: umin
k+j ≤ uk+j ≤ umax

k+j , j = 0, · · · , Nc − 1

−∆umax
k+j ≤∆uk+j ≤∆umax

k+j , j = 0, · · · , Nc − 1

xk+j = Fxk+j−1 +Guk+j−1 +wk, j = 1, · · · , Np

yk+j = Cxk+j +Duk+j , j = 1, · · · , Np

(4.5)

in which wk represents the model correction at the time step k, and qi and si repre-
sent controlled and manipulated variables weights, respectively. This optimization
problem was solved using the scipy.optimize.minimize routine, using the SLSQP
method (tolerance ftol = 10−6). Model constraints were treated inside the objec-
tive function calculation, and inequality constraints regarding manipulated variables
were explicited to the algorithm.

Using the identified linear model, a discrete Kalman Filter was implemented to
perform state estimation and model update. This was performed using the following
equations for temporal and measurement updates:

{
P−

k = FP+
k−1F

T +Q

x̂−
k = F x̂+

k−1 +Guk−1 +wk−1

(4.6)



Kk = P−
k C

T (CP−
k C

T +R)−1

P+
k = (I −KkC)P−

k

ϕk = Kk(yk −Cx̂−
k −Duk)

x̂+
k = x̂−

k +ϕk

wk = wk−1 +ϕk

(4.7)

The last equation represents the model correction update, which was also based
on the filter innovations ϕk.

Using this framework, different simulations were performed to evaluate controller
and filter tuning. Controlled variables were selected as [Fin, Pflash, Tflash, T2], and
manipulated variables were selected as [xv,t, xv, Qaqu, Qresf ,W ].
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4.5 Degradation model implementation

The model described in Section 3.2 was implemented using the parameters listed
on Table 4.3. Sampling of random variables was performed using the scipy.stats
algorithms.

Table 4.3: Degradation model parameters

λ0 ∆t θ1 (MJ−1) θ2 n σ

0.001 0.05 year 5× 10−7 0.01 0.7 0.0001

Simulations were made to check if the expected behavior was captured by the for-
mulation. For this, different regimes of pump power manipulation were considered,
with repetitions to obtain different realizations of the stochastic process.

4.6 Crack length estimation

A particle filter was implemented in order to estimate statistical information regard-
ing crack length in an online environment. As the model described in Equation 3.9
is stochastic, realizations of the random parameters are generated, and states are
propagated considering the likelihood of the respective realization. The algorithm
described by SPEEKENBRINK (2016) for a generic particle filter was adapted to
the necessities of this implementation, leading to Algorithm 1. All statistical meth-
ods, such as sampling of random variables and calculations of p.d.f.s, were performed
using the scipy.stats algorithms.

In this algorithm, µ represents the assumed initial distribution for the system
state, X i

k and wik−1 represent the i-th particle and its correspondent weight at time k,
yk represents system measurement at time k, ψj represents probability distribution
of j-th parameter conditioned to the state and previous parameters, f represents
the state evolution law, g represents the likelihood function, Npart is the number of
particles and c is the filter resampling rate. The resampling algorithm used was the
systematic resampling, described in SPEEKENBRINK (2016).

Algorithm 1 describes both SIS and SIR filters, depending on the adopted re-
sampling rate (c). Both filters were tested with Npart = 100 in order to evaluate
the quality of the obtained p.d.f. Resampling rate for the SIR filter was c = 0.5,
and for the SIS filter c = 0. Particles at time k = 0 were sampled from a normal
distribution with mean 0.001 and standard deviation 10−5.

Using the filter results, a prediction of RUL was made at each measurement,
considering the planned horizon for the manipulated variable. This was compared
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Algorithm 1: Particle filter algorithm
Data: [X i

k−1, w
i
k−1], yk, ψj (j = 1, · · · , nψ), f , g, Npart, c

Result: [X i
k, w

i
k]

// A priori calculations

1 for i← 1 to Npart do

2 piψ ← 1; // initialize transition probability

3 for j ← 1 to nψ do

4 Sample Ψi
k−1,j ∼ ψj(pj|X i

k−1,Ψ
i
k−1,1, · · · ,Ψi

k−1,j−1);
5 piψ ← piψψj(Ψ

i
k−1,j|X i

k−1,Ψ
i
k−1,1, · · · ,Ψi

k−1,j−1);

6 end

7 X i
k ← f(X i

k−1,Ψ
i
k−1,1, · · · ,Ψi

k−1,nψ
); // propagate particle in

sampled path

8 wik ← wik−1p
i
ψ; // update weight with probability of sampled path

9 end

10 ξ ←
∑Npart

i=1 wik;
11 wik ← wik/ξ, i = 1, · · · , Npart;

// A posteriori calculations

12 wik ← wikg(yk|X i
k), i = 1, · · · , Npart;

13 ξ ←
∑Npart

i=1 wik;
14 wik ← wik/ξ, i = 1, · · · , Npart;
15 Neff ← 1/

∑Npart
i=1 (wik)

2;
16 if Neff < cNpart then

17 [X i
k, w

i
k]← Resample(X i

k, w
i
k);

18 end
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to the real end-of-life time in the simulation of the specific realization. The threshold
value for the health indicator was fixed at λlim = 1.0.

4.7 Health-aware control implementation

Combining the proposed methodologies from Section 4.4 and Section 4.6, a HAC
structure was implemented. It consists of an MPC, with objective function written
as:

JHAC = −wHACRUL+

Ny∑
i=1

Np∑
j=1

qi
2(yi,k+j − yspi,k+j)

2 +
Nu∑
i=1

Nc−1∑
j=0

si
2(∆ui,k+j)

2 (4.8)

with wHAC being the weighting factor between RUL extension and control objectives,
and RUL being the average of RUL between the propagated particles.

Due to the randomness of the model proposed in Equation 3.9, it cannot be
directly used in a deterministic optimization problem. As such, the strategy used
to calculate RUL during the optimization procedure is as given in Algorithm 2.

In the algorithm, q(i)
k represents the quantile associated with the k-th evolution of

the i-th particle, Wend represents pump power at the end of the control horizon, and
Q(·) represents the inverse cumulative distribution function (c.d.f.) associated with
the distribution in Equation 3.9, depending on the pump power which varies along
the optimization. The set of q(i)

k is sampled from a standard uniform distribution,
and kept constant in the optimization course.

