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MODELAGEM DE CRISTALIZAÇÃO POR BALANÇO POPULACIONAL
PARA MONITORAMENTO E CONTROLE ÓTIMO

Caio Felippe Curitiba Marcellos

Agosto/2018
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Programa: Engenharia Química

A Equação do Balanço da População (PBE) descreve a mudança na distribuição
do tamanho de partícula. Este estudo avalia a PBE com nucleação, crescimento
e dissolução. Processos com nucleação e crescimento são conhecidos por serem
problemáticos devido aos perfis descontínuos que causam. A dissolução requer o
conhecimento do número de partículas no tamanho estável mínimo, de modo que as
partículas instáveis sejam removidas da fase particulada. Essas condições requerem
o uso de métodos numéricos especializados para sua modelagem matemática. Nesta
tese, é dada ênfase ao Moving Section Method (MSM) que combina o método das
classes com o método das características para mitigar erros de difusão numérica.
O trabalho concentrou-se na aplicação do PBE para a cristalização enantiosseletiva
de sistemas formadores de compostos racêmicos. Inicialmente, a conservação dos
momentos da distribuição foi analisada para o MSM com mecanismos de crescimento
e nucleação e propôs-se métodos para a adição de novos elementos da malha do
tamanho de partículas. A estimação de parâmetros cinéticos foi abordada para a
dissolução de NaCl em soluções de monoetilenoglicol (MEG) a partir de dados de
padrões de cores (RGB), o que pode ser obtido por aparato experimental de baixo
custo. Um método para determinar as condições de operação para o cristalizador
em batelada com base no diagrama ternário é descrito. Posteriormente, mostram-se
que as informações obtidas no diagrama ternário, como o rendimento máximo
obtido pelo processo devido à termodinâmica, podem ser usadas para formular
restrições para um método de controle baseado em otimização não linear para obter
as características desejadas do produto.
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The Population Balance Equation (PBE) describe the change in the particle
size distribution occasioned by a variety of mechanisms. This study evaluate
the PBE with nucleation, growth and dissolution. The nucleation with growth
process is known to be problematic due to the sharp profiles that it causes. The
dissolution process requires the knowledge of the number of particles at the minimal
stable size, such that unstable particles are removed from the particulate phase.
These conditions require the use of specialized numerical method for mathematical
modeling. In this thesis, an emphasis is given in the Moving Sectional Method,
which combines the method of classes with the method of characteristics to mitigate
numerical diffusion errors. The work focused on the PBE application for the
enantioselective crystallization of racemic compounding forming systems. Initially,
the conservation of the moments of the distribution was analyzed for the MSM with
growth and nucleation mechanisms and methods were proposed for the addition
of new elements of the particle size mesh. The estimation of kinetic parameters
was approached for the dissolution of NaCl in solutions of monoethyleneglycol
(MEG) from data of color patterns (RGB), which can be obtained by experimental
apparatus of low cost. A method for determining the operating conditions for the
batch crystallizer based on the ternary diagram is described. Subsequently, it is
shown that the information obtained in the ternary diagram, such as the maximum
yield obtained by the process due to thermodynamics, can be used to formulate
constraints for a control method based on non-linear optimization to obtain the
desired characteristics of the product.
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Chapter 1

Introduction

1.1 Contextualization

The Population Balance Equation (PBE) is a conservation law used to account
for the number of particles in a system and has applications in several fields,
as precipitation, polymerization, crystallization, food processes, pharmaceutical
manufacture, pollutant formation in flames, particle size distribution (PSD) of
crushed material and rain drops, dispersed phase distributions in multiphase flows,
and growth of microbial and cell populations (Qamar, 2008). The PBE can
account for different mechanisms capable of modifying the particles distribution,
such as particle growth and dissolution, nucleation, agglomeration, breakage and
disappearing. The mathematical description of particulate processes using the PBE
results in a system of hyperbolic partial integro-differential equations, which pose a
numerical complexity and leveraged studies in specialized methods for it solution.

Crystallization is the main technological process for forming particles in the
pharmaceutical industry and has a fundamental role in drugs stability and
bioavailability properties. These properties are associated with the purity,
morphology and size distribution. Myerson (2002) indicated that the bioavailability
is associated with the PSD, for example, it can be decreased if the crystals are too
large. On the other hand, small size crystals are more subject to degradation during
processing and storage.

According to Rentsch (2002) 56% of the drugs in use are chiral compounds, and
approximately 88% of those are marketed in the form of racemates. Even though
these drugs are made of substances of similar chemical structure, in many cases
the isomers have differences in biological activity, such as pharmacology, toxicology,
pharmacokinetics and metabolism. Thus, the chiral separation of undesired isomer
has great appeal in research and development of technologies (Nguyen et al., 2006).

One example of such chiral pharmaceutical is the praziquantel. The
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R-praziquantel has a anthelmintic activity and is used to treat parasitic worm
infections, such as schistosomiasis. The comercial formulation is the racemate, since
it is synthesized as a racemic mixture by a low cost procedure when compared
to the enantioselective synthesis (Novaes et al., 1999). However, its stereoisomer
S-praziquantel is responsible for the medication’s bitter taste. Additionally, it
presents higher toxicity and is associated with the side effects of the drug. Thus,
the purification of R-praziquantel can lead to a more efficient formulation and with
reduced collaterals effects.

In recent years, the use of liquid chromatography for the separation of
enantiomers has gained great importance due to advances in the development
of increasingly efficient and selective stationary phases. In addition, the advent
of simulated moving bed (SMB) chromatography allows the more efficient and
economical production of enriched solution of the preferred enantiomer. On the
other hand, obtaining high purity product reduces the productivity of SMB (Gedicke
et al., 2005). This scenario led to the strategy of coupled SMB chromatography
with direct crystallization. This approach allowed the crystallization of pure solid
enantiomer associated with the use of chromatography at an optimum productivity
region, i.e. without requiring high purities, to be obtained. One of the pioneers of
this approach was Lim et al. (1995). (1995) to obtain purified R-praziquantel.

The monitoring and control of particulate systems can be viewed in three
different levels (Chianese and Kramer, 2012) accordingly with the measurement
capability. The lower level corresponds to analyzing the process based on basic
process variables, as temperature, flow rates and pressure. In the intermediary
level, the supersaturation tracking requires the solute composition measurement and
saturation condition prediction. Lastly, the third level corresponds to the analysis of
properties associated with the overall solid phase or even with the complete particle
size distribution, which is considered to be difficult to be measured online but gives
a detailed understanding of the process.

1.2 Goals and Contributions

The enantioselective crystallization of racemic compound forming system is
analyzed in this thesis. Such application can be studied and improved by different
approaches. For instance, in a physicochemical scope when the interaction of the
enantiomers with other compounds are investigated for a enhanced separation, such
as optically active solvents or by formation of diastereomers. On the other hand,
the separation can be analyzed by a plant-wide viewpoint, in this case the goal is
to provided optimal conditions for the operation. This is the approach investigated
in this work.
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The study of optimal operation conditions envolves the definition of a
performance index, that represents the effectiveness of the ongoing operation. In
a general manner, the process conditions and operation patterns that can be
manipulated are evaluated to provide the optimal performance index under the
process constraints. A mathematical model of the system provides predictions for the
actual process behavior and for the performance index. Moreover, measurements of
key variables are necessary for establishing the mathematical model and for process
monitoring.

The analyze of optimal operation of the enantioselective crystallization of
racemic compound forming system was the main goal of this thesis. The
preliminary motivation was the separation of praziquantel enantiomers. However,
the investigation of optimal operation conditions requires knowledge of the
crystallization kinetic parameters for the model definition, which were not available
for the praziquantel system. Thus, a general approach for racemic compound
forming system was considered, but using data from the mandelic acid enantiomers
in water system (Zhang et al., 2010). The process is a batch operation in a vessel
with a termal jacket and with fines dissolution loop. Only the particle mechanisms
of nucleation and growth were included.

The contributions given on this application were:

\ Operation design to achieve maximum separation yield: a diagram showing
the initial composition and its relation to the working temperature range and
final yield was proposed.

\ Structured optimal control operation: a methodology for the definition of
an optimization-based control scheme was developed using the information
from the ternary diagram for maximizing the mass of crystal from the seeded
particles and reducing nucleation.

\ A demonstration of the proposed methods was shown for the mandelic acid
enantiomers with the additional evaluation of the use of fine dissolution loop.

\ An efficient implementation of a model predictive controller using the PBE
distributed model was presented.

Furthermore, the numerical method of Kumar and Ramkrishna (1997) (denoted
as Moving Sectional Method - MSM) for nucleation and growth was analyzed in
respect to the error introduced by the nucleated particles. In short, in this method
the size coordinate was discretized in bins and, accordingly with their size, particles
are assigned to the corresponding size in the discretized grid. The size grid moves
accordingly with the characteristic velocity of the system (growth rate). However,
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nucleated particles continuously appear in the solid phase at certain minimal stable
size, which is often close to zero and negligible compared with the working size range.
Hence, as particles grow, the size grid moves and the newly nucleated particles
are not correctly accounted by the method. To overcome this issue, Kumar and
Ramkrishna (1997) proposed the periodic addition of new bins at small time intervals
at the minimal stable size. The following contributions were addressed:

\ The growth rate of the first bin, which is the one receiving the nucleated
particles, was analyzed under different simplification hypotheses and compared
with reported equations found in the literature.

\ The addition of multiple bins for the representation of nucleated particle were
examined for the preservation of moment of orders higher than one.

\ Numerical schemes were proposed for controlled bin addition for efficiently
representing the nucleation in which more bins are added on the time intervals
of higher nucleation and growth rate.

The monitoring of the particulate system is crucial for a enhanced process
operation. A method of inferring the amount of solid in suspension was proposed by
Caciano de Sena et al. (2011) using a Charge Coupled Device camera that captures
the red-green-blue color pattern (RGB) from a predefined area of the system under
analysis. Silva et al. (2013) used the method for determining solubilities curves.
Figueiredo (2016) also used this method for study the dissolution kinetics of NaCl
particles in glycol aqueous solution. In this thesis, a continuation of Figueiredo
(2016) work was evaluated. The dissolution data were used to estimate kinetic
parameters using the population balance to model the particulate system for the
first time. The goal of this work was to define a suitable dynamic model capable
of describing the dissolution of NaCl crystals ranging from a solution free of solute
up to a close to equilibrium condition. The main contributions regarding to this
application are the following:

\ A dissolution model using the PBE was defined using a dissolution rate
equation capable of describing the dynamic behavior of a wide range of
undersaturation, including the dissolution plateau. The model was able to
describe classified particle addition and the disappearance due to dissolution.

\ A methodology for determining the kinetic parameters of the dissolution was
presented using the RGB color pattern measurements under different MEG
and temperature condition.
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All the contributions of this thesis are related with the main goal of optimal
operation of enantioselective crystallization of racemic compound forming system.
The MSM contributions assisted in the numerical solution of the system by
identifying possible source of errors. However, the proposed schemes of bins
additions were not necessary in the optimal control study. The periodic bin
addition scheme was sufficient to provide acceptable errors in the moments
conservation due to the nucleated particles. The contributions related with the
monitoring of the particulate system, although analyzed for dissolution only, could
be used as an low-cost alternative for estimating growth and nucleation kinetics.
Since the experimental data acquisition was not in the scope of this work, the
proposed methodology for kinetic parameters estimation were not applied for the
enantioselective crystallization.

1.3 Thesis Structure

A brief introduction for the following chapters is:

\ Chapter 2 — Bibliographic Review: a pertinent introduction of
particulate process with focus on crystallization and recent developments in
the literature for numerical solution of the PBE is given.

\ Chapter 3 — First Bin Analysis for the Moving Sectional Method:
A detailed analyze on the Moving Sectional Method is presented in respect
to the moment errors due to the growth of nucleated particles. Simplification
hypotheses were addressed to define the first bin growth rate, which receives
newly nucleated particles. Controlled schemes for the addition of new bins are
proposed for efficiently reduce moment conservation errors.

\ Chapter 4 — Inferring kinetic dissolution of NaCl in aqueous glycol
solution using a low-cost apparatus and population balance model:
In this chapter the dissolution of NaCl in glycol solution is addressed. Data
from the work of Figueiredo (2016) were used for the development of a
methodology to determine kinetic parameters of the dissolution process. The
influence of temperature and glycol composition were evaluated.

\ Chapter 5 — Optimal operation of batch enantiomer crystallization:
From ternary diagrams to predictive control: The separation of
enantiomers for racemic compound forming system using crystallization
is addressed. A methodology was proposed for determining operational
conditions. Furthermore, a method for maximizing the growth of seeds while
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keeping a maximum yield was proposed using a model predictive controller
designed based on information from the ternary diagram.

\ Chapter 6 — Conclusion: This chapter summarizes the main results
presented in this thesis.
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Chapter 2

Bibliographic Review

2.1 Convencional Crystallization

Crystallization is denoted as the process of forming solid crystals in a
homogeneous solution and, essentially, can be considered as a solid-liquid separation.
Its main applications are in the pharmaceutical, chemical and food industry.

The driving force for the process of transforming a substance in solution into
a solid state (crystal), the crystallization process, is the difference between the
chemical potential of the substance between these states. It can be written as:

∆µ = µcrystal − µsolution (2.1)

The chemical potential µ is a function of chemical activity (a) according to Eq.
2.2. The fundamental driving force is defined in Mullin (2001) as in Eq. 2.3 and is
related with the saturation activity asat.

µ = µ0 +RT ln a (2.2)

∆µ
RT

= ln a

asat
= lnS (2.3)

where S is the fundamental supersaturation. Thus, isolating S from Eq. 2.3, a
definition for S (Eq. 2.4) is obtained:

S = exp
[

∆µ
RT

]
= a

asat
(2.4)

By the chemical activity definition a = γχ, where γ is the activity coefficient
and χ the molar fraction of the crystallizing substance in the liquid phase, the
fundamental supersaturation can be written as Eq. 2.5. The saturation activity
coefficient and molar fraction is given by γsat and χsat, respectively.
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S = γχ

γsatχsat
(2.5)

The solubility of a substance in a solvent is the maximum concentration that
can be in equilibrium at a given operating condition. There is usually an increase
in solubility with increasing temperature. The understanding of the process can be
obtained by evaluating a graph of solute concentration as function of temperature,
according to Figure 2.1 (Mullin, 2001), which shows tree important regions:

\ Undersaturated: region in which crystals are dissolved;

\ Metastable: region of supersaturation in which there is crystal growth;

\ Labile: region in which the solution tends to spontaneous nucleation.

Figure 2.1: Solubility diagram: solute concentration vs temperature. Adapted from
Mullin (2001).

Crystallization processes are typically described and studied based on the number
of particles with a certain property of interest. This property is usually related with
the particle size, but can also be other quantities, such as crystal purity, temperature,
bio-activity, etc. In this work the focus is given to the crystal size distribution.

The number of particles at certain particle size is described based on the particle
size distribution (PSD). The PSD is important since it provides an understanding of
the dynamics of crystallization. In addition, it has a high influence in the product
quality and in downstream processing (Chianese and Kramer, 2012).
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The main mechanisms involved in the change of particles size and number are
schematized in Figure 2.2 and described as (Jones, 2002):

Figure 2.2: Representative scheme for pertinent particle mechanisms in
crystallization. Adapted from Jones (2002).

\ Nucleation: dispersed solute molecules bind to generate new small particles
denoted as nuclei.

\ Growth: correspond to the increasing of the crystal size and is dependent on
the supersaturation and can also be a function of crystal size. The dissolution
can be seem as the opposite of the growth process.

\ Aggregation: is the merging of smaller particles into a single one.

\ Breakage: it represents the formation of new particles from the breakage of
larger ones.

\ Disappearing: particles with size smaller than the critical size vanish from the
solid phase.

In the nucleation process, solute molecules dispersed in the solvent bind
to give aggregates called nuclei. Mullin (2001) highlighted that there is no
general agreement on the nomenclature used for the classification of types of
nucleation, mentioning the primary and homogeneous nucleation for cases when
nuclei are formed but without the influence of crystalline matter. The primary and
heterogeneous nucleation occur due to the presence of impurities. The secondary
nucleation is refereed to the cases in which the nuclei are formed in the vicinity of
crystals. All of this mechanisms have as driving force the supersaturation.
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Particle aggregation and breakage are not treated in this thesis and the reader
is referred to Randolph and Larson (1988) for more theorethical details and to Silva
et al. (2010) for a discussion on numerical methods for it mathematical modeling.

The growth of the crystals corresponds to the increase in their size. The growth
is dependent on supersaturation and may be dependent on crystal size. It occurs in
supersaturated conditions and involves two major processes: (i) the mass transport
from the solution to the crystal surface by diffusion and convection and (ii) the
incorporation of material into the crystal lattice in a surface reaction process. The
former step is subdivided in the following stages (Jones, 2002):

1. Adsorption of the incoming material to the crystal lattice;

2. Release of portion of the solvation shell;

3. The diffusion of the growth unit into the adsorption layer up to its
incorporation or its release to the solution;

4. If the incoming material reaches a favorable site (usually edges or kinks) it can
adhere to the lattice and loses the remaining of the solvation shell.

Dissolution process follows the reverse process delineated for the growth (Lasaga,
1998) in undersaturated conditions. However, the dissolution usually occurs at a
fast pace than the growth (Mullin, 2001). Particles in an undersaturated solution
loose matter to the dispersed phase reducing their size until a minimal stable size
is reached. At this point the remaining aggregate is no longer stable and vanishes
from the particulate phase. The dissolution will be discussed in Chapter 4.

2.2 Population Balance Mathematical Modeling

2.2.1 Population Balance Formulation

The phase space of the particle consists of a number of independent coordinates of
its distribution that allows the complete description of its properties. In the analysis
of the particle phase space a division is made between the internal and external
coordinates. The external ones refer to the spatial distribution, however they are not
evaluated in the majority of the studies of crystallization, because perfectly agitated
tank process is usually considered (Ramkrishna, 2000). The internal coordinates
are linked to the properties of each particle individually and provide quantitative
measurements of its state, regardless of its spatial position. The main internal
coordinate is the particle size, other examples are: particle composition, energy, age
and chemical activity. The following is the population balance formulation based
on Randolph and Larson (1988).
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Generally, one can consider the particle distribution function n(x, t) defined on
a domain R consisting of the three spatial coordinates plus m independent internal
properties, which compose the particle space x. According to the definition of
particle distribution, the number of particles (dN) existing in a given time t in a
volume of its infinitesimal phase space dR is given by:

dN(x, t) = n(x, t)dR (2.6)

Thus, the number of particles in a sub region R1 is obtained by the integral:

N(R1) =
∫

R1
ndR (2.7)

In particulate processes there are continuous changes in the positions of the phase
space, that is, each particle moves along the internal and external coordinates. When
these changes are gradual and continuous, it refers to the movement as advection
along the respective coordinate of the phase space. The rate of change in a coordinate
is then called the advective velocity of the particle under this coordinate. One can
then define this velocity (v):

v = vxex + vyey + vzez + v1e1 + v2e2 + . . .+ vmem (2.8)

or:

v = ve + vi (2.9)

In this case, vj corresponds to the velocity component in the coordinate j

and ej are the unit vectors along this coordinate. The terms ve and vi are the
velocities in the external and internal coordinates, respectively. The velocity in the
external coordinate in well-stirred media has stochastic characteristics that tend to
homogenize its effects, and its evaluation are often of little practical importance. The
internal velocity of the particles vi are functions only of the state of the particles.

The population balance in a given region of the particle phase space using the
Lagrangian viewpoint, i.e. the subregion R1 moving with the phase-space velocity,
is written as:

d

dt
N(R1) = Rate of net particle generation (2.10)

in which the net particle generation is due to birth and death events, such as
nucleation, breakage and agglomeration. Considering B and D the rates of particle
birth and death, respectively, the quantity of new particles arising in the system is
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given by:

Rate of net particle generation = (B −D)dR (2.11)

Eq. 2.11 and 2.7 can be substituted in Eq. 2.10:

d

dt

∫
R1
n(x, t)dR =

∫
R1

(B −D) dR (2.12)

According to the Leibniz integrals differentiation rule and considering the space
R1 dependent on t, that is, R1 = R1(t) (or basing on the Reynolds transport
theorem), the left side of Eq. 2.12 becomes:

d

dt

∫
R1
n(x, t)dR =

∫
R1

[
∂n

∂t
+∇ ·

(
n
dx
dt

)]
dR (2.13)

The advective velocity of the particles is: v = ve + vi e dx/dt = v. The
formulation is then:

∫
R1

[
∂n

∂t
+∇e · (nve) +∇i · (nvi) +D − B

]
dR = 0 (2.14)

in which ∇i and ∇e are the ∇[·] operator in respect to the internal and external
coordinates, respectively.

Since the subregion R1 has been chosen arbitrarily, equality is only true when
the integrand is everywhere null in the space. Thus, the population balance is given
by:

∂n

∂t
+∇e · (nve) +∇i · (nvi) +D − B = 0 (2.15)

The population balance equation corresponds to the continuity of the number
of particles in the phase space considered. The solution of this equation together
with the mass and energy balances, the formation and disappearance kinetics of
particles and the conditions of entry and exit in the region of interest, determine
the dynamics of the multidimensional distribution of particles.

In the evaluation of practical problems of particulate processes, the main interest
is in the monitoring of internal coordinates, such as the characteristic particle size.
In several applications, information about the distribution at external coordinates is
not of paramount importance. Thus, Eq. 2.15 can be rewritten in order to consider
average properties in the external coordinate domain. Considering a control physical
volume V (t) one can apply the operator

∫
V (t) ḋV to Eq. 2.15:
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∫
V (t)

∂n

∂t
dV +

∫
V (t)

[∇e · (nve)] dV +
∫
V (t)

[∇i · (nvi)] dV +
∫
V (t)

(D−B)dV = 0 (2.16)

The physical volume V (t) is considered to have a contour surface S(t) that moves
with a certain velocity vS and with normal vector n̂. The transport theorem for the
quantity n allows to write the first term in Eq. 2.16 as:

∫
V (t)

∂n

∂t
dV = d

dt

[∫
V (t)

ndV

]
−
∮
nvS · n̂dS (2.17)

The second term in 2.16 can be rewritten using the Gauss Theorem yielding Eq.
2.18

∫
V (t)

[∇e · (nve)] dV =
∮
S(t)

nve · dS (2.18)

The former two equations are substituted in Eq. 2.16 resulting in 2.19, in which
the divergent operator ∇i was removed from the integral, since it is related to the
internal coordinates whereas the integral is for the spatial coordinates.

d

dt

[∫
V (t)

ndV

]
−
∮
nvS ·n̂dS+

∮
S(t)

nve·dS+∇i·
[∫

V (t)
(nvi) dV

]
+
∫
V (t)

(D−B)dV = 0

(2.19)
The goal of the PBE application in this study is to evaluate averaged values for

the size distribution in the physical volume of interest. In such case:
∫
V (t) ndV =

n̄V (t),
∫
V (t)(D−B)dV = (D̄−B̄)V (t) and

∫
V (t) nvidV = V (t)n̄vi, where the overline

notation refers to the averaged value of a quantity. Eq. 2.19 is then:

d

dt
[n̄V (t)]−

∮
S(t)

nvS · n̂dS+
∮
S(t)

nve ·dS+∇i · [V (t)n̄vi]+(D̄−B̄)V (t) = 0 (2.20)

Applying the chain rule to the first term in Eq. 2.20 and rearranging it:

V (t)
[
dn̄

dt
+∇i · (n̄vi) + (D̄ − B̄)

]
+ n̄

dV

dt
+
∮
S(t)

n(ve − vS) · n̂dS = 0 (2.21)

To evaluate the last term in the left hand side of Eq. 2.21 the surface of the
system is decomposed into three components:

\ Sk: representing fixed surface but open to input and output material streams

\ SS: impenetrable and fixed surface
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\ Sm: moving surface but impenetrable (no particulate crossing)

such that S = Sk + SS + Sm
For the first component vS = 0, since the surface is fixed. Thus, considering that

all the material stream crossing the surface Sk in the system can be represented by a
k-th volumetric inlet or outlet flows V̇k (entries with positive sign) and with averaged
population density nk:

∮
Sk

n(ve − vS) · n̂dS =
∮
Sk

nve · n̂dS = −
∑
k

V̇knk (2.22)

For the second component vS · n̂ = 0 and ve · n̂ = 0. The last component has
vS = ve. Hence:

∮
SS∪Sm

n(ve − vS) · n̂dS = 0 (2.23)

Thus, substituting Eq. 2.22 into Eq. 2.21 and dividing all the terms by V (t)
results in Eq. 2.24

dn̄

dt
+∇i · (n̄vi) + (D̄ − B̄) + n̄

d ln V
dt
−
∑
k

V̇k
V (t)nk = 0 (2.24)

Eq. 2.24 is called the macroscopic population balance, being distributed in the
internal coordinates and grouped in the outer phase space. This formulation is of
great use in the description and prediction of particulate processes.

The solution of Eq. 2.24 to crystallizers often considers some simplifications,
for example, the consideration of the internal coordinate only as the characteristic
particle size l, i.e. vi = vl. Thus, the term ∇i · (nvi) can be written as ∂

∂l
[vin]. The

velocity vi is denoted as particle growth rate and represents the advective velocity
of a particle along the coordinate l (Eq. 2.25).

G = dl

dt
(2.25)

A further common simplification in the crystallization modelling is the
assumption of only nucleation as relevant in the appearance and disappearance
term, in which new particles are born with a minimal stable size lmin. Thus, B̄ − D̄
= B0δ(l − lmin) and Eq. 2.24 reduces to:

∂n̄

∂t
+ ∂

∂l
(Gn̄) + n̄

d ln V
dt

=
∑
k

V̇k
V
nk +B0δ(l − lmin) (2.26)

, where B0 represents the rate of appearance of particles due to nucleation. For
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simplification sake, the overline notation is not included hereinafter for the averaged
number density.

Formulation of the Crystallizer Mass Balance

The rates involved in the population balance (growth and nucleation) are
dependent on the supersaturation of the medium. In turn, the supersaturation is a
function of composition. Thus, a crystallizer mathematical simulation requires the
inclusion of the mass balance. Considering ρA as the mass density of a component
A in the liquid phase, the continuity equation for A in a mixture is:

∫
V (t)

[
∂ρA
∂t

+∇ · nA − rA
]
dV = 0 (2.27)

where nA is the mass flux for component A in the liquid phase, such that nA = ρAvA,
in which vA is the velocity of specie A. The quantity rA corresponds to the mass
production rate of A per unit of volume as a result of the particulate process. By
the Gauss divergent theorem and considering n̂ as the normal unit vector in relation
to the infinitesimal surface dS, Eq. 2.27 becomes:

∫
V (t)

∂ρA
∂t

dV +
∮
S

nA · n̂dS −
∫
V
rAdV = 0 (2.28)

As in the previous section, the transport theorem can be used to rewrite the first
term in Eq. 2.28:

∫
V (t)

∂ρA
∂t

dV = d

dt

[∫
V (t)

ρAdV

]
−
∮
S
ρAvS · n̂dS (2.29)

Inserting Eq. 2.29 into Eq. 2.28 and using the definition nA = ρAvA yields:

d

dt

[∫
V (t)

ρAdV

]
−
∮
S
ρAvS · n̂dS +

∮
S
ρAvA · n̂dS −

∫
V
rAdV = 0 (2.30)

or:

d

dt

[∫
V (t)

ρAdV

]
+
∮
S
ρA(vA − vS) · n̂dS −

∫
V
rAdV = 0 (2.31)

In practice, for many crystallization studies, is sufficient to represent the involved
quantities as volume averaged values. With ρ̄A and r̄A as the averaged values for ρA
and rA, Eq. 2.31 becomes:

d

dt
[ρ̄AV (t)] +

∮
S
ρA(vA − vS) · n̂dS − r̄AV (t) = 0 (2.32)
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Analogously to the previous section derivation, the second term can be rewritten
as:

∮
S
ρA(vA − vS) · n̂dS = −

∑
k

V̇kρA,k (2.33)

in which ρA,k is the volume averaged density of specie A in an input or output k-th
material stream. Thus, Eq. 2.32 becomes:

d

dt
[ρ̄AV (t)]−

∑
k

V̇kρA,k − r̄AV (t) = 0 (2.34)

The term r̄A in crystallization is related with the consumption of solute mass by
crystals. Considering the volume of a particle V1c given by:

V1c(t) = kV l(t)3 (2.35)

where l(t) is the characteristic size of a particle and kV the form factor of a particle,
the mass of the particle will be m1c = ρcV1c and the variation of the mass of a crystal
in time is given by:

dm1c

dt
= ρc

dV1c

dt
(2.36)

Substituting Eq. 2.35 into 2.36 and applying the chain rule:

dm1c

dt
= 3ρckV l2

dl

dt
(2.37)

and by the definition of Eq. 2.25, Eq. 2.37 becomes:

dm1c

dt
= 3ρckV l2G (2.38)

Therefore, the rate of change of the mass of all the crystals in the system in
volumetric basis (rc) is:

rc =
∫ ∞

0

dm1c

dt
n(l, t)dl = 3ρckV

∫ ∞
0

l2Gn(l, t)dl (2.39)

For a particular application in which the solute only loses mass via crystallization:
rc = −r̄A. Thus, Eq. 2.41 is rewritten as follows:

d

dt
[ρ̄AV (t)]−

∑
k

V̇kρA,k +
[
3ρckV

∫ ∞
0

l2Gn(l, t)dl
]
V (t) = 0 (2.40)

Rearranging and substituting ρ̄AV by the mass of solute A (mA):
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dmA

dt
= −3V (t)ρckV

∫ ∞
0

l2Gn(l, t)dl +
∑
k

V̇kρA,k = 0 (2.41)

2.2.2 Numerical Methods for Solving the PBE

The use of the population balance (PBE - Population Balance Equation)
represents a well-established approach as the mathematical tool for predicting
particulate systems. However, its application results in a system of hyperbolic
partial integro-differential equations to describe changes in particle size distribution
(Christofides et al., 2007). The population balance is intrinsically linked to the mass,
energy and moment balances to predict the rates of variation of the state variables.
In addition, certain applications require fast and robust solutions, such as real-time
application in predictive controllers, optimization methods or parameter estimation.
These characteristics motivated extensive research for the development of adequate
numerical methods for the system solution.

According to Silva et al. (2010) there are several numerical techniques available
for PBE solution: Monte Carlo methods, methods based on weighted residues,
method of classes and method of moments. The application and assumed hypotheses
direct the choice of the most appropriate technique.

The method of moments was one of the first adopted methods and is based on the
reformulation of the system to replace the particle size distribution by the moments
of the distribution (Randolph and Larson, 1988). When growth is independent of
the particle size and aggregation and breakage effects are negligible, for instance,
the Standard Method of Moments (SMOM) is used.

According to Silva et al. (2010), the transformation by the method of the
moments can lead to a closing problem due to the dependence of the moments
differential equations of low order with moments of higher orders. Extensions of
the method of moments such as QMOM (Quadrature Method of Moments) and
DQMOM (Direct Quadrature Method of Moments) were developed in order to solve
the closure problem. A disadvantage of the method is that the reconstruction of the
distribution may be numerically unstable and may lead to numerical difficulties.
The main advantage is its fast convergence, being the most common technique for
coupling with computer fluid dynamics simulations.

The methods based on discretization divide the domain of the independent
variable into intervals and transform the continuous PBE into a set of equations
in terms of sectional moments of zero order. Among these methods are the finite
difference method and the method of classes (Kumar and Ramkrishna, 1996a).

The weighted residue methods have extensive application in the solution of
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partial differential equations and are based on the approximation of the number
distribution by a series of trial functions whose coefficients are determined so that
the approximation satisfies the population balance. These methods can be global,
when the approximation seeks to represent the entire distribution, or in finite
elements, in which the method is applied for each discretization element of the
independent variable. The approximation coefficients result from the application
of the approximation to the differential equation and from the imposition that the
function of the approximation residue is orthogonal to a set of weighting functions.
The choice of these functions results in the class of the weighted residues method,
such as orthogonal collocation or Galerkin method (Lemos et al., 2014).

The method of the characteristics has extensive application for hyperbolic partial
differential equations. The technique reduces the partial differential equation in a
set of ODE (Ordinary Differential Equation) when determining the characteristic
curves. Hounslow and Reynolds (2006) used this method for solving problems
with nucleation and particle size independent growth. Aamir (2010) extended the
application for cases where growth rate is dependent on size and nucleation rate
dependent on the third order moment by combining the method of the characteristics
with the QMOM.

Method of Moments

The application of the method of moments transforms the mathematical system
of partial differential equations into ordinary differential equations by introducing
a change of variable based on the j-th moment of the size distribution. The
method reduces the numerical complexity of the system. However, extra numerical
techniques are necessary to restore the size distribution of crystals. The j-th moment
is given by Eq. 2.42:

µj =
∫ ∞

0
ljn(l, t)dl (2.42)

In the following, the formulation of the method of moments is derived.
Multiplying Eq. 2.26 by lj and integrating into dl, it is obtained Eq. 2.43:

∫ ∞
0

[
∂n

∂t
+ ∂

∂l
(Gn) + n

d ln V
dt
−
∑
k

V̇k
V
nk −B0δ(l − lmin)

]
ljdl = 0 (2.43)

Evaluating Eq. 2.43 term by term it is possible to formulate the method of
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moments. Differentiating Eq. 2.42 in respect to t Eq. 2.44 is achieved: µ

dµj
dt

=
∫ ∞

0
lj
∂n

∂t
dl (2.44)

Eq. 2.44 corresponds to the first term of Eq. 2.43. Applying the integration by
parts method to the second term:

∫ ∞
0

∂

∂l
[n(l, t)G] ljdl = |ljnG|∞0 −

∫ ∞
0

nGjlj−1dl (2.45)

where the term |ljnG|∞0 is defined as:

|ljnG|∞0 =
[

lim
l→∞

(
ljn(l, t)G

)
− lim

l→0

(
ljn(l, t)G

)]
(2.46)

and by the condition of compatibility, which refers to liml→∞[ljn(l, t)]=0 ∀j, Eq.
2.46 becomes:

|ljnG|∞0 = 0 (2.47)

Replacing Eq. 2.47 in Eq. 2.45:

∫ ∞
0

∂

∂l
[n(l, t)G] ljdl = −

∫ ∞
0

nGjlj−1dl (2.48)

For the fifth term of the integral in Eq. 2.43 it is obtained:

∫ ∞
0
−δ(l − lmin)B0l

jdl = −ljminB0 (2.49)

The third and fourth terms of Eq. 2.43 become:

∫ ∞
0

n
d(ln V )
dt

ljdl = d(ln V )
dt

µj (2.50)

∫ ∞
0

∑
k

V̇k
V
nk(l, t)ljdl =

∑
k

V̇k
V
µj,k (2.51)

In this way, replacing all the terms in Eq. 2.43, it is finally achieved the PSD
moments equation:

dµj
dt
−
∫ ∞

0
nGjlj−1dl − ljminB0 + d(ln V )

dt
µj −

∑
k

V̇k
V
µj,k = 0 (2.52)

Method of Classes coupled to the Method of the Characteristics

The Method of Classes was first proposed by Marchal et al. (1988) with the
subdivision into discrete and contiguous intervals of the characteristic particle
size. Such ranges are called bins and use macroscopic balances to describe their
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populations. In this regard, the partial integro-differential formulation becomes an
ordinary differential equation system of first order (Kumar and Ramkrishna, 1997).

Kumar and Ramkrishna (1997) introduced a method for the solution of the
population balance that combines the method of Moving Pivot (MP), formulated
by the own authors (Kumar and Ramkrishna, 1996b) and which is an extension of
the Method of Classes, with the method of characteristics to include growth and
nucleation mechanisms. The proposed method allows the solution of the PBE with
nucleation, growth and aggregation. In addition, it avoids problems of numerical
instabilities common to the Method of Classes, as it is demonstrated in their article
by examples that combine different mechanisms.

In the following, the formulation of the Kumar and Ramkrishna (1997) method,
hereinafter referenced as Moving Sectional Method (MSM), is presented. Because
the present work considers only growth (or dissolution) and nucleation, the terms
related to aggregation (or breakage) will not be considered. The internal phase
space of the particle is given only by its characteristic size.

On the basis of the population balance, Eq. 2.26, the method of the
characteristics can be used to describe the variation of the numerical density. The
differentiation of the second term provides:

∂n

∂t
+G

∂

∂l
n(l, t) + n(l, t)dG

dl
−
∑
k

V̇k
V
nk −B0δ(l − lmin) + n

d ln V
dt

= 0 (2.53)

Substituting G = dl

dt
:

∂n(l, t)
∂t

+ dl

dt

∂

∂l
n(l, t) + n(l, t)dG

dl
−
∑
k

V̇k
V
nk −B0δ(l − lmin) + n

d ln V
dt

= 0 (2.54)

Defining the total derivative for the numerical density:

dn(l, t)
dt

= ∂n(l, t)
∂t

+ ∂n(l, t)
∂l

dl

dt
(2.55)

Applying to Eq. 2.54:

dn(l, t)
dt

+ n(l, t)dG
dl
−
∑
k

V̇k
V
nk −B0δ(l − lmin) + n

d ln V
dt

= 0 (2.56)

From Eq. 2.56, Method of Classes concepts are applyed to discretize the particle
size in the region of interest. Assuming that each subdivision i (bin) is limited by li
and li+1, its total number of particles rate can be obtained by integrating Eq. 2.56
with lower limit li and upper li+1:
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∫ l(t)i+1

l(t)i

dn(l, t)
dt

dl +
∫ l(t)i+1

l(t)i

n(l, t)dG
dl
dl+

−
∫ l(t)i+1

l(t)i

[∑
k

V̇k
V
nk +B0δ(l − lmin) + n

d ln V
dt

]
dl = 0

(2.57)

The integration by parts applied to the second integral results in:

∫ l(t)i+1

l(t)i

dn(l, t)
dt

dl + |n(l, t)G|l(t)
i+1

l(t)i
−
∫ l(t)i+1

l(t)i

G
∂n(l, t)
∂l

dl+

−
∫ l(t)i+1

l(t)i

[∑
k

V̇k
V
nk +B0δ(l − lmin) + n

d ln V
dt

]
dl = 0

(2.58)

Rearranging:

∫ l(t)i+1

l(t)i

[
dn(l, t)
dt

−G∂n(l, t)
∂l

]
dl + |n(l, t)G|l(t)

i+1

l(t)i
+

−
∫ l(t)i+1

l(t)i

[∑
k

V̇k
V
nk +B0δ(l − lmin) + n

d ln V
dt

]
dl = 0

(2.59)

Using Eq. 2.55 and replacing it in the integrand of the first term:

∫ l(t)i+1

l(t)i

[
∂n(l, t)
∂t

]
dl + |n(l, t)G|l(t)

i+1

l(t)i
+

−
∫ l(t)i+1

l(t)i

[∑
k

V̇k
V
nk +B0δ(l − lmin) + n

d ln V
dt

]
dl = 0

(2.60)

By means of the Leibniz integral differentiation rule, Eq. 2.60 becomes:

d

dt

[∫ l(t)i+1

l(t)i

n(l, t)dl
]
−
∫ l(t)i+1

l(t)i

[∑
k

V̇k
V
nk +B0δ(l − lmin) + n

d ln V
dt

]
dl = 0 (2.61)

By the definition of growth rate, the temporal variation of the bins boundaries
is given by:

dli
dt

= G(li) (2.62)

The application of the method of the characteristics causes the discretized
mesh to move with the characteristic velocity, treating the advection accurately.
This approach reduces numerical diffusion in the solution when compared to other
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discretization methods that approximate the advection term (Qamar, 2008).
Each bin has a particle number (population), given by:

Ni(t) =
∫ li+1

li
n(l, t)dl (2.63)

Considering that it is possible to approximate the properties of the population
using the discrete numerical density function:

n(l, t) =
M∑
i=1

[Ni(t)δ(l − xi)] (2.64)

where xi is the representative size of each bin, called as pivot (Kumar and
Ramkrishna, 1997), and M is the total number of bins. Like the boundaries of
the bins, the pivots also vary according to:

dxi
dt

= G(xi) (2.65)

Finally, by substituting Eq. 2.63 into Eq. 2.61 and integrating the term with
the nucleation rate, ensuring that lmin is between l0 and l1, it is obtained:

d

dt
Ni(t)−

∑
k

V̇k
V
Ni,k +Ni

d ln V
dt

=

B0 if i = 0

0 if i = 1, . . . ,M − 1
(2.66)

According to Kumar and Ramkrishna (1997) the method of the characteristics
combined with the concepts of the Method of Classes prevents the discretization
of the advection term to avoid problems of numerical instabilities. However, the
nucleation term requires a special treatment. The difficulty lies in the fact that the
new particles arising from nucleation must be added in some bin, but as these move
with time there is a possibility that the new particles are smaller in size than the
smaller size represented by the set of bins.

The solution adopted by Kumar and Ramkrishna (1997) is the addition of
new bins successively at regular time intervals at the nuclei size, that is, with the
properties: l0 = l1 = x0 = lmin and N1 = 0 as initial values for the next simulation
between [t, t + ∆t]. The remaining bins must be renumbered. While the temporal
variations of the other bins are given by the above-mentioned equation, for the new
one it is:
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dl0
dt

= 0 (2.67)

dx0

dt
= 1

2

(
dl0
dt

+ dl1
dt

)
(2.68)

The Kumar and Ramkrishna (1997) formulation correctly quantifies the number
of particles due to the nucleation. For a detailed analysis of moment conservation
in the presence of nucleation see Chapter 3.

Eq. 2.66 in conjunction with Eqs. 2.65, 2.62, 2.67 and 2.68 form the population
balance equation system. This set of equation is solved successively during a small
time interval ∆t, where at the end of each iteration a new bin is introduced into
the system and the rest are renumbered. The interval ∆t is given by the time
required for the new bin to increase its boundaries to a size according to the desired
resolution. Kumar and Ramkrishna (1997) point out that such approach allows the
simulation of different events, such as the dissolution of all or a set of particles and
simultaneous growth and dissolution.

After integration in several ∆t’s the amount of bins in the equation set can
increase dramatically, making the technique computationally expensive. Kumar and
Ramkrishna (1997) indicated that the bins that need to be eliminated are assimilated
to their neighbors so that the desired population properties are preserved. Thus,
needing to relocate the population of a bin with pivot xi to its neighbors i − 1
and i + 1 the fractions relative to each of them, respectively ηi−1 and ηi+1 for the
preservation of the moments of orders $ and ς are:

ηi+1 = x$i x
ς
i−1 − xςi−1x

$
i−1

x$i+1x
ς
i−1 − xςi+1x

$
i−1

(2.69)

ηi−1 = x$i x
ς
i+1 − xςi−1x

$
i+1

xςi+1x
$
i−1 − x$i+1x

ς
i−1

(2.70)

In their paper the authors suggest the collapse of any pivot in the case that
xi+1

xi−1
< rcritical, while preserving the properties of interest, which usually are the

number and mass (rcritical being a predefined value). Lee et al. (2001) suggest
an approach to mesh readjustment. The adaptation criterion conserves mass and
number of the distribution and is based on the variation of the PSD, in order to leave
more sparsely spaced regions and maintain refined mesh for regions of significant
variations.
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Others numerical methods applied for the PBE solution

In addition to the numerical methods mentioned in the previous section, the
crystallization literature uses several others for the PBE solution. In Costa et al.
(2007) and Ramkrishna (2000) different methods are discussed. Three discretization
methods are compared in Nopens et al. (2005), and Silva et al. (2010) performed
a comparative study of moment-based techniques. Some of these techniques with
expressive application in crystallizers are presented below.

The Finite Differences Method is widely used for the solution of partial
differential equations, however, for the PBE solution it is not indicated due to its
hyperbolic character. In this technique, the differential equations are approximated
using finite difference schemes for the derivatives. Usually, nucleation is considered
as a boundary condition. For example, in Eq. 2.26, the partial derivative with
respect to the characteristic size can be approximated by a second order backward
type:

∂n(l, t)
∂l

≈



1
2∆l (3n(li, t)− 4n(li−1, t) + n(li−2, t)) for i > 2

1
∆l

(
−3

2n(l1, t) + 2n(l2, t)−
1
2n(l3, t)

)
for i = 1

1
2∆l (n(l3, t)− n(l1, t)) for i = 2

(2.71)

Another technique used is the so-called finite-volume semi-discrete
high-resolution method (Koren, 1993). In this method, the size domain l is
discretized in M cells of size ∆l and the points li refer to its centers and li± 1

2
to its

borders. It is defined Fi = G(li, t)n(li, t) as the rate of particles entering or leaving
a cell and with approximation as in Eq. 2.72.

Fi+ 1
2

= Fi + 1 + κ

4 (Fi+1 −Fi) + 1− κ
4 (Fi −Fi−1) (2.72)

where κ is a parameter in the range [−1, 1]. At the lower limit it represents a
second order fully one-sided upwind scheme and at κ = 1 it is a standard second
order central scheme. In the homogeneous case, the temporal variation of the size
distribution evaluated in each centroid (ni) is:

∂ni
∂t

= −
Fi+ 1

2
−Fi− 1

2

∆l , para i = 1, 2, . . . ,M (2.73)

Qamar et al. (2008) formulate it for the crystallization process with homogeneous
nucleation and in supersaturated or undersaturated condition for κ = 1/3:
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If Gi+ 1
2
> 0


F 1

2
= Fin for i = 0

Fi+ 1
2

= Fi for i = 1,M − 1 and M

Fi+ 1
2

= Fi + 1
2φ
′(ri+ 1

2
) (Fi −Fi−1) for i = 2, ...,M − 2

(2.74)

with:

ri+ 1
2

= Fi+1 −Fi + εm
Fi −Fi−1 + εm

(2.75)

If Gi+ 1
2
< 0


FM+ 1

2
= Fin for i = M

Fi+ 1
2

= Fi+1 for i = 0, 1 and M − 1

Fi+ 1
2

= Fi+1 + 1
2φ
′(ri+ 1

2
) (Fi+1 −Fi+2) for i = 2 to M − 2

(2.76)

with:

ri+ 1
2

= Fi −Fi+1 + εm
Fi+1 −Fi+2 + εm

(2.77)

and

φ′(ri+ 1
2
) = max

(
0,min

(
2ri+ 1

2
,min

(1
3 ,

2
3ri+

1
2
, 2
)))

(2.78)

where εm is a small number to avoid division by zero.
Weighted residue methods correspond to the approximation of the solution with

a series of tentative functions, whose coefficients must be determined. Solsvik and
Jakobsen (2013) compare methods such as orthogonal collocation, Galerkin, Tau,
and least squares. The studied system was a bubble column reactor. For the
evaluated system, the authors found that the orthogonal collocation method provides
the greatest efficiency in terms of computational time without losing accuracy in the
prediction of PSD.

The approximation considers the expansion of the PSD function into an infinite
set of orthogonal bases functions φk(l): n(l, t) = ∑∞

k=0 ck(t)φk(l). The coefficients
ck(t) characterize the system. This approximation is replaced in the population
balance equation in order to define the residuals R(l, t). These are forced to be
orthogonal to a set of weighting functions wi(l), that is:

∫ ∞
0

wi(l)R(l, t)dl = 0 (2.79)

For example, defining the functions wi(l) as the Dirac delta functional, the
orthogonal collocation method is obtained. These methods can also be applied
in finite elements.
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2.3 Instrumentation used in Crystallizers

One of the major challenges and obstacles of the development of the
crystallization process corresponds to the difficulty of estimating the states since
it is necessary to characterize the liquid phase and the solid phase.

In the liquid phase, the properties of interest are temperature and composition.
In the solid phase it is desired to obtain the PSD and, in some cases, the morphology
of the crystals.

The measurement of these variables is necessary for better understanding of the
dominant mechanisms in the process; design of experiments and data acquisition to
estimate kinetic parameters or identification of models and establishment of control
schemes to maximize product quality and minimize operational costs. A discussion
of the development of technologies for monitoring crystallization is presented by
Nagy et al. (2013).

The concentration measurement can be performed by instruments such as
refractometer and densimeters for binary systems (solute-solvent). Total Reflectance
Fourier Transform Infrared (ATR-FTIR) is also used. A monitoring and control
study for the crystallization of a drug was carried out by Liotta and Sabesan (2004)
using in in-situ measurements of ATR-FTIR. Worlitschek and Mazzotti (2004) used
an experimental scheme in which measurements of paracetamol concentration were
performed by densimeter, but for this it was necessary to pump the process sample
to the analyzer.

In ternary systems, such as enantioselective crystallization, specific
instrumentation is required. Elsner et al. (2005) utilize an operating configuration
of a racemic solid-forming enantioselective crystallizer by pumping samples of the
liquid to a polarimeter and a densimeter.

An advance in the particle size distribution measurement technology that allowed
in situ characterization, which can be applied without dilution, is the Focused
Beam Reflectance Measurement (FBRM). However, this apparatus measures the
chord length distribution (CLD), which differs from the particle size distribution.
Thus, reconstruction is necessary to obtain an estimation of the PSD (Worlitschek
and Mazzotti, 2004). Many works are being carried out to provide techniques for
transforming CLD into PSD. These works use the three-dimensional morphology
of the crystal and evaluate methods for its two-dimensional projection (Kail et al.,
2007).

The FBRM measurement principle is based on the backward light scattering.
A probe immersed in the fluid emits a rotating laser at a constant speed. When
there is an intersection by a particle, the light scattering occurs, a fraction of this
is collected by a detector in the opposite direction of the emission. Due to the
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rotation of the emission, the laser tends to travel through the particle constantly
dispersing light to the detector. Due to irregularities or movements this signal is
noisy and requires low frequency filtering. After traversing the entire particle, there
is a reduction in scattered light. At this moment there is the measurement of the
time elapsed to cross the particle. Since the velocity is known, one can get the chord
length (Chianese and Kramer, 2012).

2.4 Control Methods Applied to Batch
Crystallizer

The term control for batch crystallizers is used in the literature in two main
configurations: open-loop optimal control and closed-loop control.

In the first case, the intention is to find the profile of the manipulated variables
that leads to the optimal operational condition before starting the process. The
optimal condition to be achieved is based on one or more performance indexes
of interest associated with PSD of the final time of operation. On the second
configuration, the closed-loop batch crystallizer control consists of the manipulation
of certain variables in order to guarantee the operation as desired.

2.4.1 Open Loop Control

Mullin and Nỳvlt (1971) called as programmed cooling the open loop control of
cooling crystallizers. The proposal was that nucleation could be maintained at a
constant rate by using programmed cooling curves. The model adopted is based on
a supersaturation balance. Jones (1974) using the population balance formulation
arrived at a similar but more generic model for the supersaturation balance. Using
the method of moments, the author determined the optimal cooling profile using
optimal control concepts. Both works have shown theoretically and experimentally
that for a greater growth of the crystals the temperature must reduce slowly at the
beginning and more quickly at the end of the process.

Several other studies are found in the literature that aim to obtain the
optimal trajectory to be implemented in the crystallization. Ajinkya and Ray
(1974) evaluated the optimization to provide maximum average size and minimum
PSD variance. Chang and Epstein (1982) compared the use of the model via
moments with model using the method of the characteristics for different indexes
of performance. The results showed agreement on the use of both types of
model. Myerson (2002) formulated the optimal control problem generically based
on nonlinear programming.
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Worlitschek and Mazzotti (2004) evaluated the crystallization of paracetamol
in ethanol. A PBE model with solution by the Galerkin method and saturation
given by the Schroder Van-Laar equation was used. Before the application of
non-linear optimization techniques, the modeling, parameter estimation and online
PSD monitoring were discussed. An important focus was given to the difficulties
related to the instrumentation of the crystallization process, especially in relation
to the size distribution measurements. The authors used the FBRM to obtain
the CLD and restored the PSD through the projection method in convex sets. In
the optimization adopted, the intention was to obtain a PSD with imposed shape.
Mathematically, it corresponds to the minimization of the objective function given
by the least squares of the errors between the calculated distribution in each cell
with the desired distribution. The manipulated variable was discretized over time
and linearly interpolated for the dynamic simulations.

Angelov et al. (2008) formulated the open loop optimization for preferential
crystallization of the enantiomeric solid conglomerate system. The manipulated
variable, the internal temperature of the crystallizer, was parameterized using
B-spline. With the method of moments, the authors calculated the optimal
temperature trajectory. A low initial variation profile with pronounced final
variation was obtained by considering the third order momentum maximization of
the preferred enantiomer and 95% purity constraint.

One of the first works to assess the inclusion of fine removal in open loop
optimization was Jones et al. (1984), which addressed the batch crystallization of
potassium sulfate in aqueous solution. The crystallizer configuration consisted of
classified removal of fine particles, pumping the fines stream to an external heat
exchanger, and cooling to the operating temperature before recycling the stream.
The experiment demonstrated that the removal of fines reduces the amount of
crystals formed by secondary nucleation, increases the average size of the crystals
and decreases the coefficient of variation of the PSD.

Stoller et al. (2008) (apud Chianese and Kramer (2012)) experimentally analyzed
the dissolution of fines in an external heating system similar to Jones et al. (1984).
The analysis utilized potassium sulfate with stream recycle with fines of less than
300 µm and a 2 mm inner diameter tube. The service fluid was oil at 130 and
150℃. Using a residence time of 3 s, the authors have showed that the dissolution
is not completely affected, being dissolved from 60 to 80% of the initial mass. With
a mathematical model using computational fluid dynamics it was found that 90%
of the dissolved mass occurs in the vicinity of the tube wall.

A methodology for the open-loop optimization of crystal size distribution
considering growth, nucleation and dissolution for crystallization with cooling is
presented in Nagy et al. (2011). The optimal temperature trajectory was obtained
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by the joint solution of the PBE by the method of moments with the method of
the characteristics. The approach was evaluated experimentally for crystallization
of potassium aluminum in water. Kinetic parameters of the model were determined
based on laboratory and pilot plant data. The approach considers in situ dissolution,
e.g, undersaturation is forced inside the crystallizer. According to the authors,
the methodology allowed for greater flexibility in the final PSD shape, since the
dissolution eliminates nucleated crystals in case of accidental sowing, besides not
requiring extra equipment for the recycling of fines.

2.4.2 Closed Loop Control

The optimal control in open loop is of great importance to guide the operation
of the crystallizer. However, in the presence of disturbances, modeling errors and
deviation in the trajectory of the manipulated variables, the operation will not occur
according to the optimal obtained offline.

Rawlings et al. (1993) indicated that the open loop operational path is not enough
to control the PSD. The use of this approach solely will not allow a reproducible
operation, and there may be a discrepancy from the expected optimal. The reason
lies mainly in the difficulties of characterizing the kinetics of crystals.

The crystallization operation is benefited by the use of the optimal control
in closed loop, which can be based on models or not. This approach promotes
the interaction of the control system with the process by using feedback from the
measurements of process variables.

Model-based control can use process data to identify models. However, in the
control of particulate processes it is common to use models based on the first
principles, that is, mass, energy and population balances, with empirical kinetics.
The formulation of reduced models from a most complete phenomenological model
is also used. (Chianese and Kramer, 2012).

In the closed-loop control approach without using dynamic models, strategies
based on the process knowledge and heuristics are employed. For example, there is
the so-called direct nucleation control approach, whose concept is to keep the number
of particles constant. Another method is the concentration feedback control that
aims to maintain supersaturation in an ideal range for the operation (Nagy and
Braatz, 2012).

Model-based predictive control (MPC) corresponds to a methodology capable of
providing high-performance operation by considering desired performance indexes
in the formulation of the objective function and by including constraints of the
manipulated and process variables. MPC is also able to handle interactions of
multivariate systems. According to Shi et al. (2005), the MPC method calculates
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the control action by the online solution of the optimization problem with constraint
at each sampling instant. Therefore, the method suppresses influence of external
disturbances and tolerates model errors.

Eek (1995) used a linear MPC strategy considering two ways of obtaining the
models: reduced order of the phenomenological model and models based on input
and output data. The results obtained in the predictive control of a pilot plant
showed a better performance when using the model identified by process data. A
possible explanation for this refers to the hypotheses adopted for the formulation of
the model based on fundamental principles.

Rohani et al. (1999) evaluated the multivariable control of crystallizers. They
compared the linear control based on the ARX model (Autoregressive with
eXogenous Input) with the nonlinear neuronal networks based model. In their
analyzes, linear predictive control was used for MISO (Multi-Input Single-Output)
models. In addition, to deal with process constraints, the Feasible Sequential
Quadratic Programming (FSQP) optimizer was used. The authors reported
problems in the optimization method for large control horizons, so most of the
considered results used a control horizon with a single sampling time. The authors
concluded that the nonlinear control had better performance.

Eaton and Rawlings (1990) extended the application used by Witkowski and
Rawlings (1987) for continuous operation of nonlinear predictive control to batch
crystallizer. The model used is based on PBE and makes a segregation of the
distribution due to the nucleation from the distribution corresponding to the seeded
crystals. The overall distribution was the sum between these two. The controller was
formulated to minimize the ratio between the third order moment of the nucleation
distribution part and the PSD of the seeded crystals. A constraint was adopted to
ensure desired productivity. The solution of the nonlinear optimization problem was
performed after the application of the orthogonal collocation method and used the
successive quadratic programming to solve the optimization problem. According to
the authors, the method is feasible to be applied in real time, but its complexity
may be hindering for industrial applications.

According to Christofides (2002a) the difficulty of developing model based control
for crystallizers is due to the system characteristics (distributed parameters, integral
and hyperbolic). The PBE solution methods can result in a system of high order
ordinary differential equations, being impractical to implement in real time for
predictive control. The authors presented methods for the order reduction of
the model based on population balance using weighted residue method. They
also addressed several issues related to model-based controllers, such as parameter
uncertainty, non modeled actuator and sensor dynamics, robust and fault tolerant
control.
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Zhang and Rohani (2003) considered the closed-loop control with an extended
Kalman filter to estimate seven unmeasured variables based on three-variable
measurements: temperature, concentration, and temperature of the thermal jacket.
A cooling trajectory was obtained offline and the implementation during operation
used a conventional PI controller. A numerical implementation showed that the
approach allowed a PSD with lower coefficient of variation and larger average size
when compared with natural or linear cooling.

Shen et al. (1999) (apud Chianese and Kramer (2012)) evaluated the use of
model-based predictive control in order to track the optimal trajectory obtained
offline. It was demonstrated that MPC via global linearization methodologies,
generic models and multi-linear models provides superior performance to the use
of conventional PI controllers.

Shi et al. (2005) developed a methodology for predictive control using a model
based on the method of moments. The approach considered the separation of the
nucleation moments and the seeding crystals. The objective function adopted is to
minimize the third order moment of the nucleation part while adopting a constraint
for the third order moment of the seeded distribution range. Simulation results,
which used PBE solution through discretization in second order finite differences as
a plant, showed that the strategy was able to reduce the amount of fines generated in
relation to linear cooling. The effect of modeling errors on the controller performance
were also evaluated, showing that the control acts more severely on the manipulated
variable, but achieves a final PSD similar to the case of coincident model and plant.

Mesbah et al. (2012) presented a non-linear control based on output feedback
type models for the optimal operation of industrial semi-batch crystallizers. The
control strategy was formulated to solve an optimal control problem. The authors
also studied the efficiency of the methodology in the presence of model imperfections.

Kwon et al. (2013) compared different morphology control strategies for batch
crystallization of proteins. Predictive control and conventional methods were
evaluated, such as constant temperature control and constant supersaturation. The
predictive controller was able to regulate the desired morphology at the end of the
batch, in addition to reducing undesirable effects of nucleation.

Gamez-Garci et al. (2012) obtained the optimal open loop trajectory of a cooling
crystallizer using method of moments and supersaturation given by a polynomial
equation with respect to temperature. During the operation a robust controller was
applied to the optimal trajectory tracking. Two robust control approaches were
also evaluated: modeling error compensation and integral high order sliding mode
control. Good robustness properties were reported.

A nonlinear model predictive controller was applied by de Moraes et al. (2018) for
a continuous evaporative crystallizer of potassium sulphate. The objective was the
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regulatory control for disturbances on the feed solute and flowrate by manipulating
temperature and steam outflow rate. The MPC formulation was compared to PI
controllers and showed better performance.

2.5 Literature Critical Review

The literature on crystallizers may be considered rather extensive for the
evaluation of numerical methods and PSD control techniques. Studies concerning
the application of crystallization methods for the separation of enantiomers are
more restricted. Most of the work in this topic deals with the separation of
conglomerate-forming enantiomeric compounds. For this case, there are works that
aim at mathematical modeling to evaluate the dynamics of crystallization (Elsner
et al., 2005; Lorenz et al., 2006a). An evaluation of the optimal control in open loop
was performed by Angelov et al. (2008).

Enantioselective crystallization for racemic compounding systems is not much
explored in the literature regarding the mathematical modeling of crystallization
dynamics. Yinghong (2009) experimentally evaluates the kinetics of growth and
nucleation and uses models of moments and Laplace transform considering only
the preferential enantiomer. Lorenz et al. (2006b) discusses the application
of preferential crystallization to this system and demonstrates its viability
experimentally.

Regarding the separation of enantiomers by crystallization, the present work
contributes with the theoretical evaluation of mathematical model that allows the
study of the dynamics of the PSD incorporating in a more rigorous form the
constraints of the phase diagram. Another contribution refers to the closed-loop
control of these systems including the dissolution of fine particles.

32



Chapter 3

First Bin Analysis for the Moving
Sectional Method

As shown by Kumar and Ramkrishna (1997) the incorporation of nucleation
phenomena by the Moving Sectional Method requires the workaround of successively
adding new bins at minimal size, thus it is an approximation and a source of errors
in the particle size distribution properties. The added bin occupies the first position
in the grid with pivot as x0 = lmin and at the time of addition it is initialized with
N0 = 0, which is refereed here as a collapsed bin.

The nuclei size usually is very smaller compared to the working particle size
range, because of that in the mathematical modeling a minimal size of zero is often
considered. At a first glance, the introduction of nucleated particles could be treated
as it is considered by Kumar and Ramkrishna (1997) for dealing with aggregation
of particles, which uses neighbors pivots both to the left and to the right of a pivot
to conserve two arbitrary moment orders. However, because of the very small size
of the incoming nuclei, posing a pivot smaller than the minimal size would subject
the dynamic integration to very small time steps and would be unsuitable for some
applications.

In this section, the strategy of adding bins at minimal size lmin at periodic times
is analyzed in respected to the conservation of a k-th moment of the distribution.
The focus is in the nucleation and growth mechanisms and, since the MSM can
adequately preserve the growth of seeded particles, only the nucleation size range
is used in the analysis. The analysis is performed for the case of size independent
growth.

Firstly, the preservation of a k-th moment when using the MSM for only a single
bin added at initial time is evaluated. Some simplifications are considered in the
definition of the added bin growth rate G0 and the calculated moments using the
MSM are confronted with the expected moments for test cases. It is shown that
when the desired moment to be conserved is of order k > 1, there is additional
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difficult since G0 is dependent on the expected moment.
Later, the case with multiple added bins to describe the nucleated particles is

addressed, which is the scheme suggested by Kumar and Ramkrishna (1997) to
minimize the overall moment conservation error. It is shown that if the order to be
preserved is k = 1, the equation for G0 can be stated as in the case with single bin
addition with the other bins moving accordingly with the computed system growth
rate G. However, such condition does not hold true for the case with k > 1. In
this case, a different pivot movement scheme is defined and test cases are reported
comparing the expected moments to the calculated by the method.

Finally, strategies for defining proper times for adding bins during the simulation
are discussed. Ideally, new bins should be added at very small time intervals in order
to preserve most of the distribution properties. However, this corresponds to high
computational cost and in practice a commitment between the addition of bins
and the simulation performance is required. The bin addition based solely on a
predefined time interval is not suitable when the growth and nucleation varies along
the simulation, since it causes more errors when those variables are at high values,
whereas it may result in unnecessary bins additions. Thus, controlled bins addition
schemes based on the current values of the growth and nucleation rate are presented.

3.1 MSM with nucleation and growth and single
added bin at initial time

3.1.1 Sectional Moment at a bin

Each bin i has a k-th moment defined as Eq. 3.1 with the boundaries li and l1+1.

µ
(i)
k =

∫ li+1

li
lkn(l, t)dl (3.1)

Applying Leibnitz theorem on the moment definition Eq. 3.1, in order to get its

time derivative dµ
(i)
k

dt
, results in Eq. 3.2. The notation for the dependence of n(l, t)

and G(l, t) on l and t is not included for convenience.

dµ
(i)
k

dt
= d

dt

[∫ li+1

li
lkndl

]
=
∫ li+1

li

∂(lkn)
∂t

dl +
[
lknG

]li+1

li
(3.2)

It is considered the PBE with growth mechanism and with a source of new
particles ṅnew(l) included inside the bin i (li ≤ l ≤ li+1):

∂n

∂t
+ ∂

∂l
(Gn) = ṅnew(l) (3.3)
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Applying the integral operator
∫ li+1
li

lk(·)dl on both sides it is obtained Eq. 3.4

∫ li+1

li

∂(lkn)
∂t

dl +
∫ li+1

li
lk
∂

∂l
(Gn)dl =

∫ li+1

li
lk[ṅnew(l)]dl (3.4)

Integrating by parts the second term (u = lk, du = klk−1dl):

∫ li+1

li
lk
∂

∂l
(Gn)dl =

[
lknG

]li+1

li
−
∫ li+1

li
Gnklk−1dl (3.5)

Then, substituting the second term in Eq. 3.4 by Eq. 3.5 it is obtained:

∫ li+1

li

∂(lkn)
∂t

dl +
[
lknG

]li+1

li
=
∫ li+1

li
Gnklk−1dl +

∫ li+1

li
lk[ṅnew(l)]dl (3.6)

The left hand side of Eq. 3.6 can be substituted by Eq. 3.2 to obtain the sectional
moment at a given bin i:

dµ
(i)
k

dt
=
∫ li+1

li
Gnklk−1dl +

∫ li+1

li
lk[ṅnew(l)]dl (3.7)

3.1.2 Including Nucleation for the expected process: nuclei
always added at lmin

In this case the nuclei are added at the nuclei size lmin, which is considered to be
constant, and is a conventional nucleation definition (Eq. 3.8) found in the literature
(Randolph and Larson, 1988).

ṅnew(l) = B0δ(l − lmin) (3.8)

Because the lower boundary l0 in the MSM is fixed constant at lmin the first bin
is supposed to receive the nucleated particles, since lmin ∈ [l0, l1] ∀ t > 0.

Using the derived equation for the sectional moment rate Eq. 3.7 at first bin
i = 0 and substituting the boundary l0 = lmin and also ṅnew(l) using Eq. 3.8 it is
obtained Eq. 3.9.

dµ
(0)
k

dt
=
∫ l1

lmin

Gnklk−1dl +
∫ l1

lmin

lk[B0δ(l − lmin)]dl (3.9)

Integrating the last term results in Eq. 3.10, which gives the rate of change of
the first bin sectional moment order k for the expected nucleation occurring at the
minimal size.

dµ
(0)
k

dt
=
∫ l1

lmin

Gnklk−1dl +B0l
k
min (3.10)
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3.1.3 Sectional first bin moment when using the MSM

Because the distribution is considered to occur at the representative size (the
pivots), new particles entering in the system due to nucleation will have a size
greater than expected as the particle grow, since the pivot is greater than the nuclei
size for t > 0. The sectional moment for the first bin (i = 0) calculated by the
moving sectional method is denoted as µ(0)

k,msm.
Considering the definition for the sectional moment (Eq. 3.1) for the first bin

i = 0:

µ
(0)
k =

∫ l1

l0
lkn(l, t)dl (3.11)

Using the definition from Kumar and Ramkrishna (1997) for the MSM n(l, t) =∑
iNiδ(l− xi), and substituting into Eq. 3.11, Eq. 3.12 is achieved. Because of the

MSM approximation, the nomenclature for the sectional moment µ(i)
k is replaced to

µ
(i)
k,msm.