Due to the difference between timescales, Wend was considered as the dominant
effect in the degradation pattern, and the variation during the control horizon can
be neglected. The effect of model-plant mismatch was evaluated by changing the
process model between the model described in Section 3.1 and the MPC internal
model itself. The influence of the number of particles (Npart) and the value of wHAC
over the closed-loop response was also evaluated.
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Algorithm 2: RUL calculation algorithm

Data: λ(i)
0 (i = 1, · · · , Npart), λlim, q

(i)
k (i = 1, · · · , Npart, k = 0, · · · ), Wend

Result: RUL

1 for i← 1 to Npart do

2 k ← 0 ;
3 while λ

(i)
k < λlim do

4 ∆f
(i)
k ← Q(q

(i)
k ,Wend) ;

5 λ
(i)
k+1 ← λ

(i)
k + ∆f

(i)
k (λ

(i)
k )n ;

6 k ← k + 1 ;

7 end

8 RUL(i) ← k − λ
(i)
k − λlim

λ
(i)
k − λ

(i)
k−1

;

9 end

10 RUL←
∑Npart

i=1 RUL(i)/Npart ;
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Chapter 5

Results and discussion

5.1 Model implementation

Some commentary about the replacement of valve flow equations (Subsection 3.1.1)
is necessary. Equations developed by SOUZA (2018) were tested in the inlet con-
ditions (313.15 K, 15 MPa), along with the proposal of this work. A sensitivity
analysis was made with relation to the discharge pressure and number of integral
quadrature points, whose results are shown in Figure 5.1 and Figure 5.2.
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Figure 5.1: SOUZA (2018) valve model sensitivity analysis - before model correction

In the original model proposed by SOUZA (2018), higher discharge pressure,
and consequently lower pressure difference in the valve, leads to a higher molar
flow, which is physically unrealistic. This was due to the logarithmic term in the
denominator, whose removal led to a more realistic response.

The number of quadrature points was considered to have little significance in the
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Figure 5.2: Proposed valve model sensitivity analysis - after model correction

flow results. As the system had already a reasonable number of variables and each
quadrature point adds another state to the system for each valve, the trapezoidal
rule (no internal quadrature points) was adopted.

In terms to the replacement of the heat exchanger model, some change on the sta-
tionary value is to be expected. The approach by theoretical stages underestimates
heat transfer, in the sense that stage mixture diminishes temperature difference of
cold and hot currents. When the number of stages approaches infinity, the solution
will tend to the true temperature profile along the axis. But, in order to keep a
reasonable number of variables, a small stage number was chosen, at the cost of
accuracy when comparing to an ideal counter-current heat exchanger.

Regarding the characteristics of the mathematical system described in Equa-
tion 3.7, a sparsity pattern of the iteration matrix was generated, and is presented
in Figure 5.3. Each matrix line represents a variable, and each matrix column rep-
resents an equation from the DAE system, referenced by its subindex (e.g., the last
column refers to Equation 3.7n).

It can be seen that the vast majority of equations depend on the flash drum
holdup, which is due to the energy recycle step. This makes the sequential solu-
tion difficult, so the use of a simultaneous approach to the solution of the system
equations is justified.

In order to perform dynamic simulation of a process described by a DAE system,
it is necessary to obtain a reference steady state. Even though SOUZA (2018) de-
scribes a reference steady state, the changes made to the model made a new station-
ary simulation needed. Due to numerical issues involving flash drum mass balances,
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Figure 5.3: DAE system sparsity pattern (variables vs. equations in Equation 3.7)

the equation system described in Equation 3.7 could not be solved simultaneously.
This motivated the use of a sequential strategy to the stationary simulation.

The first step to obtain the steady-state solution was to solve mass balances at
the drum, given its operating temperature and pressure. If a inlet flow is specified,
and perfect separation is assumed, it is known that stationary outlet flow solutions
ought to be related to the phase fractions obtained at the flash calculation, and
drum compositions ought to be equal to the inlet compositions.

Using this information, steady-state valve openings could be obtained, as pre-
sented in Table 5.1:

Table 5.1: Steady state valve openings

xv (specified) xv,t xv,b

0.5 0.49828 0.50128

After these calculations, the next step was to find a reference steady state, cor-
responding to system design. This is not a trivial task, due to the numerical issues
arisen by scale difference of the variables. Variable normalization was performed, to

32



address this issue.
The initial guesses used in the stationary simulation are given by Table 5.2.

These estimates were obtained by simulating each equipment separately, with the
information from Table 4.1 and Table 4.2. The initial guess for the drum internal
energy was obtained using mixture molar enthalpy. The heat exchanger energy
holdup was obtained from the temperature estimate.

Table 5.2: Initial guesses for the free variables used in the stationary simulation

Parameter Value Unit Description

1 314.25 K
Tc,k 2 315.83 K Cold side stage temperature

3 318.12 K
1 328.05 K

Th,k 2 334.51 K Hot side stage temperature
3 343.21 K

T1 312.95 K Inlet valve discharge temperature
Td 354.70 K Pump discharge temperature
Th,i 354.87 K Top valve discharge temperature
Tbot 329.45 K Bottom valve discharge temperature
W 4.259 MW Pump power
Q̇aqu 5.478 MW Drum heating rate
Q̇resf -5.5 MW Condenser cooling rate

To confirm that the obtained solution is adequate, dynamic simulations were
performed using the stationary simulation solution as the initial condition. If the
solution is adequate, time variation of states, and consequently of outputs, is negli-
gible. The results of such dynamic simulation are presented in Figure 5.4.

This simulation shows that the obtained solution is close to a steady state, but
there is still some time variation in flash drum liquid occupied volume, due to nu-
merical errors associated with the simulation (possibly in the flash calculations).
Also, the integrating nature of the process, evidenced in this simulation, amplifies
errors of steady-state calculations in dynamic simulations. Therefore, the accurate
simulation of the process requires assessment of this issue.

As there is no specific equation in the system described in Equation 3.7 di-
rectly associated with this output variable, the adopted solution was to introduce
a proportional controller with pairing xv,b x hflash, which is known to stabilize the
dynamic behavior, and obtain the steady-state value as the resting position of xv,b.
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Figure 5.4: Dynamic simulation of the brute steady state

The chosen tuning to this calculation is arbitrary, and the steady-state value can be
obtained regardless of it, as long as enough simulation time is used.

This closed-loop dynamic simulation is presented in Figure 5.5. It can be seen
that a offset is produced, due to the absence of integral action in the controller.
Despite that, stable behavior is observed, and a steady state is achieved. This
steady state was then simulated in an open-loop configuration, to confirm that this
solution is acceptable.

The dynamic simulation using the refined steady state as initial condition is pre-
sented in Figure 5.6. It can be seen that the temporal variations have been reduced
with the solution refinement, and the numerical residue, although still present, can
now be considered acceptable.

Table 5.3 presents the steady-state results, after refinement. This result was
used as the initial condition for all following dynamic simulations, along with values
described in Table 4.1 and Table 4.2.

Other important study to be done before step simulations are carried out is that
regarding the regularization function (Equation 4.1) parameter ∆tset. Since R is
related to the tolerance of input variable at the step start and end, it was kept
constant along all simulations. Figure 5.7 presents a sensitivity analysis of ∆tset to
an arbitrary step.

The difference of responses is perceptible for ∆tset = 10 s, even for the input
profile. The gain is essentially the same for all simulations, and the differences
are limited to the dynamic behavior. A zoomed view from step start is shown at
Figure 5.8.

The difference of input profiles is not visible for ∆tset < 1 s, due to sampling
time. But, as sampling time does not affect simulation precision, a difference between
profiles for ∆tset = 1 s and ∆tset = 0.1 s can be seen in the third decimal place.
Another reduction in ∆tset did not produce significant effects on the step response,
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Figure 5.6: Dynamic simulation of the refined steady state
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Table 5.3: Steady state results

Parameter Value Unit Description

1 -6.4567 107 J
Ec,k 2 -6.0425 107 J Cold side energy holdup

3 -5.4825 107 J
1 -1.4160 107 J

Eh,k 2 -1.2629 107 J Hot side energy holdup
3 -1.0557 107 J
1 314.132 K

Tc,k 2 315.602 K Cold side stage temperature
3 317.773 K
1 326.389 K

Th,k 2 332.874 K Hot side stage temperature
3 342.018 K

H2O 2.1638 kmol
CO2 162.3078 kmol
CH4 10.3863 kmol

N F1 11.74932 kmol Reservoir composition
F2 9.5855 kmol
F3 11.2516 kmol
F4 8.9364 kmol

U e -2.2175 109 J Flash drum extensive internal energy
T1 312.971 K Inlet valve discharge temperature
Td 354.702 K Pump discharge temperature
Th,i 354.874 K Top valve discharge temperature
Tbot 329.368 K Bottom valve discharge temperature
W 4.246 MW Pump power
Q̇aqu 5.676 MW Drum heating rate
Q̇resf -5.462 MW Condenser cooling rate
xv 0.5 - Inlet valve opening
xv,t 0.49828 - Top valve opening
xv,b 0.50131 - Bottom valve opening
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therefore ∆tset was fixed at 0.1 s for all dynamic simulations.

5.2 Plant stabilization

The open-loop system exhibits an integrating behavior, due to the presence of a
drum in which both outlets and inlet can be freely manipulated. As such, in order
to use a predictive control strategy, it is necessary to modify the system dynamics
with the introduction of a controller, so that the system becomes stable. SOUZA
(2018) successfully stabilized the system by implementing a PI controller with the
pairing xv,b x hflash, so it was also used in this work.

The SIMC rules of PID tuning for integrating systems are given by Table 5.4.

Table 5.4: SIMC PID tuning (SKOGESTAD, 2003)

G(s) kc τI τD

kp
s

1

kpτc
4τc -

Identification results for the pair xv,b x hflash are displayed in Figure 5.9. The
identified transfer function is presented on Equation 5.1, consisting of an integrating
system, with some dynamic compensation.

G(s) =
−0.0032126(75.59s+ 1)

s(16.61s+ 1)
(5.1)

In order to use the SIMC rules for an integrating system, the lead-lag dynamic
compensation term was neglected. The proposed tuning was then tested in servo
and regulatory simulations, presented in Figure 5.10 and Figure 5.11, respectively.
Regulatory simulation was performed with a step disturbance on reservoir pressure
of +1 MPa.

It can be seen that, due to the presence of integral action in the controller, offset is
eliminated in both servo and regulatory simulations. In servo simulation, setpoint is
changed by manipulating valve opening, but the valve returns to its resting position
as time passes, which is compatible with integrating systems behavior, and reinforces
the discussion presented regarding Figure 5.5. On the other hand, the valve resting
position is changed in the presence of input disturbances.
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Figure 5.7: Effect of ∆tset in simulation results
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Figure 5.8: Effect of ∆tset in simulation results - zoomed view
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Figure 5.9: Identification results for the pair xv,b x hflash

5.3 Model identification

The different input steps were simulated, in order to obtain representative dy-
namic data from the considered stationary point. Using these step response data,
continuous-time transfer functions were then estimated. These results are fully pre-
sented in Appendix A, and some important remarks are brought to attention here.

System nonlinear nature is explicited by the identification of several input-output
pairs, e.g. Figure A.1. Although the dynamic behavior is well captured, static gain
is not constant, specially for high step magnitudes.

Flow produced by a valve is intimately related to its opening. Dynamically,
the flow has a instantaneous response to the valve opening. This was observed in
all valve opening-flow pairs (Figure A.5, Figure A.8). Due to this instantaneous
behavior, these transfer functions had to have the same number of poles and zeros.
This was taken into account when proposing a transfer function for not only these
cases, but other cases with an immediate response, such as temperatures involved
with the instantaneous condenser.

Identification results, in form of zeros, poles and gain, are shown in Table A.1,
for the sake of space.
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Figure 5.10: Servo test for stabilized process
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Figure 5.11: Regulatory test for stabilized process
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5.4 Closed loop simulation

The model predictive control is a centralized control strategy, and its main appeal
lies in interacting systems. By using an internal model, this control strategy tries
to account for interaction, designing optimal control actions planning. As such, it
was necessary to identify a simple model which represents the dynamic behavior of
the system.

Continuous-time transfer functions were estimated due to their conciseness in
representing dynamic behavior. However, the use of a Laplace-domain model for
predictive control and state estimation is not straightforward. For this reason, this
model was converted to a discrete state-space formulation.

The first step was to write the continuous-time transfer functions into a
continuous-time state space form. As the number of freedom degrees rises in the
state-space representation, there are infinite forms of representing a transfer function
as a state-space system. Thus, a form can be chosen so that specific characteristics
of the system can be exploited.

The chosen continuous state-space formulation was the diagonal canonical form.
Any transfer function can be written in this form, as long as there are not any poles
with multiplicity greater than 1. The main advantage of this form is that the state
matrix is diagonal, with its diagonal being composed by the transfer function poles.
OGATA (2010) describes how to write this state-space form for a SISO transfer
function, relying on its partial fractions decomposition. This decomposition can be
easily performed using the residue theorem (KREYSZIG et al., 2011).

In order to extend this concept for MIMO systems, matrices were simply con-
catenated, using blocks of zeros when necessary. As each transfer function has its
own set of poles, a diagonal state matrix is still possible, as long as all other matrices
are assembled accordingly.

After the continuous-time state-space model is obtained, the next necessary step
is the discretization of the equation system. Even though this step is not necessar-
ily needed, as the Kalman Filter theory was developed also for continuous-discrete
systems (see Kalman-Bucy filtering, SIMON (2006)), the use of a continuous-time
model implies on the integration of an ODE system. Discrete-time systems, on the
other hand, incorporate the result of analytical integration of the system, avoiding
the use of such numerical integrators. This is specially advantageous in the imple-
mentation of MPCs, which require intensive evaluations of the model. Discrete-time
models can also be incorporated in the MPC formulation, generating a QP opti-
mization problem (TRIERWEILER and SECCHI, 2000).

The discretization of a linear state-space system, as described by SIMON (2006),
requires the inversion and exponentiation of the state matrix. As such, good condi-
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tioning of state matrix is necessary. This is guaranteed by the use of the diagonal
canonical form.

Some closed-loop simulation results are now presented. For the base case, tun-
ing parameters for the controller described by Equation 4.5 were as presented in
Table 5.5. For the filter, state covariance matrix Q was set to I, measurement co-
variance matrix was set to a diagonal matrix composed by the square of 0.1% of the
output steady-state value, and initial covariance matrix P+

0 was set to 100I, I being
an appropriately sized identity matrix.

Table 5.5: Controller tuning parameters for the base case (units consistent with
values of Table 4.2 and Table 5.3)

qi si Np Nc

Fin Pflash, Tflash, T2

10 1 10 75 10

The simulation of a set-point change in the flash drum pressure is presented in
Figure 5.12. System settling occurred at around 600 seconds, which justifies the
chosen prediction horizon. This set of parameters results in a good balance between
manipulation effort and settling time, as manipulated variables are smoothly guided
to their final values.