µ
(0)
k,msm =

∫ l1

l0
lk
∑
i

Niδ(l − x0)dl (3.12)

The integration of the right hand side results in:

µ
(0)
k,msm = xk0N0 (3.13)

Differentiating Eq. 3.13 with respect to time gives:

dµ
(0)
k,msm

dt
= d

dt
[N0x

k
0] (3.14)

Thus:

dµ
(0)
k,msm

dt
= dN0

dt
xk0 +N0

dxk0
dt

= dN0

dt
xk0 +N0kx

k−1
0

dx0

dt
(3.15)

From Kumar and Ramkrishna (1997) MSM equation set with nucleation and
growth, the following definitions are used:

dN0

dt
= B0 (3.16)

dx0

dt
= G0 (3.17)

In Eq. 3.17, G0 corresponds to the first bin growth rate when using the MSM.
Substituting these two equations into Eq. 3.15 gives:
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dµ
(0)
k,msm

dt
= B0x

k
0 +N0kx

k−1
0 G0 (3.18)

3.1.4 Equating the moment calculated from the moving
pivot

The previous derivations provided the first bin sectional moment for the following
cases:

\ For the source of particles at the nuclei size lmin yielding the expected first bin
sectional moment - Eq. 3.10

\ For the source of particles at the first pivot size because of the use of the MSM
- Eq. 3.18

These two approaches are then compared. Equating Eq. 3.10 to Eq. 3.18
provides:

dµ
(0)
k,ex

dt
=
dµ0

k,msm

dt
(3.19)

which gives:

lkminB0 +
∫ l1

lmin

Gnklk−1dl = B0x
k
0 +N0kx

k−1
0 G0 (3.20)

Solving for the first pivot growth rate G0:

G0 = 1
N0kx

k−1
0

{
B0(lkmin − xk0) +

[∫ l1

lmin

Gnklk−1dl

]}
(3.21)

This equation relates the first bin growth rate G0, which can be a function of
l and t, when applying the MSM with the actual process growth rate G(t) and
nucleation rate B0(t). Thus the first bin growth rate can be adjusted in order to
preserve a desired k-th moment. Note that by the definition from Eq. 3.16 the zero
order moment is inherently preserved by the MSM.

Although Eq. 3.21 provides the adjustment of G0 for preserving a moment of
order k > 0 and k = 0 for the generic case with size dependent and time varying
growth rate and time varying nucleation rate, it is not of practical use since the
integral in Eq. 3.21 requires specialized numerical methods. Thus, in the following,
Eq. 3.21 is evaluated for particular cases that are common in the literature.
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3.1.5 Particular cases for first bin moment conservation

In this section simplifications are applied to Eq. 3.21 providing relations for the
first bin growth rate using the MSM. The following cases are evaluated:

1. Size independent growth rate;

2. Size independent growth rate preserving order k = 1;

3. Constant nucleation and growth rate preserving order k = 1 with N0(0) = 0;

4. Constant nucleation and growth rate with N0(0) > 0 and lmin > 0;

5. Constant nucleation and growth rate with N0(0) = 0 and lmin = 0.

Figure 3.1 schematize the simplifications for the first bin growth rate based on
Eq 3.21 for a better overview of the above considerations. The refereed equations
in the diagram will be discussed in the following.

General form
(Eq. 3.21)

(1) Size indep.
G (Eq. 3.23)

(4) G and B0
const (Eq. 3.23
with Eq. 3.31)

(2) k = 1
(Eq. 3.26)

(5) N0(0)=0;
lmin=0

(Eq. 3.38)

(3) G and B0
const; N0(0)=0

(Eq. 3.28)

Figure 3.1: Schematic overview of G0 simplifications.

Size independent growth rate

For this case the integral in the last term of Eq. 3.21 is simplified as:

∫ l1

lmin

Gnklk−1dl = Gk
∫ l1

lmin

nlk−1dl = kGµ
(0)
k−1,ex (3.22)

Eq. 3.21 is then:

G0 = 1
N0kx

k−1
0

[
B0(lkmin − xk0) + kGµ

(0)
k−1,ex

]
(3.23)

where µ(0)
k,ex is the expected value of the k-th moment for the first bin.
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This equation indicates that some desired k-th moment can be conserved if the
growth rate for the first bin is adjusted using Eq. 3.23. For that, µ(0)

k,ex can be
obtained solving the expected sectional moment equation for bin i = 0 (Eq. 3.10).
This can be accomplished by coupling the MSM equation set to the k differential
equations for the expected sectional moment at the first bin. Thus, the use of Eq.
3.23 is only possible if the expected moment µ(0)

k,ex can be determined. However,
if k = 1, Eq. 3.23 will not depend on the expected moment, as described in the
following.

Size independent growth rate preserving order k = 1

Substituting k = 1 in Eq. 3.23:

G0(t) = 1
N0

[
B0(lmin − x0) +Gµ

(0)
0,ex

]
(3.24)

Because of definition in Eq. 3.16, the expected moment order zero for the first
bin µ(0)

0,ex is represented by N0 when using the MSM. Thus:

G0 = 1
N0

[B0(lmin − x0) +GN0] (3.25)

Rearranging:

G0 = B0

N0
(lmin − x0) +G (3.26)

Eq. 3.26 was obtained by Spicer et al. (2002). It indicates that for preserving
the moments of order 0 and 1, the first bin rate with the MSM can be adjusted by
adding to the system growth rate G a portion proportional to the distance of the
zero pivot to the critical size (lmin− x0) and with the number of particles N0 acting
as an inertia term.

Constant nucleation and growth rate preserving order k = 1

Even thought those assumptions are not realistic for practical application, since
both growth and nucleation varies according to the system supersaturation level, it
provides good insights on the first bin size dynamics.

When G is constant it is also assumed that the first pivot growth rate is also
constant, thus: x0(t) = lmin + G0t. Moreover, with nucleation rate constant, the
number of particles in the first bin is: N0(t) = B0t when considering the collapsed
added bin (N0(t = 0) = 0). With those simplifications Eq. 3.26 is then:

G0 = B0

B0t
(lmin − lmin −G0t) +G = −1

t
(G0t) +G (3.27)
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Thus, G0 assumes the form:

G0 = 1
2G (3.28)

as it is used by Kumar and Ramkrishna (1997) and indicates that the moments
of orders k = 1 and k = 0, when both nucleation and growth are constant, are
preserved if the first bin growth rate is half of the calculated system growth rate.

Constant nucleation and growth rate with lmin > 0 and N0(t = 0) > 0

The expected moment of order k for the first bin (µ(0)
k,ex) can be obtained in the

condition of constant nucleation and growth rate using Eq. 3.10:

dµ
(0)
k

dt
= kGµ

(0)
k−1,ex +B0l

k
min (3.29)

Eq. 3.29 can be rewritten for the aforementioned condition of G and B constant,
in which µ(0)

k (0) is the initial value of the k-th moment (for the bin i = 0):

µ
(0)
k,ex(t) = kG

∫ t

t0
µ

(0)
k−1,exdt+B0l

k
mint+ µ

(0)
k (0) (3.30)

By recursively integrating Eq. 3.30 using k = [0, 1, 2, 3, . . .] it is possible to obtain
Eq. 3.31, which relates the expected first bin moment k for constant growth and
nucleation with the simulation time t, nucleation rate B0, growth rate G, minimal
size lmin and initial value of moments µ(0)

j (0).

µ
(0)
k,ex(t) = B0

k∑
j=0

[
lk−jminG

jtj+1 k!
(k − j)!

1
(j + 1)!

]
+

k∑
j=0

[
Gjtjµ

(0)
k−j(0) k!

(k − j)!
1
j!

]
(3.31)

Thus, it is possible to use µ(0)
k−1,ex(t) from Eq. 3.31 into Eq. 3.23 to define the

first bin growth rate G0 under the simplification of constant growth and nucleation
rate, which for small simulation time interval can be acceptable.

Constant nucleation and growth rate with lmin = 0 and N0(t = 0) = 0

In this case, using lmin = 0 turns Eq. 3.23 into:

G0 = 1
N0kx

k−1
0

[
−B0x

k
0 + kGµ

(0)
k−1,ex

]
(3.32)

The expected first bin moment, Eq. 3.31, with further simplifications of lmin = 0
and N0(t=0) = 0, which occurs for the condition of an added collapsed bin at zero
size, is rewritten as in Eq. 3.33. Note that for N0(t=0) = 0, the initial moments

40



Chapter 3

µ
(0)
k (0) are also zero. Moreover, it is used the definition of l(k−j)min as 1 for j = k and

0 otherwise if lmin = 0.

µ
(0)
k,ex(t) = GkB0t

k+1

k + 1 (3.33)

Using the definitions for constant growth and nucleation: N0 = B0t and x0 = G0t

when lmin = 0 together with Eq 3.33 into Eq. 3.32 it is obtained:

G0 = 1
B0tkG

k−1
0 tk−1

[
−B0G

k
0t
k + kG

Gk−1B0t
k

k

]
(3.34)

Rearranging:

G0 = −B0G
k
0t
k

B0tkG
k−1
0 tk−1 +

kGGk−1B0tk

k

B0tkG
k−1
0 tk−1 (3.35)

which is simplified to:

G0 = −G0

k
+ GkB0

kGk−1
0

(3.36)

Isolating G0 in Eq. 3.36 gives:

(1 + 1/k)G0 = Gk

k
(3.37)

G0 = (k + 1)−1
k G (3.38)

Eq. 3.38 relates G0 to the system growth rate G by the proportional constant
(k+1)−1

k , which for k = 1 yields G0 = 0.5G as in Eq. 3.28 and for k = 3 G0 ≈ 0.63G.
Eq. 3.38 serves as a guidance on how to define the first bin movement in respect to
the growth rate.

3.1.6 Simple test cases for illustrating the particular cases

In the next, some simple test cases are presented in order to exemplify and
compare the particular cases described earlier. All test scenarios are given from an
initial time t = 0 to a final time t = 10 and without intermediary bin additions.
The following cases are evaluated:

1. Constant G and B0 with lmin = 0

2. Constant G and B0 with lmin > 0

3. Constant B0 and time varying G = G(t) with lmin = 0

4. Constant G and time varying B0 = B0(t) with lmin = 0
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5. G = G(t) and B0 = B0(t) with lmin > 0

6. Constant G and B0 with lmin > 0 and N0(t=0) > 0

All the examples are performed without seeds, except for the last test case.
Without including seeds all particles entering in the system is due to the nucleation,
thus the error on the moment calculations are related solely with the first bin, since
all particles are created in it. For these cases, it is considered that the first bin at
initial time is collapsed, e.g. N0(0) = 0, l0 = l1 = x0 = lmin. The last test case
consider that particles are presented in the first bin at initial time, thus it is not
used the collapsed first bin condition.

For all cases the first four expected moments are calculated by the standard
method of moments for comparison with the MSM using different first bin growth
rate G0 equations. Moreover, when using Eq. 3.23, the expected sectional moment
µ

(0)
k−1,ex is calculated by augmenting the differential equation set with Eq. 3.10 for

the sectional first bin moment, except for the last case, in which µ(0)
k−1,ex is obtained

directly from Eq. 3.31.

Constant G and B0 with lmin = 0

This is the case with the most simplifications and is in conformity with the
derivation of Eq. 3.38. In this case, the first pivot movement rate G0 (Eq. 2.68) is
defined as G0 = dx0

dt
= (k + 1)−1

k G. Table 3.1 compares the MSM with the exact
moment calculation for the first 4 moments. The expected moments are calculated
using Eq. 3.10 after the simplifications. The table shows that the expected moment
is obtained using k = 1 to k = 3.

Table 3.1: Simple test case with constant G = 1 and B0 = 1 with lmin = 0

Case µ0 µ1 µ2 µ3
Expected 10.00 50.00 333.33 2500.00
Eq. 3.38 with k=1 10.00 50.00 250.00 1250.00
Eq. 3.38 with k=2 10.00 57.73 333.33 1924.50
Eq. 3.38 with k=3 10.00 63.00 396.85 2500.00

Constant G and B0 with lmin > 0

This case is similar to the former but using lmin = 5 and the obtained moments
are presented in Table 3.2. Such conditions are in accordance with the derivation of
Eq. 3.28 for preserving moment order k = 1. However, does not satisfy conditions
for Eq. 3.38, thus fails when using this equation with arbitrary order k. Hence,
when lmin > 0 and the order to preserve is k > 1 it is necessary to use a more
generic equation (Eq. 3.23).
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Table 3.2: Simple test case with constant G = 1 and B0 = 1 with lmin = 5

Case µ0 µ1 µ2 µ3
Expected 10.00 100.00 1083.33 12500.00
Eq. 3.38 with k=1 10.00 100.00 1000.00 10000.00
Eq. 3.38 with k=2 10.00 107.73 1160.68 12504.63
Eq. 3.38 with k=3 10.00 113.00 1276.81 14427.46
Eq. 3.23 with k=1 10.00 100.00 1000.00 10000.00
Eq. 3.23 with k=2 10.00 104.08 1083.33 11275.69
Eq. 3.23 with k=3 10.00 107.72 1160.40 12500.00

Time varying G = G(t) and B0 constant with lmin = 0

Table 3.3 presents the comparison for the case using a time varying growth
rate G = 0.1t, constant nucleation rate B0 = 1 and zero critical size simulating
up to t = 10. The table includes the Kumar and Ramkrishna (1997) cited first
bin movement scheme and also G0 using Eq. 3.23 for three scenarios conserving
moments of order 1 to 3. It can be noted that using the simple form G0 = 1

2G fails
to preserved order k = 1, but when applying Eq. 3.23 with the corresponding k the
moment is conserved.

Table 3.3: Simple test case with constant G = 0.1t and B0 = 1 with lmin = 0

Case µ0 µ1 µ2 µ3
Expected 10.00 33.33 133.33 571.43
Eq. 3.38 with k=1 10.00 25.00 62.50 156.25
Eq. 3.23 with k=1 10.00 33.33 111.11 370.37
Eq. 3.23 with k=2 10.00 36.52 133.33 486.86
Eq. 3.23 with k=3 10.00 38.52 148.36 571.43

Time varying B0 = B0(t) and G constant with lmin = 0

This case consider a nucleation rate dependent on time as B0 = 0.1t and G =
1 with zero minimal size and with final time as 10. The same comparisons are
performed as in the previous test case and Table 3.4 shows that the Eq. 3.23 can
preserve the chosen moment order.

Table 3.4: Simple test case with constant G = 1 and B0 = 0.1t with lmin = 0

Case µ0 µ1 µ2 µ3
Expected 5.00 16.67 83.33 500.00
Eq. 3.38 with k=1 5.00 25.00 125.00 625.00
Eq. 3.23 with k=1 5.00 16.67 55.56 185.19
Eq. 3.23 with k=2 5.00 20.41 83.33 340.21
Eq. 3.23 with k=3 5.00 23.21 107.72 500.00
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Time varying B0 = B0(t) and G = G(t) with lmin > 0

In this scenario, both nucleation rate and growth rate are time dependent: B0 =
0.1t and G = 0.1t + 0.5 with lmin = 5 and with final time as 10. Table 3.5 shows
that the Eq. 3.23 can conserve defined moment order.

Table 3.5: Time varying B0 = 0.1t and G = 0.1t+ 0.5 lmin = 5

Case µ0 µ1 µ2 µ3
Expected 10.00 91.67 908.33 9616.07
Eq. 3.38 with k=1 10.00 100.00 1000.00 10000.00
Eq. 3.23 with k=1 10.00 91.67 840.28 7702.55
Eq. 3.23 with k=2 10.00 95.31 908.33 8657.01
Eq. 3.23 with k=3 10.00 98.70 974.24 9616.07

Constant G and B0 with lmin > 0 and N0(0) > 0

This case differ from the former since at initial time it is considered that particles
are present in the first bin with N0(0) = 10. It is also considered that all those
particles have a size of 6 and it is used a non collapsed first bin pivot x0(0) at the
same size. Thus, the initial first bin sectional moment of order k is obtained as
N0(0)x0(0)k. New particles are nucleated at a constant rate of B0 = 1 at minimal
size lmin = 5 and the growth rate is constant G = 1. Table 3.6 shows the comparison
for the expected moment with the MSM using Eq. 3.23, but with the expect moment
obtained direct from Eq. 3.31. Again, the simple form G0 = 1

2G did not conserve
any moment order for the first bin, using Eq. 3.23 with 3.31, on the other hand, it
was capable of preserving desirable moment orders.

Table 3.6: Test case with constant G = 1 and B0 = 1 with lmin = 5 and N0(0) = 10

Case µ0 µ1 µ2 µ3
Expected 20.00 260.00 3643.33 53460.00
Eq. 3.38 with k=1 20.00 220.00 2420.00 26620.00
Eq. 3.23 with k=1 µ(i=0)

k−1,ex from Eq. 3.31 20.00 260.00 3380.00 43940.00
Eq. 3.23 with k=2 µ(i=0)

k−1,ex from Eq. 3.31 20.00 269.94 3643.33 49173.75
Eq. 3.23 with k=3 µ(i=0)

k−1,ex from Eq. 3.31 20.00 277.56 3852.09 53460.00

3.2 Multiple added bins for nucleation handling

Firstly, the same equations derived for single bin addition are applied for multiple
bin addition, which corresponded to define a particular first bin growth rate by Eq.
3.23 and considering all other pivots to grow according to G. The second case
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enumerated in Section 3.1.6 is used for this comparison and the obtained moments
are reported in Table 3.7.

Table 3.7: Test case with constant G = 1 and B0 = 1 with lmin = 5 using single bin
addition equations but adding 3 bins from t = 0 to t = 10

Case µ0 µ1 µ2 µ3
Expected 10.00 100.00 1083.33 12500.00
Eq. 3.38 with k=1 10.00 100.00 1074.07 12222.22
Eq. 3.38 with k=2 10.00 102.58 1126.31 13073.14
Eq. 3.38 with k=3 10.00 104.33 1162.59 13675.21
Eq. 3.23 with k=1 10.00 100.00 1074.07 12222.22
Eq. 3.23 with k=2 10.00 100.69 1087.94 12446.27
Eq. 3.23 with k=3 10.00 101.36 1101.48 12666.32

It can be noted that using this approach, only the k = 1 moment order was
preserved. Hence, in the following, a modified approach is delineated for preserving
higher moment order when growth and nucleation are occurring.

When multiple bins are added to represent the nucleation phenomena using the
MSM, after the second bin addition, there is a situation in which nucleated particles
are represented not only by the first bin, but also by the former added bins. At a
certain bin addition time instant tadd there will be the new pivot x0 at the minimal
size lmin and the previously added bins with pivot xi > lmin.

It is possible to separate the expect moment after the bin addition time tadd in the
following portions to be analyzed: the moment from the newly formed nuclei µ(fresh)

k,ex ,
the moment from the previously nucleated particles µ(former)

k,ex and the moment from
the seeded particles µ(seed)

k,ex . Thus, the overall expected moment is defined as Eq.
3.39. Since the seeded moment is not the source of error in this analyze, it can be
removed from this analysis.

µk,ex = µ
(fresh)
k,ex + µ

(former)
k,ex + µ

(seed)
k,ex (3.39)

Analogously, the MSM moment can also be separated using the same criteria.
In this case, the newly formed nuclei are to be represented by the first bin µ(0)

k,msm

and the former nucleated particles up to the new bin addition time instant tadd are
defined as ∑nb

i=1 µ
(i)
k,msm, in which nb represents the total number of added bins.

The newly nucleated particles from tadd to the next bin addition time instant are
thus defined as in the previous section. The rate of change of a moment µ(fresh)

k,ex is
defined as in Eq. 3.10 and the rate of change for the moment from the MSM at the
first bin µ(0)

k,msm as in Eq. 3.18. Thus, equating these moments, a similar equation
for the first bin growth rate as achieved in the single bin addition section, Eq. 3.23,
is obtained.
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G0 = 1
N0kx

k−1
0

[
B0(lkmin − xk0) + kGµ

(fresh)
k−1,ex

]
(3.40)

The rate of change of the expected moment µ(former)
k,ex from tadd to the next added

bin time instant can be defined by Eq. 3.41 from Eq. 3.7 with G constant. At tadd
the initial condition for µ(former)

k,ex is reinitialized as the sum of µ(former)
k,ex with µ(fresh)

k,ex

at tadd before the introduction of the new bin, which represents all nucleated bins
up to tadd.

dµ
(former)
k,ex

dt
= kGµ

(former)
k−1,ex (3.41)

The moment µ(former)
k,ex is represented using the MSM by the portion ∑nb

i=1 µ
(i)
k,msm.

The rate of change of µ(i)
k,msm for i > 0 to i ≤ nb can be defined based on Eq. 3.7,

but removing the nucleation term, since those bins do not receive nucleated particles
(Eq. 3.42) and constant G with the MSM approximation:

nb∑
i=1

dµ
(i)
k,msm

dt
= k

nb∑
i=1

Nix
k−1
i Gi (3.42)

in which Gi represents the growth rate at a pivot i. A further consideration is
assumed that the growth rate of the bins with i > 0 up to i ≤ nb are all equal to
Gformer. Equating Eq. 3.42 to Eq. 3.41 yields Eq. 3.43.

kGµ
(former)
k−1,ex = kGformer

nb∑
i=1

Nix
k−1
i (3.43)

Thus, Eq. 3.43 can be rewritten to get Eq. 3.44 that represents the defined
growth rate for the previously nucleated particles from tadd to the next added bin.

Gformer =
µ

(former)
k−1,ex∑nb

i=1Nix
k−1
i

G (3.44)

Thus, the definition of a Gformer requires the determination of µ(former)
k−1,ex during

the simulation, which is not possible in a variety of applications.

3.2.1 Multiple bins addition with k = 1

The MSM is capable of preserving the number of particles, thus: µ(former)
0,ex =∑nb

i=1Ni. Hence, Eq. 3.45 is found when applying k = 1 to Eq. 3.44. Note that the
so-called Gformer equals to the system growth rate G. Therefore, it is possible to
preserve the moment order k = 1 adding multiple bins using the previously obtained
equation for the first bin growth rate (Eq. 3.40) and with all other pivot moving
according to the system growth rate G, as shown in Table 3.7.
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Gformer =
µ

(former)
0,ex∑nb
i=1Ni

G = G (3.45)

3.2.2 Simple test cases applied to the multiple bin addition
scheme

In this section, former test cases applied to the single bin addition are evaluated
using the provided multiple bin addition scheme.

Constant G and B0 with lmin > 0

The Gformer approach is implemented for the condition with constant G and B0

and with lmin = 5. Table 3.8 reports the obtained moment values. Confronting it
with Table 3.7, which applied the G0 for the first bin and all other bins growing by
rate G with 3 bin additions, can be noted that using a new value for the growth rate
of the nucleated particle as Gformer it was possible to preserve orders with k > 1.

Table 3.8: Test case with constant G = 1 and B0 = 1 with lmin = 5 using multiple
bin addition equations adding 3 bins from t = 0 to t = 10

Case µ0 µ1 µ2 µ3
Expected 10.00 100.00 1083.33 12500.00
Eq. 3.38 with k=1 10.00 100.00 1074.07 12222.22
Eq. 3.38 with k=2 10.00 102.58 1126.31 13073.14
Eq. 3.38 with k=3 10.00 104.33 1162.59 13675.21
Eq. 3.44/Eq. 3.40 with k=1 10.00 100.00 1074.07 12222.22
Eq. 3.44/Eq. 3.40 with k=2 10.00 100.50 1083.33 12359.29
Eq. 3.44/Eq. 3.40 with k=3 10.00 101.01 1092.71 12500.00

Time varying G = G(t) and B0 constant with lmin = 0

Table 3.9 presents the results using Eq. 3.44 with Eq. 3.40 for the definition of
the nucleated particles growth rate. The moment of orders k = 1, k = 2 and k = 3
were accurately preserved using nucleated particles growth rate according to Eqs.
3.40-3.44. The case with multiple bins addition but only the first bin growth rate
adjusted as G0 is also included for comparison, which failed on preserving moments
of orders k > 1.

Time varying B0 = B0(t) and G constant with lmin = 0

This example has time varying birth rate and the moments using the
aforementioned bins growth rate scheme are reported in Table 3.10. The values
applying multiple bins addition, but using only the first bin growth rate Eq. 3.23
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Table 3.9: Simple test case with constant G = 0.1t and B0 = 1 with lmin = 0 using
multiple bin addition equations adding 3 bins from t = 0 to t = 10

Case µ0 µ1 µ2 µ3
Expected 10.00 33.33 133.33 571.43
Eq. 3.38 with k=1 10.00 32.41 124.23 516.90
Eq. 3.23 with k=1 10.00 33.33 130.32 552.25
Eq. 3.23 with k=2 10.00 34.52 136.57 582.38
Eq. 3.23 with k=3 10.00 35.32 140.91 603.56
Eq. 3.44/Eq. 3.40 with k=1 10.00 33.33 130.32 552.25
Eq. 3.44/Eq. 3.40 with k=2 10.00 34.16 133.33 560.54
Eq. 3.44/Eq. 3.40 with k=3 10.00 34.79 136.18 571.43

and the others bins growth rate as G, are also included. As previously, for k > 1
the cases using only Eq. 3.23 did not conserved the moments.

Table 3.10: Simple test case with constant G = 1 and B0 = 0.1t with lmin = 0 using
multiple bin addition equations adding 3 bins from t = 0 to t = 10

Case µ0 µ1 µ2 µ3
Expected 5.00 16.67 83.33 500.00
Eq. 3.38 with k=1 5.00 17.59 87.96 542.70
Eq. 3.23 with k=1 5.00 16.67 78.97 457.88
Eq. 3.23 with k=2 5.00 18.02 88.24 524.10
Eq. 3.23 with k=3 5.00 18.96 95.24 576.21
Eq. 3.44/Eq. 3.40 with k=1 5.00 16.67 78.97 457.88
Eq. 3.44/Eq. 3.40 with k=2 5.00 17.62 83.33 475.46
Eq. 3.44/Eq. 3.40 with k=3 5.00 18.38 87.75 500.00

Time varying B0 = B0(t) and G = G(t) with lmin > 0

Table 3.11 reports the case with both nucleation rate and growth rate time
dependent: B0 = 0.1t and G = 0.1t+ 0.5 with lmin = 5 and with final time as 10. It
shows that adapting only the first bin growth rate by Eq. 3.23 did not conserve the
moments of orders k > 1. When using Eqs. 3.40-3.44 it was possible to conserve
such moments.

3.3 Approaches for defining bin addition time
instants

As discussed in the previous sections, the MSM under nucleation and growth
possess the hindrance to preserve higher order moments due to the nucleation at
minimal size. Schemes for conserving moments with k > 1 were evaluated, however,
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Table 3.11: Time varying B0 = 0.1t and G = 0.1t+ 0.5 lmin = 5

Case µ0 µ1 µ2 µ3
Expected 10.00 91.67 908.33 9616.07
Eq. 3.38 with k=1 10.00 92.59 915.64 9642.20
Eq. 3.23 with k=1 10.00 91.67 895.88 9305.85
Eq. 3.23 with k=2 10.00 92.55 910.82 9504.28
Eq. 3.23 with k=3 10.00 93.41 925.47 9701.35
Eq. 3.44/Eq. 3.40 with k=1 10.00 91.67 895.88 9305.85
Eq. 3.44/Eq. 3.40 with k=2 10.00 92.45 908.33 9459.52
Eq. 3.44/Eq. 3.40 with k=3 10.00 93.22 920.76 9616.07

they are not of practical implementation for general particulate processes, since the
obtained formulation is dependent on the expected moment values. Furthermore,
they are designed to preserve a chosen moment, but not all. Thus, in situations
in which the nucleation and growth rate are dependent on the PSD properties it
will lead to errors, since the chosen moment order may differ from the one G or B0

depends on. For instance, this occurs for growth rate dependent on supersaturation,
which is often dependent on the second order moment (area).

In this context, frequently adding new bins at minimal size is still necessary in
order to minimize errors in the simulated particle distribution. Thus, in the following
approaches are discussed to efficiently define proper time instants for adding a new
bin depending on the system state.

Two approaches were evaluated for controlled bin addition. One uses the current
value of the growth rate and nucleation rate to predict a time interval for the next bin
addition based on a predefined maximum property of interest. The second approach
is to use an event based time integrator solver to stop the simulation at the time in
which a chosen property of the first bin reaches a certain value.

3.3.1 Determination of time interval for controlled bin
addition based on current particle rates

In crystallization processes studies, it is common to evaluate the dynamic
behavior of the system by manipulating input variables and observing the dynamic
profiles up to equilibrium. Thus, it will present situations with higher driving force
and, closer to saturation, it can be relatively smaller. In this context, it is necessary
to concentrate the mesh grid at nucleation size during the time intervals of higher
driving force, while when closer to equilibrium the mesh grid resolution to treat the
nucleation can be more coarse.

This behavior can be accomplished by analyzing the calculated nucleation rate
and growth rate at a given time. When using the MSM, higher growth rate leads to
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more prediction errors since nucleated particles are considered to be formed at the
zero pivot and not at the minimal size. Moreover, higher nucleation rate generates
more particles at the zero pivot and thus amplifies the moment errors for the MSM
approximation.

In this section, it is proposed to use the nucleation and growth rate at a certain
time t to predict a property of interest for the first bin to be maintained under a
predefined maximum value. Such property can be a moment of order k or a property
that depends on the moment, such as mass or volume of particles in the first bin.
Based on this prediction and comparing it to the predefined reference value, a time
interval ∆tadd for simulating up to the next bin addition can be obtained.

It can be considered a given property Ξ to be monitored during the bin addition
scheme. It is supposed that such a property is a function of the first bin moments:
Ξ = Ξ(µ0(∆t), µ1(∆t), . . . , µk(∆t)). As mentioned Ξ can be a property such as
mass or volume, e.g. Ξ = ρckvµ3(∆t) or Ξ = kvµ3(∆t) or a property function of
two moments such as the volume-mean size or the area-mean size: Ξ = µ4(∆t)

µ3(∆t) and
Ξ = µ3(∆t)

µ2(∆t) . Additionally, it is defined a reference value of this property Ξref to be
used as a condition for the determination of the time interval for adding a new bin
∆tadd.

It is proposed to use the hypothesis of constant nucleation and growth rate at a
time t. Doing so, the obtained Eq. 3.31 can be used for the prediction of the first
bin moment order k at a time interval ∆t. With the aid of this simplification, Ξ(∆t)
can be directly calculated.

The time interval to simulate up to the next bin addition ∆tpredadd can be obtained
by solving the equation Eq. 3.46, which can be performed by iterative methods such
as Newton-Raphson. The derivative of Eq. 3.31 in respect to t is shown by Eq. 3.47.

Ξ(∆t)− Ξref = 0 (3.46)

d

dt
[µ(0)
k,ex(t)] = B0

k∑
j=0

[
lk−jminG

jtj
k!

(k − j)!
1

(j)!

]
+

k∑
j=0

[
Gjtj−1µ

(0)
(k−j)(0) k!

(k − j)!
1

(j − 1)!

]
(3.47)

Note that if the calculation of ∆tpredadd is performed right after a bin addition,
the initial condition (µ(0)

k (0)) for Eq. 3.31 and 3.47 are zero. However, if such
calculation is to be performed with N0(0) > 0, µ(0)

k (0) can be obtained using the
MSM approximation: µ(0)

k (0) = x0(0)kN0(0).
This approach to determine ∆tpredadd is based on the simplification of G and

B0 constant, thus the reference value of the property can be ether over or under
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estimated when simulating using the MSM. To avoid errors of not introducing a
new bin, it is proposed the use of a limiting time interval representing the maximum
interval to add a new bin.

A possible algorithm to implement the bin addition based on constant G and
B0 is depicted in Algorithm 1. It is considered that a time vector t with a total
of rt samples is given and at each tj for j ∈ [0, rt − 1] a new bin should be added.
The limiting time interval is ∆tlim = tj+1 − tj. It is considered that the property of
interest is a moment of order k of the first bin (Ξ = µk). In line 5 of Algorithm 1
the value of the property is computed from Eq. 3.31 for the limiting time interval
∆tlim. Only if the obtained value is higher than the reference property value µmaxk it
should solve Eq. 3.46 for obtaining a ∆tadd. Otherwise, the time interval to simulate
up to the next bin addition is ∆tlim.

Algorithm 1 Algorithm for controlled bin addition based on constant G and B0
predictions

1: tnow = t0
2: j = 0
3: while ( j < rt − 1) do
4: ∆tlim=tj+1 − tnow
5: µlimk,ex = µex,i=0

k (∆tlim) (Eq. 3.31)
6: if (µlimk,ex ≤ µmaxk ) then
7: ∆tadd = ∆tlim
8: else
9: ∆tadd = solution of Eq. 3.46

10: end if
11: Integrate system with the MSM from tnow up to ∆tadd
12: Add new bin to the dynamic system
13: tnow = tnow + ∆tadd
14: if (tnow > tj+1) then
15: j = j + 1
16: end if
17: end while

3.3.2 Event based integration for controlled bin addition

This scheme for controlled bin addition uses a selected property to be maintained
under control during the simulation using the MSM. A reference value for this
property is also assigned as in the previous scheme.

Differential equation solution with root-finding, also denoted as event location,
attempt to determine the time instant of an event represented by a function
gev(t, y) = 0. Many studies were published addressing this topic: Kahaner et al.
(1989); Shampine and Thompson (2000) and references therein.
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Modern numerical packages provides this functionality for ODE solvers, such as
the ode function family from Matlab software, the solve_ivp from the Scipy package
(Jones et al., 2001) and the CVODE solver from the Sundials suite (Hindmarsh
et al., 2005).

In this work the Scipy package was used for the event handling using Eq. 3.46
to stop the solver at the time instant in which the selected property reaches the
reference value. After stopping the integration a new bin is added to the system
and the solver is reinitialized for the next iteration.

3.3.3 Numerical examples

This section provides two examples to evaluate and compare the aforementioned
numerical methods for controlled bin additions.

Test Case 1

This numerical case was used by Shi et al. (2006) and reported by Rawlings et al.
(1993). It comprises of a crystallizer of potassium sulfate modeled using the driving
force as in Eq. 3.49. The population balance based on solvent mass (n(l, t)) can be
written as Eq. 3.48 and includes growth G(t) and nucleation mechanism B0(t), in
which nuclei particles are formed with negligible size (lmin = 0). The mass balance
is necessary for the determination of the supersaturation and it is defined based on
the concentration C(t) by Eq. 3.50.

∂n(l, t)
∂t

+G(t)∂n(l, t)
∂l

= B0(t)δ(l) (3.48)

S = C − Csat
Csat

(3.49)

dC

dt
= −3ρckvG(t)µ2(t) (3.50)

The kinetic rates G(t) and B0(t) are defined by Eqs. 3.51 and 3.52. The required
parameters are listed in Table 3.12. The initial condition for C(0) is 0.1681 and,
at this value, the temperature for saturation is approximately 50◦C. However, the
temperature was set to 20◦C, such that the supersaturation was maximum at initial
time. The saturation composition is temperature dependent and defined by Eq.
3.53. The seeded distribution was discretized using 200 bins.

G(t) = kg exp
[−Eg
RT

]
Sg (3.51)
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B0(t) = kb exp
[−Eb
RT

]
µ3(t)Sb (3.52)

Csat = 6.29 · 10−2 + 2.46 · 10−3T − 7.14 · 10−6T 2 (3.53)

Table 3.12: Parameters for batch crystallization model from Shi et al. (2006).

Parameter Symbol Value Unit
Nucleation exponent b 1.45 -
Growth exponent g 1.5 -
Nucleation coefficient kb 285.01 1s−1µm−1

Growth coefficient kg 1.44e8 µms−1

Nucleation Activation Energy Eb/R 7517.0 K
Growth Activation Energy Eg/R 4859.0 K
Total solvent mass mslv 27 kg
Crystal density ρc 2.66e-12 gµm−3

Volume shape factor kv 1.5 -

The process starts with seeds defined as a parabolic distribution from 250 to
300 µm as follows: n(l, 0) = 0.0032(300 − l)(l − 250) for 250 ≤ l ≤ 300 and zero
otherwise.

This example was solved using the MSM with Eq. 3.26 for the first pivot growth
rate and applying G(t) for all other pivot growth. This example does not have an
analytical solution (Qamar, 2008), thus it was solved with 1000 bins addition for
establishing a referential solution. The final time was set to 15 min.

The bin addition scheme from section 3.3.1 and from section 3.3.2 were
implemented using the crystal mass at first bin as controlled property with a
reference value of 0.01g. These implementations were compared with a periodic
bin addition scheme. The Runge-Kutta 5(4) method was used to integrate the
dynamic system.

The bin addition scheme based on the prediction of ∆tadd using constant G and
B0 was applied using a limiting time interval of 90 s. The number of added bins
after completing the simulation was 24. Hence, for comparison, the regular bin
addition scheme was implemented using 25 sample times, which corresponds to the
same number of added bin at final time.

Table 3.13 reports the obtained zero order moment and the mass (mnucl
c =

mslvρckvµ
nucl
3 ) for the nucleated crystals portion. The absolute value and the relative

error (in percentage) based on the reference solution are shown for those moments.
∆tpredadd refers to the scheme using constant G and B0 for the determination of a bin
addition time interval.

Inspecting the table it can be notice that all cases provide relative small deviation
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Table 3.13: The number of added bins during simulation, the zero and third
calculated moment and relative errors percentage using the proposed bin addition
schemes for the test case 1.

Scheme Added bins µnucl0 mnucl
c (g) µnucl−rel0 (%) µnucl−rel3 (%)

Reference 1000 528.882 194.960 - -
Periodic addition 24 529.852 186.878 0.183 -4.145
∆tpredadd 24 528.987 194.387 0.020 -0.294
Event based 12 529.058 194.014 0.033 -0.485

from the reference solution. For the periodic bin addition, the relative error for the
zero order moment is in an order of 9 times greater than the others controlled bin
addition schemes. The third order moment error was also greater for the period bin
addition. The event based scheme had slightly higher relative error than the ∆tpredadd

case, but the number of added bins were only 12, compared to the others case with
24 added bins.

Figure 3.2 present the particle distribution at final time using the aforementioned
schemes for bin addition. The labels are: ref for the reference solution; iter for the
case with regular bin addition; ∆tpredadd for the case with the hypothesis of constant G
and B0 for the prediction of the property of interest and, lastly, event representing
the case using the event based scheme. The nucleated particles portion is in the
range of 0 ≤ l < 325µm.

The profile of the number of added bins by simulation time is depicted in Figure
3.3, which also presents the growth and nucleation rate profiles computed for the
reference solution. The iter case provides linearly added number of bins. The ∆tpredadd

case had 10 bins added in the first 1.5 min, region with higher nucleation and growth
rate, and because of the limiting ∆t = 90 s it was added new bins even when G and
B0 were almost zero. The event based approach also had most of the added bins
occurring at the earlier stage and after the nucleation and growth rate getting to
smaller values no bin were added, since the bin addition condition of 0.01 g at the
first bin was not satisfied after around 5 min of simulation.

Test Case 2

This example was taken from Qamar (2008) and is a batch crystallization model
with population balance, mass balance and supersaturation as in the previous
example (Eqs 3.48, 3.50 and 3.49). The kinetic equations for growth and nucleation
are defined by Eqs 3.54 and 3.55.

G(t) = kgS(t) (3.54)
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Figure 3.2: Particle size distribution for the mass balance numerical example
comparing the bin addition schemes (ref: reference; iter: periodic addition; ∆tpredadd :
estimated time interval; event: event based integrator).

B0(t) = kbS(t)bµ3(t) (3.55)

The size distribution at initial time is defined by a bimodal gaussian distribution
Eq 3.56 with parameters: σ1 = 1.667·10−4, l̄1 = 8·10−4, σ2 = 2.5·10−4, l̄2 = 1.6·10−3

and a0 = 359895.88. The seeds were discretized at initial time with 1000 bins and
the nuclei size is lmin = 1 · 10−6 m.

n(l, 0) = a0√
2π

[
1
√
σ1

exp
(
− l − l̄1√

2σ1

)
+ 1
√
σ2

exp
(
− l − l̄2√

2σ2

)]
(3.56)

The kinetic parameters are: kb = 3.42·107, b = 2.624, kg = 1.37·10−5. The crystal
density is ρc = 1250 kg/m3 and the volume shape factor is kv = 0.0288. The process
starts with a saturation concentration of Csat,0 = 0.09881 and at approximately
t = 4000 min a drop in the saturation composition to Csat,e = 0.08 is considered,
which is numerically implemented by Eq. 3.57 (with ξ = 0.005).

Csat(t) = Csat,0 + Csat,e − Csat,0
2 [tanh(ξ(t− 1)) + 1] (3.57)
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Figure 3.3: Number of added bins (bottom) and reference growth and nucleation rate
(top) profiles for the mass balance numerical example comparing the bin addition
schemes.

The described schemes for bin addition were used to simulate this test case up
to t = 6 · 103 min. As reference property for the first bin addition was chosen the
mass of crystals with a maximum value of 10−5 g. The limiting time interval for the
Sec. 3.3.1 strategy is 300 min.

Table 3.14 compares the ref as the reference case, in which 1000 bins are added to
the system, the ∆tpredadd using the section 3.3.1 scheme and the event based approach.
The periodic bin addition scheme (iter) was also included using the same number
of added bins than the ∆tpredadd case, which were 33 new bins. It is compared the
number of added bins, the zero order moment for the nucleated particles, the mass
of nucleated crystals mnucl

c = µnucl3 ρckv and the relative error for the zero and third
order moments for the nucleated particles. All cases were solved with a Runge-Kutta
method of order 5(4) (Jones et al., 2001).

The table shows that all cases provide relative small errors for the nucleated
portion of the PSD, in which the range at final time is 10−6 ≤ l < 2.5 · 10−3m.
Figure 3.4 presents the dynamic profile of the number of bins. The ∆tpredadd has the
most bin addition occurring from time 4 · 103 to 5 · 103 min, which represents the
time period with higher nucleation and growth rates, as depicted in the top chart.
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Table 3.14: The number of added bins during simulation, the zero moment order,
the mass and relative errors percentages for nucleated particles using the proposed
bin addition schemes for the test case 2.

Scheme Added bins µnucl0 mnucl
c (g) µnucl−rel0 (%) µnucl−rel3 (%)

Reference 1000 23198.289 0.448 - -
Periodic addition 33 23209.057 0.434 0.046 -3.095
∆tpredadd 33 23201.346 0.445 0.013 -0.674
Event based 13 23199.825 0.446 0.007 -0.357

All added bins for the event scheme are within this size range. The event based case
was able to provide smaller error with a shorter number of added bins (13), which
indicates that the bins are efficiently added during the simulation using the reference
maximum value for the first bin. Figure 3.5 reports the PSD for each scheme.

Figure 3.4: Number of added bins (bottom) and reference growth and nucleation
rate (top) profiles for the test case 2 comparing the bin addition schemes.

3.4 Conclusion

In this section the MSM was evaluated in respect to the moment conservation
in the presence of nucleation. The nucleation occurs at the critical size, but the
MSM considers that the nucleated particles appear at the first pivot size, which
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Figure 3.5: Particle size distribution for the test case 2 comparing the bin addition
schemes. The initial PSD is denoted as ref-ini.

moves according to the growth rate, and this cause errors on the computed PSD
properties.

The rate of change for the first bin moment with a defined order k using the
MSM was compared with the expected moment rate of change. This provided the
first bin growth rate as a function of the moment order to be preserved, nucleation
rate, number of particles in the first bin, nuclei size, first pivot size, growth rate
and also the expected moment k − 1. When k = 1, the first bin growth rate is
independent of the expected moment computation. However, when k > 1 in order
to preserve the moment k the first bin growth rate is dependent on the expected
moment. Thus it cannot be applied in a variety of application.

Furthermore, the cases with single bin addition and multiple bin addition were
evaluated. Even if the calculation of the expected moment was made possible,
when adding multiple bins the MSM using only the first bin with a specific growth
rate calculation, while the others moving with the system growth rate, leads to
moment errors. Moreover, it is usual to have the kinetic rates dependent on the
PSD moments, thus errors on one of those moments lead to error on other moments,
since the kinetics would be incorrectly computed.

In this sense, the frequent addition of new bins was necessary to mitigate moment
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errors. There have been demonstrated two approaches for selectively add new bins
to reduce moment errors, while avoiding unnecessary additions. The first was to
consider the growth and nucleation rate constant at a certain time instant and
estimate the time interval for a selected property of the first bin to reach certain
predefined value. The second approach was to use root-finding methods during the
temporal integration to find the time instants in which the first bin selected property
reaches the reference value.

The controlled bin addition approach was evaluated for two test cases and it
was shown that they were able to concentrate the bins addition at the most crucial
time interval, which corresponds with the higher nucleation and growth rate. It
should be noted that the periodic bin addition also provides relatively small errors
and the time interval can be easyly adjusted by trial and error to achieve acceptable
moment conservation. The bin addition based on the prediction using constant
growth and nucleation was capable of automatically add bins when needed reducing
errors, but requires the definition of a reference value for the fist bin. Also, because
the prediction was made with a priori information at a given time, the kinetic rates
may not be representative for the next time interval. The event based approach also
requires the definition of a reference value to be reached, but it does not need the
hypothesis of constant kinetic rates. Thus, it can efficiently add the required bins
during the temporal integration. However, it depends on specialized methods, which
can be time consuming for more intensive applications of the model predictions, such
as in optimal control or parameter estimation.
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Inferring kinetic dissolution of
NaCl in aqueous glycol solution
using a low-cost apparatus and
population balance model

This chapter presents the study performed on the dissolution of particles of NaCl
in aqueous solutions of monoetilene glycol (MEG). The study uses data collected by
Figueiredo (2016) using a low-cost apparatus and proposes a model to describe the
PSD variation, which is correlated with the measured red-green-blue (RGB) color
pattern.

The dissolution begins in a condition free of solute and progress to near
equilibrium. Because of this, it was necessary to evaluate a more generic dissolution
kinetics than if the dissolution occurred only near to equilibrium. The used model
was able to represent the dissolution plateau (Lasaga, 1998) for far from equilibrium
condition.

The methodology described in this chapter allows the use of a low cost equipment
for determining particle kinetics. Although it is focused in the dissolution,
analogous strategy can be performed by coupling the measurement apparatus with
the population balance formulation to provide kinetic parameters for growth and
nucleation.

4.1 Introduction

Different techniques are used to measure properties of the solid phase, varying
from methods that provide mean properties to methods that can represent the whole
particle size distribution (PSD) as, for instance, sieve analysis, laser diffraction,
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laser backscattering, and image analysis. A detailed description of advantages and
shortcomings of each method can be found in Chianese and Kramer (2012).

The online monitoring of the PSD is still a challenge and current techniques may
not work for concentrated suspension, requiring additional equipment for dilution
loops (Nagy et al., 2013). Moreover, those more sophisticated sensors are expensive
for a broader range of applications.

In that sense, measurement of solid concentration is still an important issue
for monitoring particulate systems. A technique to track suspended solid was
introduced by Caciano de Sena et al. (2011). The authors proposed the use
of a Charge Coupled Device (CCD) camera with image processing based on the
RGB colors for the detection of low concentration of barium sulfate in suspension.
Comparison with standard turbidimetric measurements showed higher sensitivity
based on the limits of detection and quantification. This measurement technique
was also employed to design a low-cost method for measuring solubility curves (Silva
et al., 2013).

In this work, the dissolution rate of crystals is investigated using the image
analysis method based on the RGB pattern using, for the first time, a dynamic
population balance equation to track the size distribution variation. The system to
be evaluated was the NaCl crystals in a solution of water and monoethylene glycol
as co-solvent. This system is of crucial concern in the oil and gas industry, because
MEG is injected at the wellhead to prevent hydrate formation during the fluid flow
up to the topside. The experimental data was used to estimate parameters related
with the RGB calibration and with the dissolution kinetics.

4.1.1 Importance of particle dissolution

Dissolution of solid particles is present in different fields of interest. In
the pharmaceutical industry, for instance, the dissolution kinetics of the active
pharmaceutical ingredient is related with the bioavailability and is considered in the
quality control method (Nishinaga, 2014). In crystallization processes, a dissolution
loop is employed as an additional manipulated variable to allow corrective action
(as in uncontrolled nucleation) or to enhance crystal growth (Chianese and Kramer,
2012). Other examples may be found in the treatment of nuclear waste, cement
hydration, corrosion, carbon sequestration and hydraulic fracturing of hydrocarbon
reservoirs (Luttge et al., 2013).

The understanding of dissolution mechanism is also of fundamental importance
in industries susceptible to scale deposition. The production of phosphoric acid in
the fertilizer industry is an example; calcium sulphate can precipitate on the tube
walls of heat exchangers. Thus, regular cleaning procedures using sulphuric acid are

61



Chapter 4

required. Because the acid attacks the heater tubes and other pieces of equipment,
replacements are often needed (Jamialahmadi and Müller-Steinhagen, 2007).

Scale deposition in reservoirs and oil platforms is a common problem in the
oil and gas industry resulting in serious economic and operational problems. The
formation of scale in producing wells is primarily due to temperature reduction
and/or increase in salt concentration (Mackay, 2003). The most susceptible places
to the formation of scale in the process of oil production are in the reservoir and in the
surface equipment located on the platforms. In gas reservoirs, halite precipitation
during production is observed, causing a significant decrease in the production rate
(Kleinitz et al., 2003).

4.2 Methodology

4.2.1 Experimental apparatus and conditions

This section describe the experimental apparatus and methods used by
Figueiredo (2016) to collect data for the NaCl dissolution using the RGB

measurements.
Dissolution experiments were performed by Figueiredo (2016) using the

experimental apparatus shown in Figure 4.1. It is a reaction vessel made of
glass, with a total volume of 100 mL, whose temperature was controlled with a
thermostatic bath. A propeller-type stirrer was used to continuously homogenize
the solution. A camera with a CCD sensor configured to capture 24-bits digital
images was coupled to the vessel. In order to avoid interferences by external light,
the reactor was covered with aluminum foil during the measurements. A LED (Light
Emitting Diode) was introduced into the system as a single source of light. Images
were acquired in real time using a software called Masterview (Caciano de Sena
et al., 2011) for processing and analyzing the digital images.

The software was developed by Caciano de Sena et al. (2011) to capture images
from a computer webcam by evaluating changes in the RGB components. The
software allows analysis of a specific area of the image captured by the camera
and, with its stored coordinates, the average values of the RGB components are
calculated. Changes in the values of these components are detected by the computer
program (Silva et al., 2013). The variation in the grayscale (GS) can be obtained by
calculating the average of the components red (〈R〉), green (〈G〉), and blue (〈B〉),
using Eq. 4.1 (Caciano de Sena et al., 2011).

GS = 0.298〈R〉+ 0.587〈G〉+ 0.114〈B〉 (4.1)
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Figure 4.1: Experimental apparatus used in the experiments of dissolution,
containing camera, light source, thermostat, stirrer, and a data acquisition system
(Adapted from Figueiredo (2016)).

Masterview camera images and GS plot similar to the one issued by the program
are shown in Figure 4.2. On Figure 4.2-a the stirrer and the CCD sensor can be
observed in the clear MEG/water solution. The same view window of Figure 4.2-a,
but after the first addition of NaCl particles, is shown in Figure 4.2-b. TheGS profile
after several additions of NaCl is presented in Figure 4.2-c. After each addition
the GS value reached a peak and subsequently decreased because of the crystal
dissolution, approximating the base line. Several additions were made and the GS
profile during the experiment was analyzed by the software. It can be seen that after
six additions (200 min) saturation was reached and the GS value no longer returns
close to the base line. This strategy is used to study the dissolution kinetics.

Figueiredo (2016) prepared the solutions using Milli-QTM deionized water
(Millipore, Bedford, MA, EUA), MEG Purity 99.5% (VETEC CHEMISTRY LTD)
and NaCl Purity 99% (VETEC CHEMISTRY LTD). Three temperature levels at
atmospheric pressure were studied: 20, 45, and 90◦C. The author found a good
homogenization, while avoiding excessive bubble formation, with a stirring rate of
300 rpm. Additionally, it was evaluated the MEG concentration of 10 and 50 wt%
MEG. The experimental condition are summarized in Table 4.1, where the initial
values of MEG and water masses, their temperature (T ), and the MEG mass fraction
wMEG are listed.

Each experiment started after adjusting the solution concentration, temperature,
and stirring rate. Figueiredo (2016) added specified masses of NaCl crystals (madd,j)
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Figure 4.2: Masterview images: (a) Stirrer and a sensor in a clean MEG solution
without salts (b) Stirrer and a sensor in a MEG solution after the first addition of
NaCl (c) Typical GS plot issued during the experiments, showing several additions
of salt (Figueiredo, 2016).

Table 4.1: Experimental conditions for NaCl dissolution.

Experiment MEG
Mass (g)

Water
Mass (g)

Temperature
(◦C)

MEG
Mass Fraction

exp1 10 70 20 0.125
exp2 50 36 20 0.581
exp3 50 36 45 0.581
exp4 50 36 45 0.581
exp5 50 36 90 0.581

to the vessel for each experiment according to Table 4.2 at different time instants
tadd,j for j-th addition. Each subsequent addition was performed after the GS value
of the previous addition reached an approximate constant behavior, which indicates
the end of dissolution. All experiments were performed up to 60 min and GS

measurements were collected at constant intervals of 6 s. The number of additions
for the experiment k is denoted as radd,k.

4.2.2 Crystal dissolution dynamic model

The prediction of crystal dissolution was evaluated using a model based on the
population balance equation (PBE), which is a well-established modeling approach
to describe particulate systems. The PBE is a conservation law used to account
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Table 4.2: Salt addition sequence with corresponding addition time instant tadd,j
(min) and added mass madd,j (g).

Experiment 1st Add. 2nd Add. 3rd Add. 4th Add.
tadd,j1 madd,1 tadd,2 madd,2 tadd,3 madd,3 tadd,4 madd,4

exp1 15.9 5.0 29.3 5.0 42.5 5.0 55.7 5.0
exp2 9.4 3.0 32.7 3.0 53.8 2.0 - -
exp3 3.5 3.0 13.9 3.0 27.6 3.0 41.0 3.0
exp4 4.8 3.0 20.3 3.0 32.3 3.0 46.2 3.0
exp5 3.8 5.0 25.3 5.0 47.9 2.0 - -

for the number of particles in a system and it has applications in several fields,
such as polymerization and crystallization (Qamar, 2008). The PBE can account
for different mechanisms capable of modifying the particles distribution, such as
particle growth, dissolution, nucleation, agglomeration, and breakage.

Preliminary experiments under saturated solution were performed by Figueiredo
(2016) with the presence of solid particles and no variation of the GS signal
was perceived, indicating negligible aggregation or breakage. Therefore, only the
dissolution is considered in the mathematical modelling. In this case, the PBE can
be written as in Eq. 4.2. Moreover, D(t) represents the rate in which a particle
change its size. The term in the r.h.s. is due to the addition of NaCl crystals into
the vessel, which is explained later in more detail. Eq. 4.2 is valid for the domain of
l ∈ (lmin,+∞), thus, when particles reach the minimal stable size due to dissolution,
they are disregarded from the PSD, see Section 4.2.3 for the details.

∂n(l, t)
∂t

+ ∂[D(t)n(l, t)]
∂l

= ṅadd(l, t) (4.2)

The mass of NaCl dissolved in the liquid phase (mNaCl,L) varies along the
experiment only due to the dissolution of particles as indicated by the mass balance
in Eq. 4.3. In this equation ρc is the crystal apparent density (2165.00 kg/m3),
kv is the crystal shape factor, which is equal to 1.0, since the NaCl particles are
approximately cubic.

dmNaCl,L

dt
= −3ρckv

∫ ∞
0

[n(l, t)l2D(t)dl] (4.3)

Dissolution Rate Calculation

The dissolution of NaCl is considered to follow the diffusion-reaction theory
(Mullin, 2001), in which the dissociation of solute molecules through a surface
reaction, followed by the diffusion of these molecules to the bulk liquid phase, is
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involved. The approach assumed here is to consider the dissolution rate as an
overall function of both reaction and diffusion processes as described by Eq. 4.4,
which can be applied for both dissolution and particle growth (Lasaga, 1998). The
dissolution rate is denoted as D(t) and represents the variation of particle size with

time
(
dl

dt

)
. It is written as a function of the change in molar free-energy of reaction

(∆G).

D(t) = kd(T )f(∆G)
∏
i

aζi
i (4.4)

The dissolution rate (Eq 4.4) depends on the temperature, co-solvents, and
undersaturation. The temperature dependence is in a greater extent described by
the kinetic parameter kd(T ), although it also has influence on the other terms.
This parameter is considered to follow the Arrhenius equation (Eq. 4.5), in which
kd,0 is the pre-exponential factor and Ea is the activation energy. The term ∏

i a
ζi
i is

associated with the co-solvents that modify physicochemical properties of the liquid,
thus in this term i = [MEG], ai its activity and ζi is a parameter to be determined
(Lasaga, 1998).

kd(T ) = kd,0 exp
[
− Ea
RT

]
(4.5)

The last term f(∆G) is the dependence on the free-energy change for the
dissolution reaction, ∆G, and has the constraint ∆G = 0 at equilibrium, which
guarantees that the kinetics is in accordance with the thermodynamic limiting
condition (Lasaga, 1998). A general formula to describe f(∆G) (Eq. 4.6) is based on
the transition state theory, but including the factor λ for cases with non elementary
reaction.

f(∆G) =
[
exp

(
λ∆G
RT

)
− 1

]
(4.6)

For aqueous system, the Gibbs free-energy of the dissolution reaction is written as
Eq. 4.7 (Prausnitz et al., 1998), in which ai and νi are the activity and stoichiometric
coefficient of the species i involved in the dissolution reaction (i = [Na+,Cl−]) and
Keq is the equilibrium constant.

∆G = RT ln
(∏

j a
νj

j

Keq

)
(4.7)

Substituting Eq. 4.7 into Eq. 4.6, and the resulting equation into Eq. 4.4, the
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dissolution rate given by Eq. 4.8 is obtained. Moreover, the term related with the
co-solvent effects (MEG) is simplified by considering the MEG activity coefficient
as unity. This term lumps all the MEG contribution to the system, such as change
in viscosity and density, in a single factor.

D(t) = kd(T )(wMEG)ζ
(∏j a

νj

j

Keq

)λ
− 1

 (4.8)

The equilibrium constant of the dissociation reaction NaCl(s) −−⇀↽−− Na+(aq) +
Cl– (aq), in pure water, which is only temperature dependent, is given by Eq. 4.9
(Kaasa, 1998) with T in Kelvin.

Keq = −814.18+7.4685T −2.3262 ·10−2T 2 +3.0536 ·10−5T 3−1.4573 ·10−8T 4 (4.9)

Ionic Activity Product Calculation

The ionic activity coefficient is defined based on the species molality cNa+ and
cCl− (Eq. 4.10), which is defined as ci = ηi

mw
with ηi as the number of mols of

a specie i in the liquid and mw as the solvent mass (water and MEG). Since the
stoichiometric in the NaCl dissociation is 1:1: cNa+=cCl−=cNaCl, the ionic activity
product is rewritten as in Eq. 4.11.

∏
j

a
νj

j = aNa+aCl− = cNa+cCl−γNa+γCl− (4.10)

∏
j

a
νj

j = c2
NaClγNa+γCl− (4.11)

The ionic activity product is dependent on the product γNa+γCl− . Eq. 4.12
defines this product with two contributions: the ions in solution γ± and a correction
factor τ due to the co-solvent presence.

γNa+γCl− ≡ (γ±τ)2 (4.12)

The activity coefficient γ± is the mean activity coefficient of ions in solution
due to electrostatic contribution, which is calculated here from the Pitzer model
(Prausnitz et al., 1998). See Appendix G for the NaCl Pitzer model.

The correction factor (τ) is used to include the MEG effects and is empirically
fitted from solubility data as function of MEG concentration (Sandengen, 2006).
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Here Eq. 4.13 was used with wMEG as the MEG mass fraction (free of solute).
Thus, substituting Eq. 4.12 into 4.11 gives Eq. 4.14.

τ = exp [2.11wMEG] (4.13)

∏
j

a
νj

j = (γ±τ)2cNaCl
2 (4.14)

Grayscale correlation

The GS variation is mainly related with the amount of solids per volume in
the suspension, since the presence of solid particles has a major impact on the color
pattern collected by the CCD sensor (Silva et al., 2013). The light intensity is related
to the turbidity and, thus, to the liquid solute concentration (Benavides et al., 2015).
Moreover, because of uncontrolled illumination conditions, each experiment can start
with a different GS value (clear solution).

Eq. 4.15 relates the calculated GScalc to the solid concentration CNaCl,S =
mNaCl,S/V in g/cm3, where mNaCl,S is the mass of solid NaCl in the suspension,
and V is the mixture volume. The solid mass of NaCl is obtained from the PSD
third order moment µ3 (Eq. 4.16). The GS is also related to the liquid solute
concentration CNaCl,L = mNaCl,L/V (g/cm3). The parameters β1, β2 and βclear are
to be determined for each experimental condition.

GScalc = β1CNaCl,S + β2CNaCl,L + βclear (4.15)

mNaCl,S = µ3ρckv =
[∫ ∞

0
n(l, t)l3dl

]
ρckv (4.16)

The volume V is obtained according to an experimentally fitted equation for
the density of NaCl, MEG and water mixture (Eq. 4.17) (Figueiredo, 2016). In
this equation, XNaCl is a normalized variable based on the NaCl concentration:
XNaCl = (mNaCl,L/mw − 0.01)/(0.26 − 0.01); XT is the normalized temperature as
XT = (T − 25)/(80− 25) with T in ◦C. The regression parameters bi are: [0.99651,
-0.0297, 0.124599, 0.237546, -0.04193, -0.11162, 0.99651].

ρmix = b0 + b1XT + b2wMEG + b3XNaCl + b4X
2
NaCl + b5wMEGXNaCl (4.17)
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Crystal addition

At each experiment, specified amount of NaCl crystals were added to the system
to evaluate the dissolution behavior. The PSD of the added crystals were considered
as an uniform distribution from size llow,add to lup,add. Thus, for madd,j as the mass
of added crystals in the j-th addition, its PSD naddj

(l) is defined as in Eq 4.18, see
H for the details. A mean size of 0.25 mm for the added crystals was obtained from
optical microscopy.

naddj
(l) =


4madd,j

(l4up,add − l4low,add)ρckv
if llow,add ≤ l ≤ lup,add

0 otherwise
(4.18)

Even though the particles are added almost instantly, there is a damping effect on
the GS values after each addition. The behavior from the solid mass addition instant
to the subsequent GS value peak instant is mostly dependent on the hydrodynamics
and wetting mechanism and its study is not the scope here. Thus, a simplification is
assumed, which considers that the salt is continuously added during a time interval
∆tadd,j for each addition j and, hence, a rate of added salt can be defined. The GS
profile behavior is further discussed in Section 4.3.1.

Both the addition starting time and the GS peak time (end of addition) were
taken from visual inspection of the GS profiles for each experiment. The addition
starting times are reported in Table 4.2, whereas the duration of each addition is
reported in Table 4.3.

Table 4.3: Time interval from salt addition starting time to GS subsequent peak
time.

Experiment 1st Add. 2nd Add. 3rd Add. 4th Add.
∆tadd,1 ∆tadd,2 ∆tadd,3 ∆tadd,4

exp1 2.0 1.9 2.6 3.2
exp2 2.5 5.8 5.0 -
exp3 0.98 2.6 3.4 4.7
exp4 0.73 3.1 3.4 4.1
exp5 0.55 0.2 0.4 -

The salt addition was included in the numerical model using the additive term in
Eq 4.2 (ṅadd(l, t)), which represents the rate of added crystal number density along
the dissolution experiments as a continuous function of time t. During each addition
j, it is considered that ṅadd(l, t) = ṅadd,j(l, t), which is obtained by Eq. 4.19 using
naddj

(l) from Eq. 4.18, and it is zero otherwise. The added PSD rate ṅadd(l, t) has
a dynamic profile of successive steps from zero to ṅadd,j(l, t) and is defined by Eq.
4.20.
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ṅadd,j(l, t) =


naddj

(l)
∆tadd,j

if tadd,j ≤ t ≤ tadd,j + ∆tadd,j

0 otherwise
(4.19)

ṅadd(l, t) =
radd,k∑
j=1

ṅadd,j(l, t) (4.20)

A regularization function (Eq. 4.21) is used to smooth the added PSD profile
(ṅadd(l, t)) in accordance with the ongoing solid addition. A vector of time events,
which represents the discontinuities to be smoothed, is defined by Eq. 4.22, where
tadd,end,j = tadd,j + ∆tadd,j is the end of addition j. The vector A indicates the
successive values that ṅadd(l, t) takes along the experiment duration (Eq. 4.23).

ṅadd(l, t) ≈ A0 +
∑
i

(Ai − Ai−1)
2 [tanh ((t− tevnt,addi)ξ) + 1] (4.21)

tevnt,add = [tadd,1 tadd,end,1 tadd,2 tadd,end,2 . . . tadd,radd,k
tadd,end,radd,k

] (4.22)

A =
[
0 ṅadd,0 0 ṅadd,1 0 ṅadd,2 . . . 0 ṅadd,radd,j

0
]

(4.23)

4.2.3 Numerical method for the dissolution process

The resulting model based on PBE consists of a set of coupled integro-differential
equation (e.g. the mass balance) and a hyperbolic partial differential equation (the
PBE), oftenly presenting sharp profiles. In order to deal with those features, several
specialized numerical methods are needed, for a detailed review see Costa et al.
(2007). The method of moment is widely used because it transforms the partial
differential equations into a set of ordinary differential equations. The drawback is
that it requires additional methods to reconstruct the PSD and it is not applicable
in some situations, as in size dependent growth or the disappearance of particles at
certain size.

When dissolution is considered, the particle sizes decrease towards the minimal
stable size, here lmin = 0, when it is no longer stable and vanishes from the solid
phase. Thus, it is taken from the particle distribution. The particle disappearance
creates a discontinuity in the solution and thus causes instability in finite-difference
numerical methods. Due to this phenomenum, the knowledge of the number density
of particles at the minimal size is necessary during the dynamic integration, thus the
method of moments requires special strategies for reconstructing the PSD (Massot
et al., 2010).
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The numerical method chosen for simulating the dissolution process was the
Moving Sectional Method (MSM) (Kumar and Ramkrishna, 1997). In this approach
the size domain is discretized in contiguous bins with boundaries given by li and
li+1 and with the number of particles in this bin as Ni =

∫ li+1
li

n(l, t)dl. Additionally,
a representative size for each bin (xi) is defined and the PSD is approximated as
n(l, t) = ∑M−1

i=0 Niδ(l−xi), in whichM is the total number of bins for a given time t.
In each simulation run, a linearly spaced mesh with boundaries from l0 = lmin = 0 to
lM0 = 0.35 mm were used, where M0 is the number of bins at the initial time, which
was set to 50. The pivots xi were set as the mean value at each bin (xi = (li+li+1)/2)
and the initial number of particles Ni is zero for all bins, since no seeds was used.

After applying the MSM to the proposed model, a set of ordinary differential
equations (Eq. 4.24) is obtained, which can be integrated on time by suitable
dynamic solvers. The initial conditions for number of particles and mass of NaCl
were: Ni = 0 ∀ i, since no seeds were used andmNaCl,L = 0, because the experiments
started without diluted NaCl.

dNi(t)
dt

= Ṅadd,i(t) (4.24a)

dmNaCl,L

dt
= −3ρckv

M−1∑
j=0

[D(t)Nj(t)x2
j ] (4.24b)

dxi
dt

= D(t) (4.24c)
dli
dt

= D(t) (4.24d)

where Ṅadd,i(t) =
∫ li+1
li

ṅadd(l, t)dl, 0 ≤ i < M and D(t) as shown in Eq. 4.8.
Eqs. 4.24 are valid only for x0 > lmin. Hence, in order to incorporate the

dissolution behavior to the model using the MSM, when the first bin (x0) reaches
the minimal size, its correspondent number of particles N0 leaves the domain. Thus,
during the simulation, a checking for x0 ≤ lmin is performed at each solver iteration.
The error on the removal of particles is minimized by the use of small time intervals.

The strategy used to solve the dissolution problem with the addition of particles
using the MSM is with successive bin additions, one at time, at the maximum
considered size. Adding bins at the maximum size ensure that new added particles
to the system are represented. The new added bin has lnew = xnew = lmax and
Nnew = 0.0. This scheme was used to perform the parameter estimation. The
dynamic system was solved using an explicit third-order Runge-Kutta integration
scheme.
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4.2.4 Parameter estimation

The experiments described in Table 4.1 were used to evaluate the dissolution
kinetics for the NaCl in water with MEG as co-solvent. The measurements used are
the RGB temporal profile collected by the Masterview software.

The goal of the parameter estimation procedure is to obtain a model capable
of representing all experiments from Table 4.1. The experimental conditions of
temperature and MEG concentration are taken into account by the dissolution
rate (Eq. 4.8). The temperature dependence is more related with the Arrhenius
equation (Eq. 4.5), which requires the estimation of parameters kd,0 and Ea. Since
the MEG concentration influences the dissolution kinetics, being simplified by the
term wζMEG, the estimation of the parameter ζ is required. From experimental
observation, higher MEG concentration reduces the dissolution rate, thus ζ < 0. A
possible non-elementary surface reaction relating the system undersaturation with
the dissolution rate is modelled by the parameter λ.