It is necessary to emphasize the role of Kalman filtering in the quality of closed-
loop response. Not only KF is responsible for correct state estimation, it is also
responsible for model correction along the prediction horizon. To illustrate this,
consider the simulation in Figure 5.13, in which KF was not used. The internal
model attains the desired setpoint values, but due to modeling errors, the actual
process does not attain these values, and an offset is produced.

This result illustrates the importance of state estimation in process control. Now
take the simulation in Figure 5.14, in which KF is used for state estimation, but the
model correction update in Equation 4.7 is not implemented.

Even though state estimation is performed reasonably, as can be seen from the
proximity of internal model and process output values, the internal model remains
predicting the same steady state as in Figure 5.13, leading to offset. This means
that state correction is not enough to account for modeling errors. As the steady
state itself needs to be corrected, KF calculations should also be accounted in the
dynamic model, in similar philosophy of the feedback strategy in DMC.

In the sense of controller tuning, a more aggressive configuration was tested,
using the parameters given in Table 5.6.

44



0 250 500 750 1000 1250 1500
t (s)

2.864

2.866

2.868

2.870

2.872

2.874

F i
n (

km
ol

/s
)

0 250 500 750 1000 1250 1500
t (s)

10.0

10.1

10.2

10.3

10.4

10.5

P f
la

sh
 (M

Pa
)

Internal model
Process
SP

0 250 500 750 1000 1250 1500
t (s)

330.26

330.28

330.30

330.32

330.34

330.36

330.38

T f
la

sh
 (K

)

0 250 500 750 1000 1250 1500
t (s)

303.58

303.60

303.62

303.64

T 2
 (K

)

0 250 500 750 1000 1250 1500
t (s)

0.42

0.44

0.46

0.48

0.50

x v
,t

0 250 500 750 1000 1250 1500
t (s)

0.500

0.505

0.510

0.515

0.520

0.525

x v

0 250 500 750 1000 1250 1500
t (s)

5.58

5.60

5.62

5.64

5.66

5.68

Q
aq

u (
M

W
)

0 250 500 750 1000 1250 1500
t (s)

5.4

5.3

5.2

5.1

Q
re

sf
 (M

W
)

0 250 500 750 1000 1250 1500
t (s)

3.95

4.00

4.05

4.10

4.15

4.20

4.25

W
 (M

W
)

Figure 5.12: Closed loop simulation - flash pressure setpoint change - base case
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Figure 5.13: Closed loop simulation - flash pressure setpoint change - no filter
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Figure 5.14: Closed loop simulation - flash pressure setpoint change - no model
update
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Table 5.6: Controller tuning parameters for the aggressive tuning (units consistent
with values of Table 4.2 and Table 5.3)

qi si Np Nc

Fin Pflash, Tflash, T2

10 1 1 75 10

The simulation of this configuration is given by Figure 5.15. It can be seen that
the settling time was reduced, at the expense of manipulation softness. It can also be
noted that a different resting position ofW and xv,t was attained, when compared to
Figure 5.12. This is natural, since the controller has 5 freely manipulated variables,
but only 4 controlled variables. In this case, there is a compensation of pump power
and valve opening in the flash drum vapor outflow. To obtain a well-posed problem,
there should be a term in the objective function that accounts for the resting position
of the manipulated variables. For example, it could be established that the top valve
opening should rest at half of its course, so it can be used for dynamic compensation
when necessary.

Back to the base case, in order to check if constraints were implemented correctly,
simulations with strict constraints were performed. Figure 5.16 presents a simulation
in which maximum valve step was 0.001. A slower settling can be observed when
compared to the base case, as well as a different resting position of manipulated
variables.

Regarding constraints on manipulated variables, Figure 5.17 presents a simula-
tion result where xv,t > 0.45 was added as a constraint. This constraint was satisfied
without any loss on controlled variables, due to the compensation in W .

This behavior was not observed in Figure 5.18, in which the implemented con-
straint was xv < 0.51. The constraint was satisfied, but setpoints could not be
attained, since there is no possible compensation among the other variables.

It is known that hard constraints on output variables may lead to infeasible
optimization problems, so this was not tackled in this work. Instead, if necessary,
constraints on output variables can be implemented using soft constraints (with the
use of penalty factors).

Figure 5.19 shows a simulation in which all setpoints were changed at the same
time. It can be seen that Pflash is the slowest variable to attain the setpoint value,
which could be changed with a different controller tuning. Considering the open-loop
dynamics, this settling time was considered reasonable.
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Figure 5.15: Closed loop simulation - flash pressure setpoint change - aggressive
tuning
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Figure 5.16: Closed loop simulation - flash pressure setpoint change - ∆u constraint
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Figure 5.17: Closed loop simulation - flash pressure setpoint change - xv,t constraint
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Figure 5.18: Closed loop simulation - flash pressure setpoint change - xv constraint
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Figure 5.19: Closed loop simulation - all variables setpoint change - base case
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5.5 Degradation model implementation

The proposed degradation model establishes a direct relation between equipment
operation effort and its level of degradation. Unlike other common models, such
as Gamma processes, degradation increments are not dependent explicitly on time.
Instead, degradation increments are dependent on current state and process vari-
ables. Another level of detail in the model would be to consider degradation level
as a function of feed composition, but this is beyond the scope of this work.

The simulation of degradation model in process nominal condition, which was
chosen arbitrarily, yields profiles shown in Figure 5.20. The randomness of the
degradation process is explicited, but also its monotonicity. Both are desired char-
acteristics in the design of a fatigue degradation model.
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Figure 5.20: Degradation simulation in nominal condition

The degradation dependence with the manipulated variable is shown in Fig-
ure 5.21, in which is presented a simulation with decreasing pump power.

This simulation shows an interesting asymptotic behavior of the proposed model,
and that is the stopping of degradation process when the pump is progressively
shut down. Besides this being a hypothetical model, and experimental datasets
are needed to test model predictive capability, these preliminary results encourage
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Figure 5.21: Degradation simulation in nominal condition
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further investigation.

5.6 Crack length estimation

Using a representative model of the degradation process, online state estimation
was performed using a particle filter. While on the process control a simple tool
such as the Kalman filter was used, this problem requires a more sophisticated tool.
This is due to the absence of a representative linear model of the process, and the
importance of keeping the statistical information of the model.

In the first set of simulations, a constant pump power (W (t) = 4.246 MW) was
considered. Figure 5.22 and Figure 5.23 present the results of the SIS filter imple-
mentation. The problem of weight degeneracy can be seen progressively worsening
the conditioning of the particle set, to the point of only one particle having a rel-
evant weight, and then to the point of this particle degenerating and consequently
all particles ending up with indefinite weights.
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Figure 5.22: Crack length online estimation - SIS filter, a priori distribution (dot
size represent particle weight)
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Figure 5.23: Crack length online estimation - SIS filter, a posteriori distribution
(dot size represent particle weight)

Figure 5.24 and Figure 5.25 present the results of the SIR filter implementation.
It can be seen that, by implementing the resampling step, distributions keep well-
conditioned, even for longer times. Also, measurement updating effectively narrows
the samples distribution, filtering the most likely updates from all a priori estimates.