Because the RGB values depend on uncontrolled illumination conditions, an
absolute value relating to the solid phase properties is not possible. Therefore,
the parameters related with the GS correlation (Eq. 4.15) are estimated for each
experiment.

The parameter estimation problem uses all five experiments in a single objective
function to obtain the parameter set θ composed by the kinetic parameters: kd,0,
Ea/R, ζ, and λ and also the GS related parameters: β(1)

1 , β(2)
1 , β(3)

1 , β(4)
1 , β(5)

1 , β(1)
2 ,

β
(2)
2 , β(3)

2 , β(4)
2 and β(5)

2 . Additionally, since the measurement of the added PSD has
considerable uncertainty, a new parameter ∆ladd was introduced to be estimated.
The lower and upper bounds of naddj(l) are written as llow,add = ladd,mean − ∆ladd
and lup,add = ladd,mean + ∆ladd with ladd,mean as the mean size equal to 0.25 mm.

The parameters β
(k)
clear are obtained directly from the corresponding RGB

measurements using the mean value of the last 10 samples before the first addition
time. Hence a total of 15 parameters are estimated. Note that each experiment
contains 600 samples, summing up to a total of 3000 measurement points.

Eq. 4.25 states the parameter estimation problem with GS(exp:k)(ti) as the
measured values for experiment k at a sampling time ti with a total number of
samples nt = 600. The calculated values GS(calc:k)(ti) are obtained solving the
model described in Section 4.2.2. The solution of Eq. 4.25 was obtained using
the simplex Nelder-Mead method and further refined by a Levenberg-Marquardt
method. The estimation was performed using the package LMFIT (Newville et al.,
2014), which uses optimization routines from the SCIPY library (Jones et al., 2001).

min
θ

J(θ) =
5∑

k=1

nt∑
i=1

[
GS(exp:k)(ti)−GS(calc:k)(ti)

]2
(4.25)
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The adopted procedure for the parameter estimation is schematically showed
in Figure 4.3. All experimental conditions (Tables 4.1 and 4.2) are used to obtain
the GS(exp:k) measurements and also by the proposed dynamic model. The model
provides the PSD and the solute solid and liquid concentration for each experiment
using the kinetic parameters kd,0, Ea, ζ, and λ. The obtained PSD and solute
concentrations are used by the correlation Eq. 4.15, yielding the calculated GS(calc:k)

for each experiment. The estimation compares the experimental and calculated GS
values according to Eq. 4.25 and interactively updates the kinetic parameters and
∆ladd to the model and β

(k)
1 and β

(k)
2 to the correlation. When the estimation

procedure converges, the final parameters set is obtained.

Exp.
Conditions

(1 to 5)

Experiments
(1 to 5)

Model
GS

Correlation

Estimation

Kinetic
Parameters

and
Correlation
Parameters

PSD

CNaCl,S
CNaCl,L

GS(calc:k)

GS(exp:k)

kd,0, Ea, ζ, λ,∆ladd

β
(k)
1 , β

(k)
2

Figure 4.3: Procedure for the parameter estimation.

4.3 Results and Discussion

4.3.1 Qualitative discussion of the RGB measurements

The measured GS values depend on uncontrolled illumination conditions, thus
their values can significantly vary for different experimental conditions. Therefore,
in order to use them to infer the dissolution kinetics, calibrations are required for
each experiment.

Figure 4.4 depicts two replicated experiments (exp3 and exp4 from Table 4.1).
These experiments have four solid additions each and, even though at the same
operating conditions, they have different addition time instants. For comparing the
GS dynamic profile, in Figure 4.4 the addition time instant of the j-th addition
of exp3 was matched with the corresponding j-th addition of exp4. On both
experiments the GS measurement time is 0.1 min. It can be noted that the GS
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absolute values were considerable different on each experiment, reaching a value
of 230 for exp4 and 166 for exp3. However, the qualitative behavior of the GS
are similar after each addition and it is possible to identify patterns occasioned by
systematic effects of the underlying dissolution phenomena.

0 5 10 15
time [s]

0

50

100

150

200

G
S

(a) 1st

exp3
exp4

0 5 10
time [s]

(b) 2nd

exp3
exp4

0 5 10
time [s]

(c) 3rd

exp3
exp4

0 10
time [s]

(d) 4th

exp3
exp4

Figure 4.4: GS dynamic profile for replicate experiments 3 and 4 with matching
addition time instants. Each addition correspond to a chart from (a), first addition,
to (d), fourth addition. The plots share the y-axis and the x-axis indicates the time
after j-th addition. Data from Figueiredo (2016).

The time interval for the GS value from the first addition to the peak is close
to 1 min for both experiments. For the subsequent additions, the time intervals
for exp3 and exp4 are: 2.7 and 3 min at second addition, 3.2 and 3.5 min at third
addition and 4.2 and 4.6 min for the last addition.

The increase in the time intervals to reach the subsequent peak after successive
addition has three main contributions: (i) the time for the experimenter to actually
perform the addition of all the material; (ii) the time for the solution homogenization
due to the hydrodynamics behavior as diffusion and stirring effect; and (iii) the
surface wetting effect which is dependent on the concentration of ions in solution.
The first contribution is negligible. During the dissolution there is an increase in Na+

and Cl− concentration that raises the fluid viscosity, thus it is expected a wider time
interval for the suspension homogenization. Furthermore, higher ions concentration
in the liquid phase decreases the water capacity to wetting the crystal’s surface.

Along the successive additions, a decrease in the dissolution rate can be observed,
e.g., after the forth addition the time interval after the peak for the GS value to
reach a constant value is greater than for the previous additions (Figure 4.4). This
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effect is due to the increase in the concentration of ions, which decreases the chemical
affinity between the species and reduces the undersaturation.

Figure 4.5 shows the comparison for the first addition for two different values of
MEG concentration (exp1 with 10wt% and exp2 with 50wt% MEG content). The
experiments show that increasing the MEG mass fraction both the time interval from
addition starting time to peak and the time interval from peak to a constant value
increase. The former is due to the increase in the viscosity, which results in slower
suspension homogenization. The later has two major contribution: the increase in
the viscosity, which reduces the diffusion slowing down the dissolution, and also the
higher MEG concentration increases the ionic activity product, thus decreasing the
undersaturation by reducing the term

(∏
j a

νj

j /Keq − 1
)
from Eq. 4.8.
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Figure 4.5: Comparison of the width to the peak after the first addition for
experiments exp1 with 10wt% of MEG and exp2 with 50wt% of MEG. The time
axes was shifted to match both addition times at zero. Data from Figueiredo (2016).

The temperature variation influences the dissolution profile changing both the
time interval from addition starting time to peak, ∆tadd, and the time from the
peak to the complete solid dissolution. At higher temperature, the solution viscosity
decreases and then the diffusion coefficient increases, which results in faster mixing
and homogenization.

75



Chapter 4

4.3.2 Parameter Estimation

Table 4.4 presents the estimated parameters and standard parameter errors.
The standard errors are calculated from the estimated parameters covariance matrix
(Newville et al., 2014). It should be noted that the parameter related with the liquid
solute composition in the GS correlation, β(4)

2 , had a high standard error compared
with the estimated value, which indicates parameter insignificance, thus it could be
removed from the parameter set.

Table 4.4: Estimated parameters for each experiment.

Parameter Value Std. Error Units
kd,0 0.000777843 0.00018 m/s
Ea

R
-2459.16 73.89 K

ζ -0.617508 0.017 −
λ 3.34659 0.22 −
∆ladd 0.09713 0.0071 mm
β

(1)
1 3659.62 53.32 cm3/g
β

(1)
2 95.748 4.95 cm3/g
β

(2)
1 5153.08 64.18 cm3/g
β

(2)
2 34.2103 13.47 cm3/g
β

(3)
1 3960.9 59.01 cm3/g
β

(3)
2 11.0046 6.34 cm3/g
β

(4)
1 6287.68 66.84 cm3/g
β

(4)
2 0.0020226 8.67 cm3/g
β

(5)
1 1714.44 110.28 cm3/g
β

(5)
2 43.8066 5.87 cm3/g

Figures 4.6-4.10 present at the top plot the comparison between the predicted
values and experimental measurements of GS and, at the bottom plot, the
dissolution rate (D(t)) temporal profile for each experiment from Table 4.1. Overall,
reasonable predictions are obtained using the proposed methodology based on the
used low-cost measurement apparatus. It can be noted that the decay dynamics after
each addition peak value had good agreement with the experimental data. The main
source of predictions errors are due to the damping effect after each addition, which
was not modeled in this work.

Furthermore, those figures elucidate the effect of the operating conditions on the
dissolution rate. It can be noted from the dissolution rate profile that, as the addition
and dissolution occurs, the magnitude of the dissolution rate decreases, which is due
to the higher NaCl liquid concentration that reduces the undersaturation level.

The MEG concentration contribution is evidenced comparing exp1 and exp2
dissolution rate values. At exp2 conditions the dissolution rate absolute values are
smaller than at exp1, as discussed in Section 4.3.1. Experiments 3 and 4 occur at
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Figure 4.6: GS calculated values at experimental condition exp1 compared with
GS measurements from Figueiredo (2016) (T = 20◦C and wMEG = 0.125) and the
calculated dissolution rate profile (bottom plot).

the same operating conditions and Figures 4.8 and 4.9 indicate good reproducibility
for the D(t) values.

The temperature influence is observed by inspecting exp2 at 20◦C, exp3 and 4
at 45◦C and exp5 at 90◦C, see Figures 4.7 to 4.10. At higher temperature a higher
dissolution rate absolute value is obtained, as discussed in Section 4.3.1.

The experiments start free of solute at the initial time and after solid additions
the undersaturation decreases. Thus the proposed model is required to fit a broader
range of undersaturation. This was reflected in the relatively high estimated value
of parameter λ, which decreases the magnitude of the term

(∏
j a

νj

j /Keq

)λ
, thus

making the dissolution rate less sensitive to the undersaturation. This behavior is
shown in Figure 4.11 by plotting the dissolution rate against the Gibbs free-energy
change (∆G/RT ) for each experiment. In this figure, the dotted lines are calculated
using Eq. 4.4 with f(∆G) from Eq. 4.6 for ∆G/RT varying from −19.0 to zero for
each experimental condition. Moreover, the dissolution values from the simulation
with the estimated parameters are plotted for each experiment. Each addition time
instant is represented by a circle maker (©). The figure shows that the dissolution
rate starts constant in respect to ∆G/RT and then increases as ∆G/RT goes to
zero.

This behavior is in accordance with the dissolution plateau concept (Lasaga,
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Figure 4.7: GS calculated values at experimental condition exp2 compared with
GS measurements from Figueiredo (2016) (T = 20◦C and wMEG = 0.581) and the
calculated dissolution rate profile (bottom plot).

1998). In conditions far from equilibrium, the dissolution rate of minerals become
independent of the undersaturation, also denoted as zero order dynamics, and
increases when closer to the equilibrium. Burch et al. (1993) indicated a limiting
value for occuring the dissolution plateau as ∆G/RT < −3, which reasonably agrees
with Figure 4.11. Quilaqueo and Aguilera (2015) evaluated the dissolution of single
NaCl crystals in clear solute water and also found a zero order dynamics.

4.3.3 Process variables inference from the model

The proposed model provides detailed information of the dissolution dynamics,
which after obtaining the model parameters can be used for further applications,
such as PSD inference, process control, and optimal process design. In the following,
experiment exp1 main dynamic variables are reported.

Figure 4.12 shows the liquid and solid NaCl mass profiles during the experiment.
The solid mass is completely depleted after the three first additions and the
experiment was halted during the dissolution of the fourth added solid mass. The
liquid mass increases as the dissolution proceeds. The increase in the NaCl liquid
concentration is responsible for the prediction of the base line jumps after each
addition, since the mass of solids goes to zero.
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Figure 4.8: GS calculated values at experimental condition exp3 compared with
GS measurements from Figueiredo (2016) (T = 45◦C and wMEG = 0.581) and the
calculated dissolution rate profile (bottom plot).

The PSD for the first addition of exp1 is illustrated by Figure 4.13 using the
number of particles per bin (Ni). The top plot shows the PSD during the addition
of particles, which corresponds to the beginning of particle addition at t ≈ 16 min
to the GS peak value at t ≈ 18 min. The bottom plot presents the PSD during
the dissolution of the added particles from the GS peak value time instant to it
reaching the base line. The former indicates that at early stages of the addition
the PSD is similar to the added PSD (uniform distribution). However, particles are
reducing their size while new particles are progressively being added to the system,
hence, the PSD shape is modified along the addition. Moreover, in the bottom
plot, after the GS peak, all particles decrease their size at the same rate, thus
the PSD is translated maintaining the shape until the particles reach the critical
size, when the disappearance of particles occurs. Compared to Figure 4.12, the top
chart, representing particle’s addition, is related to the first abrupt NaCl solid mass
increase. Whereas the bottom chart is related to the decrease in solid mass and
with the increase in NaCl liquid mass from t ≈ 18 to 24 min.
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Figure 4.9: GS calculated values at experimental condition exp4 compared with
GS measurements from Figueiredo (2016) (T = 45◦C and wMEG = 0.581) and the
calculated dissolution rate profile (bottom plot).

4.4 Conclusions

In this work, available data from a low-cost measurement apparatus for the RGB
color pattern was used to analyze the dissolution rate of NaCl in water/MEGmixture
(Figueiredo, 2016). A dynamic model using the PBE was employed to predict the
particle dissolution during successive solid mass additions. The used dissolution rate
equation dependent on the temperature, MEG concentration and undersaturation
was able to predict the behavior of all the experiments at different conditions. The
model represented well the dissolution plateau far from equilibrium condition, as
well as for condition closer to the saturation.

The GS profiles proved to be a suitable measurement to track the dissolution
dynamics. Also, they provide information on how the operating condition (MEG
concentration and temperature) affects the dissolution kinetics. It should be noted
the limitation that calibrations for theGS parameters for each individual experiment
are required.

The proposed dynamic model using the discretized PBE method was able
to include the addition of classified particles during the simulation as well as
representing the particle disappearance due to dissolution, which is a source of
discontinuity and can cause instability in the solution.
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Figure 4.10: GS calculated values at experimental condition exp5 compared with
GS measurements from Figueiredo (2016) (T = 90◦C and wMEG = 0.581) and the
calculated dissolution rate profile (bottom plot).

Moreover, the proposed dynamic model can be used to infer other process
variables, such as the particle distribution and the solid mass. Although the
model was used only for dissolution it can be extended to include other particle
interactions such as breakage or agglomeration and also to track the particle growth
and nucleation.
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Figure 4.11: Gibbs free-energy change versus the dissolution rate for each
experimental condition. The addition time instants for each experiment are shown
by the circle makers ©.
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Figure 4.12: Dynamic profiles for the diluted (left y-axis) and solid (right y-axis)
mass of NaCl for exp1.
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Figure 4.13: Particle size distribution after first addition of exp1 up to the peak GS
value (top) and from the peak to dissolution (bottom) at different times instants
(min).
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Optimal operation of batch
enantiomer crystallization: From
ternary diagrams to predictive
control

This work consisted in the modeling and control of a batch crystallizer for the
enantiomeric separation of racemic solid forming compounds with the development
of a systematic methodology.

Specifically, the batch is considered pre-enriched with the enantiomer of interest
so that the operation occurs in the region of pure preferred solid formation. For a
detailed review on the ternary phase diagram for racemic compound forming system
see Appendix A. A method for determining initial and final operating conditions was
developed to facilitate process design and ensure maximum separation.

Then, information from the ternary diagram, as maximum yield reached, was
incorporated into a predictive controller in which the objective function was to favor
seed growth rather than nucleation. Scenarios with recycle and no recycling of fines
were addressed.

These development were submitted to the following journal and conference
proceedings:

\ Published in scientific journal: Caio Felippe Curitiba Marcellos, Helen
Durand, Joseph Sang II Kwon, Amaro Gomes Barreto, Paulo Laranjeira
da Cunha Lage, Maurício Bezerra de Souza, Argimiro Resende Secchi,
and Panagiotis D. Christofides. "Optimal Operation of Batch Enantiomer
Crystallization: From Ternary Diagrams to Predictive Control"; AIChE
Journal, 64 (5) 1618-1637 (2018); (Curitiba Marcellos et al., 2018).

\ Presented at the conference: C. Curitiba Marcellos, H. Durand, J.
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Kwon, A. Barreto Jr., P. Laranjeira da Cunha Lage, M. Bezerra de Souza
Jr., A. Resende Secchi and P. D. Christofides; "Optimal Operation of Batch
Enantiomer Crystallization: From Ternary Diagrams to Predictive Control";
AIChE Annual meeting, paper 597b, San Francisco, California, 2016

\ Presented at the conference: C. Curitiba Marcellos, H. Durand, J.
Kwon, A. Barreto Jr., P. Laranjeira da Cunha Lage, M. Bezerra de Souza
Jr., A. Resende Secchi and P. D. Christofides; "Model Predictive Control
of Batch Enantiomer Crystallization Using Ternary Diagram Information";
Proceedings of the American Control Conference, 5927-5933; Milwaukee,
Wisconsin, 2018.

\ Presented at the conference: C. Curitiba Marcellos, H. Durand, J.
Kwon, A. Barreto Jr., P. Laranjeira da Cunha Lage, M. Bezerra de
Souza Jr., A. Resende Secchi and P. D. Christofides; "Optimal Enantiomer
Crystallization Operation using Ternary Diagram Information"; Proceedings
of 13th International Symposium on Process Systems Engineering - PSE 2018;
Computer-Aided Chemical Engineering, 44, 499-504; San Diego, California,
2018.

The following text was published in the AIChE journal (Curitiba Marcellos et al.,
2018).

5.1 Introduction

A variety of useful molecules occur as chiral compounds, or compounds for
which two non-superimposable chemical structures that are mirror images of
one another (referred to as left- and right-handed enantiomers) exist though
their chemical composition is the same. For example, the components of many
drugs are chiral molecules (Rentsch, 2002). For many chiral compounds used
in pharmaceuticals, the enantiomers of that compound have different biological
activities (e.g., pharmacology, toxicology, pharmacokinetics and metabolism),
despite having the same chemical composition (McConathy and Owens, 2003;
Nguyen et al., 2006). Examples of substances in which these differences are
well-known are described in Table 5.1. Therefore, the separation of enantiomers
has great appeal as a topic in research and technology development (Karamertzanis
et al., 2007; Nguyen et al., 2006; Pálovics et al., 2012; Yang et al., 2014).

Two major approaches for enantiomeric separation are asymmetric synthesis
and chiral resolution. Though the former technology has progressed significantly,
it still has limited application or may not meet certain purity requirements, or
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Table 5.1: Enantiomers-based drugs with different biological effects.

Compound Active enantiomer effect Counter enantiomer effect
Ethambutol (Raymond, 2010) Tuberculosis treatment Causes blindness
Naproxen (Masterton and Hurley, 2006) Treats arthritis pain Liver damage
Methorphan (Brandenberger and Maes, 1997) Cough suppressant Narcotic analgesic
Methamphetamine (Newmeyer et al., 2015) Nasal decongestant Central nervous system stimulant
Praziquantel (Olliaro et al., 2014) Treats schistosomiasis Bitter taste

it may have a prohibitive cost (Lorenz and Seidel-Morgenstern, 2014; Mao et al.,
2010; Subramanian, 2007). Thus, chiral resolution methods are in development to
achieve cost-effective, reliable and flexible enantioselective separation processes (for
a detailed review of both approaches see Lorenz and Seidel-Morgenstern (2014)).
A technique for obtaining a pure enantiomer that falls within the chiral resolution
category is crystallization, which is an important technological process for forming
particles in the pharmaceutical industry and has a fundamental role in drug
properties such as stability, processing, and toxicity, which can be affected by crystal
properties such as the structure, particle size distribution, and purity (Myerson,
2002; Shekunov and York, 2000).

Enantiomers are commonly classified into three types based on the binary melting
diagram for a solution of the enantiomers: (i) racemic compounds (in the solid
phase, crystals are formed containing both enantiomers in the same unit cell); (ii)
racemic conglomerates (in the solid phase, crystals of each pure enantiomer form
and are mechanically mixed) and (iii) pseudoracemates (in the solid phase, crystals
are formed containing both enantiomers but with a somewhat random order).
Racemates, or racemic mixtures, contain equal amounts of left- and right-handed
enantiomers. Further information and details on the types of enantiomers based on
phase diagrams is provided by Busch and Busch (2006); Jacques et al. (1981).

It is estimated that about 90% of all enantiomeric systems belong to the racemic
compound group (Busch and Busch, 2006). As a result, research on methods for
enantioseparation for this group is of great interest. Several crystallization-based
enantioseparation methods exist, including conversion of the enantiomers to
diastereomers and crystallizing the diastereomers, and crystallization in the presence
of an optically active solvent. However, such techniques require additional materials
(e.g., resolving agents or optically active solvents) with specific features. The
advantage of direct crystallization (without agents that promote optical changes)
is the fact that it is a simple and economical technique performed with standard
equipment (Lorenz and Seidel-Morgenstern, 2014).

For a racemic compound forming system at racemate liquid composition (equal
mass fractions of both enantiomers), the solid phase formed upon cooling will be
the racemic compound. To form the desired pure enantiomer solid, the liquid must
be enantiomerically enriched in the desired enantiomer before cooling. Enrichment
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can be obtained by separation operations such as simulated moving bed (SMB)
chromatography, which in recent years has gained importance for the separation
of enantiomers due to factors such as better characterization of design. The
coupling of chromatography with direct crystallization can allow a pure enantiomer
to be obtained in solid form by the crystallization process, while allowing the
chromatography process to operate with high productivity without requiring high
purities of the desired enantiomer in the effluent (Kaspereit, 2006; Lorenz and
Seidel-Morgenstern, 2014). One of the pioneers of coupling a chromatographic
method with crystallization was Lim et al. (1995) to obtain a single enantiomer
of praziquantel.

Several studies have been performed in the analysis of the coupled simulated
moving bed (SMB) chromatography-crystallization process for enantioseparation
(e.g. Amanullah and Mazzotti (2006); Lorenz et al. (2001); Mao (2012); Ströhlein
et al. (2003); Swernath (2013)). However, study of optimal control for a batch
direct enantioselective crystallization process is scarce. Thus, this work focuses on
analyzing the batch crystallization process using the ternary diagram, on modeling
of the process with and without a fines dissolution loop and on the development
of optimal control designs to achieve the highest pure enantiomer crystal yield
possible while minimizing the ratio of the mass of crystals from nuclei to the
mass of crystals from seeds. More specifically, the ternary diagram, a common
chemical engineering tool for presenting solution thermodynamics information
(e.g., Diab and Gerogiorgis (2017)), provides the information required to determine
the batch operating conditions, controller constraints, and controller model (e.g., the
saturation composition predictions required for nucleation and growth rate modeling
throughout the batch) to determine optimal control actions with a model predictive
control strategy when the solution thermodynamic data meets certain assumptions.
The operation and control strategy is demonstrated throughout the work using the
mandelic acid (MA) in water system since it is widely used in the literature as a
model system and the kinetic and solid-liquid equilibrium data for this process is
available in the literature.

5.2 Batch Crystallization Operation and Control
Design for Racemic Compound Forming
Systems Using the Ternary Diagram

This section presents a systematic method for controlling a batch crystallization
process for a racemic compound forming system with model predictive control
(MPC) to obtain crystals of a single desired enantiomer when the solution being
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crystallized is assumed to be enriched in the desired enantiomer through a separation
operation (e.g., SMB chromatography) prior to the batch crystallization. The
process model utilized within the MPC and the operating strategy developed
to be enforced by the MPC are based on solution thermodynamics information,
visually displayed in a ternary diagram, in particular the saturation composition
as a function of temperature and limitations on the crystallization process (yield
and operating temperatures) based on thermodynamic limitations of crystallization
of a single pure enantiomer. The next two sections build to the presentation of
the systematic modeling, operation, and control strategy in the third section by
introducing the framework necessary for assessing the saturation composition as a
function of temperature and the theoretical crystallization/yield limitations that
will be exploited within the control design.

5.2.1 Saturation Composition Equations Based on a
Ternary Diagram

As noted in the “Introduction” section, it is desirable to obtain many useful
chiral products as a single pure enantiomer, and therefore the batch crystallization
operation and control strategy developed in this work will seek to produce crystals
of a single desired enantiomer referred to as the R enantiomer or R in this
manuscript (the counter will be referred to as the S enantiomer or S) from a
mixture of both enantiomers and a solvent (which can also be a mixture). Solution
thermodynamics indicates that this operating objective can only be achieved
within a specific range of operating conditions (liquid-phase compositions and
temperatures). Specifically, at a given temperature, depending on the composition
of the mixture, a racemic compound forming system in a solvent may form one of
six different phase combinations: a liquid solution, a liquid solution in equilibrium
with pure enantiomer R, a liquid solution in equilibrium with pure enantiomer S,
a liquid solution in equilibrium with a solid racemic compound, a liquid solution
in equilibrium with the solid racemic compound and pure R, or a liquid solution
in equilibrium with the solid racemic compound and pure S (Kaspereit, 2006). A
ternary diagram (in right or equilateral triangle form (Jacques et al., 1981); details
on converting between these forms can be found in Appendix B) provides a visual
representation of the operating conditions which correspond to each of these six
phases at a given temperature.

An example ternary diagram (in right triangle form) for a racemic compound
forming system (in this case, MA in water) is presented in Figure 5.1. The x and y
axes are labeled with the mass fractions wR and wS of the R and S enantiomers in
the liquid phase solution. The bold line with a slope of -1 extending from wS = 1.0
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to wR = 1.0 represents a line along which the mass fraction wW = 1 − wS − wR

of solvent (water) in the liquid mixture is zero (a mixture of enantiomers only).
The dashed line with a slope of 1 that passes through the origin corresponds to the
racemic composition. Though this diagram could be partitioned into six regions
reflecting the six possible phases of the racemic compound forming system, only the
two-phase region in which the liquid solution is in equilibrium with solid R (the
region of interest for the batch crystallization process) is delineated (for the full
description of the ternary diagram for a racemic compound forming system, the
reader is referred to Jacques et al. (1981); Lorenz and Seidel-Morgenstern (2002)).
As the temperature changes, the boundaries of each of the six phase regions change
within the ternary diagram. This is exemplified for the two-phase region of interest
at three different temperatures in Figure 5.1. At temperature T0, the two-phase
region is represented by the region within triangle BER, at T1 it is the region within
triangle B1E1R, and at T2 it is the region within triangle B2E2R. In Figure 5.1, E,
E1, and E2 are the eutectic compositions at temperatures T0, T1, and T2 respectively,
with T2 < T1 < T0 (the eutectic composition is the composition corresponding
to coexistence of the racemic compound with pure R enantiomer and saturated
liquid). B, B1, and B2 are the binary saturation compositions at temperatures
T0, T1, and T2 (the binary saturation composition refers to a mixture without the
counter enantiomer, i.e., only R and solvent). The lines EB, E1B1, and E2B2

represent the solubility lines for the pure enantiomer R at temperatures T0, T1, and
T2, respectively.

When the composition of a liquid mixture falls within the two-phase region
(for example, point P when the temperature is T1 is within the two-phase region
represented by the triangle B1E1R), this liquid mixture is not at thermodynamic
equilibrium and will separate into two phases (a saturated liquid in equilibrium
with pure solid R) if allowed to come to thermodynamic equilibrium. For example,
at T1, a liquid mixture with initial composition P will separate into two phases
with compositions on the line RP. The saturated liquid will have a composition
corresponding to the intersection of line RP with the solubility line at the given
operating temperature (E1B1); this means that the saturated liquid will have the
composition described by Q. When the temperature of the solution drops, the
two-phase region changes, and a composition that used to be at thermodynamic
equilibrium will fall within the two-phase region (e.g., a solution with composition
P is at thermodynamic equilibrium at T0 but is within the two-phase region if the
temperature drops to T1). Therefore, though the solution with composition P at T0

is saturated and thus there is no driving force for crystallization, it is supersaturated
at T1 and can crystallize until it reaches the new solubility line E1B1. Upon cooling
of a liquid mixture during the crystallization process, the saturation composition
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Figure 5.1: Ternary diagram in right triangle form for an example racemic compound
forming system (mandelic acid in water). Only the two-phase region in which
solid R is in equilibrium with a saturated solution is presented for three different
temperatures. Points R, S, and W signify the compositions on the ternary diagram
corresponding to pure R, S, and W, respectively. A zoomed-in version of several
compositions on the diagram is presented in the upper right corner for better
visualization. The dashed-dotted line represents a line of constant eutectic purity.
The dashed line with a slope of 1 represents the racemic composition.

will move along the line RP.
We seek to utilize the ternary diagram to obtain an expression for the saturation

composition as a function of temperature. The first step in this derivation for the
systems that is considered in this work is to determine equations for line RP and
for the solubility curve at a given temperature; the second step is to determine
the composition at which they intersect, which corresponds to the saturation
composition at that temperature. The composition of R along line RP (denoted by
wRP
R ) can be represented in terms of the mass fractions of R and S corresponding to

the initial composition at point P (wP
R and wP

S , respectively) and the mass fraction of
S along the line RP (denoted by wRP

S ) as follows (the derivation of this relationship
utilizing mass balances is provided in Appendix C):

wRP
R = wP

R − 1
wP
S

wRP
S + 1 (5.1)

When no experimental solubility data is available, approximations of the
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solubility information may be obtained using the Schroeder-Van Laar equation
(Jacques et al., 1981; Kaspereit, 2006; Worlitschek, 2003). Experimental solubility
data can be used to indicate the shape of the solubility curves. For MA in water,
experimental solubility data indicates that the solubility curve can be approximated
by a straight line that extends from the binary saturation composition to the
eutectic composition, which contributes to the triangular-shaped two-phase regions
in Figure 5.1 (Kaspereit, 2006). At a given temperature, when the solubility curve
can be represented by a line on the right triangle ternary diagram connecting the
eutectic and binary saturation compositions at the given temperature, compositions
(wEc

R , w
Ec
S ) representing the mass fractions of R and S at the eutectic composition

and (wBs
R , wBs

S ) representing the mass fractions of R and S at the binary saturation
composition for a given temperature T can be used to form the point-slope form
of the equation for the mass fraction of R along the line connecting the binary
saturation composition and eutectic composition at the given temperature. For
example, the composition along the solubility line E1B1 at T1 for MA in water is
given by:

wE1B1
R = wE1

R − wB1
R

wE1
S − wB1

S

wE1B1
S +

[
wB1
R −

wB1
R − wE1

R

wB1
S − wE1

S

wB1
S

]
(5.2)

For the systems that it is considered in this work, when formulas for the solubility
curve and the line including R and the initial composition P are determined at
a given temperature (e.g., Eqs. 5.1-5.2 for T1 in Figure 5.1), their intersection
can be used to determine the composition (wsatR , wsatS , wsatW ) of the liquid in
equilibrium with pure R given the initial liquid composition at this temperature
(the equations can be further simplified by setting wB1

S = 0 by definition of the
binary saturation composition). Furthermore, if relations have been obtained from
experimental data for the R and S enantiomer binary saturation (wBs

R and wBs
S )

and eutectic compositions (wEc
R and wEc

S ) as functions of temperature (T ) only,
then the saturation compositions at any temperature T may be determined by
finding wBs

R (T ), wEc
R (T ), wBs

S (T ) = 0, and wEc
S (T ) and then setting wsatR = wRP

R =
w

Ec(T)Bs(T)
R and wsatS = wRP

S = w
Ec(T)Bs(T)
S , where Ec(T) and Bs(T) signify

the points on the right triangle ternary diagram corresponding to compositions
(wEc

R (T ), wEc
S (T )) and (wBs

R (T ), wBs
S (T )), respectively, to give the following:

wsatR =

wP
S

wP
R − 1 + wBs

R wEc
S

wBs
R − wEc

R

wP
S

wP
R − 1 + wEc

S

wBs
R − wEc

R

(5.3)

wsatS = wEc
S w

P
S (1− wBs

R )
wEc
S − wBs

R wP
S + wEc

R w
P
S − wP

Rw
Ec
S

(5.4)
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where wsatR and wsatS in Eqs. 5.3-5.4 are now functions only of the initial composition
and of temperature, and the explicit temperature dependence of wBs

R , wEc
R , and wEc

S

in the right-hand side of Eqs. 5.3-5.4 was not denoted for simplicity of notation.
These equations can be further simplified in the special case of MA because for MA
in water, the eutectic composition varies with temperature in such a way that the
purity at the eutectic composition (P e) can be modeled as a constant (independent
of the temperature), where the purity is defined as

P = wR
wR + wS

(5.5)

Therefore, given a function wEc
R (T ) from data, it is not necessary to also

determine the function wEc
S (T ) from data because one can instead solve Eq. 5.5 for

wS at the eutectic composition to give wEc
S (T ) = 1−P e

P e wEc
R (T ) for use in Eqs. 5.3-5.4.

To demonstrate the use of Eqs. 5.3-5.4 for the MA case, correlations developed
by Kaspereit (2006) are presented to correlate the R enantiomer binary saturation
(wBR) and eutectic composition (wER) with the temperature (T ) in the range of 0◦C
to 40◦C based on experimental solubility data for the MA system in water solvent
from Lorenz et al. (2003). Polynomial equations were considered and the coefficients
were determined by minimization of the sum of the absolute values of the relative
errors. The obtained relations are as follows for T in ◦C:

wEc
R (T ) =

4∑
i=0

csatE,iT
i (5.6)

wBs
R (T ) =

5∑
i=0

csatB,iT
i (5.7)

with the estimated coefficients csatE = [csatE,0 csatE,1 csatE,2 csatE,3 csatE,4]T = [5.6939 ·
10−2, 2.6283 · 10−3,−2.4289 · 10−4, 1.6516 · 10−5,−1.6197 · 10−7]T and csatB =
[csatB,0 c

sat
B,1 c

sat
B,2 c

sat
B,3 c

sat
B,4 c

sat
B,5]T = [4.4892 · 10−2, 2.2451 · 10−3,−1.3164 · 10−4, 1.3519 ·

10−5,−5.3634·10−7, 8.0205·10−9]T . Thus, at any T , the coupling of Eqs. 5.6-5.7 with
Eqs. 5.3-5.4 allows the saturation composition to be calculated for any temperature
(in the 0◦C − 40◦C range for consistency with the experimental data) and initial
composition P.

5.2.2 Crystallization Limitations for Batch Operation

As a solution of enantiomers of a racemic compound in a solvent with the
properties that were described in this work is cooled, the intersection of line RP with
the solubility curve at the solution temperature can eventually reach the eutectic
composition. Therefore, it is possible to recover more pure crystals of R from a given
initial composition if the temperature is dropped until the saturation composition
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is reduced to the eutectic composition on the line RP, which is the limit for pure R
crystallization (for initial composition P in Figure 5.1, for example, this limit occurs
at E2).

For the MA system in water, the eutectic purity is P e = 0.69 (Lorenz
and Seidel-Morgenstern, 2002), and the line with purity P e through the eutectic
compositions at all temperatures is represented by line WE in the ternary diagram
of Figure 5.1 due to the form of Eq. 5.5, which has no dependence on the solvent
mass fraction. A line of constant purity P can be represented in Figure 5.1 as a
line extending from the origin to the point with wR = P on the bold line of slope
-1 connecting wS = 1 and wR = 1 in Figure 5.1 (because this bold line represents
a solution of only wR and wS, so the denominator of Eq. 5.5 is 1 along this line,
and the purity is equal to the value of wR at each point along this line). At a given
temperature, pure R will crystallize only if the purity of the initial solution is higher
than P e within the two-phase region (Kaspereit, 2006). When the eutectic purity of
an enantiomeric solution can be modeled as constant regardless of temperature as for
mandelic acid in water (Kaspereit, 2006), the eutectic composition representing the
limit for pure R crystallization for a given initial composition P can be determined
from the intersection of line RP with the line of purity P e (WE).

The thermodynamic limitations on crystallization impact the crystal yield Yc,
defined as the ratio of the mass of solid R that is crystallized during batch operation
to the mass of R initially present in the liquid phase, that can be obtained from a
solution with a given initial purity and is given by:

Yc = P i − P f

P i(1− P f ) (5.8)

Eq. 5.8 provides the yield at the end of a batch operation as a function of
initial and final purities P i and P f , respectively (i.e., the initial purity from the
pre-enrichment process is defined as P i = wi

R

wi
R+wi

S
, where wiR and wiS represent the

mass fractions of R and S in the feed to the crystallizer (which may be different
than their values in the outlet of the pre-enrichment process if solvent was added
or removed before the pre-enrichment process outlet entered the crystallizer; such
addition or removal of solvent, however, would not affect the purity of the liquid),
and P f is defined analogously). The relation in Eq. 5.8 is obtained using mass
balances in a manner analogous to that presented for a continuous crystallization
process in Kaspereit (2006) and is derived in Appendix D.

Furthermore, the mass fraction of R at the end of the batch (wfR) depends only
on the initial mass fraction of R and the initial and final purities as follows:
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wfR = (P fP i − P f )wiR
(P i − P f )wiR + P fP i − P i

(5.9)

5.2.3 Batch Crystallization Operation and Controller
Design Using Ternary Diagram Data

In this section, the results of the last two sections are combined to develop a
systematic procedure for modeling, operation, and control of a batch crystallization
process for a racemic compound forming system that has been pre-enriched in the
desired enantiomer. The first step in the operating procedure is the determination
of the initial operating temperature and composition. The choice of these conditions
relies on the initial purity from the pre-enrichment process and the desired working
temperature range.

For a given P i, Eq. 5.5 shows that the ratio of wR to wS is fixed, but that the
actual values of wR and wS can vary because the purity does not specify the solvent
mass fraction. Replacing wR + wS with 1 − wW in Eq. 5.5, the mass fraction of
the desired enantiomer is a function of the solvent mass fraction for a given purity
P as follows: wR = P (1 − wW ). Thus, when the initial purity is fixed by the
pre-enrichment process, the initial composition can be readily adjusted by solvent
evaporation or diluting with additional solvent before starting the batch; however,
the exact value to which to adjust the initial composition depends on the desired
operating temperature range.

The lower bound on the desired operating temperature range is fixed by solution
thermodynamics. In particular, Eq. 5.8 implies that for a given P i, the greatest
yield of crystals of pure R will be obtained when P f is as low as it can be without
crystallization of S, which occurs when P f = P e due to thermodynamic restrictions
for the systems considered in this work. The temperature at which the eutectic
purity P e is reached is fixed thermodynamically by the initial mixture composition.
This temperature (referred to as Tmin in the following) can be obtained by solving:

wfR − wsatR (T ) = 0 (5.10)

with wfR given by Eq. 5.9 (which gives wfR as a function only of the final purity and
initial liquid composition) and wsatR (T ) given by a relationship such as that developed
in Eq. 5.3 for MA in water with relations such as those in Eqs. 5.6-5.7 that describe
how the eutectic and binary saturation compositions change with temperature (with
wP
S = wiS and wP

R = wiR). Eq. 5.10 can be solved through an iterative method when
no analytic solution exists. From the dependence of wfR and wsatR (T ) in Eq. 5.10
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on the initial mixture composition, it is seen that the initial mixture composition
directly affects the temperature Tmin that the batch crystallizer must achieve at the
end of process operation to achieve the desired yield at P e.

When the initial mixture composition falls within the two-phase region at a
given temperature, some of the mixture will crystallize unless the initial mixture
composition is on the solubility line at the given temperature. Thus, it can be
beneficial to initiate the batch at the saturation condition since that may avoid
undesired nucleation and help the seeding control. It will also have no negative
effect on the yield when P f is fixed because according to Eq. 5.8, any initial
composition on the line of constant purity P i will have the same crystal yield. If it is
assumed that the batch should initiate at a saturated condition, the initial mixture
composition thermodynamically sets the temperature required at the beginning of
batch operation according to the following equation:

wiR − wsatR (T ) = 0 (5.11)

where wsatR (T ) is obtained in a similar manner as in Eq. 5.10. Thus, by fixing the
final purity to a value that maximizes the yield and by initiating the batch at the
saturation composition based on equilibrium considerations, the initial composition
defines both the initial temperature of operation as well as the final temperature
of operation. Based on the desired working temperature range, the desired initial
composition can be determined for a given P i. Considerations in selecting a working
temperature range may include that all temperatures in the range can be reached
in a cost-effective manner with the proposed equipment and cooling capabilities.
The operating temperature range may also be chosen by considering its effect on
enantiomeric system characteristics (e.g., choosing an operating temperature range
that avoids undesired polymorphism or solvate configurations or is one in which
the crystal kinetics behavior or crystal stability have been previously characterized,
allowing effective process modeling).

To exemplify the choice of the initial mixture composition based on the operating
temperature range, the MA case is re-examined. Figure 5.2 shows the eutectic
purity line for P e = 0.69 and the line for an initial purity of P i = 0.80. Figure 5.2
was constructed using Eqs. 5.10 and 5.11 with Eqs. 5.6-5.7 for a variety of initial
compositions with purity P i = 0.80. In the bottom plot in this figure, a number of
circles representing various initial compositions for which P i = 0.80 are plotted, as
well as a number of squares representing various final compositions for which P e =
0.69. The arrow signifies that a given circle corresponds to a given square in the sense
that if an initial mixture with the composition signified by a circle is cooled to the
eutectic point, it will reach the composition signified by the corresponding square at
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the eutectic point (the leftmost circle corresponds to the leftmost square, the second
circle from the left corresponds to the second square from the left, and so forth). The
top plot of the figure shows temperatures corresponding to each circle and square in
the bottom plot, assuming that each circle in the bottom plot represents an initial
mixture composition on the saturation curve (the leftmost circle in the top figure
corresponds to the leftmost circle in the bottom plot, the second circle from the left in
the top plot corresponds to the second circle from the left in the bottom plot, and so
forth). The temperatures are plotted against wR,start, the initial composition of the
liquid mixture (assumed to be at the saturation condition). For each value of wR,start,
the temperature corresponding to saturation for the given wR,start is represented as a
circle, and the temperature corresponding to the eutectic composition given wR,start
is represented as a square. As in the bottom plot, the arrow indicates that a circle
on a line of constant wR,start corresponds to a square on this same line. The top
plot, then, shows the change in temperature required to go from an initial saturated
solution with purity P i to the eutectic composition representing the limit of the
region of pure R crystallization associated with the initial mixture composition.
The arrow shown in the top plot of Figure 5.2 specifically shows the temperature
decrease required to crystallize a saturated solution with an initial temperature
Tstart = 40◦C to the eutectic point. When Tstart = 40◦C, Eq. 5.11 can be solved to
find the starting composition wR,start by solving wR,start − wsatR (Tstart) = 0 (and a
similar equation for wS based on Eq. 5.4), where wsatR (Tstart) is from Eq. 5.3, giving
wR,start = 0.31. A final composition at wfR = 0.20 is calculated using Eq. 5.9 with
P f = P e, which occurs at a temperature of 28.05◦C from Eq. 5.10. Figure 5.2
gives a clear indication of the operating temperature range required for a variety of
initial mixture compositions with the same initial purity and allows the appropriate
operating temperature range to be chosen based on the plot, which then fixes the
appropriate initial composition.

MPC is proposed for operating the batch crystallization process within the
desired operating temperature range because it is an optimization-based control
methodology that incorporates a process model and constraints when determining
control actions to apply to the process, and crystallizing a single enantiomer from a
solution of two enantiomers is a thermodynamically constrained procedure (e.g.,
there are limitations on the range of temperatures and compositions for which
crystals of a pure enantiomer will form). Composition or temperature-dependent
properties in the process model used in MPC, such as the saturation composition,
can be based on ternary diagram information (e.g., Eq. 5.3) to appropriately reflect
the process thermodynamics. In addition, MPC is a flexible control design in the
sense that it computes control actions that allow constraints to be met while an
objective function (e.g., a function of desired crystal size properties) is optimized,
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Figure 5.2: MA batch crystallization operation for different starting compositions
wR,start. The bottom figure shows the starting composition (•) associated with the
final composition (�) in the ternary diagram and an arrow shows that each starting
temperature and initial purity (P i = 0.80) corresponds to a final temperature and
eutectic purity (P e = 0.69; for better visualization, only one arrow is presented).
The top figure depicts the starting temperature (•) and the final temperature (�)
for each starting composition considered in the bottom figure. It is noted that in
the bottom figure, the bold line with a slope of −1 represents a line of constant
solvent composition wW = 0.6 (since only a subset of the ternary diagram data from
Figure 5.1 is shown in this figure, the bold line with a slope of −1 does not have
the same meaning in this figure as in Figure 5.1). The dashed line with a slope of 1
represents the racemic composition.

resulting in a cooling trajectory for the crystallizer that, perhaps, results in higher
profits or greater effectiveness of the crystals in their intended application than would
be achieved by performing the crystallization with a pre-determined temperature
profile in the crystallizer like a linear cooling strategy. Furthermore, constraints can
also be added to aid in improving the efficiency of the crystallization process, such as
adding constraints on the desired yield (e.g., for the mandelic acid in water process,
a constraint could be added that requires the yield at the end of the batch to reach
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its theoretical maximum value of Eq. 5.8). Furthermore, as a feedback control law,
it provides a degree of robustness to disturbances and plant/model mismatch.

Because MPC calculates optimal control actions, and requires that a process
model be available, it allows for closed-loop simulations to be performed to determine
the most preferable final batch time for maximizing a desired objective function.
MPC allows flexibility in both the constraints as well as the objective function, with
the result that one or both may depend on the final batch time (e.g., requiring
a desired yield to be obtained at the end of the batch). In this case, it is
necessary to perform closed-loop simulations to understand the effect of the final
batch time on optimizing the objective function. This is an advantage of MPC for
control of enantiomeric crystallization compared to a pre-set cooling strategy such as
linear cooling because pre-set strategies do not allow for optimization, feedback, or
accounting for constraints, so it would be more difficult to obtain the best operating
parameters for operation under such controllers.

Based on the discussion of this section, the operation and control procedure
proposed in this work for batch crystallization of a racemic compound forming
system is now summarized by the steps (also by Figure 5.3):

Step 1. Obtain thermodynamic phase information for the racemic compound
forming system (including a ternary phase diagram) and receive information on the
initial purity from the pre-enrichment process.

Step 2. Develop equations for the saturation composition as a function of only
the initial composition and wEc

R (T ) and wBs
R (T ) (e.g., Eqs. 5.3-5.4), and wEc

S (T ) if
required.

Step 3. Setting both the initial and final compositions to be at saturated
conditions, develop a plot like that in Figure 5.2 showing the various operating
temperature ranges possible by varying the initial solvent composition for the given
initial purity.

Step 4. Determine the desired operating temperature range and initial
composition based on the plot developed in Step 3.

Step 5. Develop a batch crystallization process model to be used in an MPC
formulation. The process model may depend on thermodynamic relations derived
based on the ternary diagram analysis.

Step 6. Develop the constraints to be used in the MPC based on considerations
for racemic compound forming systems as derived from the ternary diagram such as
the desired yield (e.g., maximum yield thermodynamically possible with P f = P e

from Eq. 5.8 at the end of the batch) and crystallizer temperature limits.
Step 7. Run closed-loop simulations of the crystallization process under MPC

with different batch times to determine the minimum batch time necessary to achieve
the desired crystallization results.
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Figure 5.3: Schematic depicting the proposed batch modeling, operation, and control
procedure. Solution thermodynamic data including a ternary diagram and the
initial purity of the solution are provided, which are then used to develop important
relationships for the procedure, including equations related to the solubility curve
as a function of temperature, the relationship describing the eutectic purity (e.g.,
P e = 0.69 for mandelic acid in water), and information on the eutectic and
binary saturation compositions as functions of temperature. This information
is subsequently used to determine the operating conditions of the crystallizer,
including the operating temperature range and initial condition, it is used in
the development of the process model (e.g., by developing a relationship for the
saturation composition as a function of temperature), and the development of other
operational constraints such as yield constraints. This is incorporated within a
model predictive control design. The length of the batch run is selected and the
crystallization process is operated under the MPC with the constraints based on
solution thermodynamics.
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Step 8. Operate the process under the proposed control strategy and adjust
operating parameters or controller constraints and the model as necessary to achieve
the desired yield and enantioseparation.

Several assumptions were considered to hold during the development of this
operating/control procedure as follows:

Assumption 1 The mixture under consideration is a racemic compound forming
system that was pre-enriched in the desired enantiomer and for which phase
equilibrium data is available at various temperatures and has the properties
considered in this work (e.g., the intersection of a line through the initial composition
and pure R and the solubility curve at a given temperature determines the saturation
composition in the ternary diagram, and the limit of pure R crystallization occurs
when this initial composition line intersects the eutectic composition at a given
temperature).

Assumption 2 Relations for wEc
R (T ) and wBs

R (T ) (and wEc
S (T ) as applicable) are

available.

Assumption 3 The initial purity P i is fixed.

Assumption 4 Thermodynamic equilibrium is reached at the beginning and end of
the batch.

A key component of the proposed method is MPC for the control of direct
crystallization of a racemic compound forming system, and the use of MPC in general
does not depend on the assumptions but only on the availability of a process model.
The required thermodynamic data for Assumptions 1 and 2 can be experimentally
obtained if unavailable for a specific system. The final batch time can be adjusted
to allow Assumption 4 to be met at the end of the batch (closed-loop simulations
under MPC can be performed to determine a final batch time that will allow the
assumption to hold). In the event that the pre-enrichment process is also being
designed such that P i is not yet fixed, the yield and operating temperature range
at a variety of purities can be compared with the cost of changing the purity of the
material exiting the pre-enrichment process to optimize the operating conditions of
the entire process instead of only the crystallization unit. Small variations in P i due
to process disturbances between batch runs may be handled by the MPC because it
incorporates feedback to provide some robustness to disturbances and plant/model
mismatch, and safety factors can be used in the constraint design to prevent the
cooling procedure from causing the temperature to drop to a level that would result
in crystallization of the S enantiomer even in the presence of expected disturbances
that cause P i to vary.
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Remark 1 Figs. 5.1-5.2 were constructed using the mathematical developments of
this section (Eqs. 5.1-5.11), rather than plotting experimental data points.

Remark 2 There may be uncertainties or possible errors or disturbances for a given
batch process that make it desirable to operate the batch crystallization until a final
purity P f > P e (despite that the greatest theoretical yield for a given P i occurs
when P f = P e in Eq. 5.8) to avoid crystallization of the opposite enantiomer. In
such a case, the analysis surrounding Eqs. 5.10-5.11 can still be performed, but with
P f set to the desired final purity in Eqs. 5.3 and 5.9 used to solve Eq. 5.10 for the
temperature at the end of the batch. A purity P f > P e may also be selected if cooling
until P f = P e requires the batch temperature to drop lower than can be achieved in
a cost-effective and safe manner with the process equipment.

Remark 3 The equations examined in the above sections for thermodynamic
properties such as yield have focused on the MA in water process for which the
solubility curve can be approximated as a straight line and the eutectic purity is
independent of temperature. Linear approximations of solubility curves could be
investigated for various enantiomeric systems for which the solubility curves in
the equilateral ternary diagrams presented appear to be approximately linear (e.g.,
Tröger’s base/ethanol (Worlitschek, 2003) and bicalutamide/methanol (Kaemmerer
et al., 2010)) and, as demonstrated in Ap. B, a linear solubility curve on a
standard equilateral triangle ternary diagram, with pure enantiomers R and S on
the base of the diagram, will result in a linear solubility curve in a right triangular
representation. In the event that a nonlinear solubility curve provides a better
representation of the thermodynamic data and Assumption 1 is met, Eq. 5.2 can
be replaced with equations that approximate the phase boundaries through nonlinear
functions of wE1

R , wB1
R , and wE1

S , and the procedure of finding the point of intersection
of the modified solubility curve with line wRP

R will give different equations for the
saturation composition in Eqs. 5.3-5.4. Eqs. 5.10-5.11 would use the modified
equations to extend to this case. Furthermore, when the eutectic purity is not
independent of temperature and Assumption 1 is met, a potential method for
extending the results of this work to that case would be to examine whether the
constraints of the MPC (e.g., constraints on the yield and minimum crystallizer
temperature) should reflect the value of P f according to Eq. 5.5 that causes P f to
equal the value of P e that is achieved at the temperature at which wRP

R intersects
both the curve for wsatR (T ) and the curve for wEc

R (T ). A correlation for wEc
S (T )

would also be required in this case (in addition to the correlations in Eqs. 5.6-5.7).
It should also be verified that the resulting constraints do not require any safety factor
(i.e., P f greater than the determined value of P e) to prevent the S enantiomer from
crystallizing throughout the cooling process given the manner in which the eutectic
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purity varies throughout the cooling procedure.

Remark 4 The flexibility of MPC in the constraints and the objective function
enables it to be used for control of batch enantiomer crystallization. Classical
stabilizing control designs for chemical processes, such as PID control, seek to
drive the process state to an operating steady-state; however, for a batch process
there is no steady-state, and as a result these classical control designs cannot be
applied to the batch process under consideration in this work (other stabilizing
control designs, such as geometric control and Lyapunov-based control, are also not
applicable in this case for the same reason). Not only is MPC a viable control
method for operation of batch processes, but it also offers benefits compared to
other potential approaches (e.g., a pre-specified temperature trajectory within the
crystallizer) because it has the ability to optimize an objective function which can be
related to desired production goals which may be motivated by, for example, process
economics, while simultaneously accounting for process thermodynamic limitations
through constraints, and accounting for disturbances/plant-model mismatch through
feedback.

5.3 Batch Crystallizer Model with Fines
Dissolution Loop

The operation of a batch crystallizer for a racemic compound forming system
using operating conditions and a controller design based on the ternary solid-liquid
equilibrium data is exemplified through a chemical process example for mandelic acid
in water. In this section, the batch crystallizer design considered for this example and
the model of the crystallization process for this crystallizer design are discussed. The
system is composed of a crystallizer with a jacket for temperature control and a fines
dissolution tank, as depicted in Figure 5.4. The stream sent to the fines dissolution
tank is liquid from the crystallizer that has been passed through a fines trap to
filter out larger crystals of the desired enantiomer (and leave primarily fines in the
stream). The fines trap in this process is not modeled as having a physical volume,
and therefore, its behavior for the purposes of process modeling is like the behavior
of a filter between the crystallizer volume and the stream leaving the crystallizer.
The fines dissolution loop scheme was considered since it is a widely used strategy
to enhance crystal growth while reducing the total number of particles in the system
(Kwon et al., 2014a). Though material is exchanged between the crystallizer and
the fines dissolution tank, the overall system comprised of both of these tanks is
closed, so the operation is a batch operation.
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Figure 5.4: Batch crystallizer with fines dissolution loop scheme. To illustrate
the typical particle size distributions for the various streams in the crystallizer,
example distributions are shown for the solution in the crystallizer (showing a large
number of particles at the larger crystal sizes as desired), stream entering the fines
dissolution tank (showing that primarily small particles make it through the fines
trap), and stream exiting the fines dissolution tank (showing that all crystals have
been dissolved).

The following modeling assumptions are made in the development of mass,
energy, and population balances for the crystallization process:

\ The internal coordinates of the crystal particles can be represented only by
the crystal characteristic size l;

\ Both the crystallizer and fines dissolution tank are assumed to be well-mixed;

\ Both the liquid (solvent with dissolved S and R enantiomers) and solid crystal
R in the crystallizer and fines dissolution tank are assumed to have constant
densities;

\ The liquid in the crystallizer is assumed to have a constant heat capacity;

\ Crystal breakage and aggregation is neglected;
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\ The crystal nucleation and growth kinetics can be expressed by empirical
correlations;

\ Only pure R enantiomer is crystallized (no S enantiomer or solvent takes a
crystal form).

These assumptions are consistent with standard chemical engineering and
crystallization modeling practices in the literature (Angelov et al., 2008; Chianese
and Kramer, 2012; Chiu and Christofides, 2000; Randolph and Larson, 1988; Shi
et al., 2006).

The crystal size distribution can be described by the well-established population
balance equation, which for a batch process with fines removal takes the form:

∂n

∂t
= − ∂

∂l
(Gn) +B0δ(l − lmin)− n d

dt
lnmW + 1

mW

[ninṁW,in − noutṁW,out]

(5.12)

where lmin is the minimum stable characteristic crystal size (here considered to be
zero), B0 represents the nucleation rate, G is the growth rate and n = n(t, l) is
the particle size distribution (PSD) dependent on characteristic size l and time t.
δ(l− lmin) is the Dirac delta function centered at lmin. The crystal size distribution
is defined based on solvent mass mW in the crystallizer (i.e., n(t, l) represents the
number of crystals at time t with size l per unit mass of solvent in the crystallizer
and has units of (kgW ·m)−1, with kgW standing for kilogram of water).

For the chemical process example under consideration, the initial PSD was based
on the reference seeded distribution nREF0 (l) (Zhang et al., 2010) defined by Eq. 5.13.
The initial PSD is given by Eq. 5.14, in which a0 is a factor chosen based on the
mass of crystals (mc(t)) at initial time in the crystallizer (Eq. 5.15). Also, ρc is the
crystal density and kV is the crystal shape factor.

nREF0 =

(3 · 10−4 − l)(l − 2.12 · 10−4) if 2.12 · 10−4 ≤ l ≤ 3 · 10−4m

0 otherwise
(5.13)

n(t0, l) = a0n
REF
0 (l) (5.14)

a0 = mc(t0)
mwkvρc

∫∞
0 l3nREF0 (l)dl (5.15)

The term n
d

dt
lnmW in Eq. 5.12 accounts for possible variation of mass of solvent

in the crystallizer during batch operation due to its possible accumulation in the fines
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dissolution tank (Randolph and Larson, 1988), while the last term includes the effect
of input and output streams related to the fines dissolution loop. Specifically, ṁW,in

and ṁW,out represent the mass flow rates of solvent into and out of the crystallizer
from the fines dissolution tank, and nin and nout are the particle size distributions
in the streams entering and leaving the crystallizer from the fines dissolution tank.

In order to track the supersaturation during batch operation, the mass balance on
species i (where i = R, S,W , corresponding to the desired enantiomer, the undesired
enantiomer, and the solvent water, respectively) in the liquid phase in the crystallizer
can be written as:

dmi

dt
= −ṁcryst,i + win,iρlV̇l,in − wout,iρlV̇l,out (5.16)

In this equation, ṁcryst,i represents the rate (mass/time) at which component i
is crystallized (enters the solid phase), and thus it is zero for i = S and i = W , but
for the desired enantiomer R it is given by:

ṁcryst,R = 3mWρckV

∫ ∞
0

l2Gn(t, l)dl (5.17)

where ρl is the liquid density (the derivation of this equation is discussed in Appendix
E). Moreover, in Eq. 5.16, the mass fraction of species i in the liquid phase in the
inlet stream to the crystallizer (win,i) is equal to the mass fraction of species i in
the liquid phase in the fines dissolution tank, and the mass fraction of species i in
the liquid phase in the stream out of the crystallizer (wout,i) is the same as the mass
fraction of species i in the liquid phase in the crystallizer. V̇l,in and V̇l,out refer to
the liquid volumetric flow rate of the inlet and outlet streams of the crystallizer,
respectively.

The energy balance in the crystallizer was taken to be:

Mtotcp
dT

dt
= −UA(T − Tjkt) (5.18)

where Mtot is the total mass in the crystallizer (assumed to be constant), cp is
the specific heat capacity of the suspension in the crystallizer (assumed to be a
constant), T is the temperature of the suspension in the crystallizer, U is the overall
heat transfer coefficient of the crystallizer surface in contact with the jacket, A is
the heat exchange area, and Tjkt is the jacket temperature. It is noted that the
energy balance only accounts for temperature changes in the crystallizer due to the
jacket; any heating/cooling effects due to the streams entering and leaving the fines
dissolution tank were considered to be negligible because it was considered that
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there is perfect temperature control of the stream returning to the crystallizer from
the fines dissolution tank such that the energy flows out of and into the crystallizer
are equal and opposite at all times and thus do not contribute to the energy balance
(Kwon et al., 2014a). In addition, it was assumed that the time required for heating
of the crystals was shorter than the time required for heating of the liquid such that
the temperature of the crystals was assumed to be equal to that of the liquid at all
times, and the enthalpy of crystallization was assumed to be negligible.

In this work, the contents of the dissolution tank were assumed to be perfectly
mixed and to consist only of liquid (i.e., it is assumed that all crystals are dissolved
into the mother liquor when they enter the fines dissolution tank so that nin = 0
in Eq. 5.12). Thus, the mass balance for each component i in the fines dissolution
tank is:

dmdiss,i

dt
= ṁdiss,i + wout,iρlV̇l,out − win,iρlV̇l,in (5.19)

where mdiss,i is the mass of species i in the fines dissolution tank, and ṁdiss,i

represents the rate at which crystal mass is dissolved to liquid mass. Thus,
ṁdiss,i = 0 for i = S,W and ṁdiss,R is the rate at which fines crystal mass leaves the
crystallizer. If Cfines is the fines concentration (in mass of fines crystals per mass of
solvent) in the removal stream, the rate of dissolved crystals of R can be given by
CfinesṁW,out. The fines concentration can be calculated with the following equation:

Cfines = kV ρc

∫ ∞
0

nout(t, l)l3dl (5.20)

The volumetric flow rate of the fines removal stream (V̇sp,out) is taken to be a
constant operational parameter. To keep a constant mass in the crystallizer, the
volumetric flow rate (V̇sp,in) for the returning stream is given by:

V̇sp,in = V̇sp,out + CfinesṁW,out

(
1
ρl
− 1
ρc

)
(5.21)

It is noted that if the removal stream is sufficiently diluted, the approximation
V̇sp,in = V̇sp,out is valid. With Eq. 5.20 it is possible to get the liquid volumetric flow
rate appearing in the mass balances: V̇l,out = V̇sp,out− ṁW,out

Cfines

ρc
. Also, as all fines

are dissolved, V̇l,in = V̇sp,in.
The fines dissolution tank receives a stream from the crystallizer that is enriched

in fines crystals. This enrichment is modeled by setting the crystal number density
of the stream leaving the crystallizer to nout = h(l)n(t, l), where h(l) is calculated
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from the following equation (Qamar et al., 2009):

h(l) = nmax exp
−( l

2σl

)2
 (5.22)

with nmax = 0.6 and σl = 0.15.
To numerically simulate the process described by Eqs. 5.12-5.22, a numerical

method capable of capturing the features of interest of the particle size distribution
must be chosen. In the crystallization literature, it is common to apply the method
of moments to transform the population balance equation into a system of first-order
ordinary differential equations that describe the variations in the moments of the
particle size distribution in time. When the flow to the fines dissolution tank is
halted (i.e., ṁW,in = ṁW,out = 0 in Eq. 5.12), the method of moments can be readily
applied to simulate the resulting population balance model, with the j-th order
moment of the distribution defined by Eq. 5.23 (j = 0, 1, . . .), and the derivatives
of the moments described in Eq. 5.24 (Randolph and Larson, 1988):

µj =
∫ ∞

0
ljn(t, l)dl (5.23)

dµj
dt

=

B0 if j = 0∫∞
0 nGjlj−1dl + ljminB0 if j > 0

(5.24)

with lmin = 0 m in Eq. 5.24.
However, because the integration required to define the moments removes the

dependence of the particle size distribution characteristics on the characteristic size
l by integrating over all particle sizes, the method of moments cannot be applied to
numerically simulate the population balance of Eq. 5.12 when the fines dissolution
process is used. This is because the ability of the fines trap to separate larger
and smaller crystals is modeled using the function h(l) (Eq. 5.22) which has an
explicit dependence on the particle length, and a numerical method that removes
the dependence of the particle size distribution characteristics on the characteristic
length of the particles would be unsuitable for representing the batch crystallization
process with fines dissolution described above. Instead, the moving sectional
method, to be described in the next section, is utilized to simulate the particle
size distribution of the crystallization process with fines dissolution throughout the
batch simulation.
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5.3.1 Moving Sectional Method for Crystal Nucleation and
Growth

The moving sectional method (Kumar and Ramkrishna, 1997) (with only
nucleation and growth mechanisms of crystal variation) considers the PSD to be
divided into M contiguous sections (bins) with lower and upper boundaries given
by li and li+1 and with the number of particles per mass of solvent in each bin i

defined as in Eq. 2.63.
The method considers that li and li+1, as well as the pivot for each bin (xi,

which is a representative size for the i− th bin) change with time according to the
crystal growth rate. After discretization and derivation based on the method of
characteristics, the population balance equation (Eq. 5.12) is expressed for each bin
as:

dNi(t)
dt

=


B0(t)−Ni

d

dt
lnmW +QI/O,i(t) if i = 1

−Ni
d

dt
lnmW +QI/O,i(t) if i = 2, . . . ,M

(5.25a)

dxi
dt

=


1
2

(
dl1
dt

+ dl2
dt

)
if i = 1,

G(t) if i = 2, . . . ,M
(5.25b)

QI/O,i(t) = 1
mW

[Ni,in(t)ṁW,in −Ni,out(t)ṁW,out] (5.25c)

where Ni,in(t) ≡ 0 (because nin ≡ 0) and Ni,out are the number of particles per
mass of solvent in each bin i for the input and output streams. The discretization
of nout for the i-th bin was taken to be Ni,out = ∑M

i=1 h(xi)Ni, where h(xi) is given
by Eq. 5.27. The particle size distribution can be approximated from the states in
Eq. 5.25 using the expression for the i-th bin shown by Eq. 5.28:

Ni,out(t) =
M∑
i=1

h(xi)Ni (5.26)

h(xi) := nmax exp
[
−
(
xi
2σl

)2
]

(5.27)

n(t, xi) = Ni

li+1 − li
(5.28)

In this discretization scheme, the bin boundaries li at the initial time can be
uniformly spaced in a size range that covers the entire initial PSD. The pivots xi at
the initial time are defined at the centers of each bin (i.e., xi = 1

2(li + li+1)). The
number of particles per bin Ni is obtained by the integral defined by Eq. 2.63 using
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the initial PSD (Eq. 5.14).
To model growth of the smallest crystals, their corresponding pivots (Eq. 5.25b)

increase with time, with the result that the smallest crystals become characterized
by larger average sizes. As particles are nucleated, they must be added to a specific
bin, but as the pivots increase, it can happen that the smallest pivot becomes
significantly larger than the size at which particles nucleate such that nucleation
can no longer be represented properly. The growth of the bins and pivots is also
problematic for the selection behavior of the fines trap because it causes the particle
size distribution to lack the number of bins required at lower particle sizes that are
required to achieve the desired separation behavior described by h(l) (Eq. 5.22).

To overcome these difficulties, Kumar and Ramkrishna (1997) proposed that new
bins are added to Eq. 5.25 at intervals separated by time length ∆tbin sufficiently
small to track the nucleation dynamics and to simulate the fines trap with adequate
resolution. Each new bin is added at the minimum crystal size (zero in this work;
thus, x1 = l1 = l2 = 0 at each bin addition). Also, it is considered that each
new bin contains no crystals when it is initialized (N1 = 0 at each bin addition).
An efficient numerical scheme of the moving sectional method was implemented for
the bin additions that utilizes a constant ∆tbin during the simulation for adding
new bins. This strategy takes advantage of the fact that once the bins are added
in constant intervals ∆tbin at the intermediate time steps (not including the initial
and final times), at the end of the simulation the total number of bins will be
Mf = M0 +Nt−2, where Nt can be obtained from the initial and final times as Nt =
b tf−t0∆tbin

+0.5c+1, where b·c is an operator that returns the largest integer smaller than
its argument. Thus, an augmented state sequence ỹ capable of accommodating all
the states at the final time can be created before starting the numerical integration,
which avoids the need to create new states and renumber the older bins when a
new bin is added. Hence, the total number of elements in the sequence ỹ will be
vỹ = 2Mf + vy, where vy is the number of elements in the state sequence y that
contains the extra states required to close the dynamic system, which in this case
are the mass of each component in the crystallizer and fines dissolution tank and the
crystallizer temperature. Ni and pi must be integrated for each bin. Further details
on the implementation of the moving sectional method in this work are provided in
Appendix F.

In this work, the derivatives for the optimization schemes were obtained using
automatic differentiation methods, which involves a substantial amount of data
to calculate the derivatives (Walther and Griewank, 2012). Thus it is desired
to minimize the computer memory usage for the function evaluations. At each
simulation time step, the dynamic system was integrated using a low memory
Runge-Kutta method. The two storage register third-order Runge-Kutta method
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defined by Carpenter and Kennedy (1994) was chosen, which used Williamson (1980)
derivations.