0 1 2 3 4 5
t (years)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 True state
SIR estimate

Figure 5.24: Crack length online estimation - SIR filter, a priori distribution (dot
size represent particle weight)
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Figure 5.25: Crack length online estimation - SIR filter, a posteriori distribution
(dot size represent particle weight)

All parameters from the stochastic model were implemented in the particle filter
as the real values, meaning that no influence of modeling error was considered in this
implementation. The only parameter that was changed was the likelihood function
standard deviation, which was chosen to be σ = 0.001. This was done solely due to
numerical issues related to the very narrow real likelihood function. This led to a
more permissive filter, which means that a posteriori distributions are wider than
necessary to describe the state.

Using the particle filter framework, RUL predictions can be performed. However,
as RUL prediction generally involves a high number of state transitions, leading to
high-dimensional statistical problems, it is known that a distribution reconstruction
using importance sampling is nearly infeasible. The chosen strategy, then, was to
retrieve information about the distributions by standard Monte Carlo sampling. As a
discrete-time state transition model was used, predicted RUL belongs to a discrete
set. Thus, the very number of occurrences of each realization was considered as
representative of the probability.

Results of RUL prediction for the SIS and SIR filters are presented in Figure 5.26
and Figure 5.27, respectively. It can be seen that, even though both filters predict
consistent average values for the RUL, SIR filter RUL distribution narrows around
the real RUL as time passes. This is due to the resampling step, which redistributes
particles in the most likely values. As this does not happen in the SIS filter, all par-
ticles are kept, regardless of their probability, and in RUL prediction this ultimately
leads to no information update, as RUL prediction ignores particles weight.
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Figure 5.26: RUL prediction - SIS filter (dot size represent probability)
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Figure 5.27: RUL prediction - SIR filter (dot size represent probability)

A set of simulations with varying pump power were also performed (W (t) =

10.615 × (5 − t)/5 MW, t in years). Figure 5.28 and Figure 5.29 show results for
the SIS filter, and Figure 5.30 and Figure 5.31 show results for the SIR filter. Once
again the failure of SIS filter is showcased, in the sense that the particles degenerate
and lose statistical meaning.
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Figure 5.28: Crack length online estimation with varying pump power - SIS filter, a
priori distribution (dot size represent particle weight)
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Figure 5.29: Crack length online estimation with varying pump power - SIS filter, a
posteriori distribution (dot size represent particle weight)
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Figure 5.30: Crack length online estimation with varying pump power - SIR filter,
a priori distribution (dot size represent particle weight)
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Figure 5.31: Crack length online estimation with varying pump power - SIR filter,
a posteriori distribution (dot size represent particle weight)

In the matter of RUL prediction for this case, results for the SIR filter are
given in Figure 5.32. Even though RUL prediction in early states is biased, as new
measurements are incorporated, prediction progressively gets more accurate. This
result encourages the use of particle filters as auxiliary tools in RUL prediction, even
in the presence of modeling errors.
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Figure 5.32: RUL prediction with varying pump power - SIR filter (dot size represent
probability)

5.7 Health-aware control implementation

The HAC objective function described in Equation 4.8 aims to combine health ex-
tension and control objectives in the same optimization problem. As the control
problem has 4 independent controlled variables and 5 independent manipulated
variables, there is enough degrees of freedom to find an operating point which satis-
fies the control objectives with maximum equipment RUL. Heuristically, one should
aim for the maximum top valve opening (xv,t) to minimize pump effort and thus
extend its lifetime.

The first set of simulations employed the identified model as the process model,
i.e., there is no model-plant mismatch. Throughout all simulations, the used MPC
tuning was as described in Table 5.5, except for the control horizon, which was
Nc = 2. For higher control horizons, the optimization problem becomes ill-posed
and thus of hard resolution.

Figure 5.33 presents results of a simulation of the HAC strategy. Due to the
randomness of sampling q(i)

k at each control step, a steady state cannot be attained.
As expected, the variable xv,t is brought to its allowed maximum, and W is mini-
mized. Even though control objectives are not ignored, an offset is produced. As the
operation reaches to a point where health and control objectives compete against
each other, the obtained solution is a compromise between these objectives.

The effect of wHAC is explored on simulations presented in Figure 5.34 and
Figure 5.35, with higher and lower wHAC , respectively. In the case with higher
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Figure 5.33: HAC simulation - wHAC = 10, Npart = 3
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wHAC , further reduction on W and setpoint deviation is observed, the opposite
happening in the case with lower wHAC . Also, the maximization of xv,t occurs faster
with high values of wHAC , whereas the simulation with lower wHAC value shows a
slow, almost linear evolution of xv,t.

Regarding the number of particles used in RUL estimation, Figure 5.36 presents
results of a simulation with more particles. Comparing it to Figure 5.33, a modest
reduction in the oscillation amplitude is observed. This means that the number of
particles needs to be raised some magnitude orders to attain a representative mean
value that stays constant with the resetting of quantile samples.

As the elevation of the number of particles showed itself not effective in stopping
oscillatory behavior, a different strategy was adopted. Instead of resetting the values
of q(i)

k at each control step, these values were kept constant throughout the closed-
loop simulation. The results for this simulation are shown in Figure 5.37, in which
the attainment of a steady-state value for the manipulated variables is evidenced.

Once again it was not possible to eliminate the offset, for the health extension
objective becomes conflicting with the reference tracking objective. This suggests
that a different approach is necessary to attain both objectives.

Regarding model-plant mismatch, Figure 5.38 displays the result of a simulation
in the same conditions as Figure 5.37, but using the true process model as the
controlled system. In this case, the maximization of xv,t is also observed, but a
different value of W is attained, which is to be expected. In contrast to the perfect
model case, oscillations in both manipulated and controlled variables are observed.
As such, controller reconfiguration is necessary in order to account for the model-
plant mismatch.
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Figure 5.34: HAC simulation - wHAC = 100, Npart = 3
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Figure 5.35: HAC simulation - wHAC = 5, Npart = 3
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Figure 5.36: HAC simulation - wHAC = 10, Npart = 20
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Figure 5.37: HAC simulation - wHAC = 10, Npart = 3, fixed quantiles
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Figure 5.38: HAC simulation with true model - wHAC = 10, Npart = 3, fixed
quantiles

69



Chapter 6

Conclusion

In this work, motivated by the recently developed process of subsea CO2 separation,
process modeling, control and equipment prognostics were assessed.

The proposed modifications in the process model brought some conceptual cor-
rections to the work of SOUZA (2018). The valve model, although simplified, has
reasonable behavior with pressure difference. The change in the heat exchanger
model resulted in a model which allows for more flexibility in simulation, as the
logarithmic mean term is avoided.

The control strategies chosen in this work were the PI controller, with the main
role of stabilizing plant dynamic behavior, in parallel with a MPC controller, with
a linear internal model identified from the PI-stabilized plant and a KF used to
correct state estimates and model bias. This strategy showed success, highlighting
the importance of filter-based model correction in cases of model-plant mismatch.

A pump wear model was proposed, which reunited most desired characteristics
in an equipment wear model (monotonicity, time independence, dependence with
important manipulated variables). Also, dynamic simulations displayed similarity
with usual degradation processes. Although this model is merely a conceptual sketch
of real systems, and it has not been confronted with experimental data, the study
of this kind of model is encouraged, given the results it can provide. Using this
stochastic process mathematical formulation, particle filters were successfully used
to estimate states and predict remaining useful lifetime.

The main efforts of this work were then consolidated in the deployment of a
HAC tool to solve the proposed case study. Even though consistent results were
obtained, some limitations of the proposed method were encountered, most of them
concerning the contraposition of health and control objectives.

As any optimization problem with multiple conflicting objectives, the most accu-
rate way to express it mathematically is as a multiobjective optimization problem.
The objective function formulated in Equation 4.8 can be seen as simply the multi-
objective problem solved by the weighted sum approach. Therefore, the treatment
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of this more generic problem using other tools, such as the goal attainment method,
can result in more reasonable control policies.

Even though this problem was solved in an one-layer control framework, the
complexity of the methods necessary to describe the degradation phenomenon sug-
gests that this issue should be addressed in a higher control layer. With this, a
higher number of particles could be used, resulting in not only a more reliable RUL
estimation, but an estimate of the RUL p.d.f. itself. This would enable the analyst
to work with constraints related to a confidence level to the degradation process,
resulting in more robust decision-making.

71



Bibliography

ANDERSSON, C., FÜHRER, C., ÅKESSON, J., 2015, “Assimulo: A unified frame-
work for ODE solvers”, Mathematics and Computers in Simulation, v. 116,
n. 0, pp. 26 – 43. ISSN: 0378-4754.

BADGWELL, T. A., QIN, S. J., 2015, “Model-predictive control in practice”, En-
cyclopedia of Systems and Control, pp. 756–760.

BANJEVIC, D., 2009, “Remaining useful life in theory and practice”, Metrika,
v. 69, n. 2-3 (mar), pp. 337–349. ISSN: 0026-1335. Availability: <http:
//link.springer.com/10.1007/s00184-008-0220-5>.

BARUAH, P., CHINNAM, R. B., 2005, “HMMs for diagnostics and prognostics
in machining processes”, International Journal of Production Research,
v. 43, n. 6, pp. 1275–1293.

BORDONS, C., CAMACHO, E., 2007, Model predictive control. Springer Verlag
London Limited.

CHHIKARA, R., 1988, The Inverse Gaussian Distribution: Theory, Methodology,
and Applications, v. 95. CRC Press.

CHOO, B. Y., ADAMS, S. C., WEISS, B. A., et al., 2016, “Adap-
tive Multi-scale Prognostics and Health Management for Smart
Manufacturing Systems.” International journal of prognostics and
health management, v. 7, pp. 014. ISSN: 2153-2648. Availabil-
ity: <http://www.ncbi.nlm.nih.gov/pubmed/28736651http://www.
pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5520667>.

CHOO, B. Y., ADAMS, S., BELING, P., 2017, “Health-aware hierarchical con-
trol for smart manufacturing using reinforcement learning”. In: 2017
IEEE International Conference on Prognostics and Health Management
(ICPHM), pp. 40–47. IEEE, jun. ISBN: 978-1-5090-5710-8. Availability:
<http://ieeexplore.ieee.org/document/7998303/>.

72

http://link.springer.com/10.1007/s00184-008-0220-5
http://link.springer.com/10.1007/s00184-008-0220-5
http://www.ncbi.nlm.nih.gov/pubmed/28736651 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5520667
http://www.ncbi.nlm.nih.gov/pubmed/28736651 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5520667
http://ieeexplore.ieee.org/document/7998303/


DE MEDEIROS, J. L., DE OLIVEIRA ARINELLI, L., TEIXEIRA, A. M., et al.,
2018, Offshore Processing of CO2-Rich Natural Gas with Supersonic Sep-
arator: Multiphase Sound Speed, CO2 Freeze-Out and HYSYS Implemen-
tation. Springer.

DONG, M., HE, D., 2007, “A segmental hidden semi-Markov model (HSMM)-based
diagnostics and prognostics framework and methodology”,Mechanical sys-
tems and signal processing, v. 21, n. 5, pp. 2248–2266.

ESCOBET, T., PUIG, V., NEJJARI, F., 2012, “Health Aware Control and model-
based Prognosis”. In: 2012 20th Mediterranean Conference on Control &
Automation (MED), pp. 691–696. IEEE, jul. ISBN: 978-1-4673-2531-8.
Availability: <http://ieeexplore.ieee.org/document/6265718/>.

GARCIA, C. E., MORSHEDI, A., 1986, “Quadratic programming solution of dy-
namic matrix control (QDMC)”, Chemical Engineering Communications,
v. 46, n. 1-3, pp. 73–87.

GROSSO, J. M., OCAMPO-MARTINEZ, C., PUIG, V., 2016, “Reliability–based
economic model predictive control for generalised flow–based networks
including actuators’ health–aware capabilities”, International Journal of
Applied Mathematics and Computer Science, v. 26, n. 3 (sep), pp. 641–
654. ISSN: 2083-8492. Availability: <http://content.sciendo.com/
view/journals/amcs/26/3/article-p641.xml>.

HENG, A., ZHANG, S., TAN, A. C., et al., 2009, “Rotating machinery prognostics:
State of the art, challenges and opportunities”, Mechanical systems and
signal processing, v. 23, n. 3, pp. 724–739.

INCROPERA, F. P., 2006, Fundamentals of Heat and Mass Transfer. USA, John
Wiley &#38; Sons, Inc. ISBN: 0470088400.

JARDINE, A. K., LIN, D., BANJEVIC, D., 2006, “A review on machinery diag-
nostics and prognostics implementing condition-based maintenance”, Me-
chanical systems and signal processing, v. 20, n. 7, pp. 1483–1510.

JONES, E., OLIPHANT, T., PETERSON, P., et al., 2001. “SciPy: Open source
scientific tools for Python”. Availability: <http://www.scipy.org/>.

JOUIN, M., GOURIVEAU, R., HISSEL, D., et al., 2016, “Particle filter-based
prognostics: Review, discussion and perspectives”, Mechanical Systems
and Signal Processing, v. 72, pp. 2–31.

73

http://ieeexplore.ieee.org/document/6265718/
http://content.sciendo.com/view/journals/amcs/26/3/article-p641.xml
http://content.sciendo.com/view/journals/amcs/26/3/article-p641.xml
http://www.scipy.org/


KAIPIO, J., SOMERSALO, E., 2005, Applied Mathematical Sciences, v. 160.
Springer-Verlag, New York.

KOTHAMASU, R., HUANG, S. H., VERDUIN, W. H., 2006, “System health
monitoring and prognostics — a review of current paradigms and prac-
tices”, The International Journal of Advanced Manufacturing Technol-
ogy, v. 28, n. 9-10 (jul), pp. 1012–1024. ISSN: 0268-3768. Availability:
<http://link.springer.com/10.1007/s00170-004-2131-6>.

KREYSZIG, E., KREYSZIG, H., NORMINTON, E. J., 2011, Advanced Engineer-
ing Mathematics. Tenth ed. Hoboken, NJ, Wiley. ISBN: 0470458364.