Though the moving sectional method involves the calculation of an
approximation of the particle size distribution in time, instead of the moments of
the distribution as would be undertaken if the method of moments were used, the
moments of the particle size distribution can be obtained from the moving sectional
method as follows:

µj =
M∑
i=1

[
Nix

j
i

]
, j = 0, 1, . . . (5.29)

5.3.2 Parameter Estimation

Obtaining crystal nucleation and growth rates is considered to be a challenging
task because of the difficulty of measuring particle sizes and their distributions,
especially for small crystal sizes. Even when crystal data is available that can
be used for estimating the parameters of nucleation and growth rate models, the
experimental conditions under which that data was obtained may be different from
the conditions for which a nucleation and growth rate model is desirable (one
approach to deal with this issue is the use of Kinetic Monte Carlo simulation (Kwon
et al., 2014b)). In the particular case of mandelic acid, an additional difficulty for
determining crystal nucleation and growth rates is that the presence of the opposite
enantiomer in the mother liquor can affect the nucleation and growth kinetics of the
desired enantiomer (Zhang et al., 2010).

There are few studies in the literature addressing the estimation of kinetic
parameters for enantiomeric system crystallization. For example, for the R-MA
case, Mao et al. (2010) study the unseeded cooling batch crystallizer to evaluate the
growth and nucleation. A growth-only kinetics evaluation of S -mandelic acid and
the opposite enantiomer effects were investigated by Codan et al. (2013).

Zhang et al. (2010) experimentally evaluates the direct crystallization of a
partially resolved system of R-MA enantiomer in water solution during batch
operation (on lab-scale and without fines dissolution). They study the influence of
various operating condition changes and the presence of the opposite enantiomer
(S -MA) on the nucleation and growth of R-MA. They propose the use of the
nucleation rate model B0 = kb0 exp

(
− Eb

RgT

)
∆cbRMT and the growth rate model

G = kg0 exp
(
− Eg

RgT

)
∆cgR, where b, kb0, Eb, g, kg0 and Eg are model parameters, Rg

is the gas constant, and MT is the suspension density (ratio of crystal mass to
solvent mass). The term ∆cR := cR − xRceqsol, where cR is the R-MA concentration
(g R-MA /g of water) and xR is given by cR

cR+cS
, represents the supersaturation of

R in the presence of the S enantiomer with concentration cS. The term ceqsol is the
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solubility of the mixture solution, which is given by a fitted polynomial function of
both temperature and composition. To estimate the parameters kb0, Eb, kg0 and Eg,
data was gathered from batch crystallization experiments performed for controlled
linear cooling with different operating conditions. Then, a constrained least-squares
estimation was performed to determine the model parameters by minimizing the
difference between the measurements of the R-MA concentration in the system
(g R-MA /g of water) and the values of the R-MA concentration calculated based
on population balance equations with the growth and nucleation rate expressions.

In this work, the crystal nucleation and growth rate expressions are similar to
those from Zhang et al. (2010), but replacing the term ceqsol with the term (Ssup −
1) (Mullin, 2001), where Ssup is the supersaturation defined with respect to the
solubility of R in the liquid phase. This expression for supersaturation, where Ssup =
wR

wR,sat
, is consistent with the literature (Kaspereit, 2006) and eliminates the need

for the experimentally developed fit for the solubility data utilized by Zhang et al.
(2010) and instead allows for use of solubility data derived from the ternary diagram
in determining the crystal growth and nucleation rates. Specifically, using wsatR

computed from Eq. 5.3, it is use the following expressions for the nucleation and
growth rates:

B0 = kb0 exp
(
− Eb
RgT

)
(Ssup − 1)bMT (5.30)

G = kg0 exp
(
− Eg
RgT

)
(Ssup − 1)g (5.31)

Because of the difference between the growth rate expressions used in this work
and those determined by Zhang et al. (2010), the parameters of the nucleation and
growth rate expressions in Eqs. 5.30 and 5.31 are estimated using the data available
in Zhang et al. (2010) (run 2) with the operating conditions listed in Table 5.2.

For consistency with Zhang et al. (2010), the parameter estimation is performed
for batch operation without fines dissolution by determining the values of the growth
rate parameters that minimize a constrained least-squares problem that penalizes
in the objective function the difference between calculated and experimental values
of the concentration of the R enantiomer in the crystallizer. The moment equations
(Eq. 5.24) were used to calculate the values of the R concentration used in the
least-squares estimation. The first five moment equations were used to capture the
dominant dynamics of the system (Christofides, 2002b), along with a mass balance
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Table 5.2: Operating parameters used for parameter estimation (run 2 from Zhang
et al. (2010)).

Parameter Notation Value Unit
Initial temperature T (t0) 23.0 ◦C
Final temperature T (tf ) 19.0 ◦C
Batch time tf 200.0 min
Solvent mass mW 200.0 g
Initial R liquid mass mR(t0) 0.0275 kg
Initial purity P i 0.82 (-)
Seed mass mc(t0) 0.34 g
Initial zero moment µ0(t0) 6.110 ·105 1/kgW
Initial first moment µ1(t0) 156.4296 m/kgW
Initial second moment µ2(t0) 0.04028 m2/kgW
Initial third moment µ3(t0) 1.0435 ·10−5 m3/kgW
Initial fourth moment µ4(t0) 2.7184 ·10−9 m4/kgW
R crystal density ρc 1349.0 kg/m3

Crystal shape factor kV 0.12 (-)
Eutectic purity P e 0.69 (-)
Kinetic nucleation order b 1.5 (-)
Kinetic growth order g 1.0 (-)
Seed coefficient a0 5.38·1018 1/(kgW ·m3)

on R, as follows:

dmR

dt
= −3mWρckV µ2G(t) (5.32a)

dµj
dt

=

B0, j = 0

jG(t)µj−1, j = 1, 2, 3, 4
(5.32b)

where B0 and G(t) are defined in Eqs. 5.30-5.31, and mR(t) represents the mass of
enantiomer R in the liquid phase in the crystallizer at time t. The initial moments
(reported in Table 5.2) were obtained using the initial PSD (Eq. 5.14) and the
definition in Eq. 5.23. The seed mass is calculated based on the third order moment
as: mc(t0) = mWρckV µ3(t0). No energy balance was required in this simulation
for consistency with Zhang et al. (2010), which assumed that the temperature in
the crystallizer followed a linear cooling profile from 23◦C to 19◦C. During the
simulation, the crystal yield can be obtained using: Yc = mc(tf )−mc(t0)

mR(t0) , in which
mc(t) is the mass of crystals at time t and is given by mc(t) = mWρckV µ3(t), where
tf is defined as the final time and t0 as the initial time of the batch. Moreover, as
the crystallization process without a fines dissolution loop is a closed system, all
the formed crystal mass is from the liquid phase (i.e., mc(tf ) −mc(t0) = mR(t0) −
mR(tf )), such that the yield can be written as: Yc = 1.0− mR(tf )

mR(t0) .
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As suggested by Zhang et al. (2010), the parameters kb0, Eb, kg0 and Eg were
estimated using a least-squares minimization between the predicted (i.e., from
Eqs. 5.30-5.32) and experimental values of the concentration of R in the liquid phase
throughout the batch. In the predictions, the coefficients b and g in the growth and
nucleation rate expressions were set to 1.5 and 1.0, respectively, for consistency
with Zhang et al. (2010). Also for consistency with Zhang et al. (2010), a constraint
on the ratio L43 = µ4

µ3
(volume-weighted mean size) at the end of the batch was

included to account for experimental results on the size distribution. An additional
constraint was added for the present work on the process yield to take advantage of
additional information reported in Zhang et al. (2010) for the experimental crystal
yield (Yc).

The parameter estimation problem with θ = [kb0, kg0, Eb, Eg] is stated as:

minimize
θ

J(θ) =
nt∑
i=1

[
cR(ti)exp − cR(ti)calc

]2
subject to 0.9L43

exp ≤ µ4

µ3
≤ 1.1L43

exp

0.95Ycexp ≤
[
1.0− mR(tf )

mR(t0)

]
≤ 1.05Ycexp

(5.33)

The calculated concentration of R at time ti, cR(ti)calc, is given by mR(ti)
mW

based
on Eqs. 5.30-5.32, with the temperature set to the linear cooling strategy for run 2
in Zhang et al. (2010) (i.e., perfect temperature control was assumed, and Eq. 5.18
was not solved), cR(ti)exp is the experimental concentration at time ti and nt is the
number of experimental samples used (50 data points, which were extracted from
the plots for run 2 in Zhang et al. (2010)). The experimental values of the mean size
and yield used were Lexp43 = 440.1 µm and Y exp

c = 8.5%, respectively, as reported
in Zhang et al. (2010) for run 2. The parameter estimation problem in Eq. 5.33
was solved using IPOPT (Wächter and Biegler, 2006) and ADOL-C (Walther and
Griewank, 2012) for the gradient and Jacobian. The dynamic model of Eq. 5.32 was
solved using the Explicit Euler numerical integration method with an integration
step size of 1 s.

The parameter estimation problem of Eq. 5.33 resulted in the following estimated
parameter values: kb0 = 1.6416 ·1012 1

kgW s
, kg0 = 54416.74 m

s
, Eb = 33297.23 J

mol
and

Eg = 63862.05 J
mol

. The upper bounds for the L43 and Yc constraints were active
for this solution.

Figure 5.5 shows the comparison between the experimental (EXP-ZR in
Figure 5.5) concentrations and calculated concentrations from the moment model
(MOM in Figure 5.5) using these estimated parameter values. To verify the adequacy
of the moment model of Eq. 5.32b for numerically simulating the crystallization
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process, the moving sectional method of Eq. 5.25 for the case without a fines
dissolution loop (ṁW,in = ṁW,out = 0) was also used to determine the predictions of
the concentration of R in the liquid phase throughout the batch and was plotted for
comparison in Figure 5.5 (labeled PBE in the figure). The trajectories calculated
from the moving sectional method and the method of moments overlaid one another,
verifying that the first five moments of the particle size distribution were sufficient
for modeling the dominant process dynamics in this case. Though the predicted
and experimental values of the concentration profiles show some offset, a number
of factors may be responsible for this. Firstly, because Zhang et al. (2010) did not
report the exact values of their experimental data points but only plotted the data,
there may be some inaccuracy in the experimental values used for the parameter
estimation in this work due to the need to extract the values from the plots.
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EXP − ZR

Figure 5.5: Experimental and calculated concentration profiles for parameter
estimation based on Table 5.2. PBE: simulation with moving sectional method
(Eq. 5.25); MOM: method of moments simulation (Eq. 5.32; overlays PBE); EXP-ZR
is the experimental data extracted from Zhang et al. (2010).

In addition, errors may be introduced for the same reasons noted by Zhang et al.
(2010) as causes for offset between the experimental and predicted R concentrations
in their own work, namely limitations of the particle size measurement equipment
and modeling approximations such as neglecting breakage and agglomeration and
assuming a narrow seed initial particle size distribution. However, it is notable
that the particle size distribution obtained by simulating the batch process with
linear cooling with the parameter values estimated from Eq. 5.33 shows many

114



Chapter 5

similarities to the predicted particle size distribution developed for run 2 by Zhang
et al. (2010). This particle size distribution is shown in Figure 5.6, simulated using
the moving sectional method with the growth and nucleation rates determined by
solving Eq. 5.33. The evolution of the particle size distribution throughout the batch
is plotted by showing the particle size distribution distribution at five different times
(2 min, 50 min, 100 min, 150 min, and 198 min) after the batch was initiated.
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Figure 5.6: Calculated PSD (using Eq. 5.28 in number of particles per gram of
solvent (gW ) and micrometer) at five times after the batch crystallization process
was initiated (crystallization begins at 0 min) without fines dissolution under the
linear cooling strategy with the parameters kb0, kg0, Eb, and Eg estimated from
Eq. 5.33.

Remark 5 Because the parameter estimation in Eq. 5.33 is a nonlinear program,
the parameters obtained for the growth and nucleation rates do not necessarily
correspond to a global optimum, but the good agreement of the experimental results
with the results from the parameter estimation in Figure 5.5 indicates that the results
are expected to be sufficient for simulating the growth and nucleation rates.

115



Chapter 5

5.4 Batch Crystallization Study

In the next two sections, the demonstration of the process operation, modeling,
and control policy developed in the section “Batch Crystallization Operation
and Control Design for Racemic Compound Forming Systems Using the Ternary
Diagram” is completed by demonstrating the application of model predictive
control to the batch crystallization process of the section “Batch Crystallizer
Model with Fines Dissolution Loop”. Specifically, for this mandelic acid in water
example, Steps 1-4 of the proposed operation, modeling, and control strategy were
demonstrated in the section “Batch Crystallization Operation and Control Design
for Racemic Compound Forming Systems Using the Ternary Diagram” and Step 5
was demonstrated in the section “Batch Crystallizer Model with Fines Dissolution
Loop”. In the following two sections, it is demonstrated Steps 6-8. The closed-loop
performance of the batch crystallization process, in both the case without the
fines dissolution loop and the case with the fines dissolution loop, was investigate
to demonstrate the applicability of MPC in controlling a batch enantioselective
crystallization process for a racemic compound forming system.

5.4.1 Optimal Jacket Temperature Profile Without Fines
Dissolution

In this section, the batch crystallization of R-MA enantiomer without the
fines dissolution loop is considered. Because the experimental data for parameter
estimation of nucleation and growth kinetics (Zhang et al., 2010) were available only
within the temperature range of 23◦C to 19◦C, an operating temperature range that
deviated from this range by only a few degrees above and below was chosen for the
batch crystallization process. Specifically, Figure 5.2 was analyzed to determine a
reasonable operating temperature range, assuming that the initial purity P i is fixed
at 0.80, close to the purity used to obtain the growth and nucleation rate parameters,
from the pre-enrichment process, and that it is desired to obtain the greatest yield
possible during the crystallization process by crystallizing until the eutectic purity
P e is reached. The top figure in Figure 5.2 was analyzed, and it was seen that
cooling a solution with an initial R mass fraction of 0.1336 would allow a saturated
solution at 26.0◦C to be cooled to reach the eutectic composition at 12.13◦C. Thus,
due to its closeness to the 23◦C to 19◦C operating temperature range from Zhang
et al. (2010), the 26.0◦C to 12.13◦C operating temperature range was chosen for this
example. Also, the batch process was scaled up compared to Zhang et al. (2010)
(i.e., a total initial liquid mass of 20 kg was assumed) with P i = 0.80 and seeding
with 28.92 g of R to maintain approximately the same ratio of seeds to mass of
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solvent as in Table 5.2. Table 5.3 lists the operational parameters used in this case
study. The liquid density and heat capacity are assumed to be close to those of the
solvent, and the thermal coefficient is on an order of magnitude consistent with the
value in Shi et al. (2006).

Table 5.3: Operational parameters used in optimal control study without fines trap.

Parameter Notation Value Unit
Initial temperature T (t0) 26.0 ◦C
Final temperature T (tf ) 12.13 ◦C
Batch time tf 30 h
Solvent mass mW 16.658 kg
Initial R liquid mass mR(t0) 2.673 kg
S liquid mass mS 0.668 kg
Initial purity P i 0.80 (-)
Seed mass mc(t0) 28.92 g
Initial zero moment µ0(t0) 6.281 ·105 1/kgW
Initial first moment µ1(t0) 160.7909 m/kgW
Initial second moment µ2(t0) 0.04140 m2/kgW
Initial third moment µ3(t0) 1.0724 ·10−5 m3/kgW
Initial fourth moment µ4(t0) 2.7935·10−9 m4/kgW
R Crystal density ρc 1349.0 kg/m3

Liquid density ρl 1000.0 kg/m3

Crystal shape factor kV 0.12 (-)
Seed coefficient a0 5.53·1018 1/(kgW ·m3)
Thermal coefficient UA 250 W/K
Heat capacity cp 3.8·103 J/(K · kg)

A model predictive controller was used to control the batch crystallization process
to minimize the ratio of the mass of crystals grown from nuclei to the mass of
crystals grown from the seeds. The model developed for use within the MPC
tracked the population balance characteristics using the method of moments. To
accomplish the control objective of maximizing the mass of crystals obtained from
seeds while reducing the mass of crystals obtained from nucleation, the model used
two sets of five moment equations, one for crystals growing from seeds and one for
crystals growing from nuclei (Shi et al., 2006). Applying this scheme, the differential
equations for mass, energy and moments for the model used within the MPC are:

dmR

dt
= −3mWρckV (µn2 + µs2)G(t) (5.34a)

Mtotcp
dT

dt
= −UA(T − Tjkt) (5.34b)

dµν0
dt

= Bν
0 , ν = n, s (5.34c)

dµνj
dt

= jG(t)µνj−1, j = 1, 2, 3, 4, ν = n, s (5.34d)
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where ν designates the seeds (s) or nucleation (n) moments. No breakage or
agglomeration is considered, and Bs

0 = 0. The growth rate G(t) is given by Eq.
5.31 and Bn

0 by Eq. 5.30 with the parameters obtained from Eq. 5.33. The initial
values of µnj , j = 0, 1, 2, 3, 4, are zero. Initial values formR, T , and µsj , j = 0, 1, 2, 3, 4,
are reported in Table 5.3.

The MPC optimization problem at each sampling time can be stated as:

minimize
∆Tjkt,k

J(Tjkt,k) := µn3 (tf )
µs3(tf )

(5.35a)

subject to: Model: Eq. 5.34 (5.35b)
∆Tjkt,k ≤ 0, k = kit, . . . , kNt−1 (5.35c)
Tmin ≤ T (tf ) ≤ Tmax (5.35d)

Yc(tf ) = P i − P e

P i(1− P e) (5.35e)

in which the decision variables are ∆Tjkt,k = Tjkt,k − Tjkt,k−1, where k =
kit, . . . , kNt−1, with kit at the current sampling time tkit

and Nt as the total number
of sampling times between t0 and tf , and with each value of tk separated by a
sampling period of length ∆. T (tk) is the temperature within the crystallizer at
time tk. A shrinking prediction horizon was used for the optimization problem that
was initially set to Nt − 1 and decreased by one at each subsequent sampling time
in the simulation so that the remainder of the batch was included in the prediction
horizon at all times. The constraint ∆Tjkt,k ≤ 0 indicates that no heating was
allowed (cooling was enforced to enable crystallization). Yc(tf ) is the crystal yield
at the end of the batch, defined by Eq. 5.8, which is forced to the maximum
value 0.4435 obtained by setting P f = P e in Eq. 5.8. No feasibility issues were
encountered during the dynamic simulations with this terminal constraint on the
yield, indicating that the batch time was sufficiently long to allow this constraint,
which essentially requires thermodynamic equilibrium at the end of the batch, to
be met. The minimum temperature Tmin was set to the temperature required to
achieve the eutectic composition (Tmin = 12.13◦C from Eq. 5.10). For consistency
with standard MPC formulations, a maximum temperature Tmax = 30◦C was also
included, though due to the cooling constraint of Eq. 5.35c, it was never approached.
The sampling period ∆ was set to 360 s and the ordinary differential equations (Eq.
5.34) were solved using the low memory Runge-Kutta scheme RK33 from Carpenter
and Kennedy (1994). The gradient of the objective function and Jacobian of the
constraints were obtained using ADOL-C. The optimization problem was solved
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with the interior point optimization software package IPOPT.
To simulate the closed-loop crystallization process, Eq. 5.12 (with ṁW,in =

ṁW,out = 0) was discretized and solved using the moving sectional method (Eq. 5.25)
of Kumar and Ramkrishna (1997). A new bin was added every sampling time
(∆tbin = ∆ = 360 s). Thus, at the initial time there are M0 = 50 active bins, so
at the final time the number of active bins is Mf = M0 + Nt − 2 (bins added only
at the intermediate steps, i.e., not at the initial or final times). The (Mf −M0)
bins initially are considered to contain zero crystals and are activated according
to the methodology described in the section “Moving Sectional Method for Crystal
Nucleation and Growth” and Appendix F.

To enable feedback to the MPC when the plant dynamics are assumed to follow
Eqs. 5.34a-5.34b and the population balance equation is solved using the moving
sectional method, the values of mR, T , and also of the moments of the particle size
distribution must be measured and fed back to the MPC at each sampling time
so that the model of Eq. 5.35b can be integrated at the new sampling time. The
values of mR and T can be obtained in a straightforward manner from numerical
integration of Eqs. 5.34a-5.34b. The moments µsj , j = 0, 1, 2, 3, 4 can be obtained
from the last M0 bins while the moments µnj , j = 0, 1, 2, 3, 4, can be obtained from
the first Mf −M0 bins at a given time when the moving sectional method is used
with bin additions, as follows:

µsj =
Mf∑

i=Mf−M0+1

[
Nix

j
i

]
, j = 0, 1, 2, 3, 4 (5.36a)

µnj =
Mf−M0∑
i=1

[
Nix

j
i

]
, j = 0, 1, 2, 3, 4. (5.36b)

The closed-loop simulation results for the batch crystallization process without
fines dissolution under the model predictive control strategy of Eq. 5.35 are shown in
Figure 5.7. These closed-loop profiles under MPC are compared with the closed-loop
trajectories under the linear cooling strategy from 26 to 12.13◦C during the 30 h

operation. Specifically, the dynamic behavior of the mass of crystals from the seeds
and the mass of crystals from nucleation are compared for the closed-loop crystallizer
under MPC and under the linear cooling strategy.

Figure 5.7 shows that the crystal mass from the seeds is 9.65% greater for the
process operated under the MPC than under the linear cooling strategy, and there
is also less total crystal mass due to nucleation. On the same plot, the jacket
profile computed by the MPC of Eq. 5.35 is shown (Tjkt,otm in Figure 5.7), and
the temperature in the crystallizer when a linear cooling profile from 26◦C to
12.13◦C is used (denoted by Tlin in the figure) is shown. The flattening of the
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Figure 5.7: Crystal mass using linear cooling (lin) and optimized profile under MPC
(otm) in batch crystallization. The optimized case has jacket temperature Tjkt,otm,
crystal mass from seeds ms

c,otm, nuclei mass mn
c,otm and total crystal mass mtot

c,otm.
The linear cooling case has crystallizer temperature Tlin, crystal mass from seeds
ms
c,lin, nuclei mass mn

c,lin and total crystal mass mtot
c,lin. The two arrows pointing to

the right indicate that the y-axis for the temperature trajectories is on the right of
the plot, whereas it is on the left for the mass profiles.

jacket temperature profile occurs under the control actions calculated by the MPC
to optimize the objective function subject to the constraints in the MPC. Because
the yield constraint essentially requires that thermodynamic equilibrium be reached
at the end of the batch, it is reasonable to expect that the jacket temperature will
need to remain constant at the eutectic temperature for some time at the end of the
batch to allow thermodynamic equilibrium to be reached.

Under MPC, the temperature is slowly decreased at the beginning of the
batch to suppress nucleation, which is consistent with previous studies on batch
crystallization (Chianese and Kramer, 2012; Miller and Rawlings, 1994). As the
order of dependence of nucleation rate on supersaturation is greater than the
order of dependence of the growth rate on supersaturation (b > g), the optimal
profile induces a small supersaturation magnitude during most of the operation.
However, at approximately 24 h of operation there is a supersaturation peak that
quickly enhances the crystal growth and leads to a burst of new crystals. The
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supersaturation peak timing is optimized in a way to maintain a relatively low rate
of solute mass transfer to the new generated crystals (Miller and Rawlings, 1994).
This behavior is shown in Figure 5.8, which compares the supersaturation profile
for the optimized operation (Ssup,otm) and the linear run (Ssup,lin).

0 5 10 15 20 25 30

time [h]

1.00

1.05

1.10

1.15

S
su

p

Ssup,otm

Ssup,lin

Figure 5.8: Supersaturation profiles for linear cooling (lin) and optimized operation
under MPC (otm).

Figure 5.9 depicts the mass fraction trajectory in the ternary diagram during
the batch crystallization. At the initial time the solution in the crystallizer has a
composition represented by point P and, as it is being cooled, the R enantiomer in
the liquid phase is crystallizing. Because of the yield constraint in Eq. 5.35e, the
solution in the crystallizer is forced to achieve the eutectic purity P e at the final
time. Note that the non-equilibrium points were used in the ternary diagram to
allow a visualization of the process with respect to the solid-liquid equilibrium.

Figure 5.10 shows the particle size distribution at the end of the batch for the
process under both MPC and the linear cooling strategy. The bottom plot shows
that the optimal policy was able to produce larger crystals originated from the seeds
by the final time. The linear cooling approach gives a lower total number of crystals
at the final time than the MPC approach (though the total mass of the crystals from
seeds is less for the MPC approach than the linear cooling approach). This is due
to the way the MPC objective function was formulated (Eq. 5.35a), since it seeks
to minimize the mass of fines crystals compared to the mass from seeds, instead of
the number. This fact motivates the investigation of including the fines dissolution
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Figure 5.9: Batch crystallization trajectory in the ternary diagram starting at point
P and ending at the eutectic composition Ef. Each • represents the composition
of the liquid in the crystallizer, with 24 min time intervals between successive
points. Note that the diagram was zoomed in around the solvent corner for a better
visualization. The dashed line with a slope of 1 represents the racemic composition.
The dashed-dotted line through Ef and Ei represents a line of constant eutectic
purity. The bold line with a slope of -1 in this figure represents a line of constant
solvent composition wW = 0.7 (only the portion of the ternary diagram to the left
of this line is plotted in the figure).

loop, which will be discussed in the next section.
As noted in the section “Batch Crystallization Operation and Controller Design

Using Ternary Diagram Data,” the MPC of Eq. 5.35 will compute different
control actions for different tf because the objective function (Eq. 5.35a) and the
constraints (Eqs. 5.35d-5.35e) depend on the final batch time. Thus, as in Step 7
of the operation, modeling, and control procedure developed in the section “Batch
Crystallization Operation and Controller Design Using Ternary Diagram Data,”
closed-loop simulations of the crystallization process with different final batch times
can be evaluated to determine the desired final batch time. To investigate this
for the batch crystallization process without fines dissolution under the MPC of
Eq. 5.35, closed-loop simulations were performed with tf ranging from 20 h to 130 h
in 5 h increments. The mass of crystals from nuclei and seeds at the end of each
batch is plotted in Figure 5.11. This figure shows that there is a trade-off between
maximizing the crystal mass from seeds and reducing the final batch time (i.e.,
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Figure 5.10: PSD at the end of the batch crystallization process without a fines
dissolution loop for linear (lin) and optimal (otm) jacket temperature profiles. Top:
PSD for 0 to 400 µm and Bottom: 400 to 1000 µm. The plots have independent x
and y scales.

increases in final batch time correspond to production of more crystals from seeds
and less from nuclei), which is because increasing the batch time allows the system
to operate with a lower cooling rate, and thus a smaller supersaturation. This plot
can be used to understand the trade-off and choose a batch time with a reasonable
length that gives reasonably high production of crystals from seeds. Alternatively,
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if none of the combinations of batch time with crystal production from seeds is
acceptable, another operating strategy can be proposed for the batch crystallization
process. One strategy for enhancing the crystal mass formed from seeds and hence
attenuating long batch times is the use of a fines dissolution loop (Chianese and
Kramer, 2012). Thus, in the following the operation of the batch crystallization
process with the fines dissolution scheme is evaluated.
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Figure 5.11: Optimal crystal mass from seeds ms
c,otm and nucleation mn

c,otm using
different batch final times.

Remark 6 The parameters of the growth and nucleation rate equations were
obtained from experiments using a linear cooling strategy. Zhang et al. (2010)
indicates that different cooling rates may impact the growth and nucleation rates.
The impact of the non-linear cooling rate for the crystallizer under MPC on the
growth and nucleation rates in the model utilized by the MPC could be analyzed
when developing the MPC model for an industrial application.

5.4.2 Inclusion of Fines Dissolution Loop

To simulate the crystallization process with the fines dissolution loop, the same
total liquid mass of each component as in the case without the fines dissolution loop
was considered; however, that mass was divided between the crystallizer and the fines
dissolution tank. The total mass in the fines dissolution tank was 4.3236 kg, and
thus the crystallizer liquid mass was 15.6764 kg (giving the same total liquid mass of
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20 kg as in the previous case without the fines dissolution tank). Additionally, the
same initial composition was used for each component (wR = 0.13364, wS = 0.03341
and wW = 0.83294) as in the case without the fines trap for both the crystallizer
and fines dissolution tank. Using these considerations, the initial masses of all
components in the crystallizer and dissolution tank are depicted in Table 5.4, in
addition to other operating parameter values.

Table 5.4: Operational parameters used in optimal control study with fines trap.

Parameter Notation Value Unit
Initial temperature T (t0) 26.0 ◦C
Final temperature T (tf ) 12.13 ◦C
Batch time tf 30 h
Crystallizer initial solvent mass mcryst,W (t0) 13.057 kg
Crystallizer initial R liquid mass mcryst,R(t0) 2.095 kg
Crystallizer initial S liquid mass mcryst,S(t0) 0.5237 kg
Dissolver initial solvent mass mdiss,W (t0) 3.601 kg
Dissolver initial R liquid mass mdiss,R(t0) 0.5778 kg
Dissolver initial S liquid mass mdiss,S(t0) 0.1444 kg
Initial purity P i 0.80 (-)
Seed mass mc(t0) 28.92 g
R crystal density ρc 1349.0 kg/m3

Liquid density ρl 1000.0 kg/m3

Crystal shape factor kV 0.12 (-)
Seed coefficient a0 7.0552·1018 1/(kgW ·m3)
Thermal coefficient UA 250 W/K
Heat capacity cp 3.8·103 J/(K · kg)
Dissolver tank total mass mdiss,L 4.3236 kg

To obtain the same initial seed mass in the crystallizer as in the case without
fines dissolution, the parameter a0 in Eq. 5.14 was adjusted as: a0 = aref0

mref
W

mcryst,W
, in

which the superscript ref indicates the case without the fines dissolution tank. As
there is less mass of solvent in the crystallizer for the case with the fines dissolution
tank, a0 > aref0 , which means that there are more crystals of each size in the initial
PSD for the case with the fines dissolution tank than without it to obtain the same
initial seed mass in the crystallizer.

The death function of Eq. 5.22 can be defined using the pivots as in Eq. 5.27
and the number of crystals leaving the crystallizer for each bin (Ni,out) was defined
by Eq. 5.26. The fines concentration (Eq. 5.20) is approximated by Cfines =
kV ρc

∑M
i=1 [Ni,outxi

3]. Additionally, the rate of crystallization of the R enantiomer is
approximated by ṁcryst,R = −3ρckVmW

∑M
i=1 [Nix

2
iG(t)].

The proposed MPC formulation from Eq. 5.35 was used, but the controller model
was changed to the moving sectional method, instead of the moment model, in order

125



Chapter 5

to include the fines removal effect in the particle size distribution. The discretized
model was solved using the augmented state approach described in the section 5.3.1
with M0 = 30 and uniformly spaced bins covering the initial PSD for setting the
initial number of crystals in each bin and the initial pivots. The same sampling
period and final batch time were used as in the section 5.4.1. Because of the higher
model complexity, a higher computational time is required for solving the MPC at
each sampling time than is required when using the moment model. To circumvent
this issue in a practical implementation, one could implement the second control
action in the prediction horizon from the MPC solution at the previous sampling
time.

Figs. 5.12 to 5.14 show input and state profiles obtained by controlling the
batch crystallization process under MPC for three values of V̇sp,out (0, 5 and 10 mL

s
).

The case with V̇sp,out=0 does not include the fines dissolution tank and is simulated
according to Table 5.3. The optimal jacket temperature profiles computed by the
MPC for the three different values of V̇sp,out are shown in Figure 5.12. The MPC
computes that the jacket profile that optimizes the objective function subject to
the constraints should reach its final value earlier in the batch for the two cases
that V̇sp,out is nonzero than when it is zero. Under these manipulated input profiles,
the dynamic profiles for the seed, nuclei and total crystal mass depicted in Figure
5.13 are obtained. Though the total mass from crystals is approximately the same
for the three different values of V̇sp,out, operation for the cases with larger values of
V̇sp,out is associated with more crystal mass from seeds and less from nuclei in this
figure. For example, the crystallizer under MPC with a fines dissolution loop with
V̇sp,out = 10 mL

s
gives a 21.3% increase in the crystal mass from the seeds compared

to the crystallizer under MPC without a fines dissolution loop (V̇sp,out = 0 mL
s
).

Figure 5.14 presents the PSD at the final batch time for all three values of
V̇sp,out. To allow for better visualization of the results, the PSD has been split into
two ranges corresponding to the top (the PSD from 0 to 400 µm crystal size) and
bottom (the PSD from 400 to 1000 µm) plots in the figure. The initial PSD is also
shown for the fines dissolution cases for comparison (the initial PSD for the case
with V̇sp,out = 0 mL

s
is slightly different than that for the fines dissolution case but

takes a similar shape, with seed crystals in a limited size range, and is omitted).
The figures indicate that the crystallizer with a fines dissolution loop under optimal
control has less crystals from nucleation at the end of the batch, with enhanced seed
growth. For example, the average crystal size resulting from the seeds in the case
that the fines dissolution loop is used with V̇sp,out = 10mL

s
is approximately 6.8%

larger than in the case without the fines dissolution loop. These results indicate
that MPC can be an effective controller for a batch crystallization process for a
racemic compound forming system, for various crystallizer designs, and can allow
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thermodynamic constraints, as well as constraints related to profit like yield, to be
satisfied while an objective function related to crystal properties is optimized.
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Figure 5.14: Comparison of crystal number density at final batch time with V̇sp,out
equal to 0, 5 and 10 mL

s
. Top: PSD for 0 to 400 µm and Bottom: 400 to 1000 µm.

The initial PSD for the fines dissolution case is also plotted for comparison. The
plots have independent x and y scales.

Remark 7 While a number of researchers have looked at MPC for crystallization,
the novelty of this work is the focus on enantiomer systems and specifically on
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using thermodynamic data for a racemic compound forming system to develop
constraints and an operating procedure for MPC that is based on solution
thermodynamics. The two enantiomers of a racemic compound forming system
have many identical properties and thus crystallizing a single enantiomer, as is
often desirable in industry, poses challenges that are not observed for other types of
systems (e.g., non-enantiomeric). Firstly, the solution must be pre-enriched in the
desired enantiomer, and secondly, the solution thermodynamics must be carefully
understood and exploited during the batch operation to prevent crystals of the
counter enantiomer from forming by maintaining the temperature and composition
within a required range (which changes as the temperature changes). This work
develops a methodology for achieving the desired enantioseparation while allowing
product properties related to process economics to be optimized by exploiting ternary
diagrams and solution thermodynamic data in the design of a controller for the
batch process. The focus is not on the specific trajectories obtained during the
crystallization operation, but rather on examining the use of MPC for a very
different system thermodynamically than has been considered in other works on
crystallization (e.g., Kwon et al. (2015); Patience et al. (2004); Tseng and Ward
(2017)). Furthermore, to the knowledge of the authors, MPC has not been examined
for racemic compound forming systems in the literature, so the results of this work
are also novel in showcasing the possible benefits of MPC compared to traditional
cooling strategies in the literature for racemic compound forming systems such as
linear cooling.