KUCHPIL, C., DUARTE, D. G., ORLOWSKI, R., et al., 2013, “Subsea Process-
ing and Boosting in Brazil: Status and Future Vision”. In: OTC Brasil.
Offshore Technology Conference.

LEI, Y., LI, N., GUO, L., et al., 2018, “Machinery health prognostics: A
systematic review from data acquisition to RUL prediction”, Me-
chanical Systems and Signal Processing, v. 104 (may), pp. 799–834.
ISSN: 08883270. Availability: <https://linkinghub.elsevier.com/
retrieve/pii/S0888327017305988>.

LUCIA, S., FINKLER, T., ENGELL, S., 2013, “Multi-stage nonlinear model pre-
dictive control applied to a semi-batch polymerization reactor under un-
certainty”, Journal of Process Control, v. 23, n. 9 (oct), pp. 1306–1319.
ISSN: 09591524. Availability: <https://linkinghub.elsevier.com/
retrieve/pii/S0959152413001686>.

OGATA, K., 2010. “Modern Control Engineering. United State, America”. .

PARIS, P., ERDOGAN, F., 1963, “A critical analysis of crack propagation laws”,
Journal of basic engineering, v. 85, n. 4, pp. 528–533.

PASSARELLI, F. M., 2017. “Processo e sistema para remoção de dióxido de car-
bono em fase densa de correntes de petróleo e gás natural”. Availability:
<https://www.lens.org/lens/patent/181-301-137-556-927>.

PEREIRA, E. B., GALVAO, R. K. H., YONEYAMA, T., 2010, “Model Predictive
Control using Prognosis and Health Monitoring of actuators”. In: 2010
IEEE International Symposium on Industrial Electronics, pp. 237–243.
IEEE, jul. ISBN: 978-1-4244-6390-9. Availability: <http://ieeexplore.
ieee.org/document/5637571/>.

74

http://link.springer.com/10.1007/s00170-004-2131-6
https://linkinghub.elsevier.com/retrieve/pii/S0888327017305988
https://linkinghub.elsevier.com/retrieve/pii/S0888327017305988
https://linkinghub.elsevier.com/retrieve/pii/S0959152413001686
https://linkinghub.elsevier.com/retrieve/pii/S0959152413001686
https://www.lens.org/lens/patent/181-301-137-556-927
http://ieeexplore.ieee.org/document/5637571/
http://ieeexplore.ieee.org/document/5637571/


POUR, F. K., PUIG, V., OCAMPO-MARTINEZ, C., 2018, “Multi-layer health-
aware economic predictive control of a pasteurization pilot plant”, Interna-
tional Journal of Applied Mathematics and Computer Science, v. 28, n. 1
(mar), pp. 97–110. ISSN: 2083-8492. Availability: <http://content.
sciendo.com/view/journals/amcs/28/1/article-p97.xml>.

QIN, S. J., BADGWELL, T. A., 2003, “A survey of industrial model predictive
control technology”, Control engineering practice, v. 11, n. 7, pp. 733–
764.

QIN, S. J., BADGWELL, T. A., 1997, “An overview of industrial model predictive
control technology”. In: AIChE Symposium Series, v. 93, pp. 232–256.
New York, NY: American Institute of Chemical Engineers, 1971-c2002.

RAUSAND, M., HØYLAND, A., 2004, System reliability theory: models, statistical
methods, and applications, v. 396. John Wiley & Sons.

ROEMER, M. J., BYINGTON, C. S., KACPRZYNSKI, G. J., et al., 2011, “Prog-
nostics”, System Health Management: With Aerospace Applications, pp.
281–295.

SALAZAR, J. C., WEBER, P., NEJJARI, F., et al., 2016, “MPC Framework
for System Reliability Optimization”. pp. 161–177. Availability: <http:
//link.springer.com/10.1007/978-3-319-23180-8{_}12>.

SANCHEZ, H., ESCOBET, T., PUIG, V., et al., 2015, “Health-aware Model
Predictive Control of Wind Turbines using Fatigue Prognosis”,
IFAC-PapersOnLine, v. 48, n. 21, pp. 1363–1368. ISSN: 24058963.
Availability: <https://linkinghub.elsevier.com/retrieve/pii/
S2405896315018443>.

SI, X.-S., WANG, W., HU, C.-H., et al., 2011, “Remaining useful life esti-
mation – A review on the statistical data driven approaches”, Euro-
pean Journal of Operational Research, v. 213, n. 1 (aug), pp. 1–14.
ISSN: 03772217. Availability: <https://linkinghub.elsevier.com/
retrieve/pii/S0377221710007903>.

SIMON, D., 2006, Optimal state estimation: Kalman, H infinity, and nonlinear
approaches. John Wiley & Sons.

SKOGESTAD, S., 2003, “Simple analytic rules for model reduction and PID con-
troller tuning”, Journal of process control, v. 13, n. 4, pp. 291–309.

75

http://content.sciendo.com/view/journals/amcs/28/1/article-p97.xml
http://content.sciendo.com/view/journals/amcs/28/1/article-p97.xml
http://link.springer.com/10.1007/978-3-319-23180-8{_}12
http://link.springer.com/10.1007/978-3-319-23180-8{_}12
https://linkinghub.elsevier.com/retrieve/pii/S2405896315018443
https://linkinghub.elsevier.com/retrieve/pii/S2405896315018443
https://linkinghub.elsevier.com/retrieve/pii/S0377221710007903
https://linkinghub.elsevier.com/retrieve/pii/S0377221710007903


SKOGESTAD, S., POSTLETHWAITE, I., 2007, Multivariable feedback control:
analysis and design, v. 2. Wiley New York.

SOUZA, A. F. F. D., 2018, Separação submarina óleo/CO2: concepção tecnológica,
modelagem, e controle avançado. Master Thesis, Universidade Federal do
Rio de Janeiro.

SOUZA, A. F. F. D., SECCHI, A. R., DE SOUZA JR, M. B., 2019, “CO2 Subsea
Separation: Concept & Control Strategies”, IFAC-PapersOnLine, v. 52,
n. 1, pp. 790–795.

SPEEKENBRINK, M., 2016, “A tutorial on particle filters”, Journal of Mathemat-
ical Psychology, v. 73, pp. 140–152.

SUN, J., ZUO, H., WANG, W., et al., 2014, “Prognostics uncertainty reduction by
fusing on-line monitoring data based on a state-space-based degradation
model”, Mechanical Systems and Signal Processing, v. 45, n. 2, pp. 396–
407.

TRIERWEILER, J., SECCHI, A., 2000, “Exploring the potentiality of using multi-
ple model approach in nonlinear model predictive control”. In: Nonlinear
Model Predictive Control, Springer, pp. 191–203.

VAN NOORTWIJK, J., 2009, “A survey of the application of gamma processes
in maintenance”, Reliability Engineering & System Safety, v. 94, n. 1,
pp. 2–21.

VERHEYLEWEGHEN, A., JÄSCHKE, J., 2017, “Framework for Combined Di-
agnostics, Prognostics and Optimal Operation of a Subsea Gas Com-
pression System * *This work is funded by the SUBPRO center for
research based innovation, www.ntnu.edu/subpro”, IFAC-PapersOnLine,
v. 50, n. 1 (jul), pp. 15916–15921. ISSN: 24058963. Availability: <https:
//linkinghub.elsevier.com/retrieve/pii/S2405896317331816>.