5.5 Conclusions

In this work, a batch crystallization process for enantioseparation of racemic
compound forming systems was considered. An operation and control strategy
based on MPC for the crystallization process was developed that uses equations
and information developed from a ternary diagram, and it was exemplified for the
mandelic acid in water system. The MPC can optimize an objective function related
to desired product characteristics while satisfying thermodynamic constraints (e.g.,
constraints on the minimum crystallizer temperature and yield) subject to a process
model based on the solution thermodynamics data to allow for crystals of a
single enantiomer to be obtained. The temperature profile in the crystallizer for
the mandelic acid example was shown to be different under MPC than under a
pre-defined linear cooling profile. A fines dissolution loop was shown to be effective
at decreasing the number of crystals from nuclei for the process under MPC.
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Conclusions

In this thesis the Population Balance Equation was used in the design and
optimal control of the enantioselective crystallizers of racemic compound forming
system. For such, a detailed evaluation of the Moving Sectional Method for
nucleation and growth was given. Also, a methodology for estimating kinetic
parameters was presented based on the low-cost apparatus of Caciano de Sena et al.
(2011) and using dissolution data from Figueiredo (2016) for NaCl in glycol solutions.

The first bin analysis for the MSM discussed the definition of a first bin growth
rate for the preservation of selected moment order in the presence of both nucleation
and growth. The main simplification hypotheses were discussed and simple test
cases were shown such that the main definitions of the first bin growth rate found
in the literature were obtained. The issue on the preservation of moment of orders
higher than one was elucidated. Efficient schemes for controlled bin addition were
proposed such that more bins are added when the system is under higher growth and
nucleation rate. Crystallization numerical examples were performed showing that
such controlled bin addition schemes can reduce errors on the moment conservation.

The dissolution study evaluated different operational conditions of temperature
and MEG composition using data collected by Figueiredo (2016). This work
provided a methodology for the determination of dissolution kinetics using the
population balance and a dissolution rate capable of describing a broad range of
undersaturation.

In the enantioselective crystallizer study, a method for the definition of proper
initial condition operation and final obtained yield and compositions and the working
temperature range was presented. Based on these definitions, the equilibrium
conditions elucidated in the ternary diagram were employed in the design of an
optimal control structure. The controller was implemented to maximize the growth
of seeds in detriment to the particle nucleation. The ternary diagram information
was used to ensure maximum thermodynamic yield of the enantiomer separation
as an optimization constraint. The cases with and without fine dissolution loop
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were evaluated in closed-loop control. The former was solved using the standard
method of moments. The latter required a distributed method to treat the classified
removal of particles. Because a distributed model was used in the controller model,
an efficient implementation of both time integration and optimization was required.
For that, an efficient bin addition scheme was adopted, a low memory Runge-Kutta
method was used and the objective jacobian and constraint gradient were obtained
using automatic differentiation methods.

6.1 Suggestions for future works

As suggestion for future work on the optimal operation of enantioselective
crystallization can be the development of robust optimal control approaches
to account for parameter uncertainties. Moreover, the case of preferential
crystallization, with both enantiomers crystallizing, can be addressed.

The methodology presented for crystallization separation could be applied for
other enantiomeric system of importance, as the praziquantel. The developments of
Chapter 3 provide enhanced strategies for the bins addition when using the MSM
for nucleation and growth. The proposed methodology for parameter estimation
on Chapter 4 can be adjusted for the estimation of growth and nucleation kinetics.
Finally, Chapter 5 structured methodology can be used to analyze the operation
yield and working temperature range. Also, it allows the study of optimal control
operation integrated with the enantiomeric system ternary diagram.
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Appendix A

Crystallization of Enantiomeric
Systems

Enantiomers are stereoisomers with mirror images that do not overlap. Pairs of
enantiomers have identical physicochemical properties, except the ability to rotate
the plane of polarized light, which are the same, but with opposite direction (Lorenz
et al., 2006a).

The enantiomer that rotates the polarized light clockwise is classified by (+) or
dextrorotatory (d), by the other hand, the one that rotates anticlockwise is referred
to as (-) or levorotatory (l). The D/L classification is often applied to amino acids
and sugars, where L have the hydroxyl group on the left side of the asymmetric
carbon furthest from the carbonyl group, whereas the D are those with the hydroxyl
grouping on the right side (Lorenz et al., 2006a).

Another classification is using R (or rectus) and S (or sinister). The enantiomers
in this case are defined from a group prioritization procedure (Tung et al., 2009). It is
also customary to distinguish the enantiomers simply according to the purpose, the
one of interest being referred to as preferential and the other as unwanted (counter).

Enantiomers are commonly classified into three types in relation to the type of
crystal formed:

\ Racemic compounds (heterochiral): correspond of about 90 to 95% of all
enantiomeric systems. The crystal formed consists of the homogeneously
distributed mixture of both enantiomers in equal ratio (1:1);

\ Racemic conglomerates (homochiral): refers to the physical mixing of the pure
crystals of each enantiomer, which crystallize independently

\ Pseudoracemates (solid solution): such systems are unusual and occur when
the enantiomers crystallize in any ratio between them in the solid structure.
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Lorenz et al. (2001) studied the coupling of the enantiomeric enrichment via
SMB with the fractional crystallization. The (+) and (-) mandelic acid system was
evaluated in the aqueous solvent in order to obtain simplified models capable of
providing the relationship between productivity and purity.

Lorenz et al. (2006b) have empirically demonstrated the application of the
preferential crystallization to the separation of crystals from the enantiomer of
interest. Cyclic steps are exemplified from mandelic acid to effect preferential
crystallization in the region of two solid phases. The experiments carried out showed
for the first time the viability of the preferential crystallization for the resolution of
racemic solid systems.

Yinghong (2009) evaluated the crystallization of two systems: mandelic acid and
ketoprofen. The study included the evaluation of solubility, metastable zone limit,
crystallization kinetics and supersaturation control. They used simplified models
and polynomial adjustments to follow the process. Cyclic preferential crystallization
was not implemented. They evaluated isolated batches of the system operating in
the region of pure solid with possible entrances in the region of two solids when the
final temperature reduced.

Crystallization of Racemic Compound Forming System

The racemic compounds forming systems have thermodynamic constraints
relative to the compositions and system temperature to define the amount and
types of solid phases generated. One approach that allows the understanding and
evaluation of this behavior is by the use of phase diagram, generally represented in
a ternary diagram, since the systems usually are formed by the enantiomer pair and
a solvent, which can also be a mixture.

The figure A.1 confronts the ternary diagram of the two enantiomeric systems:
conglomerate and racemic solid. In the first, there are two regions in which occur the
formation of pure crystals and a saturated solution (a e a’); a region of three phases
contemplating the mixture of pure crystals of each enantiomer and a solution with
eutectic concentration (b); and the region c where there is no formation of solids
(can occur dissolution if solids are present). The point E refers to the eutectic
composition.

The second diagram of Figure A.1 shows that racemic compound forming system
have a more complex phase diagram behavior. In this case, there are three regions
with two phases, two three-phase regions and a single-phase region. Regions a
and a’ originate pure solids and saturated solution, whereas the region c provides
racemic solid (rac) and saturated solution. The regions of b and b’ generate two
solid phases: pure solid and racemic solid. This region also form a saturated solution
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of eutectic composition. The point M corresponds to the saturation composition
with the maximum fraction of the solvent for a given temperature.

Figure A.1: Ternary diagram for enantiomeric system with formation of
conglomerate (i) and racemic solid (ii).

The formation of crystals for racemic compound forming system can be
exemplified by Figure A.2, with the (-) enantiomer as the preferential and the (+)
enantiomer being the counter. In the region a, the saturation of the system depends
on the point of operation P, on the temperature (which defines the eutectic point E
and on a curve that describe the solubility from the eutectic composition to point
B, which is the solubility for a solution free of the undesirable enantiomer. The
saturation, represented by Sp

a , can be obtained by the intersection of the line (−)P
with the solubility curve from from E to B. This solubility curve is described by
the Schröder van Laar equation (present in next section). For racemic solids having
a high enantiomeric ratio eutectic point, such a curve can be approximated by the
straight line EB.

Figure A.2 also illustrates the crystallization operating in region b. As there
are two stable solids in this situation, starting in a composition P’ , the system
is supersaturated with respect to the pure solid of (-) and racemic solid (rac).
The saturation for the racemic solid (Srac

b ) is determined by the intersection of
the straight line RP′ with the dividing line between the regions a and b: line (−)E.
Furthermore, the saturation for the pure solid (Sp

b) is obtained by the intersection
of the line (−)P′ with the line RE. The region c generates racemic solid and liquid
solution given by the intersection of the line connecting the operating composition
with the point R and the solubility curve given by the equation of Prigogine-Defay.

Another definition obtained by the ternary diagram of racemic solids refers to the
fraction obtained of pure solid and of racemic solid when operating in the three-phase
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Figure A.2: Saturation compositions based on the ternary diagram for enantiomeric
system with formation of racemic solid.

region b. The tie line given by the straight line EP′ gives the relationship between
the solid phases formed when equilibrium is reached. Denominating the difference of
composition of the preferential enantiomer between the points R andT of distRT and
the difference of composition for the preferential from points R to (-) as distR(−),
the fraction of pure solid (-) obtained (w(p)

TIE) is given by Eq. A.1.

w
(p)
TIE = distRT

distR(−)
(A.1)

In the region b, the path to the equilibrium composition varies according to the
initial composition, to the degree of supersaturation imposed, to the form of seeding,
and to the crystals growth and nucleation kinetics. Generally, when seeding the
system with a certain type of solid, there is an initial selectivity in crystal formation.
Thus, the trajectory in the ternary diagram will tend to reduce in a higher rate the
composition of the component forming such a solid.

Figure A.3 illustrates two cases of seeding with pure crystals of (-) and with
racemic solid (rac). For the first, there is a tendency to reduce the (-) component
in the liquid phase, but there is an instant in which nucleus occurs followed by
the nuclei growth. This leads the system to the eutectic point. Similarly, when
seeding with racemic crystals in the condition at point P there is initially a favored
formation of rac solid, but after reduction of its supersaturation, there is an instant
at which the pure crystal of (-) begins its formation leading to the eutectic point E.

The preferred racemic solid crystallization addressed by Lorenz et al. (2006b)
is illustrated in Figure A.4. Starting at the eutectic composition for a given
temperature T0 and cooling the system to reach a temperature Tc, being T0 − Tc
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Figure A.3: Preferential pathways of crystallization dependent on crystal seeding.

smaller than the metastable limit of spontaneous nucleation of the solids, the system
is in the region of three phases b (Figure A.4-i).

Applying pure (-) seeds the system tends to form only crystals of the preferred,
so that the composition of the liquid phase makes the path represented by Figure
A.4-ii. Before nucleation of the racemic solid occurs, crystallization is discontinued
and the solid is collected. This is followed by the addition of eutectic composition
solution. Thus, the system follows the trajectory represented in the condition (iii)
of the figure. The next step is the seeding of pure (rac), which forces its own
crystallization to the detriment of forming solid (-), as presented in condition (iv).
Finally, the crystals of rac are collected and a solution of eutectic composition is
added again, bringing the system back (or approximately) to the initial point A.
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Figure A.4: Preferential crystallization of racemic solids.

Solid-liquid Equilibrium for the Racemic Compound Forming
System

As discussed, the enantiomers of racemic solids can crystallize in two ways:
pure crystals of the richest enantiomer in the solution and the crystallization of
the racemic solid (crystal mixing). For the first case, the equation of Schröder van
Laar (Eq. A.2) is used, which relates the saturation composition to the system
temperature.

ln xiγi = ∆fushi
R

(
1
Tm,i

− 1
T

)
(A.2)

wherein ∆fushi and Tm,i are the enthalpy per mol and the melting temperature of
an enantiomer i. Such parameters are usually evaluated with the use of Differential
Scanning Calorimetry (DSC) (Liu et al., 2006).

In the case of crystallization of racemic solids the phase equilibrium can be
represented by the Prigogine-Defay equation (Eq. A.3).
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ln (4xiγix2γ2) = 2∆fushrac
R

(
1

Tm,rac
− 1
T

)
(A.3)

where ∆fushrac and Tm,rac are the enthalpy per mol and the melting temperature of
the racemic solid.

Such equations are originally formulated for the description of binary system,
however, considering optically inactive solvent, they can be applied to the
formulation of the ternary diagram Lorenz and Seidel-Morgenstern (2002).

The coefficient of activity can be obtained via the non-random two liquids
approach (NRTL) neglecting terms of interactions higher than the second order.
The equation of the NRTL for system with m components is in the form of Eq. A.4
(Worlitschek, 2003).

ln γi =
∑m
j=1 τjiGjixj∑m
l=1Glixl

+
m∑
j=1

xjGij∑m
l=1Gljxl

(
τij −

∑m
r=1 τrjGrjx′r∑m
l=1Gljxl

)
(A.4)

Gji = exp(−αjiτji) (A.5)

τji = gji − gii
RT

(A.6)

In a general sense, the NRTL considers: τii = 0, Gii = 1, αji = αij and ∆gji =
gji − gii independent of temperature. According to Worlitschek (2003), for the
ternary enantiomeric systems, in a general approach, further simplifications can be
applied (Eq. A.7). Eq. A.7a to A.7c consider that the non-linearities between the
solvent (i = 3) and each enantiomer (i = 1, 2) are equal; those considerations results
in Eq. A.7d and A.7e; Eq. A.7f and A.7g are consequence of considering ideal liquid
solution behavior of the enantiomers interactions.

τ13 = τ23 (A.7a)
τ31 = τ32 (A.7b)
α13 = α23 = α31 = α32 = α (A.7c)
G13 = G23 (A.7d)
G31 = G32 (A.7e)
τ12 = τ21 = 0 (A.7f)
G12 = G21 = 1 (A.7g)

In view of such considerations, one must specify three parameters for the solution
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of the NRTL equation: α, (∆g13 = ∆g23) e (∆g31 = ∆g32). These simplifications
provide an equal activity coefficient for the pair of enantiomers in solution.

Obtaining the ternary diagram depends on the knowledge of the eutectic
composition. This can be determined by the intersection between the solubility
curve of the racemic solid and the solubility curve for the pure solid of the preferred
enantiomer. Given the parameters of the NRTL (or other method for calculating
activity coefficient), the enthalpy and the melting temperature of the involved solids,
the eutectic point can be calculated by the equation system (Eq. A.8) obtained from
Eqs. A.2 and A.3 with γi given from Eq. A.4.


4x1γ1x2γ2 − exp

[
2∆fushrac

R

(
1

Tm,rac
− 1
T

)]
= 0

x1 − 1/γ1 exp
[

∆fush1

R

(
1

Tm,1
− 1
T

)]
= 0

(A.8)
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Rectangular and equilateral
Ternary diagram

The literature for enantiomer mixtures generally uses equilateral triangle ternary
diagrams to describe the solution thermodynamics. The mixture composition axes in
such a diagram are along each side of the triangle, rather than on a Cartesian scale.
The right triangle representation, on the other hand, uses Cartesian coordinates,
with the mass fraction of two different components of the ternary mixture increasing
along the x and y axes respectively, and the origin representing 100% of the
third component. Converting an equilateral triangle ternary diagram to a right
triangle form is straightforward, as it only involves obtaining the compositions
of the two enantiomers and solvent from the equilateral triangle ternary diagram
and then plotting the compositions on the Cartesian coordinate axes described
above, and drawing appropriate phase boundaries through the compositions in the
right triangle form that correspond to phase boundaries in the equilateral triangle
form. In this section of the Appendix, the geometric relationships for ternary
diagrams are reviewed, which allow ready transformation between the points on
an equilateral triangle ternary diagram (in Cartesian coordinates) and the points on
a right triangle form ternary diagram (in Cartesian coordinates). This relationship
facilitates conclusions regarding the form of the phase boundaries in a right triangle
ternary diagram by looking at the more commonly published equilateral triangle
ternary diagram data.

We first note that if an equilateral triangle ternary diagram is presented on
Cartesian coordinate axes, it takes the form given in Figure B.1. A point P ′ has
mass fractions wR = wP

′
R , wS = wP

′
S , and wW = wP

′
W from reading the ternary

diagram. This same point P ′ also has a representation in (x, y) coordinates on
the Cartesian coordinate axes that the plot is on. This Cartesian representation is
obtained by using the fact that this ternary diagram is equilateral and that the lines
of constant composition are parallel to the side opposite the corner giving 100% of
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the component, so that any point P ′ on the ternary diagram can be represented
as shown in Figure B.2 (where P ′ is represented by point C). Taking advantage of
the fact that Figure B.2 contains an equilateral triangle FCE adjoining an isosceles
trapezoid ABCF, the geometry of the triangle ABE can be represented as shown
in Figure B.3.

y

x
SR

W

P ′

wP ′
S

wP ′
W

1
2

1
2

√
3
2

x̄eq

ȳeq

wP ′
R

1

Figure B.1: Point P ′ in an equilateral triangle ternary diagram displayed on
Cartesian coordinate axes.

y

x
SR

W

ȳeq

60◦

60◦

120◦ 120◦

B

A

C

D EwS

x̄eq

wR

1− wR

F

1

Figure B.2: Geometric relationships applied to the equilateral ternary diagram from
Figure B.1.

From standard geometric relationships for the triangle in Figure B.3, the
following relationships are obtained:

cos(60◦) = x̄eq − wS
h1

(B.1)

sin(60◦) = ȳeq
h1

(B.2)

cos(60◦) = a1

wS
(B.3)

2a1 + h1 = 1− wR (B.4)
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y

x
EA

B

C

D

60◦

60◦

F 60◦

30◦

ȳeq

wS x̄eq − wS

x̄eq

h1

h1

a1

a1

1− wR

1

Figure B.3: Geometric relationships applied to triangle ABE from Figure B.2.

Solving for x̄eq and ȳeq in terms of wS and wR then gives the following transformation:

x̂eq =
x̄eq
ȳeq

 =
 −1

2
1
2

−
√

3
2 −

√
3

2


︸ ︷︷ ︸

A

wR
wS


︸ ︷︷ ︸

w

+
 1

2√
3

2


︸ ︷︷ ︸
beq

(B.5)

which can be written as x̂eq = Aw + beq. The coordinates (x̄eq, ȳeq) represent the
Cartesian coordinates of a point on the equilateral triangle ternary diagram. On
the alternative ternary diagram representation, the right triangle ternary diagram,
(x̄rt, ȳrt) represent the Cartesian coordinates. As shown in Figure B.4, the values
of (x̄rt, ȳrt) = (wR, wS) in this representation. This means that when (wR, wS) data
is known for a given system, it can be readily plotted on Cartesian coordinate axes
using either Eq. B.5 to obtain an equilateral triangle form or (x̄rt, ȳrt) = (wR, wS)
for a right triangle form. Furthermore, given x̂eq = Aw + beq, x̂rt = [x̄rt, ȳrt]T can
be determined from [x̄rt, ȳrt]T = [wR, wS]T = A−1(x̂eq − beq). The implication of
the relationship between (x̄eq, ȳeq) and (x̄rt, ȳrt) is that if a phase boundary in the
equilateral triangle ternary diagram is a straight line (i.e., along this boundary, ȳeq
is linearly related to x̄eq), then ȳrt will be linearly dependent on x̄rt along the phase
diagram in the right triangle ternary diagram. This shows that some important
features of a right triangle ternary diagram may be inferred from an equilateral
triangle ternary diagram without the need to plot all points, which can be used to
determine the shapes of curves like the solubility curve used in this paper in a right
triangle ternary diagram, given data in equilateral triangle form as it is commonly
reported in the literature.
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x̄rt = wR

ȳrt = wS

x

y

P ′

1

Figure B.4: Right triangle ternary diagram representation of point P ′ from
Figure B.1.
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Mixing Rule in ternary diagram

Eq. 5.1 is developed from mass conservation principles. Specifically, the mass
fraction of species j in a mixture (wmixj ) of a mass p at a given composition wpj

with another mass q at composition wqj in a mass ratio k = q
p
has the mass fraction

calculated by:

wmixj =
wpj + kwqj

1 + k
(C.1)

This relationship can be used to express every initial composition within the
two-phase region at a given temperature as a weighted sum of the mass fraction
of pure R (wR = 1) and the mass fraction of R in the saturated liquid in equilibrium
with solid R at the given temperature given the initial composition. This does not
imply that the original point in the two-phase region is a mixture of pure R and
a saturated solution; at thermodynamic equilibrium, only the two separate phases
would be observed. However, the initial composition (the mixture composition in
Eq. C.1) represents the composition of the liquid mixture that would be obtained
if the temperature of the mixture was changed in a way that brought the initial
composition in the two-phase region to be only a liquid phase.

To demonstrate the use of the mixing rule for Figure 5.1, it is noted that at
T0, the composition wRP

R (defined to be an initial composition within the two-phase
region on the line RP) can be represented as a mixture with a mass ratio k of pure
R with a liquid of composition P:

wRP
R = wP

R + k

1 + k
(C.2)

where wP
R represents the mass fraction of R at P and the equation follows from

Eq. C.1 since the mass fraction of R at point R (wR
R ) is 1. Similarly, the composition

of S on line RP (wRP
S ) can be represented by:

wRP
S = wP

S

1 + k
(C.3)
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since the mass fraction of S at point R (wR
S ) is zero. Solving Eqs. C.2-C.3 for k,

setting the two expressions for k equal, and solving the resulting expression for wRP
R

gives Eq. 5.1.
We can examine the principle of conservation of mass within the ternary diagram

as compositions change along the line RP during cooling of a mixture through a
numerical example. If there is a starting composition P at T0 with 279.1 g of R,
43.5 g of S and a total mass of 1 kg (wR = 0.279, wS = 0.0435, and wW = 0.678)
and considering that this solution is cooled to T1 and as a result loses 100 g of R due
to crystallization of pure R with constant S and solvent mass in the liquid phase,
the composition of the saturated liquid phase in equilibrium with solid R at T1 is
given in Figure 5.1 by Q (wR = 0.20, wS = 0.048, and wW = 0.752).
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Derivation of yield for Racemic
Compound Forming System

In the following, Eqs. 5.8 and 5.9 are derived with mass balances defined using
the total liquid mass L, the total solid mass C, the liquid mass fraction of species j
(wj) and the solid mass fraction of species j (vj) for j = R, S, W representing the
R enantiomer, S enantiomer and solvent, respectively. Also, the superscripts i and
f on these quantities designate the values of these quantities at the initial and final
batch times. Assuming that there is no transformation of one species to another,
the following species and total mass balances can be written:

LiwiR + CiviR = LfwfR + CfvfR (D.1)

LiwiS + CiviS = LfwfS + CfvfS (D.2)

Li + Ci = Lf + Cf (D.3)

Multiplying Eq. D.3 by wfR and substituting LfwfR from Eq. D.1, the following
expression for Cf is obtained:

Cf = (CiviR − CiwfR − Liw
f
R + LiwiR)

(vfR − w
f
R)

(D.4)

If it is considered that all solid mass is only R enantiomer (viR = vfR = 1 and
viS = vfS = 0), Eq. D.4 becomes:

Cf = Ci + Li
(wiR − w

f
R)

1− wfR
(D.5)

The mass of solid crystallized during the crystallization process is Cform = Cf −
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Ci. Hence, with LiR = wiRL
i and Eq. D.5, the crystal yield will be:

Yc = Cform
LiR

= 1
wiR

(wiR − w
f
R)

1− wfR
(D.6)

During the batch crystallization, with only pure R crystals being formed, mass
balances on R and S provide the following relations:

wfR = wiRL
i − Cform
Lf

(D.7)

wfS = wiSL
i

Lf
(D.8)

Solving these equations for Lf and setting them equal gives:

wiRL
i − Cform
wfR

= wiSL
i

wfS
(D.9)

By dividing both sides of Eq. D.9 by wiRLi, the definition of the yield Yc (Eq. D.6)
appears in the equation, and the resulting equation can be solved for Yc to give:

Yc = wfSw
i
R − w

f
Rw

i
S

wfSw
i
R

(D.10)

From Eq. 5.5, P i = wi
R

wi
R+wi

S
and P f = wf

R

wf
R+wf

S

, so these equations can be solved for
wiS and wfS and the resulting expressions substituted into Eq. D.10 to give Eq. 5.8.
To obtain Eq. 5.9, Eq. D.6 and Eq. 5.8 are equated.
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Mass balance Equation for the
enantioselective crystallizer

This derivation is also discussed in Section 2.2.1. In this section, an alternative
approach is presented. Eq. 5.17 is derived by considering the volume of a single
crystal of size l (V1c(l)), given by:

V1c(l) = kV l
3 (E.1)

The mass of a single particle of size l will be:

m1c(l) = ρcV1c(l) = ρckV l
3 (E.2)

The total mass of all crystals in the crystallizer at time t is mc(t):

mc(t) =
∫ ∞

0
m1c(l)mW (t)n(t, l)dl (E.3)

The change in the total crystal mass with time is:

dmc

dt
=
∫ ∞

0
ρckV l

3∂(mW (t)n(t, l))
∂t

dl (E.4a)

=
∫ ∞

0
ρckV l

3
[
mW

∂n

∂t
+ n

dmW

dt

]
dl (E.4b)
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Substituting Eq. 5.12 into Eq. E.4b gives:

dmc

dt
=
∫ ∞

0
ρckV l

3
[
mW

(
−∂(Gn)

∂l
+B0δ(l − lmin)− n d

dt
lnmW+

1
mW

[ninṁW,in − noutṁW,out]
)

+ n
dmW

dt

]
dl

= ρckV

∫ ∞
0

[
−l3mW

∂(Gn)
∂l

+ l3mWB0δ(l − lmin)− nl3mW
d

dt
lnmW+

l3ninṁW,in − l3noutṁW,out + l3n
dmW

dt

]
dl

(E.5)

Simplifying by canceling terms, performing the integral for the term containing B0,
and using nin = 0 gives:

dmc

dt
= ρckV

∫ ∞
0

[
−l3mW

∂(Gn)
∂l

− l3noutṁW,out

]
dl (E.6)

When there is no fines dissolution loop (i.e., ṁW,out = 0), integrating Eq. E.6 by
parts gives that the change in the total mass of crystals in the crystallizer with time,
which is equal to the rate at which mass is entering the crystal phase, is the result of
Eq. 5.17. When the fines dissolution loop is included, Eq. E.6 represents the change
in the total mass of crystals in the crystallizer due to both the growth of the crystals
(corresponding to the first term on the right-hand side) and the exit of fines through
the fines trap (corresponding to the second term on the right-hand side). Because
Eq. 5.17 represents only the rate at which mass exits the liquid phase to grow the
crystals, integrating the first term on the right-hand side of Eq. E.6 again results in
Eq. 5.17.
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State vector definition for the
Moving Sectional Method bin
addition

In Kumar and Ramkrishna (1997) it is suggested the bins addition scheme for
taking the nucleation into account when using the MSM and indicates the need
of renumbering of old bins as an increasing sequence of integers. In this section
an efficient numerical strategy to apply the bins addition is demonstrated that is
suitable for computational implementation.

The dynamic simulation using Eq. 2.66 uses at initial time a mesh grid with a
total of rx,0 bins in which the initial values for xi, li and Ni are defined. During
the simulation new bins are added to the grid at the critical size to include the
nucleation mechanism. Moreover, new bins can also be needed to be added at
larger sizes depending on the process, such as with classified larger particle feeding.
Another scenario is a process with particle disappearing due to dissolution, in that
case it is convenient to remove bins smaller than the critical size, since they are not
stable and should be discounted from the overall PSD. Thus, at a given simulation
time the grid will contain a defined number of active bins denoted as rx.

In order to consider the cases with bins addition both at smallest and at largest
sizes, as well as the possible removal of particles due to dissolution a strategy using
an augmented state sequence ỹ is demonstrated. In this approach it is defined
active states associated with the active bins used at a given simulation time and
also nonactive states that are not being used by the dynamic model. Both set
of states are contained in the augmented state sequence. The strategy adopted
consists in the selection the active states at certain t based on the process condition
that should be used in the dynamic integration. An approach to accomplish this is
demonstrated as follows.
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It is considered that the augmented state sequence ỹ is defined using all the
initial condition states and also states related to bins to be included along the
simulation. The initial condition states are the discretized bins states xi(t0), li(t0)
and Ni(t0) and states that are related with differential equations not derived from
Eq. 5.12, such as mass balances and energy balance, denoted as yex. The nonactive
states are defined based on a given number of additional bins re,l at smallest size
and re,u at largest size that can potentially be added to the active set during the
simulation. In case the bins addition are performed in regular time intervals, those
values can be adjusted accordingly such that at final time all values from ỹ are used.
However, when the addition is dependent on process variables, re,l and re,u should
be defined conservatively using a sufficient larger number. Eq. F.1 defines ỹ using
the augmented pivot, boundaries and number of particles sequences x̃, l̃ and Ñ ,
respectively, and also yex. The bin boundaries l̃ can be removed if not needed.

ỹ = [x̃ l̃ Ñ yex] (F.1)

The augmented state x̃ at initial time is defined as in Eq. F.2, in which states
x∗,li and x∗,ui are nonactive states at smallest and largest sizes. The remaining values
composes the active pivots, which at t0 are the values from position re,l up to re,l +
rx− 1. The position of the first active pivot is denoted as ηx,s = re,l and for the last
active pivot is ηx,f = re,l + rx− 1. The augmented states l̃ and Ñ at initial time are
defined analogously, except that l̃ contains rx+1 in the active set. In that sense, the
first active boundary for l̃ is ηl,s = re,l and the last active position is ηl,f = re,l + rx.
For Ñ the first and last active state position are ηN,s = re,l and ηN,f = re,l + rx − 1.
All the states x∗,li and l∗,li are set to the critical size l0, whereas all states x∗,ui and
l∗,ui assume the value of the largest considered size lmax. The number of particles at
nonactive bins N∗,li and N∗,ui are set to zero.

x = [x∗,l0 x∗,l1 . . . x∗,lre,l−1 xre,l
xre,l+1 . . . xre,l+rx−1 x

∗,u
re,l+rx

. . . x∗,ure,l+rx+re,u−1] (F.2)

The addition of a new bin at the smallest size is represented decreasing by one the
position of the first active position ην,s, in which ν stands for x, l or N . Whereas,
the removal of a bin at smallest size is performed by increment by one the first
active position. In a similar manner, at largest size the addition of a bin is done by
increasing by one the position of ην,f and the removal is performed by decreasing it
by one.

Based on those definitions, a generic procedure is established to allow the use
of the MSM for different applications. The events of adding or removing a bin are
summarized by adjusting the positions of the active states based on ην,s and ην,f .
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Those events can be triggered based on regular time intervals as in (Kumar and
Ramkrishna, 1997), or accordingly with the dynamic behavior of the process.
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Pitzer Model for NaCl

The Pitzer Model is used to calculate the activity coefficient for the NaCl
dissociation (Zemaitis et al., 1986):

ln γNaCl = |zNa+zCl−|fγ + bNaCl
[
2(νNa+νCl−) 3

2
]
Cγ (G.1)

fγ = −Aφ

 I
1
2

1 + bγI
1
2

+ 2
bγ

ln (1 + bγI
1
2 )
 (G.2)

Aφ = 1
3

(
e√
DkbT

)3√2πd0NA

1000 (G.3)

D = 305.7 exp
[
− exp (−12.741 + 0.01875T )− T

219.0

]
(G.4)

Bγ = 2β(0) + 2β(1)

α2I

[
1−

(
1 + αI

1
2 − α2I

2

)
exp

(
−αI

1
2
)]

(G.5)

Cγ = 3
2C

φ (G.6)

Bφ = β(0) + β(1) exp
(
−αI

1
2
)

(G.7)

I = 1
2
∑

ciz
2
i (G.8)

Where zi is the charge of ion i, e is the electronic charge (e=1.60218 ·10−19C), kb
is Boltzmann’s constant, D is the dieletric constant, T is the temperature in Kelvin,
NA is Avogadro’s constant, ρ is solvent density, bγ is a universal parameter equal to
1.2 kg1/2mol−1/2; α is a parameter equal to 2.0 kg1/2mol−1/2 for NaCl (Prausnitz
et al., 1998). Adjustable binary parameters β(0), β(1) and Cφ are specific for each
salt and dependent on temperature (Zemaitis et al., 1986). Those are defined by
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Table G.1: Pitzer qj parameters

q1 = 0.0765 q2 = -777.03 q3 = -4.4706
q4 = 0.008946 q5 = -3.3158·10−6 q6 = 0.2664
q9 = 6.1608·10−5 q10 = 1.0715·10−6 q11 = 0.00127
q12 = 33.317 q13 = 0.09421 q14 = -4.655·10−5

Eqs. G.9, G.10 and G.11 with T in Kelvin and parameters qj are shown on Table
G.1. Tref is a reference temperature equal to 298.15K.

β(0) = q1 + q2

(
1
T
− 1
Tref

)
+ q3 ln

(
T

Tref

)
+ q4(T − Tref ) + q5(T 2 − T 2

ref ) (G.9)

β(1) = q6 + q9(T − Tref ) + q10(T 2 − T 2
ref ) (G.10)

Cφ = q11 + q12

(
1
T
− 1
Tref

)
+ q13 ln ( T

Tref
) + q14(T − Tref ) (G.11)
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Added PSD as function of added
mass

The added particle size distribution is considered as uniform in the size range
from llow,add to lup,add with a constant value of cpsd,add:

naddj
(l) =

cpsd,add if llow,add ≤ l ≤ lup,add

0 otherwise
(H.1)

The constant PSD value cpsd,add can be obtained based on the added solid mass
using the third order moment, since the mass of solid for a given PSD is defined
as Eq. H.2. The definition for the third order moment is as Eq. H.3, which after
integration for an uniform distribution yields Eq. H.4.

madd = µ3ρckv (H.2)

µ3 =
∫ ∞

0
n(l, t)l3dl (H.3)

µ3 =
∫ lup,add

llow,add

cpsd,addl
3dl = cpsd,add

4 (l4up,add − l4low,add) (H.4)

The substitution of Eq. H.4 into Eq. H.2 and after rearranging provides the
constant PSD value cpsd,add:

cpsd,add =
4maddj

(l4up,add − l4low,add)ρckv
(H.5)
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