VERHEYLEWEGHEN, A., GJØBY, J. M., JÄSCHKE, J., 2018, “Health-Aware
Operation of a Subsea Compression System Subject to Degradation”.
pp. 1021–1026. Availability: <https://linkinghub.elsevier.com/
retrieve/pii/B9780444642356501790>.

VIRKLER, D. A., HILLBERRY, B., GOEL, P., 1979, “The statistical nature of
fatigue crack propagation”, Journal of Engineering Materials and Tech-
nology, v. 101, n. 2, pp. 148–153.

76

https://linkinghub.elsevier.com/retrieve/pii/S2405896317331816
https://linkinghub.elsevier.com/retrieve/pii/S2405896317331816
https://linkinghub.elsevier.com/retrieve/pii/B9780444642356501790
https://linkinghub.elsevier.com/retrieve/pii/B9780444642356501790


WANG, X., BALAKRISHNAN, N., GUO, B., 2014, “Residual life esti-
mation based on a generalized Wiener degradation process”, Re-
liability Engineering & System Safety, v. 124 (apr), pp. 13–23.
ISSN: 09518320. Availability: <https://linkinghub.elsevier.com/
retrieve/pii/S0951832013003086>.

77

https://linkinghub.elsevier.com/retrieve/pii/S0951832013003086
https://linkinghub.elsevier.com/retrieve/pii/S0951832013003086


Appendix A

System identification results
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Figure A.1: Identification results for the pair Fin (kmol/s) x xv,t
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Figure A.2: Identification results for the pair Pflash (Pa) x xv,t
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Figure A.3: Identification results for the pair Tflash (K) x xv,t
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Figure A.4: Identification results for the pair T2 (K) x xv,t
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Figure A.5: Identification results for the pair Fv (kmol/s) x xv,t
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Figure A.6: Identification results for the pair Fl,tot (kmol/s) x xv,t
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Figure A.7: Identification results for the pair xCO2 x xv,t
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Figure A.8: Identification results for the pair Fin (kmol/s) x xv
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Figure A.9: Identification results for the pair Pflash (Pa) x xv
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Figure A.10: Identification results for the pair Tflash (K) x xv
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Figure A.11: Identification results for the pair T2 (K) x xv
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Figure A.12: Identification results for the pair Fv (kmol/s) x xv
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Figure A.13: Identification results for the pair Fl,tot (kmol/s) x xv
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Figure A.14: Identification results for the pair xCO2 x xv
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Figure A.15: Identification results for the pair Fin (kmol/s) x Qaqu (W)
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Figure A.16: Identification results for the pair Pflash (Pa) x Qaqu (W)
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Figure A.17: Identification results for the pair Tflash (K) x Qaqu (W)
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Figure A.18: Identification results for the pair T2 (K) x Qaqu (W)
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Figure A.19: Identification results for the pair Fv (kmol/s) x Qaqu (W)
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Figure A.20: Identification results for the pair Fl,tot (kmol/s) x Qaqu (W)
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Figure A.21: Identification results for the pair xCO2 x Qaqu (W)
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Figure A.22: Identification results for the pair Fin (kmol/s) x Qresf (W)
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Figure A.23: Identification results for the pair Pflash (Pa) x Qresf (W)
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Figure A.24: Identification results for the pair Tflash (K) x Qresf (W)
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Figure A.25: Identification results for the pair T2 (K) x Qresf (W)
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Figure A.26: Identification results for the pair Fv (kmol/s) x Qresf (W)
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Figure A.27: Identification results for the pair Fl,tot (kmol/s) x Qresf (W)
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Figure A.28: Identification results for the pair xCO2 x Qresf (W)
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Figure A.29: Identification results for the pair Fin (kmol/s) x W (W)
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Figure A.30: Identification results for the pair Pflash (Pa) x W (W)
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Figure A.31: Identification results for the pair Tflash (K) x W (W)
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Figure A.32: Identification results for the pair T2 (K) x W (W)
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Figure A.33: Identification results for the pair Fv (kmol/s) x W (W)
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Figure A.34: Identification results for the pair Fl,tot (kmol/s) x W (W)
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Figure A.35: Identification results for the pair xCO2 x W (W)
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Table A.1: Identified model parameters

Pair Zeros Poles Gain

Fin (kmol/s) x xv,t -0.012914 0.00079704
Pflash (MPa) x xv,t -0.012915 -0.0031265
Tflash (K) x xv,t -0.0052529 -0.016765; -0.0056744 -0.0081611
T2 (K) x xv,t -0.011613 -0.015881 1.3091

Fv (kmol/s) x xv,t -0.0086644 -0.011744 0.069968
Fl,tot (kmol/s) x xv,t 0.016141 -0.64228; -0.019574 -0.0078617

xCO2 x xv,t -0.011286 -6.1062e-05
Fin (kmol/s) x xv -0.0079125 -0.010486 5.645
Pflash (MPa) x xv -0.01112 0.064039
Tflash (K) x xv 0.2841 -0.47031; -0.010139 0.50185
T2 (K) x xv 0.12424 -0.61422; -0.010104 0.49423

Fv (kmol/s) x xv -0.010489 0.009295
Fl,tot (kmol/s) x xv -0.61654 2.0745

xCO2 x xv -0.010392 0.0032085
Fin (kmol/s) x Qaqu (MW) -0.015533 -0.0013851
Pflash (MPa) x Qaqu (MW) -0.01553 0.005434
Tflash (K) x Qaqu (MW) -0.012079 0.049073
T2 (K) x Qaqu (MW) -0.012407 0.025662

Fv (kmol/s) x Qaqu (MW) -0.0071939; -0.073501 -6.215e-06
Fl,tot (kmol/s) x Qaqu (MW) 0.3237 -0.71773; -0.014549 0.0024889

xCO2 x Qaqu (MW) -0.0085447 -6.254e-05
Fin (kmol/s) x Qresf (MW) -0.013069 -0.0017786
Pflash (MPa) x Qresf (MW) -0.013067 0.0069765
Tflash (K) x Qresf (MW) -0.011551 0.03835
T2 (K) x Qresf (MW) -0.020418 -0.012621 3.1906

Fv (kmol/s) x Qresf (MW) -0.01559 -0.018892 -0.085869
Fl,tot (kmol/s) x Qresf (MW) 0.047388 -0.27409; -0.015471 0.0057969

xCO2 x Qresf (MW) -0.004499 -0.0074535; -0.016529 4.4572e-05
Fin (kmol/s) x W (MW) -0.012712 0.0016828
Pflash (MPa) x W (MW) -0.012723 -0.0066043
Tflash (K) x W (MW) 0.034319 -0.11848; -0.0094582 -0.044136
T2 (K) x W (MW) -0.0099307; -0.10737 -0.0086335; -0.11501 4.1166

Fv (kmol/s) x W (MW) -0.0074925 -0.010682 0.21884
Fl,tot (kmol/s) x W (MW) -0.012648; -0.012651 -0.0053482; -0.043421 -0.030537

xCO2 x W (MW) -0.010295 -2.2537e-04
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